Stafford's Reduction of Linear Partial Differential Systems

Alban Quadrat * Daniel Robertz**
* INRIA Saclay-Île-de-France, DISCO project, Supélec, L2S, 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France.
alban.quadrat@inria.fr.
** Lehrstuhl B für Mathematik, RWTH Aachen University, Templergraben 64, 52056 Aachen, Germany.
daniel@momo.math.rwth-aachen.de.

Abstract

It is well-known that linear systems theory can been studied by means of module theory. In particular, to a linear ordinary/partial differential system corresponds a finitely presented left module over a ring of ordinary/partial differential operators. The structure of modules over rings of partial differential operators was investigated in Stafford's seminal work [18]. The purpose of this paper is to make some results obtained in [18] constructive. Our results are implemented in the Maple package Stafford. Finally, we give system-theoretic interpretations of Stafford's results within the behavioural approach (e.g., minimal representations, autonomous behaviours, direct decomposition of behaviours, differential flatness).

1. INTRODUCTION

It is well-known that linear systems theory can be studied by means of module theory (see, e.g., $[2,3,4,5,12,14,15]$ and the references therein). The purpose of this paper is to develop constructive versions of important results obtained by Stafford in his seminal paper [18] on the module structure of rings of partial differential (PD) operators. Using the duality between linear systems (behaviours) and finitely presented left modules, we give system-theoretic interpretations of Stafford's theorems. Finally, based on Stafford's results, we obtain explicit conditions so that a linear PD system is equivalent to another one defined by fewer unknowns and fewer equations.

2. ALGEBRAIC ANALYSIS

In this section, we briefly review the algebraic analysis approach [7] to linear systems theory. For more details, see $[2,4,11,12,13,14]$. In what follows, we shall assume that D is a noetherian domain, namely, a ring D without zero divisors and such that every left/right ideal of D is finitely generated as a left/right D-module $[8,17]$.
Let $R \in D^{q \times p}$ be a $(q \times p)$-matrix with entries in D and

$$
\begin{aligned}
. R: D^{1 \times q} & \longrightarrow D^{1 \times p} \\
\lambda & \longmapsto \lambda,
\end{aligned}
$$

the left D-homomorphism (i.e., the left D-linear map) represented by R. Then, the cokernel of.R is the factor left D-module $M:=D^{1 \times p} /\left(D^{1 \times q} R\right)$, finitely presented by R. In order to describe M by means of generators and relations, let $\left\{f_{j}\right\}_{j=1, \ldots, p}$ be the standard basis of $D^{1 \times p}$, namely, f_{j} is the row vector of length p with 1 at position j and 0 elsewhere. Moreover, let $\pi: D^{1 \times p} \longrightarrow M$ be the canonical projection onto M, i.e., the left D homomorphism which maps $\lambda \in D^{1 \times p}$ to its residue class $\pi(\lambda)$ in M. Then, π is surjective since by definition of
M, every $m \in M$ is the class of certain λ 's in $D^{1 \times p}$, i.e., $m=\pi(\lambda)=\pi(\lambda+\nu R)$ for all $\nu \in D^{1 \times q}$. If $y_{j}=\pi\left(f_{j}\right)$ for $j=1, \ldots, p$, then, for every $m \in M$, there exists $\lambda=\left(\lambda_{1} \ldots \lambda_{p}\right) \in D^{1 \times p}$ such that

$$
m=\pi(\lambda)=\pi\left(\sum_{j=1}^{p} \lambda_{j} f_{j}\right)=\sum_{j=1}^{p} \lambda_{j} \pi\left(f_{j}\right)=\sum_{j=1}^{p} \lambda_{j} y_{j}
$$

which shows that $\left\{y_{j}\right\}_{j=1, \ldots, p}$ is a generating set for M. Let R_{i} (resp., R_{\bullet}) denote the $i^{\text {th }}$ row (resp., $j^{\text {th }}$ column) of R. Then $\left\{y_{j}\right\}_{j=1, \ldots, p}$ satisfies the relations
$\sum_{j=1}^{p} R_{i j} y_{j}=\sum_{j=1}^{p} R_{i j} \pi\left(f_{j}\right)=\pi\left(\sum_{j=1}^{p} R_{i j} f_{j}\right)=\pi\left(R_{i \bullet}\right)=0$
for all $i=1, \ldots, q$, since $R_{i} \in D^{1 \times q} R$ for $i=1, \ldots, q$.
Now, let \mathcal{F} be a left D-module, $\mathcal{F}^{p}:=\mathcal{F}^{p \times 1}$, and let

$$
\operatorname{ker}_{\mathcal{F}}(R .):=\left\{\eta \in \mathcal{F}^{p} \mid R \eta=0\right\}
$$

be the linear system or behaviour defined by R and \mathcal{F}. A simple but fundamental remark due to Malgrange [10] is that $\operatorname{ker}_{\mathcal{F}}(R$.) is isomorphic to the abelian group $\operatorname{hom}_{D}(M, \mathcal{F})$ of left D-homomorphisms from M to \mathcal{F}, i.e.,

$$
\begin{equation*}
\operatorname{ker}_{\mathcal{F}}(R .) \cong \operatorname{hom}_{D}(M, \mathcal{F}) \tag{2}
\end{equation*}
$$

as abelian groups, where \cong denotes an isomorphism (e.g., of abelian groups, left/right modules). This isomorphism can easily be described: if $\phi \in \operatorname{hom}_{D}(M, \mathcal{F}), \eta_{j}=\phi\left(y_{j}\right)$ for $j=1, \ldots, p$, and $\eta=\left(\eta_{1} \ldots \eta_{p}\right)^{T} \in \mathcal{F}^{p}$, then using (1), $R \eta=0$ since for $i=1, \ldots, q$:

$$
\sum_{j=1}^{p} R_{i j} \phi\left(y_{j}\right)=\phi\left(\sum_{j=1}^{p} R_{i j} y_{j}\right)=\phi\left(\pi\left(R_{i}\right)\right)=0 .
$$

Moreover, for any $\eta=\left(\eta_{1} \ldots \eta_{p}\right)^{T} \in \operatorname{ker}_{\mathcal{F}}(R$.), the map $\phi_{\eta}: M \longrightarrow \mathcal{F}$ defined by $\phi_{\eta}\left(y_{j}\right)=\eta_{j}$ for $j=1, \ldots, p$ is a well-defined left D-homomorphism from M to \mathcal{F}, i.e.,
we have $\phi_{\eta} \in \operatorname{hom}_{D}(M, \mathcal{F})$. Finally, the abelian group homomorphism $\chi: \operatorname{ker}_{\mathcal{F}}(R.) \longrightarrow \operatorname{hom}_{D}(M, \mathcal{F})$ defined by $\chi(\eta)=\phi_{\eta}$ is then bijective. For more details, see [2, 3, 14]. Hence, (2) shows that the linear system $\operatorname{ker}_{\mathcal{F}}(R$.) can be studied in terms of $\operatorname{hom}_{D}(M, \mathcal{F})$, and thus, by means of the left D-modules M and \mathcal{F}. Since matrices R_{1} and R_{2} representing equivalent linear systems define isomorphic modules, $\operatorname{hom}_{D}(M, \mathcal{F})$ is a more intrinsic description of the linear system than $\operatorname{ker}_{\mathcal{F}}(R$.) (e.g., it does not depend on the particular embedding of $\operatorname{ker}_{\mathcal{F}}\left(R\right.$.) into $\left.\mathcal{F}^{p}\right)$.
Example 1. Let A be a differential ring, namely, A is a ring equipped with commuting derivations δ_{i} for $i=1, \ldots, n$, namely, maps $\delta_{i}: A \longrightarrow A$ satisfying

