Study of a spectral sequence central in the behavioural approach

Alban Quadrat!

Abstract— Within the algebraic analysis approach to multidi-
mensional systems, the behavioural approach can be understood
as a dual theory to the module-theoretic approach. This duality
is exact when the signal space is an injective cogenerator
left module over the ring of functional operators. In this
paper, we consider the case of a general signal space and
investigate the connection between the properties of the module
M defining the system and the obstruction to the existence of
parametrizations of this system. To do so, we study the Cartan-
Eilenberg resolution of a certain complex and a Grothendieck
spectral sequence connecting the obstructions to the existence
of parametrizations to the obstructions for M to be projective.

I. ALGEBRAIC ANALYSIS APPROACH

Within algebraic analysis [2], [4], [6], if D denotes a ring
of functional operators (e.g., ordinary or partial differential
operators, time-delay operators, shift operators), R € D?*P
a g X p matrix with entries in D and F a left D-module, then
a system is defined by kerz(R.) := {n € FP*1 | Rn =0},
i.e., by the kernel of the abelian group homomorphism R.

(D

where F'*1 is simply denoted by F'. Within the behavioural
approach, F is called a signal space and kerr(R.) a
behaviour [4], [6]. The latter can be intrinsically studied by
means of the left D-modules F and M := D'*?/(D'*9 R),
where D'*¥P is the left D-module formed by row vectors of
length p with entries in D. Indeed, if homp (M, F) denotes
the abelian group formed by all the left D-homomorphisms
(i.e., left D-linear maps) from M to F, then a standard result
in module theory [5] shows that kerz(R.) = homp (M, F).

Definition 1 ([5]): o A sequence of left/right D-
homomorphisms d; € homp(M;, M;_1) is called a
complex if d; od; 1 = 0 for all ¢ € Z, or equivalently
if imd; 1 C kerd; for all ¢ € Z. It is denoted by:

dit1 di—1

di+2 d;
i+1 —— M; —Z>Mi_1 —_— ...

My: ... —
e The homology of the complex M, at M; is defined by:
HZ(M.) := ker dl/lm di+1~

o The complex M, is called exact at M; if H;(M,) =0
and simply exact if H;(M,) =0 for all i € Z.

o A free resolution of a finitely generated left/right D-
module M is an exact sequence of the form

d d. d
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where the left/right D-modules F; are free. Its trunca-
tion is the complex obtained by setting M = 0 in (2).

In what follows, we always assume that D is a noetherian
domain and M is a finitely generated left D-module [5].
We can prove that any finitely generated left/right D-module
admits a free resolution where the left/right D-modules F;’s
are finitely generated left/right D-modules (see, e.g., [5]).

Let us consider a truncated free resolution of the finitely
presented left D-module M = D*Po /(DYXP1 Ry):

oA, plxee B2 plxpn B1 plxpe g0 (3)

Applying the contravariant left exact functor homp (-, F) to
(3) and using homp (D1*Pi, F) = FPi, we get the complex

Ro.
2

Rhomp(M,F) : ... S e o Baoppo 0,

whose cohomology abelian groups are defined by:

{ extO (M, F) := homp (M, F) = kerz(R;.),

. 4
extlD(M, .7:) = ker}-(RHl.)/im]:(Ri.), ) > 1. ( )

Using (4), exth (M, F) = 0 is equivalent to kerz(Rs.) =
imz(Ry.) = Ry FPo, ie., to the fact that the behaviour
kerz(R2.) can be parametrized by means of the matrix R;.

D_eﬁnition 2 ([5]): A left D-module F is injective if
ext’, (M, F) = 0 for all right D-modules M and all 4 > 1.

Let N := D9/(RDP) be the Auslander transpose of
M = D'YP/(D'*4R), ie., the cokernel of the right D-
homomorphism (1) where 7 = D [2]. Let gy :==¢q, q1 := P
and Ry := R, and consider a truncated free resolution of V:

0 po f po [2 po fo (5)

Applying the contravariant left exact functor homp( -, D)

to (5), we obtain the complex Rhomp (N, D) defined by

0 — DWxw i, pixar fe, pixe a0 ()
whose cohomology left D-modules are:

ext®, (N, D) :=homp(N, D) = kerp(.Ry),
ext’, (N, D) 2 kerp(.Rit1)/imp (.R;), i > 1.

