Stafford’s Reduction of Linear Partial
Differential Systems

Alban Quadrat * Daniel Robertz **

*INRIA Saclay-fle-de-ance, DISCO project, Supélec, L2S,
3 rue Joliot Curie, 91192 Glif-sur-Yvette, France.
alban.quadrat@inria.fr.

** Lehrstuhl B fiir Mathematik, RWTH Aachen University,
Templergraben 64, 52056 Aachen, Germany.
daniel@momo.math.rwth-aachen.de.

Abstract: It is well-known that linear systems theory can been studied by means of module
theory. In particular, to a linear ordinary/partial differential system corresponds a finitely pre-
sented left module over a ring of ordinary /partial differential operators. The structure of modules
over rings of partial differential operators was investigated in Stafford’s seminal work [18]. The
purpose of this paper is to make some results obtained in [18] constructive. Our results are
implemented in the Maple package STAFFORD. Finally, we give system-theoretic interpretations
of Stafford’s results within the behavioural approach (e.g., minimal representations, autonomous
behaviours, direct decomposition of behaviours, differential flatness).

1. INTRODUCTION

It is well-known that linear systems theory can be studied
by means of module theory (see, e.g., [2, 3, 4, 5, 12, 14, 15]
and the references therein). The purpose of this paper is to
develop constructive versions of important results obtained
by Stafford in his seminal paper [18] on the module
structure of rings of partial differential (PD) operators.
Using the duality between linear systems (behaviours) and
finitely presented left modules, we give system-theoretic
interpretations of Stafford’s theorems. Finally, based on
Stafford’s results, we obtain explicit conditions so that a
linear PD system is equivalent to another one defined by
fewer unknowns and fewer equations.

2. ALGEBRAIC ANALYSIS

In this section, we briefly review the algebraic analysis
approach [7] to linear systems theory. For more details,
see [2, 4, 11, 12, 13, 14]. In what follows, we shall assume
that D is a noetherian domain, namely, a ring D without
zero divisors and such that every left/right ideal of D is
finitely generated as a left/right D-module [8, 17].

Let R € D?7*P be a (g x p)-matrix with entries in D and

.R: D'*1 —, plxr
A— AR,

the left D-homomorphism (i.e., the left D-linear map)
represented by R. Then, the cokernel of .R is the factor
left D-module M := D*P/(D'¥9R), finitely presented
by R. In order to describe M by means of generators
and relations, let {f;};=1,. p be the standard basis of
D'*P_ namely, f; is the row vector of length p with 1 at
position j and 0 elsewhere. Moreover, let 7: DYP — M
be the canonical projection onto M, i.e., the left D-
homomorphism which maps A € D'X? to its residue class
m(A) in M. Then, 7 is surjective since by definition of

M, every m € M is the class of certain \’s in D™ P, i.e.,
m = n(\) = 1(A+vR) for all v € D' If y; = 7(f))
for 5 = 1,...,p, then, for every m € M, there exists
A= (A1 ... Ap) € DY*P such that

p p p
m=a\) =7 Y Nfi| =D N = N
j=1 =1 j=1
which shows that {y;};=1, ., is a generating set for M.
Let Rje (resp., Rej) denote the i*" row (resp., j*" column)
of R. Then {y;};=1,.., satisfies the relations

p p p
S Rijy; =Y Ryn(f))=m Y Rijfi | =n(Ris) =0
j=1 j=1 j=1

, ¢, since Riq € D9 Rfori=1,...,q.

Now, let F be a left D-module, FP := FP*! and let
kerg(R.) :={ne FP| Rn=0}

be the linear system or behaviour defined by R and

F. A simple but fundamental remark due to Malgrange

[10] is that kerz(R.) is isomorphic to the abelian group
homp (M, F) of left D-homomorphisms from M to F, i.e.,

kerz(R.) =2 homp (M, F) (2)
as abelian groups, where 2 denotes an isomorphism (e.g.,
of abelian groups, left/right modules). This isomorphism
can easily be described: if ¢ € homp(M,F), n; = é(y;)
for j=1,...,p,and n = (m1 ... n,)T € FP, then using
(1), Rp=0since for i =1,...,q:

foralli=1, ...

ZRij P(y;) = ¢ ZRU yj | = ¢ (7 (Rie)) = 0.

Moreover, for any n= (1 ... n,)7 € kerz(R.), the map
¢n: M — F defined by ¢,(y;) =n; for j =1,...,pis
a well-defined left D-homomorphism from M to F, i.e.,



we have ¢, € homp(M,F). Finally, the abelian group
homomorphism x: kerz(R.) — homp (M, F) defined by
X(n) = ¢y, is then bijective. For more details, see [2, 3, 14].
Hence, (2) shows that the linear system kerz(R.) can be
studied in terms of homp (M, F), and thus, by means of
the left D-modules M and F. Since matrices R; and Ro
representing equivalent linear systems define isomorphic
modules, homp (M, F) is a more intrinsic description of
the linear system than kerz(R.) (e.g., it does not depend
on the particular embedding of kerz(R.) into FP).

