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Abstract— The purpose of this paper is to give a con-
structive algorithm for the computation of bases of finitely
presented free modules over the Weyl algebras of differen-
tial operators with polynomial or rational coefficients. In
particular, we show how to use these results in order to
recognize when a multidimensional linear system defined
by partial differential equations with polynomial or rational
coefficients is flat and, if so, to compute flat outputs and
the injective image representations of the system. These new
results are based on recent constructive proofs of a famous
result in non-commutative algebra due to J. T. Stafford
[27]. The different algorithms have been implemented in the
package STAFFORD [25] based on OREMODULES [2]. These
results allow us to achieve the general solution of the so-
called Monge problem for multidimensional linear systems
defined by partial differential equations with polynomial
or rational coefficients. Finally, we constructively answer
an open question posed by Datta [5] on the possibility to
generalize the results of [13] to multi-input multi-output
polynomial time-varying controllable linear systems. We show
that every controllable ordinary differential linear system
with at least two inputs and polynomial coefficients is flat.

Keywords— Flat multidimensional linear systems, injective
image representation, constructive computation of bases of
free modules, Stafford’s results, non-commutative algebra.

I. A PEDESTRIAN INTRODUCTION TO THE MONGE
PROBLEM

A. Introduction

Let us introduce the so-called Monge problem (1784).
We refer the reader to [29] and the references therein for
historical details. Let D be a ring of differential operators
(e.g., the Weyl algebra An(k) = k[x1, . . . , xn][d1, . . . , dn]
of differential operators in di = ∂/∂xi with polynomial
coefficients in xj) and F a functional space which satisfies:

∀ P1, P2 ∈ D, ∀ y1, y2 ∈ F : P1 y1 + P2 y2 ∈ F .
(1)

For instance, if D is the Weyl algebra An(k), we can take
F = C∞(Rn). In terms of module theory, property (1)
means that F has a left D-module structure [26]. Let us
consider R ∈ Dq×p and the linear system of PDEs (or
behaviour [15], [16], [21], [28], [30]) defined by:

kerF (R.) , {η ∈ Fp |Rη = 0}.
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The Monge problem questions the existence of a matrix of
differential operators Q ∈ Dp×m such that we have:

kerF (R.) = imF (Q.) , Q (Fm).

If such a matrix Q exists, we then say that Q is
a parametrization of the system kerF (R.). In the
behavioural approach to multidimensional linear systems,
we say that the behaviour kerF (R.) admits an image
representation [15], [16], [21], [28], [30]. Let us give a
few examples.

Example 1: 1) We consider the ring D = R(t)
[
d
dt

]
of differential operators in d/dt with rational coef-
ficients in t, F = C∞(R) and the following matrix
of differential operators

R =
(
d2

dt2
+ α(t)

d

dt
+ 1, − d

dt
− α(t)

)
∈ D1×2,

where α denotes a time-varying parameter which
belongs to R(t). Then, we get the following system:

kerF (R.) = {(y, u)T ∈ F2 |
ÿ(t) + α(t) ẏ(t) + y(t)− u̇(t)− α(t)u(t) = 0}.

It was proved in [17] that we have the following
parametrization of the system kerF (R.):{

y(t) = ξ̇(t) + α(t) ξ(t),

u(t) = ξ̈(t) + α(t) ξ̇(t) + (α̇(t) + 1) ξ(t).

This parametrization is injective as we then have:

ξ = −ẏ + u.

2) Let us consider the ring D = R[d1, d2, d3] of
differential operators with constant coefficients, the
D-module F = C∞(R3) and the system defined by
the divergence operator in R3, namely:

kerF (div.) = { ~A = (A1, A2, A3)T ∈ F3 |
d1A1 + d2A2 + d3A3 = 0}.

In mathematical physics, it is well-known that the
divergence operator is parametrized by the curl op-
erator, namely, the operator defined by the matrix

curl =


0 −d3 d2

d3 0 −d1

−d2 d1 0

 ∈ D3×3,



i.e., we have kerF (div.) = curl (F3). Let us check
whether or not this parametrization is injective, i.e.,
whether or not curl ~B = ~0 implies ~B = ~0. It is
also well-known in mathematical physics that the
curl operator is parametrized by the gradient operator
defined by grad = (d1, d2, d3)T . In other words,
we have the following equality:

{ ~B = (B1, B2, B3)T ∈ F3 | curl ~B = ~0}
= grad (F).

Hence, the parametrization of the divergence oper-
ator by means of the curl operator is not injective
because the curl operator is parametrized by the
gradient operator.

B. Systems & Modules

Before giving necessary and sufficient conditions for
parametrizability, we need to introduce some notations and
results obtained by B. Malgrange [12]. Let us consider a
matrix R ∈ Dq×p of differential operators and let us define
the finitely presented left D-module

M = D1×p/(D1×q R), (2)

where D1×p (resp., Dp) denotes the left (resp., right)
D-module of row (resp., column) vectors of length p
with entries in D. By convention, we set D1×0 = 0.
The introduction of the previous left D-module M is
very natural as it generalizes well-known algebras which
play central roles in algebraic geometry and number theory.

Example 2: 1) Cauchy’s construction of the field C
of complex numbers was C = R[x]/(x2 +1), i.e., C
can be defined as the ring of real polynomials in x
modulo the relation x2+1. If we consider D = R[x]
and R = (x2 + 1) ∈ D, then we obtain that:

M = D/(DR) = R[x]/(R[x] (x2 + 1)) = C.

2) The rings of numbers such as

A = Z[i
√

5]/(Z[i
√

5] (1 + i
√

5) + Z[i
√

5] 2)

appear everywhere in the literature of algebraic num-
ber theory. Hence, if we consider D = Z[i

√
5] and

R = (1 + i
√

5, 2)T ∈ D2, then we get:

M = D/(D1×2R) = A.

3) In algebraic geometry, we associate with any affine
algebraic variety defined by the complex solutions of
a set of polynomials P1, . . . , Pq ∈ R[x1, . . . , xn] the
algebra A = R[x1, . . . , xn]/I , where I denotes the
ideal of R[x1, . . . , xn] generated by P1, . . . , Pm, i.e.,
I =

∑m
i=1DPi. Hence, if we consider the algebra

D = R[x1, . . . , xn] and R = (P1, . . . , Pq)T ∈ Dq,
we then obtain:

M = D/(D1×q R) = R[x1, . . . , xn]/I = A.

Hence, we see that the left D-module M defined by (2)
extends some well-known algebraic objects encountered

in the algebra literature to general linear systems. See [3],
[17], [18], [19], [20], [21], [23], [24] for more details.

Let us introduce a few definitions of homological
algebra [26] that will be useful in what follows.

Definition 1: 1) A sequence (δi : Mi −→Mi−1)i∈Z
of morphisms δi : Mi −→ Mi−1 between left D-
modules is a complex if we have:

∀ i ∈ Z, im δi ⊆ ker δi−1.