Definition 3 ([5]): e M is projective if there exist a left
D-module P and r € Z>( such that M ¢ P = D1*",
where & denotes the direct sum of modules.

e M is reflexive if the canonical left D-homomorphism
e : M — homp(homp(M, D), D), defined by
e(m)(f) = f(m) for all f € homp(M,D) and for
all m € M, is an isomorphism.

)



o M is torsion-free if we have:
t(M):={meM|3de D\{0}: dm=0}=0.

Theorem 1: [2] Let assume that D has a finite global
dimension gld(D) := n [5]. Then, we have:

1) t(M) = extL, (N, D).

2) M is torsion-free iff ext], (N, D) =0

3) M is reflexive iff ext’; (N, D) =0 for i =1, 2.

4) M is projective iff ext’, (N, D) =0 fori=1,...,n.

Applying the covariant right exact functor - @p F to (5),

where ®p denotes a tensor product [5], and using the fact
that D% @p F = F% [5], we obtain the following complex

N@hF: 0e— Fo o po f2 pe o (g
whose homology abelian groups are defined by:
tord (N, F) = cokerz(R;.) = F® /img(Ry.), ©)
tor? (N, F) 2 kerr(R;.) /imgp(R;y1.), > 1.

Note that tor? (N, F) = 0 yields ker#(R;.) = im#(Rs.),
i.e., kerz(R;.) can be parametrized by means of Rj.

Definition 4 ([5]): A left D-module F is said to be flat
if tor? (I, F) = 0 for all right D-modules N and all i > 1.

An important problem in mathematical systems theory is
to parametrize systems [2], [6]. This problem is called image
representation in the behavioural approach. If the functional
space F is a flat left D-module, then tor? (N, F) = 0, and
thus kerz(R;.) can be parametrized by means of Ry defined
by kerp(R1.) = Re D% (see (5)). Thus, any behaviour is
parametrizable over a flat left D-module F. Unfortunately,
few standard functional spaces F are flat left D-modules [6].

If M is a projective left D-module and F any left
D-module, then we can show that kerz(R;.) can be
parametrized by Ry defined by kerp(R;.) = Ry D% [2].
Unfortunately, few systems define a projective module M.

Another approach is to note that if M is torsion-
free, i.e., t(M) = ext},(N,D) = 0, then applying the
contravariant functor homp(-,F) to the exact sequence
DquO D1><q1 &

Fao o pa o pe whose cohomology abelian group
at FO is exth(Ng, F) = kerp(R;.)/img(Rs.), where
Ny := cokerp(.Ry) = D'*%2 /(D' 4 Ry). In particular,
if F is an injective left D-module (see Definition 2), then
extb (N, F) = 0, ie., kerg(Ry.) = img(Ra.), which
shows that the linear system kerx(R;.) can be parametrized
when M is torsion-free and F is an injective left D-module.
The hypothesis of an injective module F is standard in
the behavioural approach [2], [4], [6]. Before studying the
general case, let us study the injective case in more detail.

R
-, D%z we get the complex

Lemma 1: [5] Let us consider the following complex:

dit1 di—1

di+2 d;
i+1 —— M; —Z>Mi,1 —_— ...

Mey: ... —=
Then, we have the following short exact sequences:

VieZ, 0— HZ(M.) — cokerd,»_H — imd; — 0.

Theorem 2: Let N = D?/(R DP) be the Auslander trans-
pose right D-module of M = D'*?/(D'*4 R) and F an
injective left D-module. Then, we have:

Vi>1, tor?(N,F)=homp(exth(N,D),F). (10)
Proof: Let us consider a free resolution (5) of N.
Applying the contravariant left exact functor homp(-, D)
to (5), we get the complex Rhomp (N, D) defined by (6).
Let R;; := R;, q;; := g;. Then, (6) becomes:

0 — Dixao Fai, plxgn -foz pixgs, -Fas,

Let Ri_1); € DIG-»i*9G-Di be a matrix such that
kerp(.Ri) = imp(.R(;_1);) for i > 2. Then we get the
following diagram formed by horizontal exact sequences:

Dlxais -Ras Dlxazs RG] Dl%ass
1Xqo2 Bi2 1xq12 -Roo 1Xq22
D — D — D
D1xao1 B Dixain
(11)

