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Abstract— Within the algebraic analysis approach to multidi-
mensional systems, the behavioural approach can be understood
as a dual theory to the module-theoretic approach. This duality
is exact when the signal space is an injective cogenerator
left module over the ring of functional operators. In this
paper, we consider the case of a general signal space and
investigate the connection between the properties of the module
M defining the system and the obstruction to the existence of
parametrizations of this system. To do so, we study the Cartan-
Eilenberg resolution of a certain complex and a Grothendieck
spectral sequence connecting the obstructions to the existence
of parametrizations to the obstructions for M to be projective.

I. ALGEBRAIC ANALYSIS APPROACH
Within algebraic analysis [2], [4], [6], if D denotes a ring

of functional operators (e.g., ordinary or partial differential
operators, time-delay operators, shift operators), R ∈ Dq×p

a q×p matrix with entries in D and F a left D-module, then
a system is defined by kerF (R.) := {η ∈ Fp×1 | Rη = 0},
i.e., by the kernel of the abelian group homomorphism R.

R. : Fp −→ Fq
η 7−→ Rη,

(1)

where F l×1 is simply denoted by F l. Within the behavioural
approach, F is called a signal space and kerF (R.) a
behaviour [4], [6]. The latter can be intrinsically studied by
means of the left D-modules F and M := D1×p/(D1×q R),
where D1×p is the left D-module formed by row vectors of
length p with entries in D. Indeed, if homD(M,F) denotes
the abelian group formed by all the left D-homomorphisms
(i.e., left D-linear maps) from M to F , then a standard result
in module theory [5] shows that kerF (R.) ∼= homD(M,F).

Definition 1 ([5]): • A sequence of left/right D-
homomorphisms di ∈ homD(Mi,Mi−1) is called a
complex if di ◦ di+1 = 0 for all i ∈ Z, or equivalently
if im di+1 ⊆ ker di for all i ∈ Z. It is denoted by:

M• : . . .
di+2−−−→Mi+1

di+1−−−→Mi
di−→Mi−1

di−1−−−→ . . .

• The homology of the complex M• at Mi is defined by:

Hi(M•) := ker di/im di+1.

• The complex M• is called exact at Mi if Hi(M•) = 0
and simply exact if Hi(M•) = 0 for all i ∈ Z.

• A free resolution of a finitely generated left/right D-
module M is an exact sequence of the form

0←−M π←− F0
d1←− F1

d2←− F2
d3←− . . . (2)

1Alban Quadrat is with Inria Saclay - Île-de-France, DISCO
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where the left/right D-modules Fi are free. Its trunca-
tion is the complex obtained by setting M = 0 in (2).

In what follows, we always assume that D is a noetherian
domain and M is a finitely generated left D-module [5].
We can prove that any finitely generated left/right D-module
admits a free resolution where the left/right D-modules Fi’s
are finitely generated left/right D-modules (see, e.g., [5]).

Let us consider a truncated free resolution of the finitely
presented left D-module M = D1×p0/(D1×p1 R1):

. . .
.R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 −→ 0. (3)

Applying the contravariant left exact functor homD( · ,F) to
(3) and using homD(D1×pi ,F) ∼= Fpi , we get the complex

RhomD(M,F) : . . . R3.←−− Fp2 R2.←−− Fp1 R1.←−− Fp0 ←− 0,

whose cohomology abelian groups are defined by:{
ext0

D(M,F) := homD(M,F) ∼= kerF (R1.),
extiD(M,F) ∼= kerF (Ri+1.)/imF (Ri.), i ≥ 1.

(4)

Using (4), ext1
D(M,F) = 0 is equivalent to kerF (R2.) =

imF (R1.) = R1 Fp0 , i.e., to the fact that the behaviour
kerF (R2.) can be parametrized by means of the matrix R1.

Definition 2 ([5]): A left D-module F is injective if
extiD(M,F) = 0 for all right D-modules M and all i ≥ 1.

Let N := Dq/(RDp) be the Auslander transpose of
M = D1×p/(D1×q R), i.e., the cokernel of the right D-
homomorphism (1) where F = D [2]. Let q0 := q, q1 := p
and R1 := R, and consider a truncated free resolution of N :

0←− Dq0 R1.←−− Dq1 R2.←−− Dq2 R3.←−− . . . (5)

Applying the contravariant left exact functor homD( · , D)
to (5), we obtain the complex RhomD(N,D) defined by

0 −→ D1×q0 .R1−−→ D1×q1 .R2−−→ D1×q2 .R3−−→ . . . (6)

whose cohomology left D-modules are:{
ext0

D(N,D) := homD(N,D) ∼= kerD(.R1),
extiD(N,D) ∼= kerD(.Ri+1)/imD(.Ri), i ≥ 1.