We denote the previous complex by:

. . .
δi+2−−−→Mi+1

δi+1−−−→Mi
δi−→Mi−1

δi−1−−−→ . . . (3)

2) The defect of exactness of the complex (3) at Mi is:

H(Mi) = ker δi/im δi+1.

3) The complex (3) is exact at Mi if we have:

H(Mi) = 0 ⇐⇒ ker δi = im δi+1.

4) The complex (3) is exact if:

∀ i ∈ Z, ker δi = im δi+1.

5) The complex (3) is a split exact sequence if it is
exact and there exist morphisms si : Mi−1 −→ Mi

satisfying the following conditions:

∀ i ≥ 0,

{
si+1 ◦ si = 0,
si ◦ δi + δi+1 ◦ si+1 = idMi .

6) A finite free resolution of a left D-module M is an
exact sequence of the form

. . .
.R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0,

(4)
where pi ∈ Z+ = {0, 1, 2, . . .}, Ri ∈ Dpi×pi−1 ,

(.Ri) : D1×pi −→ D1×pi−1

λ 7−→ (.Ri)(λ) = λRi,

and Rm = 0 for a certain m ≥ 1.

Example 3: The following sequence

0 −→M ′ f−→M
g−→M ′′ −→ 0

is exact if f is injective, i.e., ker f = 0, ker g = im f and
g is surjective, i.e., coker g , M ′′/im g = 0.

We have the following important result and definitions.

Theorem 1: [26] Let F be a left D-module, M a left
D-module and (4) a finite free resolution of M . Then, the
defects of exactness of the following complex

. . .
R3.←−− Fp2 R2.←−− Fp1 R1.←−− Fp0 ←− 0,

where (Ri.) : Fpi−1 −→ Fpi is defined by (Ri.) η = Ri η,
for all η ∈ Fpi−1 , only depend on the left D-modules M



and F . Up to an isomorphism, we denote these defects of
exactness by:{

ext0D(M,F) ∼= kerF (R1.),
extiD(M,F) ∼= kerF (Ri+1.)/(Ri (Fpi)), i ≥ 1.

Finally, we have ext0D(M,F) = homD(M,F), where
homD(M,F) denotes the abelian group of D-morphisms
(namely, D-linear maps) from M to F .

Using the previous result, B. Malgrange made the re-
mark that we then have (R1 = R, p1 = p and p2 = q)

kerF (R.) ∼= homD(M,F), (5)

where ∼= denotes an isomorphism of abelian groups
(k-vector spaces if F has the structure of a k-vector
space) [12]. This idea was developed by the Japanese
school of M. Sato (in particular, M. Sato, M. Kashiwara,
T. Kawai) [8]. In particular, (5) gives an intrinsic
formulation of the system kerF (R.), as the right hand
side of (5) only depends on the left D-modules M and
F and we can prove that M is intrinsically defined, the
equality M = D1×p/(D1×q R) being nothing else than a
particular representation of the system (i.e., the beginning
of a particular finite free resolution of the left D-module
M ). We refer the reader to [4], [20] for more details
concerning equivalences of linear systems within module
theory and homological algebra.

Before recalling the first main result concerning the
Monge problem, let us introduce a few more definitions.

Definition 2: 1) [26] A left D-module F is called
injective if, for every left D-module M , and, for all
i ≥ 1, we have extiD(M,F) = 0.

2) [26] A left D-module F is called cogenerator if, for
every left D-module M , we have:

homD(M,F) = 0 =⇒ M = 0.

Theorem 2: [26] An injective cogenerator left D-
module F exists for every ring D.

We give examples of modules which are injective
cogenerators.

Example 4: 1) If Ω is an open convex subset of Rn,
then the space C∞(Ω) (resp., D′(Ω)) of smooth
functions (resp., distributions) on Ω is an injective
cogenerator module over the ring R[d1, . . . , dn] of
differential operators with coefficients in R [12].

2) [30] If F denotes the set of all functions that
are smooth on R except for a finite number of
points, then F is an injective cogenerator left
R(t)

[
d
dt

]
-module.

Let us recall the concept of formal adjoint of a matrix
R of differential operators.

Definition 3: [3], [19] Let Q ⊆ k be a field and D one
of the two following Weyl algebras:

An(k) = k[x1, . . . , xn][d1, . . . , dn],
Bn(k) = k(x1, . . . , xn)[d1, . . . , dn].

(6)

1) An involution θ of D is a k-linear map θ : D −→ D
satisfying the following two conditions:

∀ P, Q ∈ D,

{
θ ◦ θ = idD,
θ(P Q) = θ(Q) θ(P ).

2) Let θ be the involution of D defined by:

∀ a ∈ k,


θ(di) = −di,
θ(xi) = xi,

θ(a) = a.

If R ∈ Dq×p is a matrix of differential operators,
then the formal adjoint of R is defined by:

R̃ = (θ(Rij))T .

Example 5: Let us consider D = A3(Q) and the matrix
R = −(d1 − x3, d2, d3) ∈ D1×3 of differential
operators. Then, the formal adjoint R̃ of R is defined by:

R̃ = −(θ(d1 − x3), θ(d2), θ(d3))T

= (d1 + x3, d2, d3)T .

We are now in position to state the first main result
concerning the Monge problem.

Theorem 3: Let R ∈ Dq×p, M = D1×p/(D1×q R) and
F be an injective cogenerator left D-module. Then, the
following statements are equivalent:

1) There exists Q ∈ Dp×m such that we have:

kerF (R.) = Q (Fm).

2) There exists Q ∈ Dp×m such that we have:

kerD(.Q) , {λ ∈ D1×p | λQ = 0} = D1×q R.

3) The left D-module M is torsion-free, namely, the
torsion submodule of M defined by

t(M) = {m ∈M | ∃ 0 6= P ∈ D : P m = 0}

is trivial, i.e., t(M) = 0.
4) ext1D(Ñ ,D) = 0, where Ñ is the left D-module

defined by the formal adjoint R̃ of the matrix R:

Ñ = D1×q/(D1×p R̃).

We refer the reader to [3], [15], [19], [21] for the proofs.
General algorithms for computing R̃, ext1D(Ñ ,D), t(M)
and Q as in the previous theorem are developed in [3], [17],
[19], [21]. These algorithms have been implemented in the
package OREMODULES [2] and they have been illustrated



in the library of examples of OREMODULES containing
more than 30 examples. In particular, the parametrizations
given in Example 1 can be obtained by using the construc-
tive algorithms developed in [3], [17], [19], [21].

We note that the concept of torsion-free module is only
a particular one in a long list of possible properties of
modules developed in homological algebra. Let us recall
some of them.

Definition 4: [26] Let us consider R ∈ Dq×p and the
finitely presented left D-module M = D1×p/(D1×q R).