Let M(;_j); := cokerp(.R(;_;);) for i > 1 and i > j.
Applying Lemma 1 to the complex Rhomp (N, D) defined
by (6) and using imp (.R(i41)(i+1)) = Mj(i11), we get the
following short exact sequences for ¢ > 1:

0 — exty (N, D) — M;; — M) — 0. (12)

We then have homp(M;;, F) = kerg(R;.) and
homp (M;(i 41y, F) = kerz(R;(i41).). Since F is injective,
we get the following short exact sequence (see, e.g., [5])
homp (ext’, (N, D), F)

— ker]:(Rn.) — kery:(Ri(i+1).) — 0,
i.e., homp(ext’, (N, D), F) = kerr(R;i.)/ ker#(Ri(it1)-)-

Applying the exact functor homp(-,F) to (11), we get
1m]:(R(1+1)(2+1)) = ker}-(Ri(Hl).). By definition (See (9)),
we have tor? (N, F) = kerz(R;;.)/imz(R(it1)(i+1).) for
1 > 1, and thus we finally obtain (10). |

0+«—

Note that homp (exth (N, D), F) defines the autonomous
elements of kerz(R.) [2], [4], [6]. Theorem 2 connects
the obstructions for getting a long chain of successive
parametrizations of the form (8) to the behaviours associated
with the obstructions ext’, (N, D)’s for M to be projective.

II. CARTAN-EILENBERG RESOLUTION

The rest of the paper aims at extending Theorem 2 in the
case where F is no longer an injective left D-module.

The goal of this section is to construct a free resolution
of the complex Rhomp (N, D) (6) called a Cartan-Eilenberg
resolution [5]. It plays a central role in the rest of the paper.

In what follows, we shall use the following notations:

a complex is always oriented from left to right and from
bottom to up. We first need to rewrite the truncated free
resolution (5) of N according to the notational conventions
R_3.

R_». R_;.

Dr-2 Dr-1

D -0, (13)



where R_1 = R, r9 = q and r_; = p. Moreover, applying
the contravariant left exact functor homp (-, D) to (13), we
obtain the complex Rhomp (N, D) rewritten as follows

0 0 1 1 2 2
0 D1><’r’ R D1><T‘ R D1><’r‘ -R

(14)

where R := R_;_1 for i > 0 and r* = r_; for i > 0.
The complex (14) can be decomposed as a sequence of the
following short exact sequences:

0 — kerp(.R') — D" T imp (R — 0, (15)

. . i+l i1
0 — imp(.R") — kerp(.R"™!) Z—s extlDJr (N,D) — 0.

(16)
Let us now consider a free resolution of kerp(.R°):

§0.—2 1 .g0-1

) Dlxso’_
a7
Combining (17) with the short exact sequence (15), i.e.,

0 — kerp(.R%) — DY 250 D (RY) — 0, (18)

we obtain the following free resolution of imp(.Rp):

UL prxett URTE pucat® B ROY g,
(19)
ul,O — ,r,O7 VZ Z 1’ ul,—’i — S(),l—i7 Ul,—i — SO,l—i.
(20)

Lemma 2: With the notations of (17), (19), (20), and

Vi>0, 0= g0t qqylimi = g0—i 4 01—

X0 = (ISO,—i O),

0,0
Y0, —i — 0 70,0 — S
Ioa—i )’ Lo |’

TO,fi B SO,fi 0
- (—1)i ISO,I—i Uyl—i ’

the diagram (21) is commutative and exact. It defines a free
resolution of the short exact sequence (18).

Proof: The first and third vertical sequences of (21)
are exact since they are respectively a free resolution of
kerp(.R%) and of imp(.R?). All the horizontal short se-
quences are exact and starting from the second one, they
split [5]. We can easily check that all the squares commute.
Since T9—i-170.—t — ( for 4 > 0, the second vertical
sequence is a complex, i.e., imp (.77~ 1) C kerp (.T%~%).
If A = ()\1 /\2) S keI‘D(.TO’O), i.e., )\1 SO’O + )\2 = 0,
then A = \; (Io00 — S%0), which yields kerp(.7°°) C
imp (.1%71), ie., kerp(.T%°) = imp(.7%~1), and shows
that the second vertical sequence is exact at DXt Now,
let A= (A1 A2) € kerp(.T%79), ie.