$$
\forall a_{1}, a_{2} \in A, \quad\left\{\begin{array}{l}
\delta_{i}\left(a_{1}+a_{2}\right)=\delta_{i}\left(a_{1}\right)+\delta_{i}\left(a_{2}\right) \\
\delta_{i}\left(a_{1} a_{2}\right)=\delta_{i}\left(a_{1}\right) a_{2}+a_{1} \delta_{i}\left(a_{2}\right),
\end{array}\right.
$$

and $\delta_{i} \circ \delta_{j}=\delta_{j} \circ \delta_{i}$ for all $1 \leq i<j \leq n$. Moreover, let $D=A\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ be the (not necessarily commutative) polynomial ring of PD operators in $\partial_{1}, \ldots, \partial_{n}$ with coefficients in A, namely, every element $d \in D$ is of the form $d=\sum_{0 \leq|\mu| \leq r} a_{\mu} \partial^{\mu}$, where $r \in \mathbb{Z}_{\geq 0}, a_{\mu} \in A$, $\mu=\left(\mu_{1} \ldots \mu_{n}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{1 \times n}, \partial^{\mu}=\partial_{1}^{\mu_{1}} \ldots \partial_{n}^{\mu_{n}}$ is a monomial in the commuting indeterminates $\partial_{1}, \ldots, \partial_{n}$, and:

$$
\forall a \in A, \quad \partial_{i} a=a \partial_{i}+\delta_{i}(a) .
$$

For instance, if k is a field and $A=k\left[x_{1}, \ldots, x_{n}\right]$ (resp., $k\left(x_{1}, \ldots, x_{n}\right)$), then the so-called Weyl algebra $A\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ is simply denoted by $A_{n}(k)$ (resp., $\left.B_{n}(k)\right)$.
If $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ is the left D-module finitely presented by the matrix of PD operators $R \in D^{q \times p}$ and \mathcal{F} a left D-module (e.g., $\mathcal{F}=A$), then the linear PD system $\operatorname{ker}_{\mathcal{F}}(R$.$) is intrinsically defined by \operatorname{hom}_{D}(M, \mathcal{F})$.

If M, M^{\prime} and $M^{\prime \prime}$ are three left/right D-modules and $f \in \operatorname{hom}_{D}\left(M^{\prime}, M\right)$ and $g \in \operatorname{hom}_{D}\left(M, M^{\prime \prime}\right)$ are such that $g \circ f=0$, i.e., $\operatorname{im} f \subseteq \operatorname{ker} g$, then $M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}$ is called a complex (see, e.g., [17]). Moreover, if $\operatorname{ker} g=\operatorname{im} f$, then the complex is said to be exact at M (see, e.g., [17]).
By construction of the finitely presented left D-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$, the following complex is exact:

$$
D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0 .
$$

It is called a finite presentation of M [17].
The short exact sequence $0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0$ splits if one of the following equivalent assertions holds:
(1) $\exists u \in \operatorname{hom}_{D}\left(M^{\prime \prime}, M\right): g \circ u=\operatorname{id}_{M^{\prime \prime}}$.
(2) $\exists v \in \operatorname{hom}_{D}\left(M, M^{\prime}\right): v \circ f=\operatorname{id}_{M^{\prime}}$.
(3) $M \cong M^{\prime} \oplus M^{\prime \prime}$, where \oplus denotes the direct sum.

For more details, see, e.g., [17].
Within algebraic analysis, the module structure of rings of PD operators plays a fundamental role for the study of linear systems of PD equations [7]. In [2, 3, 13, 14], we have initiated the constructive study of module theory and homological algebra over Ore algebras, i.e., a certain class of noncommutative polynomial rings of functional operators such as rings of ordinary/partial differential operators, differential time-delay operators, or shift operators. Let us now recall a few classical definitions.
Definition 2. $([8,17])$. Let D be a noetherian domain and M a finitely generated left D-module.

- M is free of rank r if $M \cong D^{1 \times r}$.
- M is stably free if there exist $r, s \in \mathbb{Z}_{\geq 0}$ such that:

$$
M \oplus D^{1 \times s} \cong D^{1 \times r}
$$

- M is torsion-free if its torsion left D-submodule

$$
t(M)=\{m \in M \mid \exists d \in D \backslash\{0\}: d m=0\}
$$

is reduced to $\{0\}$, i.e., $t(M)=\{0\}$.

- M is torsion if $t(M)=M$.

Similar definitions hold for right D-modules.
See $[2,13,14]$ for algorithms which test whether or not a finitely presented left D-module M is free, stably free, torsion-free, has torsion elements, or is torsion.

Since D is a noetherian domain, D has the left (and the right) Ore property [8], i.e., for all $d_{1}, d_{2} \in D \backslash\{0\}$, there exist $e_{1}, e_{2} \in D \backslash\{0\}$ such that $e_{1} d_{1}=e_{2} d_{2}$ (resp., $d_{1} e_{1}=d_{2} e_{2}$). This implies the existence of the division ring of fractions $Q(D)=S^{-1} D=D S^{-1}$ of D, where $S=D \backslash\{0\}$ [8]. If M is a finitely generated left/right D module, then $Q(D) \otimes_{D} M$ (resp., $M \otimes_{D} Q(D)$) is a finitely generated left (resp., right) $Q(D)$-vector space and:

$$
\begin{aligned}
\operatorname{rank}_{D}(M): & =\operatorname{dim}_{Q(D)}\left(Q(D) \otimes_{D} M\right) \\
& =\operatorname{dim}_{Q(D)}\left(M \otimes_{D} Q(D)\right) .
\end{aligned}
$$

Proposition 3. ([2], Corollary 1). Let M be a finitely generated left D-module. Then, the assertions are equivalent:
(1) M is a torsion left D-module.
(2) $\operatorname{rank}_{D}(M)=0$.
(3) $\operatorname{hom}_{D}(M, D)=0$.

Theorem 4. (1) $[8,17]$ The following implications free \Rightarrow stably free \Rightarrow torsion-free hold for finitely generated left/right D-modules.
(2) [15] If k is a field of characteristic zero, $A=k \llbracket t \rrbracket$ the ring of formal power series with coefficients in k, or $A=k\{t\}$ the ring of locally convergent power series with coefficients in $k=\mathbb{R}$ or \mathbb{C} (i.e., germs of real analytic/holomorphic functions), and $D=A\langle\partial\rangle$ the ring of ordinary differential (OD) operators with coefficients in A, then every stably free left D-module M with $\operatorname{rank}_{D}(M) \geq 2$ is free.
(3) $[1,18]$ If k is a field of characteristic zero, A is either the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$, the field of rational functions $k\left(x_{1}, \ldots, x_{n}\right)$, the field of fractions $k\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ of the domain $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$ of formal power series with coefficients in k, or the field of fractions $k\left\{\left\{x_{1}, \ldots, x_{n}\right\}\right\}$ of the domain $k\left\{x_{1}, \ldots, x_{n}\right\}$ of locally convergent power series with coefficients in $k=\mathbb{R}$ or \mathbb{C}, and $D=A\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ the ring of PD operators with coefficients in A, then every stably free left D-module M with $\operatorname{rank}_{D}(M) \geq 2$ is free.