(7)

Definition 3 ([5]): • M is projective if there exist a left
D-module P and r ∈ Z≥0 such that M ⊕ P ∼= D1×r,
where ⊕ denotes the direct sum of modules.

• M is reflexive if the canonical left D-homomorphism
ε : M −→ homD(homD(M,D), D), defined by
ε(m)(f) = f(m) for all f ∈ homD(M,D) and for
all m ∈M , is an isomorphism.



• M is torsion-free if we have:

t(M) := {m ∈M | ∃ d ∈ D \ {0} : dm = 0} = 0.

Theorem 1: [2] Let assume that D has a finite global
dimension gld(D) := n [5]. Then, we have:

1) t(M) ∼= ext1
D(N,D).

2) M is torsion-free iff ext1
D(N,D) = 0

3) M is reflexive iff extiD(N,D) = 0 for i = 1, 2.
4) M is projective iff extiD(N,D) = 0 for i = 1, . . . , n.

Applying the covariant right exact functor · ⊗D F to (5),
where ⊗D denotes a tensor product [5], and using the fact
that Dqi ⊗D F ∼= Fqi [5], we obtain the following complex

N ⊗LD F : 0←− Fq0 R1.←−− Fq1 R2.←−− Fq2 R3.←−− . . . (8)

whose homology abelian groups are defined by:{
torD0 (N,F) ∼= cokerF (R1.) = Fq0/imF (R1.),
torDi (N,F) ∼= kerF (Ri.)/imF (Ri+1.), i ≥ 1.

(9)

Note that torD1 (N,F) = 0 yields kerF (R1.) = imF (R2.),
i.e., kerF (R1.) can be parametrized by means of R2.

Definition 4 ([5]): A left D-module F is said to be flat
if torDi (N,F) = 0 for all right D-modules N and all i ≥ 1.

An important problem in mathematical systems theory is
to parametrize systems [2], [6]. This problem is called image
representation in the behavioural approach. If the functional
space F is a flat left D-module, then torD1 (N,F) = 0, and
thus kerF (R1.) can be parametrized by means of R2 defined
by kerD(R1.) = R2D

q2 (see (5)). Thus, any behaviour is
parametrizable over a flat left D-module F . Unfortunately,
few standard functional spaces F are flat left D-modules [6].

If M is a projective left D-module and F any left
D-module, then we can show that kerF (R1.) can be
parametrized by R2 defined by kerD(R1.) = R2D

q2 [2].
Unfortunately, few systems define a projective module M .

Another approach is to note that if M is torsion-
free, i.e., t(M) ∼= ext1

D(N,D) = 0, then applying the
contravariant functor homD( · ,F) to the exact sequence
D1×q0 .R1−−→ D1×q1 .R2−−→ D1×q2 , we get the complex
Fq0 R1.←−− Fq1 R2.←−− Fq2 whose cohomology abelian group
at Fq1 is ext1

D(N2,F) ∼= kerF (R1.)/imF (R2.), where
N2 := cokerD(.R2) = D1×q2/(D1×q1 R2). In particular,
if F is an injective left D-module (see Definition 2), then
ext1

D(N2,F) = 0, i.e., kerF (R1.) = imF (R2.), which
shows that the linear system kerF (R1.) can be parametrized
when M is torsion-free and F is an injective left D-module.
The hypothesis of an injective module F is standard in
the behavioural approach [2], [4], [6]. Before studying the
general case, let us study the injective case in more detail.

Lemma 1: [5] Let us consider the following complex:

M• : . . .
di+2−−−→Mi+1

di+1−−−→Mi
di−→Mi−1

di−1−−−→ . . .

Then, we have the following short exact sequences:

∀ i ∈ Z, 0 −→ Hi(M•) −→ coker di+1 −→ im di −→ 0.

Theorem 2: Let N = Dq/(RDp) be the Auslander trans-
pose right D-module of M = D1×p/(D1×q R) and F an
injective left D-module. Then, we have:

∀ i ≥ 1, torDi (N,F) ∼= homD(extiD(N,D),F). (10)
Proof: Let us consider a free resolution (5) of N .

Applying the contravariant left exact functor homD( · , D)
to (5), we get the complex RhomD(N,D) defined by (6).
Let Rii := Ri, qii := qi. Then, (6) becomes:

0 −→ D1×q00 .R11−−−→ D1×q11 .R22−−−→ D1×q22 .R33−−−→ . . .

Let R(i−1)i ∈ Dq(i−2)i×q(i−1)i be a matrix such that
kerD(.Rii) = imD(.R(i−1)i) for i ≥ 2. Then we get the
following diagram formed by horizontal exact sequences:

‖ · · ·
D1×q13 .R23−−−→ D1×q23 .R33−−−→ D1×q33

‖
D1×q02 .R12−−−→ D1×q12 .R22−−−→ D1×q22

‖
D1×q01 .R11−−−→ D1×q11 .