MSOTI 4 (=) A =0, NUVTT=0.  (22)

Since kerp(.U™") = imp(.UH~""1), where by definition
UL=i=1 = §0—i there exists p2 € D% ' such
that Ay = o S% % Substituting it in the first equation
of (22), we obtain \; + (=1)'puy € kerp(.S%7%) =

SV prxs© 520 kerp(.R") — 0.

imp(.S%~%"1), and thus p; € D" 7" exists such that
A+ (—1)i Ho = 1 SO’_i_l, which yields ()\1 )\2) =
(11 SO~ 7L (=) g o SO1) = (g pr) TO1
and shows that kerp(.7%7%) C imp(.T%~"1), and thus
kerp(.T%~%) = imp(.T%~"1). The second vertical se-
quence of (21) is then exact at D> ", which finally proves
the exactness of the commutative diagram (21). |

Lemma 3 ([3]): Let R € D9%P and R’ € D?*P be such
that imp (.R) C kerp(.R’). Moreover, let R” € D?*? and
R, € D" *% be such that R = R”" R’ and kerp(.R') =
imD(-RIQ). If L = Dlxq// (Dlx(q+r/) (R//T R/2T)T)’
Q = kerp(.R')/imp(.R) ¢ : D' — L and & :
kerp(.R’) — @ the canonical projections onto respectively
L and @, then we have the following isomorphism:

L — Q
o(v)

Using (16), we have the following short exact sequence:

— k(v R').

1
0 — imp(.R%) — kerp(.R') == exth (N, D) — 0.
(23)
The beginning of a free resolution of kerp(.R') is then:

1 71,—1 71,0 71,0
S phtt S kerp(.R') — 0.
Hence, we get exth(N,D) = imp (.5""°) /imp (.RY).
Using imp(.R°) C imp(.5""7), there exists S0 €
1,0 /1,0
ut %% quch that RO = 8710 /10 1f 10 = g1,

Dlxs/l’

1.1 S”l’o 1,-1,.1,0
,Ul,fl _ U1’0+8/ s Vl,fl —_ c DY TIXsT
’ Sll’_l ’

then Lemma 3 yields the following isomorphism
L= Dlxvl’n/(Dlxv1’71 V17—1) o ext}j(N, D)

1,0
olv) — k(S
where are o and ! are the two canonical projections:

oD Lk rimp(.877) — exth (N, D).

Consider a free resolution of ext},(N, D) of the form:

R7atin

Ixol0 wlo.g'10
L —

exth(N,D) — 0. (24)

wb0

Now, let V1=2 = (X —Y), where X € DV "X

- 11,—1 —

and Y € D" "*<"""" Then, we have X §""" =y §/"7!
and using R® = §”"° 8" we then get

XR =x8""8" =ygh gt =y,

ie., 1mD(X) - kerD(.RO) = ing.SO’O) = imD(.Ul’il),
and thus there exists L1'~1 € DV’ X% guch that:

X =rbvtyh-t. (25)
Using VI3 VL=2 = (VL3 X  —V6L=3Y) = (0 0),
we get VL =3pL-lpyh-l vL-3X = 0, ie,

imp (.(VV 3 LY71Y) C kerp(UY™1) = imp (.U ~2), and
thus there exists a matrix L1~=2 € DV “X¥""* guch that



0 0 0
T T T
0
0— kerp (.R°) — D’ SN imp(.R") —0
T .SO'O T 'TO,O T .RO
0 —> DIXSO’O X000 DlXtO’O Yoo DlXul’O 50
50.—1 0.-1 U1
LS P [ @1
0 —> D1><s ’ . D1><t ’ . D1><u ’ —50
1 .50:-2 T .70-2 1 .ut-2
0 —s D1X30’72 X072 D1><t0=*2 Yo -2 Dlxu1'72 —0
T.5073 1.7 T.ub—?