1) M is said to be free if there exists a non-negative
integer r ∈ Z+ = {0, 1, 2, . . .} such that:

M ∼= D1×r.

2) M is said to be stably free if there exist r, s ∈ Z+

such that:
M ⊕D1×s ∼= D1×r.

3) M is said to be projective if there exist r ∈ Z+ and
a left D-module P such that:

M ⊕ P ∼= D1×r.

4) M is said to be reflexive if the morphism

ε : M −→ homD(homD(M,D), D),

defined by

∀ m ∈M, ∀ f ∈ homD(M,D), ε(m)(f) = f(m),

is an isomorphism of left D-modules.
5) M is torsion-free if we have:

t(M) = {m ∈M | ∃ 0 6= P ∈ D : P m = 0} = 0.

We have the following important results [14], [26].

Theorem 4: 1) We have the following implications
among the module properties:

free =⇒ stably free =⇒ projective =⇒
reflexive =⇒ torsion-free.

2) If D is a left principal ideal domain, namely, every
left ideal of D can be generated by means of an
element of D (e.g., Q(t)

[
d
dt

]
), then every torsion-

free left D-module is free.
3) If D is a left hereditary ring, namely, every left

ideal of D is projective (e.g., Q[t]
[
d
dt

]
), then every

torsion-free left D-module is projective.
4) (Quillen-Suslin theorem) If D = k[d1, . . . , dn],

where k is a field of constants, namely, di a = 0 for
all a ∈ k and i = 1, . . . , n, then every projective
D-module is free.

We can now state the following important theorem
in the behavioural approach to multidimensional linear
systems defined by PDEs with polynomial or rational
coefficients. In particular, it explains the meaning of

the concepts of free / stably free / projective / reflexive
/ torsion-free modules in systems theory and in the
parametrizability problem.

Theorem 5: [3], [21] Let D be one of the Weyl algebras
defined in (6) and let us consider a matrix R ∈ Dq×p

of differential operators, an injective cogenerator left D-
module F , kerF (R.) = {η ∈ Fp | Rη = 0} and the
following left D-modules

M = D1×p/(D1×q R), Ñ = D1×q/(D1×p R̃),

where R̃ is the formal adjoint of R. We then have the
equivalences presented in Fig. 1.

Constructive algorithms have been given in [3], [17],
[19] for computing the extension modules extiD(Ñ ,D).
Therefore, we can constructively check whether or not
the left D-module M admits some torsion elements, or is
torsion-free, reflexive, projective or stably free. Moreover,
these algorithms allow us to compute the different matrices
Qi ∈ Dmi−1×mi (m0 , p). We refer the reader to ORE-
MODULES [2] for implementations of these algorithms and
its library of examples illustrating Theorem 5. Finally, we
note that it was proved in [20] that the left D-module Ñ
only depends on M up to a projective equivalence [26],
which shows the intrinsicness of the statements given in
Theorem 5.

The parametrizability/image representation problem has
important applications in the study of controllability of
multidimensional linear systems in terms of the possibility
to patch the solutions of the systems [15], [16], [28] and in
optimal control [22], Diophantine equations [17], motion
planning and tracking [6]. See [28] for a nice survey on the
behavioural approach to multidimensional linear systems.

Finally, we note that “?” in Fig. 1 means that no sim-
ple characterization of freeness is known in homological
algebra. The purpose of this paper is to study such a
characterization based on one of J. T. Stafford’s results
[27] and to obtain a constructive algorithm for computing
bases of free left D-modules, where D is a Weyl algebra
as in (6). We first complete Fig. 1 given in Theorem 5,
achieving the previous characterizations and concluding
the parametrizability problem (image representation prob-
lem). Moreover, we recall that a multidimensional linear
system kerF (R.) is said to be flat if there exists an injective
parametrization, and thus, by Theorem 5, if and only if
the corresponding left D-module M = D1×p/(D1×q R)
is free [3], [6], [17]. Hence, if we can effectively decide
freeness, we can then test whether or not a multidimen-
sional linear system defined by PDEs with polynomial
or rational coefficients is flat. To finish, we also note
that there is a one-to-one correspondence between the
bases of the free left D-module M and the so-called
flat outputs of kerF (R.). Therefore, the knowledge of a
constructive algorithm which computes bases of a free left
module M over a Weyl algebra D will give us a way to
compute the corresponding flat outputs. We point out that
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with torsion t(M) ∼= ext1D(Ñ ,D) ∅

torsion-free ext1D(Ñ ,D) = 0 ∃ Q1 ∈ Dp×m1 : kerF (R.) = Q1 (Fm1)

∃ Q1 ∈ Dp×m1 , Q2 ∈ Dm1×m2 :extiD(Ñ ,D) = 0,
reflexive

kerF (R.) = Q1 (Fm1),
i = 1, 2

kerF (Q1.) = Q2 (Fm2)

∃ Q1 ∈ Dp×m1 , Qi ∈ Dmi−1×mi , i = 2, . . . , n :
projective extiD(Ñ ,D) = 0,

kerF (R.) = Q1 (Fm1),=
kerF (Q1.) = Q2 (Fm2),

stably free
1 ≤ i ≤ n

. . .
kerF (Qn−1.) = Qn (Fmn)

∃ Q1 ∈ Dp×m, T1 ∈ Dm×p :

free ?
kerF (R.) = Q1 (Fm),

T1Q1 = Im

Fig. 1.

this problem was still open even for 1-D linear systems
defined by ordinary differential equations with polynomial
coefficients. See [13], [23] for more details.

C. Stably free modules & Projective dimension

The purpose of this section is to give a characterization
of stably free modules which will be used in what follows.
Let us start with the following result.

Proposition 1: Let us consider a finite free resolution of
a left D-module M of the form:

0 −→ D1×pm
.Rm−−−→ . . .

.R1−−→ D1×p0 π−→M −→ 0. (7)

1) If m ≥ 3 and there exists Sm ∈ Dpm−1×pm such
that Rm Sm = Ipm , then we have the finite free
resolution of M

0 −→ D1×pm−1
.Tm−1−−−−→ D1×(pm−2+pm) .Tm−2−−−−→

D1×pm−3
.Rm−3−−−−→ . . .

π−→M −→ 0,
(8)

with the following notations:

Tm−1 = (Rm−1, Sm), Tm−2 =
(
Rm−2

0

)
.

2) If m = 2 and there exists S2 ∈ Dp1×p2 such that
R2 S2 = Ip2 , then we have the finite free resolution

0 −→ D1×p1 .T1−−→ D1×(p0+p2) τ−→M −→ 0, (9)

with the notations T1 = (R1 S2) and:

τ = π ⊕ 0 : D1×(p0+p2) −→ M

λ = (λ1 λ2) 7−→ τ(λ) = π(λ1).