(11)
Let M(i−j)i := cokerD(.R(i−j)i) for i ≥ 1 and i ≥ j.

Applying Lemma 1 to the complex RhomD(N,D) defined
by (6) and using imD(.R(i+1)(i+1)) ∼= Mi(i+1), we get the
following short exact sequences for i ≥ 1:

0 −→ extiD(N,D) −→Mii −→Mi(i+1) −→ 0. (12)

We then have homD(Mii,F) ∼= kerF (Rii.) and
homD(Mi(i+1),F) ∼= kerF (Ri(i+1).). Since F is injective,
we get the following short exact sequence (see, e.g., [5])

0←− homD(extiD(N,D),F)
←− kerF (Rii.)←− kerF (Ri(i+1).)←− 0,

i.e., homD(extiD(N,D),F) ∼= kerF (Rii.)/ kerF (Ri(i+1).).

Applying the exact functor homD( · ,F) to (11), we get
imF (R(i+1)(i+1).) = kerF (Ri(i+1).). By definition (see (9)),
we have torDi (N,F) ∼= kerF (Rii.)/imF (R(i+1)(i+1).) for
i ≥ 1, and thus we finally obtain (10).

Note that homD(ext1
D(N,D),F) defines the autonomous

elements of kerF (R.) [2], [4], [6]. Theorem 2 connects
the obstructions for getting a long chain of successive
parametrizations of the form (8) to the behaviours associated
with the obstructions extiD(N,D)’s for M to be projective.

II. CARTAN-EILENBERG RESOLUTION
The rest of the paper aims at extending Theorem 2 in the

case where F is no longer an injective left D-module.

The goal of this section is to construct a free resolution
of the complex RhomD(N,D) (6) called a Cartan-Eilenberg
resolution [5]. It plays a central role in the rest of the paper.

In what follows, we shall use the following notations:
a complex is always oriented from left to right and from
bottom to up. We first need to rewrite the truncated free
resolution (5) of N according to the notational conventions

. . .
R−3.−−−→ Dr−2

R−2.−−−→ Dr−1
R−1.−−−→ Dr0 −→ 0, (13)



where R−1 = R, r0 = q and r−1 = p. Moreover, applying
the contravariant left exact functor homD( · , D) to (13), we
obtain the complex RhomD(N,D) rewritten as follows

0 −→ D1×r0 .R0

−−→ D1×r1 .R1

−−→ D1×r2 .R2

−−→ . . . (14)

where Ri := R−i−1 for i ≥ 0 and ri = r−i for i ≥ 0.
The complex (14) can be decomposed as a sequence of the
following short exact sequences:

0 −→ kerD(.Ri) −→ D1×ri .Ri

−−→ imD(.Ri) −→ 0, (15)

0 −→ imD(.Ri) −→ kerD(.Ri+1) κi+1

−−−→ exti+1
D (N,D) −→ 0.

(16)
Let us now consider a free resolution of kerD(.R0):

. . .
.S0,−2

−−−−→ D1×s0,−1 .S0,−1

−−−−→ D1×s0,0 .S0,0

−−−→ kerD(.R0) −→ 0.
(17)

Combining (17) with the short exact sequence (15), i.e.,

0 −→ kerD(.R0) −→ D1×r0 .R0

−−→ imD(.R0) −→ 0, (18)

we obtain the following free resolution of imD(.R0):

. . .
.U1,−2

−−−−→ D1×u1,−1 .U1,−1

−−−−→ D1×u1,0 .R0

−−→ imD(.R0) −→ 0,
(19)

u1,0 = r0, ∀ i ≥ 1, u1,−i = s0,1−i, U1,−i = S0,1−i.
(20)

Lemma 2: With the notations of (17), (19), (20), and

∀ i ≥ 0, t0,−i = s0,−i + u1,−i = s0,−i + s0,1−i,

X0,−i = (Is0,−i 0) ,

Y 0,−i =

(
0

Iu1,−i

)
, T 0,0 =

(
S0,0

Iu1,0

)
,

T 0,−i =

(
S0,−i 0

(−1)i Is0,1−i U1,−i

)
,

the diagram (21) is commutative and exact. It defines a free
resolution of the short exact sequence (18).