A constructive proof of Stafford's theorem, i.e., 3 of Theorem 4 for $D=A_{n}(k)$ and $B_{n}(k)$, was given in [14]. An implementation of computation of bases of finitely presented free left D-modules is available in the Stafford package $[14]$ for $D=A_{n}(\mathbb{Q})$ and $B_{n}(\mathbb{Q})$.
Let us now consider the OD case (e.g., $D=\mathbb{R}\{t\}\langle\partial\rangle$). Since the inputs of a linear control system are generally considered as independent, then the number of inputs of a linear system defined by a finitely presented left D-module M is $\operatorname{rank}_{D}(M)$ [4]. Moreover, if a finitely presented left
D-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ is free, then the linear system $\operatorname{ker}_{\mathcal{F}}(R$.) is called differentially flat [5]. Moreover, a torsion-free left D-module defines a controllable linear system $\operatorname{ker}_{\mathcal{F}}(R$.$) [4]. For more details, see [2, 15]. 2$ of Theorem 4 asserts that every controllable linear control system with at least two inputs is differentially flat [15].

3. UNIMODULAR ELEMENTS

Let us introduce the concept of unimodular elements.
Definition 5. An element m of a left D-module M is called unimodular if there exists $\varphi \in \operatorname{hom}_{D}(M, D)$ such that:

$$
\varphi(m)=1
$$

The set of unimodular elements of M is denoted by $\mathrm{U}(M)$.
Let us show how unimodular elements of M can be used to decompose M into a direct sum. If $m \in \mathrm{U}(M)$, then there exists $\varphi \in \operatorname{hom}_{D}(M, D)$ such that $\varphi(m)=1$. Thus, for any $d \in D, d=d \varphi(m)=\varphi(d m)$, which shows that φ is surjective, and we have the following short exact sequence:

$$
\begin{equation*}
0 \longrightarrow \operatorname{ker} \varphi \longrightarrow M \xrightarrow{\varphi} D \longrightarrow 0 \tag{3}
\end{equation*}
$$

Since D is free, (3) splits (see, e.g., [17]). Therefore, we have $M \cong \operatorname{ker} \varphi \oplus D$ as left D-modules. More precisely, $\sigma \in \operatorname{hom}_{D}(D, M)$ defined by $\sigma(d)=d m$ for all $d \in D$ satisfies $\varphi \circ \sigma=\mathrm{id}_{D}$. Thus, $M=\operatorname{ker} \varphi \oplus \operatorname{im} \sigma=\operatorname{ker} \varphi \oplus D m$. Remark 6. If m is a torsion element of M, then Proposition 3 shows that $\varphi(m)=0$ for all $\varphi \in \operatorname{hom}_{D}(M, D)$. This implies $t(M) \cap U(M)=\emptyset$, i.e., $m \in \mathrm{U}(M) \Rightarrow m \notin t(M)$.
Let us now study the problem of computing unimodular elements of M. Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ be a left D module finitely presented by $R \in D^{q \times p}$. Using Malgrange's remark (see Section 2), we obtain the following lemma.
Lemma 7. Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ be a finitely presented left D-module, $\pi: D^{1 \times p} \longrightarrow M$ the canonical projection onto M, and

$$
\begin{aligned}
R .: D^{p} & \longrightarrow D^{q} \\
\eta & \longmapsto R \eta
\end{aligned}
$$

the right D-homomorphism represented by R. Then, we have $\operatorname{hom}_{D}(M, D) \cong \operatorname{ker}_{D}(R):.=\left\{\eta \in D^{p} \mid R \eta=0\right\}$. In particular, for every $\varphi \in \operatorname{hom}_{D}(M, D)$, there exists $\mu \in \operatorname{ker}_{D}(R$.), i.e., $R \mu=0$, such that:

$$
\begin{equation*}
\forall \lambda \in D^{1 \times p}, \quad \varphi(\pi(\lambda))=\lambda \mu \tag{4}
\end{equation*}
$$

In what follows, φ defined by (4) will be denoted by φ_{μ}.
Remark 6 shows that if M is a torsion left D-module, then $\mathrm{U}(M)=\emptyset$. Hence, let us suppose that M is not torsion. Thus, by Proposition $3, \operatorname{ker}_{D}(R.) \cong \operatorname{hom}_{D}(M, D) \neq 0$. Since D is a right noetherian ring, $\operatorname{ker}_{D}(R$.$) is a finitely$ generated right D-module, and thus there exists a matrix $Q \in D^{p \times m}$ such that $\operatorname{ker}_{D}(R)=.\operatorname{im}_{D}(Q):.=Q D^{m}$. Then we have the exact sequence $D^{q} \stackrel{R .}{\longleftarrow} D^{p} \stackrel{Q .}{\longleftarrow} D^{m}$ and, since $R Q=0$, the following complex of left D-modules:

$$
D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\text { Q }} D^{1 \times m} .
$$

Lemma 8. ([2], Theorem 5). With the above notations: $t(M)=\operatorname{ker}_{D}(. Q) / \operatorname{im}_{D}(. R), M / t(M)=D^{1 \times p} / \operatorname{ker}_{D}(. Q)$. In particular, $\pi(\lambda)$ is a torsion element of M iff $\lambda Q=0$. Remark 9. Combining Lemmas 7 and 8, we obtain that for every $\pi(\lambda) \in M \backslash t(M)$, i.e., $\lambda Q \neq 0$, there exists
$\mu \in \operatorname{ker}_{D}(R)=.\operatorname{im}_{D}(Q$.$) such that \varphi_{\mu} \in \operatorname{hom}_{D}(M, D)$ satisfies $\varphi_{\mu}(\pi(\lambda))=\lambda \mu \neq 0$. Since $\mu=Q \xi$ for $\xi \in D^{m}$ and $\lambda Q \neq 0$, we only need to fix ξ such that $(\lambda Q) \xi \neq 0$.

By Lemma 7, every $\varphi \in \operatorname{hom}_{D}(M, D)$ is of the form φ_{μ} for a certain $\mu \in \operatorname{ker}_{D}(R$. $)=\operatorname{im}_{D}(Q$.$) , i.e., for \mu=Q \xi$ for some $\xi \in D^{m}$. Thus, the problem of finding a unimodular element $\pi(\lambda) \in M$ amounts to the following:
Problem 10. Find $\lambda^{\star} \in D^{1 \times p}$ and $\xi^{\star} \in D^{m}$ such that:

$$
\lambda^{\star} Q \xi^{\star}=1
$$

We point out that Problem 10 corresponds to solving an inhomogeneous quadratic equation in the λ_{i} 's and the ξ_{j} 's. We also note that the problem of checking whether or not $\pi(\lambda)$ is a unimodular element of M is a linear problem: Check whether or not $\lambda Q \in D^{1 \times m}$ admits a right inverse over D. For instance, this can be answered constructively for (not necessarily commutative) polynomial rings which admit Gröbner basis techniques (see, e.g., [2]).
If one entry of Q is invertible in D, then Problem 10 can be solved easily: if $Q_{i j} \in \mathrm{U}(D)$ and $\left\{f_{i}\right\}_{i=1, \ldots, p}$ (resp., $\left\{h_{j}\right\}_{j=1, \ldots, m}$) is the standard basis of $D^{1 \times p}$ (resp., D^{m}), then $\lambda^{\star}:=f_{i}$ and $\xi^{\star}:=Q_{i j}^{-1} h_{j}$ are such that $\lambda^{\star} Q \xi^{\star}=1$. Then, $m^{\star}:=\pi\left(f_{i}\right) \in M$ is unimodular and $\varphi_{Q \xi^{\star}}\left(m^{\star}\right)=1$.
More generally, if one row (resp., one column) of Q admits a right inverse (resp., a left inverse) over D, then Problem 10 can be solved easily. For instance, if the $j^{\text {th }}$ column $Q_{\bullet j}$ of Q admits a left inverse $T \in D^{1 \times p}$, then considering $\lambda^{\star}:=T$ and $\xi^{\star}:=h_{j}$, where $\left\{h_{k}\right\}_{k=1, \ldots, m}$ is the standard basis of D^{m}, and $\mu^{\star}:=Q h_{j}$, we get $\lambda^{\star} \mu^{\star}=1$, which proves that $m^{\star}:=\pi(T) \in \mathrm{U}(M)$ and $\varphi_{\mu^{\star}}\left(m^{\star}\right)=1$. Now, if the $i^{\text {th }}$ row Q_{i} of Q admits a right inverse $S \in D^{m}$, then considering $\lambda^{\star}:=f_{i}$, where $\left\{f_{k}\right\}_{k=1, \ldots, p}$ is the standard basis of $D^{1 \times p}, \xi^{\star}:=S$, and $\mu^{\star}:=Q S$, we then have $\lambda^{\star} \mu^{\star}=1$, which shows that $m^{\star}:=\pi\left(f_{i}\right) \in \mathrm{U}(M)$ and $\varphi_{\mu^{\star}}\left(m^{\star}\right)=1$.

4. VERY SIMPLE RINGS

Let us introduce the concept of a very simple domain.
Definition 11. A domain D is called very simple if D is noetherian and satisfies:

$$
\begin{align*}
& \forall a, b, c \in D, \forall d \in D \backslash\{0\}, \exists u, v \in D: \\
& D a+D b+D c=D(a+d u c)+D(b+d v c) \tag{5}
\end{align*}
$$

Remark 12. If D is very simple, then considering $d=1$ in (5), we obtain $D a+D b+D c=D(a+u c)+D(b+v c)$ for some $u, v \in D$, which shows that every left ideal of D generated by three elements, and thus, every finitely generated left ideal of D, can be generated by two elements.
If D is very simple, then choosing $a=b=0, c=1$, and $d \in D \backslash\{0\}$, there exist $u, v \in D$ such that

$$
D=D d u+D d v
$$

which implies that there exist $s, t \in D$ such that:

$$
s d u+t d v=1 .
$$

Thus, $D d D=D$, which shows that every two-sided ideal of D is trivial, and thus, that D is a simple ring [8].
In fact, the following variant of (5) holds for D :

$$
\begin{aligned}
& \forall a, b, c \in D, \forall d_{1}, d_{2} \in D \backslash\{0\}, \exists u, v \in D: \\
& D a+D b+D c=D\left(a+d_{1} u c\right)+D\left(b+d_{2} v c\right)
\end{aligned}
$$

Since D is a noetherian domain, it satisfies the right Ore condition (see Section 2). Hence, given $d_{1}, d_{2} \in D \backslash\{0\}$, there exist $e_{1}, e_{2} \in D \backslash\{0\}$ such that $d:=d_{1} e_{1}=d_{2} e_{2}$. If D is very simple, then there exist $u, v \in D$ such that:

$$
\begin{aligned}
D a+D b+D c & =D(a+d u c)+D(b+d v c) \\
& =D\left(a+d_{1}\left(e_{1} u\right) c\right)+D\left(b+d_{2}\left(e_{2} v\right) c\right) .
\end{aligned}
$$

Theorem 13. ([18]). If k is a field of characteristic 0 (e.g., $\mathbb{Q}, \mathbb{R}, \mathbb{C})$, then the Weyl algebras $A_{n}(k)$ and $B_{n}(k)$ are very simple domains.

The computation of elements u and v defined in (5) is implemented in the Stafford package [14] based on algorithms developed in $[6,9]$ for the computation of two generators of left/right ideals generated by three elements.
Example 14. Let $D=A_{2}(\mathbb{Q}), a=\partial_{1}, b=\partial_{2}, c=x_{1}$, $d_{1} \in D$ arbitrary, and $d_{2}=x_{1}$. If we consider $u=0$, $v=1, a_{2}:=a+d_{1} u c=\partial_{1}$, and $b_{2}:=b+d_{2} v c=\partial_{2}+x_{1}^{2}$, then (5) holds, i.e., $a=a_{2}$ and

$$
\left\{\begin{array}{l}
b=\left(\left(x_{1}\left(\partial_{2}+x_{1}^{2}\right) a_{2}+\left(-x_{1} \partial_{1}+2\right) b_{2}\right) / 2\right. \\
c=-\left(\left(\partial_{2}+x_{1}^{2}\right) a_{2}-\partial_{1} b_{2}\right) / 2
\end{array}\right.
$$

which shows that $D a+D b+D c=D a_{2}+D b_{2}$.
Theorem 15. ([14]). The ring $D=A\langle\partial\rangle$ of OD operators with coefficients in the differential ring $A=k \llbracket t \rrbracket$ (resp., $k\{t\}$, where $k=\mathbb{R}, \mathbb{C}$) of formal power series (resp., locally convergent power series) is a very simple domain.
Theorem 16. ([1]). Let $A=k\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ be the field of fractions of the domain of formal power series with coefficients in k. Then, the ring $A\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ of PD operators with coefficients in A is a very simple domain. The same result holds if A is the field of fractions $k\left\{\left\{x_{1}, \ldots, x_{n}\right\}\right\}$ of the domain of locally convergent power series with coefficients in $k=\mathbb{R}$ or \mathbb{C}.
Corollary 17. ([18]). Let D be a very simple domain and $d_{1}, d_{2} \in D \backslash\{0\}$. Then, the following quadratic equation

$$
\begin{equation*}
y_{1} d_{1} z_{1}+y_{2} d_{2} z_{2}=1 \tag{6}
\end{equation*}
$$

admits a solution $\left(y_{1}, y_{2}, z_{1}, z_{2}\right)^{T} \in D^{4}$.
Proof. This is the particular case $a=b=0, c=1$ of the condition given in 1 of Definition 11.

Elements y_{1}, y_{2}, z_{1}, and z_{2} as in Corollary 17 can be computed by the STAFFORD package [14].

Since the stable range $\operatorname{sr}(D)[14]$ of a very simple domain D is 2 , the following result holds.
Corollary 18. ([14]). Let D be a very simple domain and M a finitely generated stably free left D-module. If $\operatorname{rank}_{D}(M) \geq 2$, then M is free.

5. COMPUTATION OF UNIMODULAR ELEMENTS

Let us now show how to use Corollary 17 to solve Problem 10, and more generally, to give a constructive proof of the following theorem due to Stafford [18].
Theorem 19. ([18]). Let M and N be finitely generated left D-modules satisfying $M \subseteq N$ and $\operatorname{rank}_{D}(M) \geq 2$. Then, there exists $m \in M$ such that $m \in \mathrm{U}(N)$. Hence, $M=D m \oplus M^{\prime} \subseteq N=D m \oplus N^{\prime}$, where $M^{\prime}=N^{\prime} \cap M$.