Proof: 1. We suppose that m ≥ 3. Let us prove that
(8) is an exact sequence. Using the fact that (7) is an exact
sequence, and thus, Rm−1Rm−2 = 0, we obtain

Tm−1 Tm−2 = (Rm−1, Sm)
(
Rm−2

0

)
= Rm−1Rm−2 = 0,

which proves that (D1×pm−1 Tm−1) ⊆ kerD(.Tm−2).
Let us now consider (λ, µ) ∈ kerD(.Tm−2). We then

have (λ, µ)Tm−2 = λRm−2 = 0 and using the fact that
(7) is an exact sequence, there exists ν ∈ D1×pm−1 such
that λ = ν Rm−1. Let us define:

ζ = ν (Ipm−1 − SmRm) + µRm ∈ D1×pm−1 .



Using the relations RmRm−1 = 0 and Rm Sm = Ipm
, we

then get

ζ Tm−1 = ζ (Rm−1, Sm)
= (ν (Ipm−1 − SmRm)Rm−1 + µRmRm−1,

ν (Ipm−1 − SmRm)Sm + µRm Sm)
= (ν Rm−1, µ) = (λ, µ),

which proves that kerD(.Tm−2) ⊆ (D1×pm−1 Tm−1), and
thus, the exactness of (8) at D1×(pm−2+pm).

Moreover, using the fact that (7) is an exact sequence,
we then have

D1×(pm−2+pm) Tm−2 = D1×pm−2 Rm−2 = kerD(.Rm−3),

which proves that (8) is exact at D1×pm−3 .
Finally, using again the fact that Rm admits a right-

inverse Sm, we obtain that the exact sequence

0→ D1×pm
.Rm−−−→D1×pm−1

.Rm−1−−−−→D1×pm−1 Rm−1 → 0

splits, i.e., there exists a morphism

ϕ : (D1×pm−1 Rm−1) −→ D1×pm−1

such that we have [3], [17], [26]:

(.Rm) ◦ (.Sm) + ϕ ◦ (.Rm−1) = idD1×pm−1 .

Hence, if λ ∈ kerD(.Tm−1), we then get

(λRm−1, λ Sm) = (0, 0)

⇒ λ = (λSm)Rm + ϕ(λRm−1) = 0,

which proves that the morphism (.Tm−1) is injective.
2 can be proved similarly.

Let us illustrate Proposition 1 by means of an example.

Example 6: We consider the ordinary differential linear
system whose solution in D′(R) is y = δ̇, namely, the
derivative of the Dirac distribution δ at t = 0:{

t2 y(t) = 0,
t ẏ(t) + 2 y(t) = 0.

If we consider the ring D = A1(Q) of differential
operators in d

dt with polynomial coefficients in t over Q,
R =

(
t2, t ddt + 2

)T ∈ D2 and the left D-module

M = D/(D1×2R) = D/

(
D t2 +D

(
t
d

dt
+ 2
))

,

then a finite free resolution of M is defined by

0 −→ D
.R2−→ D1×2 .R−→ D

π−→M −→ 0,

where R2 =
(
d
dt , −t

)
∈ D1×2 (see [3] for more details).

We easily check that S2 =
(
t, d

dt

)T ∈ D2 is a right-
inverse of R2. Hence, using Proposition 1, we obtain the
following finite free resolution of M

0 −→ D1×2 .T1−→ D1×2 τ−→M −→ 0,

with the following notations:

T1 =
(

t2 t
t ddt + 2 d

dt

)
∈ D2×2, τ = π ⊕ 0.

Let us state two useful results.

Proposition 2: 1) [26] Let M be a projective left D-
module defined by a finite free resolution of the form
(7). Then, the exact sequence (7) splits.

2) [26] If F is a left D-module, then the functor
homD( · ,F) transforms split exact sequences of
left D-modules into split exact sequences of abelian
groups.

We have the following important characterization of
stably free left D-modules.

Proposition 3: A left D-module M is stably free iff
there exist two matrices R′ ∈ Dq′×p′ and S′ ∈ Dp′×q′

satisfying the following two conditions:{
M ∼= D1×p′/(D1×q′ R′),
R′ S′ = Iq′ .

(10)

Proof: If M is a stably free left D-module, then
there exist p′, q′ ∈ Z+ such that M ⊕ D1×q′ ∼= D1×p′ .
Let us denote by ψ : D1×p′ −→ M ⊕ D1×q′ the
above isomorphism and by π1 : M ⊕ D1×q′ −→ M
the canonical projection onto M . Hence, we obtain the
following commutative exact diagram

0 0
↓ ↓

kerD(π1 ◦ ψ) D1×q′

↓ ↓ i1
0 −→ D1×p′ ψ−→ M ⊕D1×q′ −→ 0

↓ π1 ◦ ψ ↓ π1

0 −→ M
id−→ M −→ 0,

↓ ↓
0 0

which shows that we have:

ψ(kerD(π1 ◦ ψ)) = 0⊕D1×q′ = i1(D1×q′).

Therefore, the first vertical exact sequence becomes the
following exact sequence

0 −→ D1×q′ .R′−−→ D1×p′ π1 ◦ψ−−−−→M −→ 0, (11)

where R′ ∈ Dq′×p′ is the matrix representing the mor-
phism ψ−1 ◦ i1 : D1×q′ −→ D1×p′ with respect to the
standard bases of D1×q′ and D1×p′ . If we denote by
π2 : M ⊕D1×q′ −→ D1×q′ the canonical projection onto
D1×q′ , we then have:

π2 ◦ i1 = idD1×q′ .



Hence, the morphism π2 ◦ ψ : D1×p′ −→ D1×q′ , repre-
sented by S′ ∈ Dp′×q′ with respect to the standard bases
of D1×p′ and D1×q′ , satisfies that

(π2 ◦ ψ) ◦ (ψ−1 ◦ i1) = idD1×q′ ,

i.e., R′ S′ = Iq′ , which proves the result.
Conversely, if the left D-module M is the cokernel of

the D-morphism .R′ : D1×q′ −→ D1×p′ , where the matrix
R′ admits a right-inverse S′, then we obtain

kerD(.R′) = {λ ∈ D1×q′ | λR′ = 0} = 0

as λ = (λR′)S′ = 0. Using the fact that a stably free
module is projective, by 1 of Proposition 2, the exact
sequence (11) splits and we obtain M ⊕D1×q′ ∼= D1×p′ ,
which shows that M is a stably free left D-module.

Using the fact that a projective left D-module is a
stably free left D-module and we can always construct a
finite free resolution of a finitely presented left D-module
M = D1×p/(D1×q R) [3], we obtain that if M is a stably
free left D-module, then, by Proposition 1, (8) is a shorter
finite free resolution of M . By induction on the length
of the finite free resolutions of M , we finally obtain a
short finite free resolution of M of the form (9), where
the matrix T1 admits a right-inverse. Hence, in what
follows, we can always suppose that a stably free left
D-module M can be defined by M = D1×p/(D1×q R),
where R ∈ Dq×p admits a right-inverse S ∈ Dp×q.
The corresponding algorithm has been implemented in
OREMODULES [2].