Proof: The first and third vertical sequences of (21)
are exact since they are respectively a free resolution of
kerD(.R0) and of imD(.R0). All the horizontal short se-
quences are exact and starting from the second one, they
split [5]. We can easily check that all the squares commute.
Since T 0,−i−1 T 0,−i = 0 for i ≥ 0, the second vertical
sequence is a complex, i.e., imD(.T 0,−i−1) ⊆ kerD(.T 0,−i).
If λ = (λ1 λ2) ∈ kerD(.T 0,0), i.e., λ1 S

0,0 + λ2 = 0,
then λ = λ1 (Is0,0 − S0,0), which yields kerD(.T 0,0) ⊆
imD(.T 0,−1), i.e., kerD(.T 0,0) = imD(.T 0,−1), and shows
that the second vertical sequence is exact at D1×t0,0

. Now,
let λ = (λ1 λ2) ∈ kerD(.T 0,−i), i.e.:

λ1 S
0,−i + (−1)i λ2 = 0, λ2 U

1,−i = 0. (22)

Since kerD(.U1,−i) = imD(.U1,−i−1), where by definition
U1,−i−1 = S0,−i, there exists µ2 ∈ D1×u1,−i−1

such
that λ2 = µ2 S

0,−i. Substituting it in the first equation
of (22), we obtain λ1 + (−1)i µ2 ∈ kerD(.S0,−i) =

imD(.S0,−i−1), and thus µ1 ∈ D1×s0,−i−1
exists such that

λ1 + (−1)i µ2 = µ1 S
0,−i−1, which yields (λ1 λ2) =(

µ1 S
0,−i−1 + (−1)i+1 µ2 µ2 S

0,−i) = (µ1 µ2)T 0,−i−1

and shows that kerD(.T 0,−i) ⊆ imD(.T 0,−i−1), and thus
kerD(.T 0,−i) = imD(.T 0,−i−1). The second vertical se-
quence of (21) is then exact at D1×t0,−i

, which finally proves
the exactness of the commutative diagram (21).

Lemma 3 ([3]): Let R ∈ Dq×p and R′ ∈ Dq′×p be such
that imD(.R) ⊆ kerD(.R′). Moreover, let R′′ ∈ Dq×q′ and
R′2 ∈ Dr′×q′ be such that R = R′′R′ and kerD(.R′) =
imD(.R′2). If L = D1×q′/

(
D1×(q+r′) (R′′T R′T2 )T

)
,

Q := kerD(.R′)/imD(.R) σ : D1×q′ −→ L and κ :
kerD(.R′) −→ Q the canonical projections onto respectively
L and Q, then we have the following isomorphism:

L −→ Q

σ(ν) 7−→ κ(ν R′).

Using (16), we have the following short exact sequence:

0 −→ imD(.R0) −→ kerD(.R1) κ1

−→ ext1
D(N,D) −→ 0.

(23)
The beginning of a free resolution of kerD(.R1) is then:

D1×s′1,−1 .S′1,−1

−−−−→ D1×s′1,0 .S′1,0

−−−→ kerD(.R1) −→ 0.

Hence, we get ext1
D(N,D) ∼= imD(.S′1,0)/imD(.R0).

Using imD(.R0) ⊆ imD(.S′1,0), there exists S′′
1,0 ∈

Du1,0×s′1,0
such that R0 = S′′

1,0
S′

1,0. If v1,0 = s′
1,0,

v1,−1 = u1,0+s′1,−1
, V 1,−1 =

(
S′′

1,0

S′
1,−1

)
∈ Dv1,−1×s1,0

,

then Lemma 3 yields the following isomorphism

L = D1×v1,0
/(D1×v1,−1

V 1,−1) ∼= ext1
D(N,D)

σ(ν) 7−→ κ1(ν S′1,0),

where are σ and κ1 are the two canonical projections:

σ : D1×v1,0
−→ L, κ1 : imD(.S′1,0) −→ ext1

D(N,D).

Consider a free resolution of ext1
D(N,D) of the form:

. . .
.V 1,−1

−−−−→ D1×v1,0 κ1◦.S′1,0

−−−−−−→ ext1
D(N,D) −→ 0. (24)

Now, let V 1,−2 = (X − Y ), where X ∈ Dv1,−2×u1,0

and Y ∈ Dv1,−2×s′1,−1
. Then, we have X S′′

1,0 = Y S′
1,−1

and using R0 = S′′
1,0
S′

1,0, we then get

X R0 = X S′′
1,0
S′

1,0 = Y S′
1,−1

S′
1,0 = 0,

i.e., imD(.X) ⊆ kerD(.R0) = imD(.S0,0) = imD(.U1,−1),
and thus there exists L1,−1 ∈ Dv1,−2×u1,−1

such that:

X = L1,−1 U1,−1. (25)