Proof. We shall consider the slightly more general case of an injection $\iota: M \longrightarrow N$ rather than just an inclusion
$M \subseteq N$. Since D is a noetherian ring and M and N are finitely generated, they are finitely presented (see, e.g., [17]). Let $R \in D^{q \times p}$ and $R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ be two matrices such that $M:=D^{1 \times p} /\left(D^{1 \times q} R\right)$ and $N:=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)$. Let $\iota: M \longrightarrow N$ be an injection and $\pi: D^{1 \times p} \longrightarrow M$ (resp., $\pi^{\prime}: D^{1 \times p^{\prime}} \longrightarrow N$) the canonical projection. Then, the following diagram is commutative with exact rows

$$
\begin{array}{rrrrrr}
D^{1 \times q} & \xrightarrow{R} & D^{1 \times p} & \xrightarrow{\pi} & M & \longrightarrow 0 \\
\downarrow \cdot P^{\prime} & & \downarrow \cdot P & & \downarrow \iota \\
D^{1 \times q^{\prime}} & \xrightarrow{R^{\prime}} & D^{1 \times p^{\prime}} & \xrightarrow{\pi^{\prime}} & N \longrightarrow 0,
\end{array}
$$

i.e., $\iota(\pi(\eta))=\pi^{\prime}(\eta P)$ for all $\eta \in D^{1 \times p}$, where $P \in D^{p \times p^{\prime}}$ is such that $R P=P^{\prime} R^{\prime}$ for some $P^{\prime} \in D^{q \times q^{\prime}}$. For more details, see [3]. The injectivity of ι is equivalent to the fact that for all $S \in D^{s \times p}$ and for all $T \in D^{s \times q^{\prime}}$ satisfying $S P=T R^{\prime}$, there exists $L \in D^{s \times q}$ such that $S=L R$. For more details, see [3]. Moreover, we have:

$$
\iota(M)=\left(D^{1 \times\left(p+q^{\prime}\right)}\left(P^{T} \quad R^{T}\right)^{T}\right) /\left(D^{1 \times p^{\prime}} R^{\prime}\right) \subseteq N
$$

Since $\operatorname{rank}_{D}(M) \geq 2$, by Proposition 3, M is not torsion, i.e., there exists $m_{1}:=\pi\left(\eta_{1}\right) \in M \backslash t(M)$. Let $Q \in D^{p \times m}$ be such that $\operatorname{ker}_{D}(R)=.\operatorname{im}_{D}(Q$.$) . Lemma 8$ shows that we have to choose $\eta_{1} \in D^{1 \times p}$ so that $\eta_{1} Q \neq 0$. Note that $m_{1} \in t(M)$ if and only if $\iota\left(m_{1}\right) \in t(N)$ since ι is injective. Hence, if $Q^{\prime} \in D^{p^{\prime} \times m^{\prime}}$ is such that $\operatorname{ker}_{D}\left(R^{\prime}.\right)=\operatorname{im}_{D}\left(Q^{\prime}.\right)$ and $\lambda_{1}:=\eta_{1} P \in D^{1 \times p^{\prime}}$, then $\eta_{1} \in D^{1 \times p}$ can equivalently be chosen such that it satisfies $\lambda_{1} Q^{\prime}=\eta_{1} P Q^{\prime} \neq 0$. By Remark 9 , there exists $\mu_{1} \in \operatorname{ker}_{D}\left(R^{\prime}.\right)=\operatorname{im}_{D}\left(Q^{\prime}.\right)$ such that $\varphi_{1}:=\varphi_{\mu_{1}} \in \operatorname{hom}_{D}(N, D)$ satisfies $\varphi_{1}\left(\iota\left(m_{1}\right)\right) \neq 0$, i.e., $\xi_{1} \in D^{m^{\prime}}$ can be chosen such that $\mu_{1}:=Q^{\prime} \xi_{1}$ satisfies:

$$
\varphi_{1}\left(\iota\left(m_{1}\right)\right)=\lambda_{1} \mu_{1}=\left(\eta_{1} P Q^{\prime}\right) \xi_{1} \neq 0 .
$$

The following diagram is commutative with exact rows:

$D^{1 \times q}$	\xrightarrow{R}	$D^{1 \times p}$	$\xrightarrow{\pi}$	M
\downarrow		$\downarrow \cdot\left(P \mu_{1}\right)$	$\longrightarrow 0$	
0	\longrightarrow	D	$\xrightarrow{\text { id }}$	D

Since $\operatorname{im}\left(\varphi_{1} \circ \iota\right)$ is a left ideal of D containing the nonzero element $\left(\varphi_{1} \circ \iota\right)\left(m_{1}\right)$, we have $\operatorname{rank}_{D}\left(\operatorname{im}\left(\varphi_{1} \circ \iota\right)\right)=1$. Then, using the following canonical short exact sequence

$$
0 \longrightarrow \operatorname{ker}\left(\varphi_{1} \circ \iota\right) \longrightarrow M \longrightarrow \operatorname{im}\left(\varphi_{1} \circ \iota\right) \longrightarrow 0
$$

we get $\operatorname{rank}_{D}\left(\operatorname{ker}\left(\varphi_{1} \circ \iota\right)\right)=\operatorname{rank}_{D}(M)-1 \geq 1$ (see, e.g., [13]). Hence, $\operatorname{ker}\left(\varphi_{1} \circ \iota\right)$ is not a torsion left D-module and there exists $m_{2} \in \operatorname{ker}\left(\varphi_{1} \circ \iota\right)$ such that $m_{2} \notin t(M)$, or, equivalently, such that $\iota\left(m_{2}\right) \notin t(N)$. Let $S \in D^{r \times p}$ be such that $\operatorname{ker}_{D}\left(.\left(P \mu_{1}\right)\right)=\operatorname{im}_{D}(. S)$. Since we have
$\operatorname{ker}\left(\varphi_{1} \circ \iota\right)=\operatorname{ker}_{D}\left(.\left(P \mu_{1}\right)\right) /\left(D^{1 \times q} R\right)=\left(D^{1 \times r} S\right) /\left(D^{1 \times q} R\right)$, $\eta_{2}:=\nu S \in D^{1 \times p}$ and $\nu \in D^{1 \times r}$ defining $m_{2}:=\pi\left(\eta_{2}\right)$ have to be chosen so that $\nu(S Q) \neq 0$ or, equivalently, so that $\nu\left(S P Q^{\prime}\right) \neq 0$. Let $\lambda_{2}:=\eta_{2} P$ and consider $\xi_{2} \in D^{m^{\prime}}$ such that $\left(\lambda_{2} Q^{\prime}\right) \xi_{2}=\left(\nu S P Q^{\prime}\right) \xi_{2} \neq 0$ and $\mu_{2}:=Q^{\prime} \xi_{2} \in D^{p^{\prime}}$. Then, $\varphi_{2}:=\varphi_{\mu_{2}} \in \operatorname{hom}_{D}(N, D)$ satisfies:

$$
\varphi_{2}\left(\iota\left(m_{2}\right)\right)=\lambda_{2} \mu_{2}=\nu S P Q^{\prime} \xi_{2} \neq 0 .
$$