VL3 b=l = LL=2Ub—2, Similarly, we can prove that
. . . 1,—i— 1,—4

there exist matrices L% € DY XU such that:
Vix2, vbhimlphet= phetyhTts (26)

Lemma 4: The diagram (27) is commutative and exact,
where st = b7t ol >0,

yh-l 0
RO
= < /1,0 > , Shl=| Lo S,
S o gt
Ut 0

Vi>2, Sbhi= <(

Vl,—i > :
0
Ivl,—i '

Proof: Combining the free resolutions (19) and (24),
we obtain the diagram (27). By construction, the first and
third vertical sequences of (27) are exact and we can check
that all the horizontal sequences are exact. Starting from the
second one, they split. Moreover, every square commutes.
The only thing left to prove is that the second vertical
sequence is exact. We can first check that S1:—¢—1 §h=1 =
for ¢ > 0, which shows that the second vertical sequence
is a complex, i.e., imp(.SH771) C kerp(.S17%). Now, let
A= (A1 A2) €kerp(.819), i, At RO+ 8" =0, and
using R® = §""0 510 we get (A1 g0 )\2)3’1’0 =0,
e, M S0+ Ay € kerp((8"™M°) = imp (.90, ie.,

_1)7: 10

VAL (Iul,ﬂ' 0), wh—i = <

@€ D" exists such that Ay S”M0 4 Ny = p 570
which shows that
M A =01 pS A 8" =0 A ) SV

ie, kerp(.S¥%) C imp(.SV~!) and proves that
kerp(.S1Y) = imp(.9171), i.e., the exactness of the second
vertical sequence of (27) at Dixs"?, Now, let us consider
A= ()\1 Ay )\3) S keTD(.Sl’_l), ie.:
A1 U1 — Aoy = 0,

_ ) _ (28)
{ (A2 A3) € kerp(.VETY) =imp(.VE72).
Using V1—2 = (X —Y), there exists x € D'X¥"~ such
that (A2 Az) = (X —Y). Using (25) and (28), we get
Ao = A\ Ut—1t = ,uX = /LLLil Ul’il, ie., )\1*,LLL1’71 €
kerp(.UL™1) = imp(.UH~2), there exists v € pixut™?
such that \; — p LY ~! = v U2, and thus:

A=@wU 24+l pvh ) =@ p)SH2

Hence, we obtain kerp(.S1'~1) C imp(.S172), ie.,
kerp(.S1 1) = imp(.S172), which shows that the second
vertical sequence of (27) is exact at Dixst T Finally, let us
consider A = (A1 A2) € kerp(.S17%), i.e.:

AMULT 4 2 (1) LM =0, A VBT =0

Now, using kerp(.V1=%) = imp(.V1=471), there exists
p € DYV guch that Ay = p VY=L, which yields
A\ UL =i (=1)fVE=i=t L1171 = (), and thus, using (26),
M+ p (1) LY H U =0, ie, A\ + p(—1) Ll’_? €
kerp (.U = imp(.UL~"1). Then, v € D™>v" "
exists such that A\; + p(—1)'LY~% = vUL"1 and
thus, A = (vUM71 4 p(=1)" b= pvETiTl) =
(v p)SH~=1 which shows that kerp(.S%~%) C
imp(.SH71), ie., kerp (ST TY) = imp (.ST 77 1). Hence,
the second vertical sequence of (27) is exact at D" m
We can repeat what has been done for (21) and (27) with
the short exact sequences (15) and (16) for ¢ > 1. Using the
short exact sequences (15) and (16), we get the complex

.—  kerp(.RY)

—  kerp(.R*t1)

i
— D1><r

— 'D1><7'iJrl

—» imD(.Ri'H)

where — denotes a monomorphism and — an epimorphism.
Combining the obtained complexes, we get the complex (29)
with exact vertical sequences and ¢,5 > 0:

The complex we finally obtain is called a Cartan-Eilenberg
resolution of Rhomp (N, D) of the form (29) [5].

0 0 0
0 0

Lyit1,—;

Ab—I — b= zitl,—j xitl,—j _ (

III. GROTHENDIECK SPECTRAL SEQUENCE

Applying the contravariant left exact functor
homp(-,F) to the truncated Cartan-Eilenberg resolution
of Rhomp (N, D) obtained by removing the first horizontal
complex of (29), we obtain the double complex (30),

denoted by F*°, where for i,j > 0:
Tfi,j = Ti’_j_l, t*i,j = ti’_j, Afi,j = Ai_l’_j.