Using V 1,−3 V 1,−2 = (V 1,−3X − V 1,−3 Y ) = (0 0),
we get V 1,−3 L1,−1 U1,−1 = V 1,−3X = 0, i.e.,
imD(.(V 1,−3 L1,−1)) ⊆ kerD(.U1,−1) = imD(.U1,−2), and
thus there exists a matrix L1,−2 ∈ Dv1,−3×u1,−2

such that



0 0 0
↑ ↑ ↑

0 −→ kerD(.R0) −→ D1×r0 .R0

−−→ imD(.R0) −→ 0
↑ .S0,0 ↑ .T 0,0 ↑ .R0

0 −→ D1×s0,0 .X0,0

−−−→ D1×t0,0 .Y 0,0

−−−→ D1×u1,0
−→ 0

↑ .S0,−1 ↑ .T 0,−1 ↑ .U1,−1

0 −→ D1×s0,−1 .X0,−1

−−−−→ D1×t0,−1 .Y 0,−1

−−−−→ D1×u1,−1
−→ 0

↑ .S0,−2 ↑ .T 0,−2 ↑ .U1,−2

0 −→ D1×s0,−2 .X0,−2

−−−−→ D1×t0,−2 .Y 0,−2

−−−−→ D1×u1,−2
−→ 0

↑ .S0,−3 ↑ .T 0,−3 ↑ .U1,−3

...
...

...

(21)

V 1,−3 L1,−1 = L1,−2 U1,−2. Similarly, we can prove that
there exist matrices L1,−i ∈ Dv1,−i−1×u1,−i

such that:

∀ i ≥ 2, V 1,−i−1 L1,1−i = L1,−i U1,−i. (26)

Lemma 4: The diagram (27) is commutative and exact,
where s1,−i = u1,−i + v1,−i, i ≥ 0,

S1,0 =

(
R0

S′
1,0

)
, S1,−1 =

 U1,−1 0

−Iu1,0 S′′
1,0

0 S′
1,−1

 ,

∀ i ≥ 2, S1,−i =

(
U1,−i 0

(−1)i L1,1−i V 1,−i

)
.

Z1,−i = (Iu1,−i 0), W 1,−i =

(
0

Iv1,−i

)
.

Proof: Combining the free resolutions (19) and (24),
we obtain the diagram (27). By construction, the first and
third vertical sequences of (27) are exact and we can check
that all the horizontal sequences are exact. Starting from the
second one, they split. Moreover, every square commutes.
The only thing left to prove is that the second vertical
sequence is exact. We can first check that S1,−i−1 S1,−i = 0
for i ≥ 0, which shows that the second vertical sequence
is a complex, i.e., imD(.S1,−i−1) ⊆ kerD(.S1,−i). Now, let
λ = (λ1 λ2) ∈ kerD(.S1,0), i.e., λ1R

0 +λ2 S
′1,0 = 0, and

using R0 = S′′
1,0
S′

1,0, we get (λ1 S
′′1,0 + λ2)S′1,0 = 0,

i.e., λ1 S
′1,0 + λ2 ∈ kerD(.S′1,0) = imD(.S′1,−1), i.e.,

µ ∈ D1×s′1,−1
exists such that λ1 S

′′1,0 + λ2 = µS′
1,−1,

which shows that

(λ1 λ2) = (λ1 µS′
1,−1−λ1 S

′′1,0) = (0 −λ1 µ1)S1,−1,

i.e., kerD(.S1,0) ⊆ imD(.S1,−1) and proves that
kerD(.S1,0) = imD(.S1,−1), i.e., the exactness of the second
vertical sequence of (27) at D1×s1,0

. Now, let us consider
λ = (λ1 λ2 λ3) ∈ kerD(.S1,−1), i.e.:{

λ1 U
1,−1 − λ2 = 0,

(λ2 λ3) ∈ kerD(.V 1,−1) = imD(.V 1,−2).
(28)

Using V 1,−2 = (X − Y ), there exists µ ∈ D1×v1,−2
such

that (λ2 λ3) = µ (X − Y ). Using (25) and (28), we get
λ2 = λ1 U

1,−1 = µX = µL1,−1 U1,−1, i.e., λ1−µL1,−1 ∈
kerD(.U1,−1) = imD(.U1,−2), there exists ν ∈ D1×u1,−2

such that λ1 − µL1,−1 = ν U1,−2, and thus:

λ = (ν U1,−2 + µL1,−1 µV 1,−2) = (ν µ)S1,−2.

Hence, we obtain kerD(.S1,−1) ⊆ imD(.S1,−2), i.e.,
kerD(.S1,−1) = imD(.S1,−2), which shows that the second
vertical sequence of (27) is exact at D1×s1,−1

. Finally, let us
consider λ = (λ1 λ2) ∈ kerD(.S1,−i), i.e.:

λ1 U
1,−i + λ2 (−1)i L1,1−i = 0, λ2 V

1,−i = 0.