By construction, we have $m_{2} \in \operatorname{ker}\left(\varphi_{1} \circ \iota\right)$, which yields:

$$
\varphi_{1}\left(\iota\left(m_{2}\right)\right)=\lambda_{2} \mu_{1}=0 .
$$

If $\varphi_{2}\left(\iota\left(m_{1}\right)\right)=\lambda_{1} \mu_{2} \neq 0$, then, by the right Ore property (see Section 2), there exist $r_{1}, r_{2} \in D \backslash\{0\}$ such that:

$$
\begin{equation*}
\left(\lambda_{1} \mu_{1}\right) r_{1}+\left(\lambda_{1} \mu_{2}\right) r_{2}=0 . \tag{7}
\end{equation*}
$$

Let us then consider:

$$
\left\{\begin{array}{l}
\mu_{2}^{\prime}:=\mu_{1} r_{1}+\mu_{2} r_{2} \in \operatorname{ker}_{D}\left(R^{\prime} .\right), \\
\varphi_{2}^{\prime}:=\varphi_{\mu_{1}} r_{1}+\varphi_{\mu_{2}} r_{2}=\varphi_{\mu_{2}^{\prime}} \in \operatorname{hom}_{D}(N, D) .
\end{array}\right.
$$

Then, using (7), we have:
$\left\{\begin{array}{l}\varphi_{2}^{\prime}\left(\iota\left(m_{1}\right)\right)=\lambda_{1} \mu_{2}^{\prime}=\lambda_{1}\left(\mu_{1} r_{1}+\mu_{2} r_{2}\right)=0, \\ \varphi_{2}^{\prime}\left(\iota\left(m_{2}\right)\right)=\lambda_{2} \mu_{2}^{\prime}=\lambda_{2}\left(\mu_{1} r_{1}+\mu_{2} r_{2}\right)=\left(\lambda_{2} \mu_{2}\right) r_{2} \neq 0 .\end{array}\right.$
Therefore, without loss of generality, we may assume that

$$
\varphi_{2}\left(\iota\left(m_{1}\right)\right)=\lambda_{1} \mu_{2}=0 .
$$

Let $d_{1}:=\lambda_{1} \mu_{1} \neq 0$ and $d_{2}:=\lambda_{2} \mu_{2} \neq 0$. Corollary 17 then shows that there exists $\left(y_{1}, y_{2}, z_{1}, z_{2}\right)^{T} \in D^{4}$ satisfying

$$
y_{1}\left(\lambda_{1} \mu_{1}\right) z_{1}+y_{2}\left(\lambda_{2} \mu_{2}\right) z_{2}=1
$$

If we now introduce

$$
\left\{\begin{array}{l}
\eta^{\star}:=y_{1} \eta_{1}+y_{2} \eta_{2} \in D^{1 \times p} \\
m^{\star}:=\pi\left(\eta^{\star}\right) \in M \\
\mu^{\star}:=\mu_{1} z_{1}+\mu_{2} z_{2} \in \operatorname{ker}_{D}\left(R^{\prime} .\right), \\
\varphi:=\varphi_{\mu^{\star}} \in \operatorname{hom}_{D}(N, D)
\end{array}\right.
$$

then we have

$$
\begin{aligned}
\varphi\left(\iota\left(m^{\star}\right)\right) & =\eta^{\star} P \mu^{\star}=\left(y_{1} \eta_{1}+y_{2} \eta_{2}\right) P\left(\mu_{1} z_{1}+\mu_{2} z_{2}\right) \\
& =\left(y_{1} \lambda_{1}+y_{2} \lambda_{2}\right)\left(\mu_{1} z_{1}+\mu_{2} z_{2}\right) \\
& =y_{1}\left(\lambda_{1} \mu_{1}\right) z_{1}+y_{2}\left(\lambda_{2} \mu_{2}\right) z_{2}=1,
\end{aligned}
$$

which shows that $\iota\left(m^{\star}\right) \in \mathrm{U}(N)$ and yields:

$$
N=D \iota\left(m^{\star}\right) \oplus \operatorname{ker} \varphi
$$

Moreover, $\psi:=\varphi_{\mid \iota(M)} \in \operatorname{hom}_{D}(\iota(M), D)$ satisfies $\psi\left(\iota\left(m^{\star}\right)\right)=1$. Thus, $\iota\left(m^{\star}\right)$ is a unimodular element of $\iota(M)$, which shows that

$$
\iota(M)=D \iota\left(m^{\star}\right) \oplus \operatorname{ker} \psi,
$$

and thus,

$$
\iota(M)=D \iota\left(m^{\star}\right) \oplus M^{\prime} \subseteq N=D \iota\left(m^{\star}\right) \oplus N^{\prime}
$$

where $N^{\prime}:=\operatorname{ker} \varphi$ and $M^{\prime}:=\operatorname{ker} \varphi_{\mid \iota(M)}=\operatorname{ker} \varphi \cap \iota(M)$.
For the precise description of the algorithm corresponding to Theorem 19 and examples, see [16]. Theorem 19 resembles the characterization of vector spaces over a division ring $D[8]$ (e.g., a field) for which $\operatorname{rank}_{D}(M) \geq 1$.
Theorem 20. ([18]). Let D be a very simple domain and M a finitely generated left D-module. Then, there exist $r \in \mathbb{Z}_{\geq 0}$ and a left D-module M^{\prime} with $\operatorname{rank}_{D}\left(M^{\prime}\right) \leq 1$ such that $M \cong D^{1 \times r} \oplus M^{\prime}$. Moreover, if M is torsion-free, then M^{\prime} can be chosen as a left ideal of D, which can be generated by two elements.

Proof. If $\operatorname{rank}_{D}(M) \leq 1$, the first statement holds with $r=0$ and $M^{\prime}=M$. If $\operatorname{rank}_{D}(M) \geq 2$, then applying Theorem 19 to $N=M$ and $\iota=\operatorname{id}_{M}$, then there exists $m \in \mathrm{U}(M)$ such that $M=D m \oplus N \cong D \oplus N$, where $\operatorname{rank}_{D}(N)=\operatorname{rank}_{D}(M)-1$. Repeating the same argument on $\operatorname{rank}_{D}(N)$ and so on, we obtain:

$$
M \cong D^{1 \times r} \oplus M^{\prime}, \quad \operatorname{rank}_{D}\left(M^{\prime}\right) \leq 1
$$

Now, if M is torsion-free, so is M^{\prime}. Moreover, if $M^{\prime} \neq 0$, then $\operatorname{rank}_{D}\left(M^{\prime}\right)=1$ by Proposition 3, and thus, M^{\prime} admits a minimal parametrization [2], namely, M^{\prime} is isomorphic to a finitely generated left ideal I of D, which can be generated by two elements by Remark 12 .

For the precise description of the algorithm corresponding to Theorem 20 and explicit examples, see [16].

A system-theoretic interpretation of Theorem 20 is that every linear system $\operatorname{ker}_{\mathcal{F}}(R$.) defined by a matrix R with entries in a very simple domain D satisfies

$$
\begin{equation*}
\operatorname{ker}_{\mathcal{F}}(R .) \cong \mathcal{F}^{r} \oplus \operatorname{ker}_{\mathcal{F}}\left(R^{\prime} .\right) \tag{8}
\end{equation*}
$$

where $M^{\prime}=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)$ and $\operatorname{rank}_{D}\left(M^{\prime}\right) \leq 1$. (8) states that a linear differential system $\operatorname{ker}_{\mathcal{F}}(R$.) is isomorphic to the direct sum of a differentially flat system and a linear system $\operatorname{ker}_{\mathcal{F}}\left(R^{\prime}.\right)$ with at most one input.