Let us illustrate this result by means of an example.

Example 7: Let us consider D = A1(Q) and the left
D-module M = D1×2/(D1×2R), where R is defined by:

R =

(
−t2 t ddt − 1

−t ddt − 2 d2

dt2

)
∈ D2×2.

We can check that M has the free resolution

0 −→ D
.R2−−→ D1×2 .R−→ D1×2 π−→M −→ 0,

with the notation R2 =
(
d
dt , −t

)
∈ D1×2. Moreover, the

matrix S2 =
(
t, d

dt

)T
is a right-inverse of R2. Hence, if

we denote by T1 = (R, S2), then, by Proposition 1, we
obtain the finite free resolution of M :

0 −→ D1×2 .T1−−→ D1×3 τ−→M −→ 0. (12)

We can check that T1 admits the following right-inverse:

S1 =

 0 −1
−1 0
d
dt −t

 ∈ D3×2.

Therefore, the exact sequence (12) splits, and thus, M is a
stably free left D-module of rank 1 and (12) is a minimal
free resolution of M .

II. CONSTRUCTIVE COMPUTATION OF FLAT OUTPUTS

A. Introduction

Let us start by explaining what are the main difficulties
of testing freeness for a left D-module M .

Let us consider the k-vector space (e.g., k = Q, R, C):

V = {(x, y, z)T ∈ k3 | 2x+ 3 y + 5 z = 0}.

If we want to compute a basis of V , we usually do the
following computations:

2x+ 3 y + 5 z = 0 =⇒ x = −3
2
y − 5

2
z

=⇒


x = −3

2
y − 5

2
z,

y = y, ∀ y, z ∈ k.
z = z,

Therefore, we obtain the following basis{(
−3

2
, 1, 0

)T
,

(
−5

2
, 0, 1

)T}
of the k-vector space V , i.e., we have:

V = k

(
−3

2
, 1, 0

)T
+ k

(
−5

2
, 0, 1

)T
.

Let us now consider the Z-module defined by

P = {(x, y, z)T ∈ Z3 | 2x+ 3 y + 5 z = 0}

obtained by taking the ring Z instead of the field k. We note
that we cannot repeat the same computations as 1/2 does
not belong to Z. However, we have the following charac-
terization of the fact that {(α1, β1, γ1)T , (α2, β2, γ2)T }
is a family of generators of the Z-module P : x

y
z

 ∈ P = Z

 α1

β1

γ1

+ Z

 α2

β2

γ2



⇐⇒ ∃ t1, t2 ∈ Z,


x = α1 t1 + α2 t2,

y = β1 t1 + β2 t2,

z = γ1 t1 + γ2 t2.

(13)

Moreover, {(αi, βi, γi)T }1≤i≤2 is a basis of P iff (13) is
injective, i.e., iff there exist aij ∈ Z, i = 1, 2, j = 1, 2, 3,
such that:

(13) =⇒ ti = ai1 x+ ai2 y + ai3 z, i = 1, 2.

Hence, we find again the fact that freeness is equivalent to
the existence of an injective parametrization of the linear
system P (see Theorem 5). The Hermite canonical form
of the vector (2, 3, 5)T is (1, 0, 0)T , and thus, we obtain
that P is a free Z-module and

P = Z (9, −11, 3)T + Z (7, −8, 2)T ,



i.e., we have the following injective parametrization of P :
x = 9 t1 + 7 t2,

y = −11 t1 − 8 t2,

z = 3 t1 + 2 t2,

=⇒

{
t1 = −2x− 2 y − z,

t2 = 3x+ 3 y + 2 z.

Finally, we note that no canonical form such as Hermite,
Smith or Jacobson forms exists over the Weyl algebras
An(k) for n ≥ 1 and Bn(k) for n ≥ 2 because they are
not left principal ideal domains. Hence, we need to pursue
another way that we are going to describe now.

B. Computation of bases over the Weyl algebras

In what follows, we shall use the notation D for the
Weyl algebras An(k) or Bn(k) defined in (6), where k
is a field containing Q. Let us recall a famous result in
non-commutative algebra due to J. T. Stafford.

Theorem 6: [27] Let a1, a2, a3 ∈ D and the left ideal
I = Da1 + Da2 + Da3 of D generated by a1, a2 and
a3. Then, there exist λ, µ ∈ D such that we have:

I = D (a1 + λ a3) +D (a2 + µa3).

A direct consequence of Theorem 6 is that any left
ideal of D can be generated by two elements of D.

Example 8: Let us consider D = A3(Q) and the left
ideal I = D (d1 +x3)+Dd2 +Dd3 of D. Then, we have
I = D (d1 + x3) +D (d2 + d3) as:

d2 = (d2 (d2 + d3)) (d1 + x3)
−(d2 (d1 + x3)) (d2 + d3),

d3 = (d3 (d2 + d3)) (d1 + x3)
−(d3 (d1 + x3)) (d2 + d3).

Therefore, we can take λ = 0 and µ = 1 in Theorem 6.

Two constructive proofs of Theorem 6 have recently
been developed in [9], [11]. They have been implemented
in the package STAFFORD [25] using OREMODULES [2].

The following important corollary of Theorem 6 is also
due to J. T. Stafford.

Corollary 1: [27] A stably free left D-module M with
rankD(M) ≥ 2 is free.

The purpose of this paper is to give a constructive
proof of this corollary (contrary to the original one).
In particular, it will give us an effective algorithm for
the computation of bases of the free left D-module
M = D1×p/(D1×q R), and thus, for the flat outputs
of the corresponding system kerF (R.) (for any left
D-module F). We also note that another algorithm for
the computation of bases of free modules over the Weyl
algebras was given in [7]. However, we believe that our
algorithm is simpler than the one developed in [7] as

it is conceptually nothing else than a Gaussian elimination.

Let us introduce a few definitions.

Definition 5: 1) The general linear group GLm(D)
is the group of invertible matrices with entries in D:

GLm(D) = {U ∈ Dm×m | ∃ V ∈ Dm×m :
U V = V U = Im }.

2) The elementary group ELm(D) is the subgroup of
GLm(D) generated by all matrices of the form

Im + r Eij , r ∈ D, i 6= j,

where Eij denotes the matrix with 1 at position (i, j)
and 0 elsewhere.

3) A column vector a = (a1, . . . , am)T ∈ Dm is
said to be unimodular if it admits a left-inverse
b = (b1, . . . , bm) ∈ D1×m, namely, if we have:

b a =
m∑
i=1

bi ai = 1.

4) We denote by Um(D) the set of all unimodular
vectors of Dm.

The next proposition will play an important role in
what follows.