Now, using kerD(.V 1,−i) = imD(.V 1,−i−1), there exists
µ ∈ D1×v1,−i−1

such that λ2 = µV 1,−i−1, which yields
λ1 U

1,−i+µ (−1)i V 1,−i−1 L1,1−i = 0, and thus, using (26),
(λ1 + µ (−1)i L1,−i)U1,−i = 0, i.e., λ1 + µ (−1)i L1,−i ∈
kerD(.U1,−i) = imD(.U1,−i−1). Then, ν ∈ D1×u1,−i−1

exists such that λ1 + µ (−1)i L1,−i = ν U1,−i−1, and
thus, λ = (ν U1,−i−1 + µ (−1)i+1 L1,−i µV 1,−i−1) =
(ν µ)S1,−i−1, which shows that kerD(.S1,−i) ⊆
imD(.S1,−i−1), i.e., kerD(.S1,−i) = imD(.S1,−i−1). Hence,
the second vertical sequence of (27) is exact at D1×s1,−i

.

We can repeat what has been done for (21) and (27) with
the short exact sequences (15) and (16) for i ≥ 1. Using the
short exact sequences (15) and (16), we get the complex

. . . � kerD(.Ri) � D1×ri

� imD(.Ri)

� kerD(.Ri+1) � D1×ri+1
� imD(.Ri+1)

� . . .

where � denotes a monomorphism and � an epimorphism.
Combining the obtained complexes, we get the complex (29)
with exact vertical sequences and i, j ≥ 0:

∆i,−j = Y i,−j Zi+1,−j Xi+1,−j =

(
0 0 0

Iui+1,−j 0 0

)
.

The complex we finally obtain is called a Cartan-Eilenberg
resolution of RhomD(N,D) of the form (29) [5].

III. GROTHENDIECK SPECTRAL SEQUENCE

Applying the contravariant left exact functor
homD( · ,F) to the truncated Cartan-Eilenberg resolution
of RhomD(N,D) obtained by removing the first horizontal
complex of (29), we obtain the double complex (30),
denoted by F•,•, where for i, j ≥ 0:

T−i,j = T i,−j−1, t−i,j = ti,−j , ∆−i,j = ∆i−1,−j .

Let tot(F•,•) be the sequence formed by

Gn :=
⊕

−p+q=n
F t−p,q =

⊕
−p≤0

F t−p,n+p =
⊕
q≥0

F tn−q,q ,



0 0 0
↑ ↑ ↑

0 −→ imD(.R0) −→ kerD(.R1)
κ1−→ ext1

D(N, D) −→ 0
↑ .R0 ↑ .S1,0 ↑ κ1 ◦ .S′1,0

0 −→ D1×u1,0 .Z1,0

−−−→ D1×s1,0 .W1,0

−−−−→ D1×v1,0
−→ 0

↑ .U1,−1 ↑ .S1,−1 ↑ .V 1,−1

0 −→ D1×u1,−1 .Z1,−1

−−−−→ D1×s1,−1 .W1,−1

−−−−−→ D1×v1,−1
−→ 0

↑ .U1,−2 ↑ .S1,−2 ↑ .V 1,−2

0 −→ D1×u1,−2 .Z1,−2

−−−−→ D1×s1,−2 .W1,−2

−−−−−→ D1×v1,−2
−→ 0

↑ .U1,−3 ↑ .S1,−3 ↑ .V 1,−3

...
...

...

(27)

0 0 0
↑ ↑ ↑

0 −→ D1×r0 .R0

−−→ D1×r1 .R1

−−→ D1×r2 .R3

−−→ . . .
↑ .T 0,0 ↑ .T 1,0 ↑ .T 2,0

0 −→ D1×t0,0 .∆0,0

−−−→ D1×t1,0 .∆1,0

−−−→ D1×t2,0 .∆2,0

−−−→ . . .
↑ .T 0,−1 ↑ .T 1,−1 ↑ .T 2,−1

0 −→ D1×t0,−1 .∆0,−1

−−−−→ D1×t1,−1 .∆1,−1

−−−−→ D1×t2,−1 .∆2,−1

−−−−→ . . .
↑ .T 0,−2 ↑ .T 1,−2 ↑ .T 2,−2

0 −→ D1×t0,−2 .∆0,−2

−−−−→ D1×t1,−2 .∆1,−2

−−−−→ D1×t2,−2 .∆2,−2

−−−−→ . . .
↑ .T 0,−3 ↑ .T 1,−3 ↑ .T 2,−3

...
...

...

(29)

...
...

...
...

↑ ↑ ↑ ↑
. . .

∆−4,3.−−−−→ F t−3,3
∆−3,3.−−−−→ F t−2,3

∆−2,3.−−−−→ F t−1,3
∆−1,3.−−−−→ F t0,3 −→ 0

↑ T−3,2. ↑ T−2,2. ↑ T−1,2. ↑ T0,2.