6. STAFFORD'S REDUCTION

We give an application of Theorem 19 by studying when a linear system $\operatorname{ker}_{\mathcal{F}}(Q$.$) is isomorphic to a linear system$ defined by fewer unknowns and fewer equations.

Let $Q \in D^{p \times m}, R \in D^{q \times p}$ be such that

$$
\begin{equation*}
\operatorname{ker}_{D}(. Q)=\operatorname{im}_{D}(. R) \tag{9}
\end{equation*}
$$

(possibly $R=0$ and $q=0$), and let us consider the left D-modules $N:=D^{1 \times m}$ and $M:=D^{1 \times p} /\left(D^{1 \times q} R\right)$. Using

$$
\operatorname{coim} f:=M / \operatorname{ker} f \cong \operatorname{im} f
$$

for all $f \in \operatorname{hom}_{D}(M, N)$ (see, e.g., [17]), and (9), we get:

$$
\begin{aligned}
M & =D^{1 \times p} / \operatorname{im}_{D}(. R)=D^{1 \times p} / \operatorname{ker}_{D}(. Q) \\
& =\operatorname{coim}_{D}(. Q) \cong \operatorname{im}_{D}(. Q) .
\end{aligned}
$$

Hence, if we consider $\iota \in \operatorname{hom}_{D}(M, N)$ defined by

$$
\forall \lambda \in D^{1 \times p}, \quad \iota(\pi(\lambda)):=\lambda Q
$$

where $\pi: D^{1 \times p} \longrightarrow M$ is the canonical projection onto M, then $L:=\iota(M)=\operatorname{im}_{D}(. Q) \subseteq N=D^{1 \times m}$. The following diagram is commutative with exact rows:

$$
\begin{array}{ccccc}
D^{1 \times q} & \longrightarrow R & D^{1 \times p} & \xrightarrow{\pi} & M \\
\downarrow & & \downarrow \cdot Q & & \longrightarrow 0 \\
\downarrow \iota \\
0 & \longrightarrow & D^{1 \times m} & \xrightarrow{\mathrm{id}} & \\
& D^{1 \times m} & \longrightarrow
\end{array}
$$

If $\operatorname{rank}_{D}(L)=\operatorname{rank}_{D}(M) \geq 2$, then we can apply Theorem 19 to find $\eta^{\star} \in D^{1 \times p}$ and $\xi^{\star} \in D^{m}$ such that $m^{\star}:=\pi\left(\eta^{\star}\right) \in M$ satisfies $\iota\left(m^{\star}\right)=\eta^{\star} Q \in \mathrm{U}(N)$ and $\varphi:=\varphi_{\xi^{\star}}$ satisfies $\varphi\left(\iota\left(m^{\star}\right)\right)=\eta^{\star} Q \xi^{\star}=1$. Then, we have

$$
D^{1 \times m}=D \iota\left(m^{\star}\right) \oplus \operatorname{ker} \varphi=D\left(\eta^{\star} Q\right) \oplus \operatorname{ker} \varphi
$$

Since $\iota\left(m^{\star}\right)$ is also a unimodular element of L, we get

$$
D^{1 \times p} Q=D \iota\left(m^{\star}\right) \oplus \operatorname{ker} \varphi_{\mid L}=D\left(\eta^{\star} Q\right) \oplus \operatorname{ker} \varphi_{\mid L},
$$ where $\operatorname{ker} \varphi_{\mid L}=\operatorname{ker} \varphi \cap L$. Hence, we obtain:

$$
\begin{aligned}
P & :=D^{1 \times m} /\left(D^{1 \times p} Q\right) \\
& =\left(D\left(\eta^{\star} Q\right) \oplus \operatorname{ker} \varphi\right) /\left(D\left(\eta^{\star} Q\right) \oplus \operatorname{ker} \varphi_{\mid L}\right) \\
& \cong P^{\prime}:=\operatorname{ker} \varphi / \operatorname{ker} \varphi_{\mid L} .
\end{aligned}
$$

Now, $\operatorname{ker} \varphi=\operatorname{ker}_{D}\left(. \xi^{\star}\right)$ and $\operatorname{ker} \varphi_{\mid L}=\operatorname{ker}_{D}\left(.\left(Q \xi^{\star}\right)\right) Q$, so that we have $P^{\prime}=\operatorname{ker}_{D}\left(. \xi^{\star}\right) /\left(\operatorname{ker}_{D}\left(.\left(Q \xi^{\star}\right)\right) Q\right)$, and:

$$
\left\{\begin{array}{l}
\operatorname{rank}_{D}(\operatorname{ker} \varphi)=\operatorname{rank}_{D}(N)-1=m-1, \\
\operatorname{rank}_{D}\left(\operatorname{ker} \varphi_{\mid L}\right)=\operatorname{rank}_{D}(L)-1
\end{array}\right.
$$

Since $\eta^{\star} Q \xi^{\star}=1$, the following left D-homomorphisms

$$
. \eta^{\star}: D \longrightarrow D^{1 \times p}, \quad .\left(\eta^{\star} Q\right): D \longrightarrow D^{1 \times m}
$$

satisfy $.\left(Q \xi^{\star}\right) \circ \cdot \eta^{\star}=\operatorname{id}_{D}$ and $. \xi^{\star} \circ\left(.\left(\eta^{\star} Q\right)\right)=\operatorname{id}_{D}$. Hence, we have the following split short exact sequences

$$
\begin{gathered}
0 \longrightarrow \operatorname{ker}_{D}\left(. \xi^{\star}\right) \longrightarrow D^{1 \times m} \xrightarrow{\cdot \xi^{\star}} D \longrightarrow 0, \\
0 \longrightarrow \operatorname{ker}_{D}\left(\cdot\left(Q \xi^{\star}\right)\right) \longrightarrow D^{1 \times p} \xrightarrow{.\left(Q \xi^{\star}\right)} D \longrightarrow 0,
\end{gathered}
$$

i.e., $D^{1 \times m} \cong D \oplus \operatorname{ker}_{D}\left(. \xi^{\star}\right)$ and $D^{1 \times p} \cong D \oplus \operatorname{ker}_{D}\left(.\left(Q \xi^{\star}\right)\right)$, which shows that $\operatorname{ker}_{D}\left(. \xi^{\star}\right)\left(\right.$ resp., $\left.\operatorname{ker}_{D}\left(.\left(Q \xi^{\star}\right)\right)\right)$ is a stably free left D-module of rank $m-1$ (resp., $p-1$).

Then, we have the following commutative exact diagram

where the left D-isomorphism $\alpha: P^{\prime} \longrightarrow P$ is defined by $\forall \theta \in \operatorname{ker}_{D}\left(. \xi^{\star}\right), \alpha\left(\tau^{\prime}(\theta)\right)=\tau(\theta)$, and τ (resp., $\left.\tau^{\prime}\right)$ is the canonical projection onto P (resp., P^{\prime}).