Proposition 4: Let us consider m ≥ 3 and a unimodular
vector a = (a1, . . . , am)T ∈ Um(D). Then, there exists a
matrix E ∈ ELm(D) such that:

E a = (1, 0, . . . , 0)T .

Proof: Applying Theorem 6 to the left ideal

I = Da1 +Da2 +Dam

of D, there exist λ, µ ∈ D such that:

I = D (a1 + λ am) +D (a2 + µam).

Using the fact that a ∈ Um(D), we then obtain∑m
i=1Dai = D, and thus, we have:

D (a1 + λ am) +D (a2 + µam) +
m−1∑
i=3

Dai = D.

Hence, we get:

a′ = (a1+λ am, a2+µam, a3, . . . , am−1)T ∈ Um−1(D).

Let us define a′1 = a1+λ am, a′2 = a2+µam and a′i = ai,
i ≥ 3, and the following matrix:

E1 =



1 0 0 . . . 0 λ
0 1 0 . . . 0 µ
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1


∈ ELm(D).



We then have:

E1 a = (a′1, a
′
2, . . . , a

′
m−1, am)T .

Now, using the fact that a′ ∈ Um−1(D), there exist
b1, . . . , bm−1 ∈ D such that:

m−1∑
i=1

bi a
′
i = 1. (14)

Multiplying (14) by a′1 − 1− am, we obtain:

m−1∑
i=1

(a′1 − 1− am) bi a′i = (a′1 − 1− am).

Let us denote by a′′i = (a′1− 1− am) bi, i ≥ 1, and define
the following matrix:

E2 =



1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
a′′1 a′′2 a′′3 . . . a′′m−1 1


∈ ELm(D).

We then have:

E2 (a′1, . . . , a
′
m−1, am)T = (a′1, . . . , a

′
m−1, a

′
1 − 1)T .

Hence, if we define the following elementary matrix

E3 =



1 0 0 . . . 0 −1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1


∈ ELm(D),

then we get:

E3 (a′1, . . . , a
′
m−1, a

′
1−1)T = (1, a′2, . . . , a

′
m−1, a

′
1−1)T .

Finally, if we introduce the matrix

E4 =



1 0 0 . . . 0 0

−a′2 1 0 . . . 0 0

−a′3 0 1 . . . 0 0

...
...

...
...

...
...

−a′m−1 0 0 . . . 1 0

−a′1 + 1 0 0 . . . 0 1


∈ ELm(D),

we then obtain:

E4 (1, a′2, . . . , a
′
m−1, a

′
1 − 1)T = (1, 0, . . . , 0)T .

Hence, the matrix E = E4E3E2E1 ∈ ELm(D)
satisfies:

E (a1, . . . , am)T = (1, 0, . . . , 0)T .

Example 9: Let us consider the algebra D = A3(Q)
and the column vector a = (d1 + x3, d2, d3)

T . We easily
check that b = (d3, 0, −(d1 +x3)) is a left-inverse of
a, i.e., a ∈ U3(D). Therefore, by Proposition 4, there exists
a matrix E ∈ EL3(D) such that E a = (1, 0, 0)T . Let us
compute such a matrix. We first need to apply Theorem 6
to the left ideal I = D (d1 + x3) + Dd2 + Dd3. Using
Example 8, we can take λ = 0 and µ = 1. If we define

E1 =

 1 0 0
0 1 1
0 0 1

 ∈ EL3(D),

we then obtain E1 a = (d1 + x3, d2 + d3, d3)
T . Now,

we can check that we have the Bézout identity:

(d2 + d3) (d1 + x3)− (d1 + x3) (d2 + d3) = 1.

Therefore, if we define a′′1 = (d1 +x3− 1−d3) (d2 +d3),
a′′2 = −(d1 + x3 − 1− d3) (d1 + x3) and

E2 =

 1 0 0
0 1 0
a′′1 a′′2 1

 ∈ EL3(D),

we then get:

E2 (d1 + x3, d2 + d3, d3)
T

= (d1 + x3, d2 + d3, d1 + x3 − 1)T .

Then, if we denote by

E3 =

 1 0 −1
0 1 0
0 0 1

 ∈ EL3(D),

E4 =

 1 0 0
−(d2 + d3) 1 0
−(d1 + x3 − 1) 0 1

 ∈ EL3(D),

and E = E4E3E2E1 ∈ EL3(D), we finally obtain:

E a = (1, 0, 0)T .

We now state the main result of the paper.

Theorem 7: Let R ∈ Dq×p be a matrix which admits a
right-inverse S ∈ Dp×q, namely, RS = Iq, and satisfies
p ≥ q + 2. Then, M = D1×p/(D1×q R) is a free left
D-module with rank(M) = p− q ≥ 2.

Proof: Let us define the formal adjoint R̃ ∈ Dp×q of
R ∈ Dq×p (see Definition 3). Taking the formal adjoint on
both sides of the equality RS = Iq, we then get S̃ R̃ = Iq,
which shows that R̃ admits the left-inverse S̃. In particular,
the first column of R̃ is a unimodular vector of Dp and
p ≥ q + 2 ≥ 3. Hence, by applying Proposition 4 to the
first column of R̃, we obtain E1 ∈ ELp(D) such that:

E1 R̃ =


1 ?
0
... R̃2

0

 , R̃2 ∈ D(p−1)×(q−1).



If q ≥ 2, then we can easily check that the first column
of the matrix R̃2 ∈ D(p−1)×(q−1) is unimodular and we
have p−1 ≥ q+1 ≥ 3. Applying Proposition 4, we obtain
F2 ∈ ELp−1(D) such that:

F2 R̃2 =


1 ?
0
... R̃3

0

 , R̃3 ∈ D(p−2)×(q−2).

Hence, if we denote by

E2 =
(

1 0
0 F2

)
∈ ELp(D),

we then obtain:

(E2E1) R̃ =


1 ? ?
0 1 ?
... 0
...

... R̃3

0 0

 .

If q ≥ 3, then we can also check that the first column of
R̃3 ∈ D(p−2)×(q−2) is unimodular and p− 2 ≥ q ≥ 3. By
induction, we finally obtain Eq ∈ ELp(D) such that:

(Eq · · ·E1) R̃ =



1 ? ? · · · ?
0 1 ? · · · ?
0 0 1 · · · ?

0 0 0
. . . ?

0 0 0 · · · 1
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0


.

Hence, if we define the matrix E = Eq · · ·E1 ∈ ELp(D),
then we easily get that every row vector

v = (v1, . . . , vp) ∈ kerD(.(E R̃))

satisfies vi = 0 for i = 1, . . . , q and vq+1, . . . , vp are
arbitrary elements in D. Therefore, we have:

kerD(.(E R̃)) = D1×(p−q) (0 Ip−q).