Let tot(F**) be the sequence formed by

g" = @ f’t—p‘q — @ j:'t—p,n-%—p — @ftn—q,q7

—p+g=n —p<0 q=0



0 0 0
T T T
. K
0— imp(.R°) — kerp(.R') - exth (N, D) —0
1 .RO 1510 T rlo.g/10
O DlXul’o .z1,0 Dlel’O w0 Dl><’u170 0
T.uht T.su1 Tvht
U S . @7)
0 D1><u > - D1><s ’ . D1><v ’ 0
T.ub-? T .5h2 T2
0 l)1><u1‘72 zt2 D1X51‘72 w2 Dlxv1’72 0
T.ub-s 1.5L-3 IRTAT
0 0 0
T T T
1x70 -R° 1xr! .R! 1x7? .R®
0— D" s D" S D" S
T 0,0 T 710 T T2:0
0.0 A0.0 1.0 ALO 2.0 A2.0
0 DlXt > - D1><t ’ - DlXt > -
1.7t Tt 1.7t (29)
15¢0—1 A0 —1 1xgli—1 AL-1 152~ 1 A2:—1
0 D Xt . D Xt . D Xt .
1702 Torhe2 T .12
_ 0,-2 — 1,-2 ,, 2,-2
0 Dlxto‘ 2 A l)l)(t1 A l)l)(t2 2 A
T.70-3 T3 T.7%3
T T T T
A4z . A_gs. ’ A_as. . A .
e LN Ft-33 2788 Ft-2,3 £728 Ft-13 , Ftos 0
TT_35. T T 2. TT_12. T To,2.
A . A_ . A . A_ .
N SR Freen 2, Ftae 2 Fr 0 (30)
T T s1. TT 24. TT 1. T To-
At Ft-s A3 Ft-2.1 A-21- Ft-11 Ao Ftoa 0
T T_3,0. T T-20. T T_10. T To,0-
A-do0- Ft-3,0 A-so- Ft-z2,0 A-20- Ft-1.0 A-10 Ftoo 0
i T i T
0 0 0 0

for n € Z, and the Z-homomorphisms §" defined by:

n 5” n —
gn = Gaprrq:n Ft-pa 2 g +1 — @7p+q:n+1 Ft-pa
5‘7}t_p,q (M=p.a) = (s TopigN—pgs ()" ApgN1pg> - ),
Topg-pq € Frratt, (=1)"A_pgn_pq € Flortia
Using A_p g1 Tpg = T-pt1,gBpgr Tpt1,4Tpg =0
and A_,11 4 A_, , =0, we can easily check that tot(F**)
is a complex, i.e., "' 0§ =0 for all n € Z:

(0"*+1o 5”)\}‘”:0,«1 (pa) = (s Tpg1 Tp g Np.a;
(=D A g1 Topg Npyg + (= 1) Topi1,¢A—p g M-pyg»
A pi1gDpgl—pg ---) =0.

The spectral sequence is a technique which aims at comput-

ing H™(tot(F**)) at G™. See, e.g., [1], [5].

Theorem 3: [1], [5] With the above notations, we have

2B = extlp(exth (N, D), F) = tor®, (N, F),

which means that there exists an ascending filtration of
torz? (N, F) whose graded part is isomorphic to a subfactor
of ext?, (ext%, (N, D), F).

Proof:  Since the vertical exact sequences of (29) end
with the free left D-modules D'*"" they split (see, e.g.,
[5]1), which shows that the cohomology

HUFP*)=Zkerr(T_pq.)/imr(T_pq-1.)
of the p™ vertical complex F~P* of F** at Fi-»q is
HOY(F~P*) 2 kerp(T_po.) = F'-
Vp >0, (}- ) err(T-po) = 77,
HI(FP*)=0, ¢=1,

where r_,, = rP. Moreover, we can easily check that we have
the following commutative diagram with exact columns:

0 0
7 7

A_20- HO (‘7_-71,.) A_1p0- HO (]_-0,.) —0
T 0. T 7°°.

R_,. R_y.

N N A —
T 7
0 0



Applying the covariant right exact functor - ® p F to the
complex (13), we obtain the following complex

R_3. R_».