Now, if $m \geq 3, \operatorname{ker} \varphi=\operatorname{ker}_{D}\left(. \xi^{\star}\right)$ is a free left D-module of rank $m-1$ by Corollary 18. Computing a basis of $\operatorname{ker} \varphi$, there exists a full row rank matrix $X \in D^{(m-1) \times m}$ such that $\operatorname{ker} \varphi=D^{1 \times(m-1)} X$. Let $Y \in D^{s \times p}$ be such that $\operatorname{ker}_{D}\left(.\left(Q \xi^{\star}\right)\right)=D^{1 \times s} Y$ and $Z=Y Q \in D^{s \times m}$. Thus:

$$
P^{\prime}=\left(D^{1 \times(m-1)} X\right) /\left(D^{1 \times s} Z\right)
$$

Since $\operatorname{ker}_{D}(. X)=0$, if $F \in D^{s \times(m-1)}$ is such that $Z=F X$, then Lemma 3.1 of [3] shows that

$$
\begin{aligned}
\gamma: P^{\prime \prime}:=D^{1 \times(m-1)} /\left(D^{1 \times s} F\right) & \longrightarrow P=D^{1 \times m} /\left(D^{1 \times p} Q\right) \\
\sigma(\nu) & \longmapsto \tau(\nu X),
\end{aligned}
$$

is an isomorphism, where $\sigma: D^{1 \times(m-1)} \longrightarrow P^{\prime \prime}$ is the canonical projection onto $P^{\prime \prime}$, which yields

$$
P=D^{1 \times m} /\left(D^{1 \times p} Q\right) \cong P^{\prime \prime}=D^{1 \times(m-1)} /\left(D^{1 \times s} F\right),
$$

and shows that one generator of the left D-module P can be removed from the presentation given by the matrix Q.
Moreover, if $p \geq 3$, then $\operatorname{ker}_{D}\left(.\left(Q \xi^{\star}\right)\right)$ is a free left D-module of rank $p-1$ by Corollary 18. Thus, there exists a full row rank matrix $G \in D^{(p-1) \times p}$ such that $\operatorname{ker}_{D}\left(.\left(Q \xi^{\star}\right)\right)=D^{1 \times(p-1)} G$, i.e., $s=p-1$, and:

$$
P=D^{1 \times m} /\left(D^{1 \times p} Q\right) \cong P^{\prime \prime}=D^{1 \times(m-1)} /\left(D^{1 \times(p-1)} G\right)
$$

Theorem 21. Let D be a very simple domain and P a left D-module given by $P=D^{1 \times m} /\left(D^{1 \times p} Q\right)$. Then, we have:
(1) If $\operatorname{rank}_{D}\left(D^{1 \times p} Q\right) \geq 2$ and $m \geq 3$, then there exists $\bar{Q} \in D^{s \times(m-1)}$ such that

$$
P \cong \bar{P}:=D^{1 \times(m-1)} /\left(D^{1 \times s} \bar{Q}\right)
$$

(2) Moreover, if $p \geq 3$, then \bar{Q} can be chosen so that $s=p-1$, i.e., we have:

$$
P \cong \bar{P}:=D^{1 \times(m-1)} /\left(D^{1 \times(p-1)} \bar{Q}\right)
$$

Strangely enough, Theorem 21 does not appear in [18]. Theorem 21 is implemented in the Stafford package [14]. We note that $\operatorname{rank}_{D}\left(D^{1 \times p} Q\right) \geq 2$ means that at least two equations of $Q \zeta=0$ are D-linearly independent.
Using (2) and $P \cong \bar{P}$, the following isomorphisms hold $\operatorname{ker}_{\mathcal{F}}(Q.) \cong \operatorname{hom}_{D}(P, \mathcal{F}) \cong \operatorname{hom}_{D}(\bar{P}, \mathcal{F}) \cong \operatorname{ker}_{\mathcal{F}}(\bar{Q}),$.
which shows that the number of unknowns and equations of $\operatorname{ker}_{\mathcal{F}}(Q$.$) can be reduced according to Theorem 21$.
Corollary 22. ([18]). Let D be a very simple domain and $P=D^{1 \times m} /\left(D^{1 \times p} Q\right)$ a torsion left D-module. Then, P can be generated by two elements.

Proof. If $m \leq 2$, then there is nothing to show. Let us suppose that $m \geq 3$. Since $\operatorname{rank}_{D}(P)=0$ (see Proposi-
tion 3), $\operatorname{rank}_{D}\left(\operatorname{im}_{D}(. Q)\right)=m$. Applying $m-2$ times 1 of Theorem 21, we obtain $P \cong \bar{P}:=D^{1 \times 2} /\left(D^{1 \times s} \bar{Q}\right)$.

Since a torsion left D-module P defines an autonomous linear system (see, e.g., [2]), Corollary 22 shows that every autonomous linear differential system is equivalent to a linear differential system in two unknown functions. Moreover, any state space representation $\dot{x}-A x=0$ is observable with respect to two outputs y_{1}, y_{2} given by two generators of the corresponding torsion D-module.

For more results, see [16].

REFERENCES

[1] N. Caro, D. Levcovitz. On a Theorem of Stafford. Cadernos de Mathemática, 11, 63-70, 2010.
[2] F. Chyzak, A. Quadrat, D. Robertz. Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Engrg. Comm. Comput., 16, 319-376, 2005.
[3] T. Cluzeau, A. Quadrat. Factoring and decomposing a class of linear functional systems. Linear Algebra Appl., 428, 324-381, 2008.
[4] M. Fliess. Controllability revisited. In A. C. Antoulas (ed.), The Influence of R. E. Kalman, Springer, 463474, 1991.
[5] M. Fliess, J. Lévine, P. Martin, P. Rouchon. Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control, 61, 1327-1361, 1995.
[6] A. Hillebrand, W. Schmale. Towards an effective version of a theorem of Stafford. J. Symbolic Comput., 32, 699-716, 2001.
[7] M. Kashiwara. Algebraic Study of Systems of Partial Differential Equations. Mémoires de la Société Mathématiques de France, 63, 1995.
[8] T. Y. Lam. Lectures on Modules and Rings. Graduate Texts in Mathematics 189, Springer, 1999.
[9] A. Leykin. Algorithmic proofs of two theorems of Stafford. J. Symbolic Comput., 38, 1535-1550, 2004.
[10] B. Malgrange. Systèmes différentiels à coefficients constants. Séminaire Bourbaki, 1962/63, 1-11.
[11] U. Oberst. Multidimensional constant linear systems. Acta Appl. Math., 20, 1-175, 1990.
[12] J.-F. Pommaret, A. Quadrat. Algebraic analysis of linear multidimensional control systems. IMA J. Math. Control Inform., 16, 275-297, 1999.
[13] A. Quadrat. An introduction to constructive algebraic analysis and its applications. Les cours du CIRM, 1 no. 2: Journées Nationales de Calcul Formel, 281-471, 2010, Inria report 7354.
[14] A. Quadrat, D. Robertz. Computation of bases of free modules over the Weyl algebras. J. Symbolic Comput., 42, 1113-1141, 2007, Stafford project (http://wwwb.math.rwth-aachen.de/OreModules).
[15] A. Quadrat, D. Robertz. Controllability and differential flatness of linear analytic ordinary differential systems. Proceedings of MTNS 2010, 05-07/07/10.
[16] A. Quadrat, D. Robertz. A constructive study of the module structure of rings of partial differential operators. Inria report, to appear, 2013.
[17] J. J. Rotman. An Introduction to Homological Algebra. Springer, $2^{\text {nd }}$ edition, 2009.
[18] J. T. Stafford. Module structure of Weyl algebras. J. London Math. Soc., 18, 429-442, 1978.