Using the fact that E is invertible over D, we can check
that kerD(.R̃) = kerD(.(E R̃))E, and thus,

kerD(.R̃) = D1×(p−q) ((0 Ip−q)E) = D1×(p−q) F,

where F ∈ D(p−q)×p denotes the matrix formed by the
last p− q rows of E. By taking the last p− q columns of
the inverse E−1 of E, we obtain a matrix G ∈ Dp×(p−q)

which satisfies F G = Ip−q. Using the identities

S̃ R̃ = Iq, F R̃ = 0, F G = Ip−q,

we obtain:(
S̃ − S̃ GF

F

)
(R̃ G) =

(
Iq 0
0 Ip−q

)
= Ip. (15)

If we define the matrices
Q = F̃ ∈ Dp×(p−q),

T = G̃ ∈ D(p−q)×p,

S′ = S −QT S ∈ Dp×q,

and apply the involution θ to (15), we finally obtain the
following Bézout identity [17]:(

R
T

)
(S′ Q) = Ip. (16)

The fact that the Weyl algebras An(k) and Bn(k) are left
and right noetherian rings [14] implies that they are stably
finite [10], namely, for all U ∈ Dp×p such that U V = Ip,
for a certain V ∈ Dp×p, then satisfies V U = Ip, i.e.,
U ∈ GLp(D). Applying this result to (16), we obtain the
new Bézout identity:

(S′ Q)
(
R
T

)
= Ip ⇐⇒ S′R+QT = Ip. (17)

The matrix (RT TT )T is then invertible over D, which,
in algebra, is well-known to be equivalent to the fact that
the left D-module M = D1×p/(D1×q R) is free [17], [26].
Let us give the complete proof.

The condition RQ = 0 implies that:

(D1×q R) ⊆ kerD(.Q).

Moreover, if v ∈ kerD(.Q), then from (17) we obtain
v = (v S′)R, which shows that v ∈ (D1×q R) and
kerD(.Q) = (D1×q R). Moreover, kerD(.R) = 0 as S
is a right-inverse of R, i.e., RS = Iq, and w ∈ kerD(.R)
implies w = (wR)S = 0. Finally, (D1×pQ) = D1×(p−q)

because (D1×pQ) ⊆ D1×(p−q) and, for all u ∈ D1×(p−q),
we have u = (uT )Q ∈ (D1×pQ). Therefore, we obtain
the following split short exact sequence [26]:

0 −→ D1×q .R−→ D1×p .Q−→ D1×(p−q) −→ 0. (18)

Then, a standard argument in homological algebra shows
that M = coker(.R) ∼= (D1×pQ) = D1×(p−q), proving
that M is a free left D-module of rank p− q and a basis
is given by the columns of Q.

Let us illustrate Theorem 7 and its constructive proof.

Example 10: Let us consider D = A3(Q),

R = −(d1 − x3, d2, d3) ∈ D1×3,

the left D-module M = D1×3/(DR), any left D-module
F (e.g., F = C∞(R3)) and the system:

kerF (R.) = {(y1, y2, y3)T ∈ F3 |
d1 y1(x) + d2 y2(x) + d3 y3(x)− x3 y1(x) = 0}.

(19)

We note that if we remove the last term x3 y1 in the
previous equation, then we obtain the divergence oper-
ator in R3 studied in Example 1. As was recalled in
Example 1, if F = C∞(R3), the divergence operator is
parametrized by the curl operator, but the curl operator



is not an injective parametrization because the system
formed by the curl operator is parametrized by the gradient
operator. Moreover, using Theorem 5 and the fact that
the gradient operator cannot be parametrized, we obtain
that the D = Q[d1, d2, d3]-module associated with the
divergence operator is reflexive but not free. Hence, it does
not admit a basis.

However, we can check that the matrix R admits the
right-inverse S = (−d3, 0, d1−x3)T . By Theorem 7,
we then obtain that the left D-module M = D1×3/(DR)
is free of rank 2. By following the constructive proof of
Theorem 7 we can compute a basis of M and an injective
parametrization of (19).

The formal adjoint R̃ = (d1 + x3, d2, d3)T of R
has already been computed in Example 5. Now, we need
to apply Proposition 4 to R̃. The computations were done
in Example 9 and the matrix E ∈ EL3(D) defined there
satisfies E R̃ = (1, 0, 0)T . Hence, taking the last two
columns of θ(E), we obtain a basis of M or, equivalently,
the following parametrization of kerF (R.)

y1(x) = (1− L1) (d2 + d3) ξ1(x)
+((1− L1) (d1 − x3) + 1) ξ2(x),

y2(x) = (−L2 (d2 + d3) + 1) ξ1(x)
−L2 (d1 − x3) ξ2(x),

y3(x) = (−(1 + L2) (d2 + d3) + 1) ξ1(x)
−(1 + L2) (d1 − x3) ξ2(x),

(20)

with the following notations:{
L1 = (d2 + d3) (d1 − d3 − x3 + 1),
L2 = −(d1 − x3) (d1 − d3 − x3 + 1).

We can check that (20) is injective as we have

ξ1(x) = (−d2
1 + d1 d3 − x3 d3 + (2x3 − 1) d1

−x2
3 + x3 + 1) y2(x)

+(d2
1 − d1 d3 + x3 d3 − (2x3 − 1) d1

+x2
3 − x3) y3(x),

ξ2(x) = y1(x) + (−d2
3 + d1 d2 − d2 d3 + d1 d3

+d2 − (x3 − 1) d3 − x3 d2 − 2) y2(x)
+(d2

3 − d1 d2 + d2 d3 − d1 d3

+(x3 − 1) d3 + (x3 − 1) d2 + 2) y3(x),

which proves that {ξ1, ξ2} is a flat output of kerF (R.).
Finally, we point out that the fact that (20) parametrizes

kerF (R.) for any left D-module directly follows from
(16) and (17) or, equivalently, from the fact that (18) is
a so-called split short exact sequence and the functor
homD( · ,F) transforms split exact sequences of left
D-modules into split exact sequences of abelian groups/k-
vector spaces (see 2 of Proposition 2).

Finally, combining Proposition 1 and Theorem 7, we ob-
tain a constructive algorithm for the computation of bases
of a stably free left D-module M = D1×p/(D1×q R)

of rank at least 2. Indeed, using Proposition 1, we can
compute two matrices R′ ∈ Dq′×p′ and S′ ∈ Dp′×q′ such
that M ∼= D1×p′/(D1×q′ R′) and R′ S′ = Iq′ . Now, the
rank of a module being an intrinsic property, we obtain that
p′ − q′ ≥ 2. Hence, using Theorem 7, we can compute a
basis of the left D-module M ′ = D1×p′/(D1×q′ R′) and
we obtain the matrices S′ ∈ Dp′×q′ , Q′ ∈ Dp′×(p′−q′)

and T ′ ∈ D(p′−q′)×p′ such that we have the following
split short exact sequence:

0 −→ D1×q′ .R′−−→ D1×p′ .Q′−−→ D1×(p′−q′) −→ 0.
.S′←−− .T ′←−−

Finally, we easily check that an injective parametrization
Q of M can be obtained by removing the last p′ − p
(zero) rows of Q′. A basis of M is then defined by
{π(ei T )}i=1,...,(p′−q′), where T ∈ D(p′−q′)×p is the
matrix obtained by removing the last p′−p columns of the
matrix T ′ and {ei}i=1,...,p′−q′ denotes the standard basis
of D1×(p′−q′).