. . .
∆−4,2.−−−−→ F t−3,2

∆−3,2.−−−−→ F t−2,2
∆−2,2.−−−−→ F t−1,2

∆−1,2.−−−−→ F t0,2 −→ 0
↑ T−3,1. ↑ T−2,1. ↑ T−1,1. ↑ T0,1.

. . .
∆−4,1.−−−−→ F t−3,1

∆−3,1.−−−−→ F t−2,1
∆−2,1.−−−−→ F t−1,1

∆−1,1.−−−−→ F t0,1 −→ 0
↑ T−3,0. ↑ T−2,0. ↑ T−1,0. ↑ T0,0.

. . .
∆−4,0.−−−−→ F t−3,0

∆−3,0.−−−−→ F t−2,0
∆−2,0.−−−−→ F t−1,0

∆−1,0.−−−−→ F t0,0 −→ 0
↑ ↑ ↑ ↑
0 0 0 0

(30)

for n ∈ Z, and the Z-homomorphisms δn defined by:

Gn =
⊕
−p+q=n F t−p,q

δn

−→ Gn+1 =
⊕
−p+q=n+1 F t−p,q

δn|Ft−p,q
(η−p,q) = (. . . , T−p,q η−p,q, (−1)n ∆−p,q η−p,q, . . .),

T−p,q η−p,q ∈ F t−p,q+1 , (−1)n ∆−p,q η−p,q ∈ F t−p+1,q .

Using ∆−p,q+1 T−p,q = T−p+1,q ∆−p,q , T−p+1,q T−p,q = 0
and ∆−p+1,q ∆−p,q = 0, we can easily check that tot(F•,•)
is a complex, i.e., δn+1 ◦ δn = 0 for all n ∈ Z:

(δn+1 ◦ δn)|Ft−p,q (η−p,q) = (. . . , T−p,q+1 T−p,q η−p,q,

(−1)n+1 ∆−p,q+1 T−p,q η−p,q + (−1)n T−p+1,q∆−p,q η−p,q,
∆−p+1,q ∆−p,q η−p,q, . . .) = 0.

The spectral sequence is a technique which aims at comput-
ing Hn(tot(F•,•)) at Gn. See, e.g., [1], [5].

Theorem 3: [1], [5] With the above notations, we have

2E
p,−q
2

∼= extpD(extqD(N,D),F)⇒
p

torD−p+q(N,F),

which means that there exists an ascending filtration of
torDp (N,F) whose graded part is isomorphic to a subfactor
of extpD(extqD(N,D),F).

Proof: Since the vertical exact sequences of (29) end
with the free left D-modules D1×ri

, they split (see, e.g.,
[5]), which shows that the cohomology

Hq(F−p,•) ∼= kerF (T−p,q.)/imF (T−p,q−1.)

of the pth vertical complex F−p,• of F•,• at F t−p,q is

∀ p ≥ 0,

{
H0(F−p,•) ∼= kerF (T−p,0.) ∼= Fr−p ,

Hq(F−p,•) = 0, q ≥ 1,

where r−p = rp. Moreover, we can easily check that we have
the following commutative diagram with exact columns:

0 0
↑ ↑

. . .
∆−2,0.−−−−→ H0

`
F−1,•´ ∆−1,0.−−−−→ H0

`
F0,•´

−→ 0

↑ T 1,0. ↑ T 00.

. . .
R−2.−−−→ Fr−1

R−1.−−−→ Fr0 −→ 0.
↑ ↑
0 0



Applying the covariant right exact functor · ⊗D F to the
complex (13), we obtain the following complex

. . .
R−3.−−−→ Fr−2

R−2.−−−→ Fr−1
R−1.−−−→ Fr0 −→ 0,

whose homologies are defined by:{
torD0 (N,F) = N ⊗D F ∼= cokerF (R−1.),
torDp (N,F) ∼= kerF (R−p.)/imF (R−p−1.), p ≥ 1.

(31)
The homologies H−p(H0(F•,•)) of the following complex

H0(F•,•) : . . .
∆−2,0.−−−−→ H0

(
F−1,•) ∆−1,0.−−−−→ H0

(
F0,•) −→ 0

are then defined by (31). According to [5], it shows that
the spectral sequence associated with the first filtration
1Fi(Gn) =

⊕
−p≤i F t−p,n+p of tot(F•,•) is defined by:

1E
−p,q
0 = F t−p,q ,

1E
−p,q
1 = Hq(F−p,•) =

{
Fr−p , q = 0,
0, q ≥ 1,

,

1E
−p,q
2 = H−p(Hq(F•,•)) =

{
torDp (N,F), q = 0,
0, q ≥ 1.