Froe

Froa R_i. Fro .,
whose homologies are defined by:

tor (N, F) = N @p F = cokerr(R_1.),
{ tor) (N, F) = kerz(R_p.)/imz(R_,_1.), p>1.
The homologies H P (H°(F**)) of the following com[()?el)z
HO(F*®): ... 22

are then defined by (31). According to [5], it shows that
the spectral sequence associated with the first filtration
1Fi(G") = @ _ <y Ftornte of tot(F**) is defined by:

—pP,q _ Tt_
1EO = Ft-pa,

Frer, q=0,
BT = HY(F ) = S
0, q=>1,
- _ tor? (N, F), ¢=0
p,q __ D q (N _ P 9 ’ 9
e S IR =0

Using 1 E, 7% = 0, ¢ > 1, the spectral sequence collapses
on the p-axis and H 7 (tot(F**)) = | E;? = tor) (N, F)
[5]. For more details, see [5].

Let us now characterize the cohomology

H™9(F*P) = kerr(A_qp.) /imz(A_g-1,.)

of the p horizontal complex F*? of F** at F~ 4P,

Since the following exact sequence splits
q+1,—p

X9—P p YO TP

0 — Dlxsq’_p D1><tq‘_ D1><u —0,
we obtain the following split exact sequence:
0 — ]__Squ XoTP, ]_.tq,fp YTP, fu(I‘FL*P —0.

Similarly, the following split exact sequence

W‘l»*}’

9,—-p Z97P a.-p a,—p
0 D1><u D1><s D1><v 0

yields the following split exact sequence:

ZeTP, -» Wo TP, —p

0 - fuq,*P ]:8‘1’ f,U‘Is

Hence, we get kerz(Y®P.) = 0, imp(X%P.) = F" ",
imyz(Z9P) = F*""". Now, since by definition, we have

{ qup = A?"L-P = y9-1.-p 74,—p X—P,

«— 0.

Ay 1, =A"P=Y"P Zatl—p xat+l,—p,

we get imr(A_;_1,.) = imgp(Y?7P.) = kerp(X97P.).
We have kerz(A_, ,.) = kerz((Z%~P X%7P).), and thus:
H™9(F*P) 2 kerg((Z97P X97P).)/ ker g (XT7P.). (32)

If f € homp(M',M), g € homp(M,M") and f is
surjective, then we can show that ker g = ker(g o f)/ker f.
Since Z9~P. is surjective, we then obtain:

HI(F) 2 Kerp (2070 = g (W5 ) 2 7

HO (f*l,o) A_1,0- HO (_7_'0,0) — 50

Hence, we get the following commutative diagram

T S_q,p+1-

T Vegpr
0 — FV-apt1 W*‘Z—P“) H—q(]:-,p-&-l) —50
TVeas TS-ap
0 — FV-ap M) H=9(F*P) — 0
T Vegp-1 TS qp-1
0 — Froawr  Dowrlo pegigenr-1y
T Vegp-2. T 5_qp-2
(33)

with exact horizontal sequences, where W_,, = W%7P,
— V/e,—p—1 — §gq,—p—1 — 9P
Vegp =V s S—gp =15 > U—gqp =V ,p2>0.

Now, applying the contravariant left exact functor
homp( -, F) to the free resolution of ext, (N, D) (see (24))

Va1t

. 4,0 k90870
. DYV

exth (N, D) — 0,

we obtain the following complex

V_gq,2- V_g1- V_q,0-
) q,2 ‘7:-1;,(172 q,1 ]:-'u,q,l q,0 fv—q,o 07

whose cohomologies are defined by:

ext), (exth (N, D), F) 2 kerg(V_g0.),
exth (exth, (N, D), F) 2 kerg(V_yp.) /imz(V_gp—1.)-

Hence, the beginning of the spectral sequence associated with
the second filtration of the complex tot(F**) is defined by:

2Eg)7q = :Ftiq’p7
2EP 1 = Hoa(Few) = 77
oED T = HP(H~9(F**)) = ext}) (ext), (N, D), F).

A standard result for bounded double complexes then shows
that the two spectral sequences 1 £ 79 and 92>~ 9 abut at
H~P(tot(F**)) [5], which finally proves the result. [ |

Theorem 3 shows that a method exists which con-
verges to the computation of the torlp (N, F)’s, ie., of
the defects of parametrizability of (8), by means of the
ext’, (ext), (N, D), F)’s, i.e., of the functional obstructions
formed by the algebraic obstruction for M to be projective.
Making this construction explicit is a fundamental issue
in the behavioural approach. See [1] for the concept of
generalized morphisms which can be used for this issue.
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