C. A constructive answer to Datta’s question

In [23], the following result was proved.

Corollary 2: Every controllable ordinary differential
linear system with polynomial coefficients and at least
two inputs is flat.

Corollary 2 answers an open question posed by Datta
[5] on the possibility to generalize the results of [13] for
multi-input multi-output time-varying controllable linear
systems. We point out that no effective algorithms for
the computation of the corresponding flat outputs were
known. Theorem 7 then solves the problem by giving
a constructive answer to Datta’s question in the case
of polynomial coefficients. The corresponding algorithm
has been implemented in STAFFORD. Let us illustrate
Corollary 2 by means an example.

Example 11: We consider the following time-varying
linear control system:{

ẋ2(t)− u2(t) = 0,
ẋ1(t)− t u1(t) = 0.

(21)

Let us consider the Weyl algebra D = A1(Q) and the left
D-module M = D1×4/(D1×2R), where R is defined by:

R =

(
0 d

dt 0 −1
d
dt 0 −t 0

)
∈ D2×4.

We denote by kerF (R.) the corresponding system, where
F is any left D-module (e.g., F = C∞(R)).

If we consider for the moment the left B1(Q)-module
P = B1(Q)1×4/(B1(Q)1×2R), then by using a Jacobson
form, we can easily check that we have the following



injective parametrization of kerF (R.) for any left B1(Q)-
module F (e.g., F = Q(t)):

x1(t) = ξ1(t),
x2(t) = ξ2(t),

u1(t) =
1
t
ξ̇1(t),

u2(t) = ξ̇2(t).

We note that the previous parametrization of kerF (R.) is
singular at t = 0.

However, we easily check that

S =

(
0 0 0 −1

t 0 d
dt 0

)T
is a right-inverse of R, i.e., RS = I2 and p − q = 2.
Therefore, by Theorem 7, we obtain that the left D-module
M = D1×4/(D1×2R) is free. Let us compute a basis of
M , i.e., a non-singular parametrization of the system (21).
The formal adjoint of R is defined by:

R̃ =

(
0 − d

dt 0 −1

− d
dt 0 −t 0

)T
.

Considering the first unimodular column of R̃ and applying
Proposition 4, we obtain:

D 0 +D
(
− d
dt

)
+D (−1)

= D (0 + 1 · (−1)) +D
(
− d
dt + 0 · (−1)

)
.

Hence, taking λ = 1 and µ = 0, we define the following
matrices:

E1 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 , E2 =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

 ,

E3 =


1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 , E4 =


1 0 0 0
d
dt 1 0 0

0 0 1 0
2 0 0 1

 .

Defining E = E4E3E2E1, we then get:

E R̃ =

(
1 0 0 0

0 0 −t − d
dt

)T
.

Now, we consider the second column of E R̃ and, in
particular, the vector

(
0, −t, − d

dt

)T
. We can check

that this vector is unimodular. Applying Proposition 4, we
obtain:

D 0 +D (−t) +D

(
− d

dt

)
= D

(
0− d

dt

)
+D (−t).

Then, taking λ = 1 and µ = 0, we define the following
elementary matrices:

E′1 =

 1 0 1
0 1 0
0 0 1

 , E′2 =

 1 0 0
0 1 0
−t d

dt 1

 ,

E′3 =

 1 0 −1
0 1 0
0 0 1

 , E′4 =

 1 0 0
t 1 0

d
dt + 1 0 1

 .

Defining the matrix E′ = E′4E
′
3E

′
2E

′
1 ∈ EL3(D) and

E′′ = diag(1, E′) ∈ EL4(D), we then get:

(E′′E) R̃ =


1 0
0 1
0 0
0 0

 .

The last two columns of the formal adjoint of E′′E form
the following matrix in D4×2:

Q =


t2 −t ddt + 1

t (t+ 1) −(t+ 1) d
dt + 1

t ddt + 2 − d2

dt2

t (t+ 1) d
dt + 2 t+ 1 −(t+ 1) d2

dt2

 .

We then check that Q admits the left-inverse

T =

(
0 0 t+ 1 −1

t+ 1 −t 0 0

)
∈ D2×4.

Hence, the time-varying linear control system (21) is
injectively parametrized by

x1(t) = t2 ξ1(t)− t ξ̇2(t) + ξ2(t),

x2(t) = t (t+ 1) ξ1(t)− (t+ 1) ξ̇2(t) + ξ2(t),

u1(t) = t ξ̇1(t) + 2 ξ1(t)− ξ̈2(t),
u2(t) = t (t+ 1) ξ̇1(t) + (2 t+ 1) ξ1(t)− (t+ 1) ξ̈2(t)

and a flat output {ξ1, ξ2} of kerF (R.) is defined by:{
ξ1(t) = (t+ 1)u1(t)− u2(t),
ξ2(t) = (t+ 1)x1(t)− t x2(t).

We do not know whether or not Corollary 2 can be
extended to the case of real analytic coefficients. If we
consider the ring of differential operators D = C{t}

[
d
dt

]
with coefficients in the ring C{t} of convergent power
series, it is well known that every left ideal of D can be
generated by means of two elements of D [1]. Two such
generators can be found by means of a computation of a
standard basis as it is explained in [1]. However, we do
not know if D is strongly simple, namely, if, for every a1,
a2 and a3 ∈ D, there exist λ and µ ∈ D satisfying:

Da1 +Da2 +Da3 = D (a1 + λ a3) +D (a2 + µa3).

If so, then Proposition 4 and Theorem 7 also hold for
this particular ring D = C{t}

[
d
dt

]
. This question will be

studied in the future as well as the case of real analytic
coefficients.



III. CONCLUSION

Based on new constructive proofs of one of
J. T. Stafford’s results, we have given in this paper
a constructive algorithm which computes bases of free
modules over the Weyl algebras (whose ground fields
contain Q). Using a dictionary existing between system
and module theories, we are now able to constructively
compute the flat outputs of flat multidimensional linear
systems defined by PDEs with polynomial or rational
coefficients. The extension of the results of this paper
to other classes of multidimensional linear systems such
as differential time-delay or discrete systems will be
studied in the future. Finally, as the constructive proofs
of Theorem 6 developed in [9], [11] use computations
of many time-consuming Gröbner bases, we can only
handle relative small examples up to now. Optimization
of the different algorithms will be studied in forthcoming
publications.
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