Using 1E
−p,q
2 = 0, q ≥ 1, the spectral sequence collapses

on the p-axis and H−p(tot(F•,•)) ∼= 1E
−p,0
2 = torDp (N,F)

[5]. For more details, see [5].

Let us now characterize the cohomology

H−q(F•,p) ∼= kerF (∆−q,p.)/imF (∆−q−1,p.)

of the pth horizontal complex F•,p of F•,• at F−q,p.

Since the following exact sequence splits

0 −→ D1×sq,−p .Xq,−p

−−−−→ D1×tq,−p .Y q,−p

−−−−→ D1×uq+1,−p

−→ 0,

we obtain the following split exact sequence:

0←− Fs
q,−p Xq,−p.←−−−− F t

q,−p Y q,−p.←−−−− Fu
q+1,−p

←− 0.

Similarly, the following split exact sequence

0 −→ D1×uq,−p .Zq,−p

−−−−→ D1×sq,−p .W q,−p

−−−−−→ D1×vq,−p

−→ 0

yields the following split exact sequence:

0←− Fu
q,−p Zq,−p.←−−−− Fs

q,−p W q,−p.←−−−−− Fv
q,−p

←− 0.

Hence, we get kerF (Y q,−p.) = 0, imF (Xq,−p.) = Fsq,−p

,
imF (Zq,−p.) = Fuq,−p

. Now, since by definition, we have{
∆−q,p = ∆q−1,−p = Y q−1,−p Zq,−pXq,−p,

∆−q−1,p = ∆q,−p = Y q,−p Zq+1,−pXq+1,−p,

we get imF (∆−q−1,p.) = imF (Y q,−p.) = kerF (Xq,−p.).
We have kerF (∆−q,p.) = kerF ((Zq,−pXq,−p).), and thus:

H−q(F•,p) ∼= kerF ((Zq,−pXq,−p).)/ kerF (Xq,−p.). (32)

If f ∈ homD(M ′,M), g ∈ homD(M,M ′′) and f is
surjective, then we can show that ker g ∼= ker(g ◦ f)/ ker f .
Since Zq,−p. is surjective, we then obtain:

H−q(F•,p) ∼= kerF (Zq,−p.) = imF (W q,−p.) ∼= Fv
q,−p

.

Hence, we get the following commutative diagram

...
...

↑ V−q,p+1. ↑ S−q,p+1.

0 −→ Fv−q,p+1
W−q,p+1.−−−−−−→ H−q(F•,p+1) −→ 0

↑ V−q,p. ↑ S−q,p.

0 −→ Fv−q,p
W−q,p.−−−−→ H−q(F•,p) −→ 0

↑ V−q,p−1. ↑ S−q,p−1.

0 −→ Fv−q,p−1
W−q,p−1.−−−−−−→ H−q(F•,p−1) −→ 0,

↑ V−q,p−2. ↑ S−q,p−2.

...
...

(33)
with exact horizontal sequences, where W−q,p = W q,−p,
V−q,p = V q,−p−1, S−q,p = Sq,−p−1, v−q,p = vq,−p, p ≥ 0.

Now, applying the contravariant left exact functor
homD( · ,F) to the free resolution of extqD(N,D) (see (24))

. . .
.V q,−1

−−−−→ D1×vq,0 κq ◦S′q,0

−−−−−−→ extqD(N,D) −→ 0,

we obtain the following complex

. . .
V−q,2.←−−−− Fv−q,2

V−q,1.←−−−− Fv−q,1
V−q,0.←−−−− Fv−q,0 ←− 0,

whose cohomologies are defined by:{
ext0

D(extqD(N,D),F) ∼= kerF (V−q,0.),
extpD(extqD(N,D),F) ∼= kerF (V−q,p.)/imF (V−q,p−1.).

Hence, the beginning of the spectral sequence associated with
the second filtration of the complex tot(F•,•) is defined by:

2E
p,−q
0 = F t−q,p ,

2E
p,−q
1 = H−q(F•,p) ∼= Fv

q,−p

,

2E
p,−q
2 = Hp(H−q(F•,•)) ∼= extpD(extqD(N,D),F).

A standard result for bounded double complexes then shows
that the two spectral sequences 1E

−p,q
r and 2E

p,−q
s abut at

H−p(tot(F•,•)) [5], which finally proves the result.

Theorem 3 shows that a method exists which con-
verges to the computation of the torDi (N,F)’s, i.e., of
the defects of parametrizability of (8), by means of the
extiD(extjD(N,D),F)’s, i.e., of the functional obstructions
formed by the algebraic obstruction for M to be projective.
Making this construction explicit is a fundamental issue
in the behavioural approach. See [1] for the concept of
generalized morphisms which can be used for this issue.
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