Example 1. Let A be a differential ring, namely, A is a ring
equipped with commuting derivations §; for i = 1,... n,
namely, maps §; : A — A satisfying

di(ar + az) = d;(a1) + di(az),
YVay, as € A,

b {51'(04 az) = 0;(a1) az + ay 6;(az),
and §; 0 6; = 65 00; for all 1 < 4 < j < n. Moreover,
let D = A(0y,...,0,) be the (not necessarily commuta-
tive) polynomial ring of PD operators in 01, ...,0, with
coefficients in A, namely, every element d € D is of the
form d = 7|, <, au 0", Where 1 € Zxo, a, € A,
p=(p1 .. pn) € (Z>o)**™, O* = 94" ... is a mono-
mial in the commuting indeterminates 0y, ..., d,, and:

Vae A, 0ia=ad;+d(a).
For instance, if k is a field and A = k[zy,...,x,]

(vesp., k(x1,...,x,)), then the so-called Weyl algebra
A(01,...,0y) is simply denoted by A, (k) (resp., By (k)).

If M = DYP/(D'R) is the left D-module finitely
presented by the matrix of PD operators R € D?*P and F
a left D-module (e.g., F = A), then the linear PD system
kerz(R.) is intrinsically defined by homp (M, F).

If M, M" and M" are three left/right D-modules and
f € homp(M', M) and g € homp (M, M") are such that

gof =0, ie,imf C kerg, then M’ < M % M” is
called a complez (see, e.g., [17]). Moreover, if ker g = im f,
then the complex is said to be exact at M (see, e.g., [17]).

By construction of the finitely presented left D-module
M = DY*? /(D4 R), the following complex is exact:

prxa B, pixe T o,
It is called a finite presentation of M [17].

The short exact sequence 0 — M’ oM Lm0
splits if one of the following equivalent assertions holds:

(1) 3u € homp(M",M): gou=1idp.
(2) v € homp(M,M'): vo f =idp.
(3) M= M @ M", where @ denotes the direct sum.

For more details, see, e.g., [17].

Within algebraic analysis, the module structure of rings
of PD operators plays a fundamental role for the study
of linear systems of PD equations [7]. In [2, 3, 13, 14], we
have initiated the constructive study of module theory and
homological algebra over Ore algebras, i.e., a certain class
of noncommutative polynomial rings of functional opera-
tors such as rings of ordinary /partial differential operators,
differential time-delay operators, or shift operators. Let us
now recall a few classical definitions.

Definition 2. ([8, 17]). Let D be a noetherian domain and
M a finitely generated left D-module.

e M is free of rank r if M = D*7,
o M is stably free if there exist r, s € Zx>( such that:

M@DIXS ~ DlXT.
e M is torsion-free if its torsion left D-submodule
t(M)={meM|3de D\ {0}: dm=0}

is reduced to {0}, i.e., t(M) = {0}.
o M is torsion if t(M) = M.

Similar definitions hold for right D-modules.

See [2, 13, 14] for algorithms which test whether or not
a finitely presented left D-module M is free, stably free,
torsion-free, has torsion elements, or is torsion.

Since D is a noetherian domain, D has the left (and
the right) Ore property [8], i.e., for all dy, d2 € D\ {0},
there exist ey, es € D \ {0} such that e; d; = ea dy (resp.,
dy e1 = dse2). This implies the existence of the division
ring of fractions Q(D) = S™'D = DS~! of D, where
S =D\ {0} [8]. If M is a finitely generated left/right D-
module, then Q(D)®p M (resp., M ®p Q(D)) is a finitely
generated left (resp., right) Q(D)-vector space and:

rankp (M) := dimgp)(Q(D) ®p M)
= dimQ(D)(M ®p Q(D)).

Proposition 3. ([2], Corollary 1). Let M be a finitely gen-
erated left D-module. Then, the assertions are equivalent:

(1) M is a torsion left D-module.

(2) rankp(M) = 0.

(3) homp(M, D) = 0.

Theorem 4. (1) [8, 17] The following implications

free = stably free = torsion-free
hold for finitely generated left/right D-modules.

(2) [15] If k is a field of characteristic zero, A = E[t]
the ring of formal power series with coefficients in
k, or A = k{t} the ring of locally convergent power
series with coefficients in k = R or C (i.e., germs of
real analytic/holomorphic functions), and D = A(09)
the ring of ordinary differential (OD) operators with
coefficients in A, then every stably free left D-module
M with rankp (M) > 2 is free.

(3) [1, 18] If k is a field of characteristic zero, A is
either the polynomial ring k[z1,...,x,], the field of
rational functions k(z1,...,x,), the field of fractions
k((x1,...,2,)) of the domain k[x1,...,z,] of formal
power series with coefficients in k, or the field of frac-
tions k{{x1,...,2,}} of the domain k{x1,...,z,} of
locally convergent power series with coefficients in
k=Ror C, and D = A(0y,...,0,) the ring of PD
operators with coefficients in A, then every stably free
left D-module M with rankp (M) > 2 is free.

A constructive proof of Stafford’s theorem, i.e., 3 of The-
orem 4 for D = A,(k) and B,(k), was given in [14].
An implementation of computation of bases of finitely
presented free left D-modules is available in the STAFFORD
package [14] for D = A,,(Q) and B, (Q).

Let us now consider the OD case (e.g., D = R{t}(9)).
Since the inputs of a linear control system are generally
considered as independent, then the number of inputs of a
linear system defined by a finitely presented left D-module
M is rankp (M) [4]. Moreover, if a finitely presented left



D-module M = D'*?/(D'*4 R) is free, then the linear
system kerz(R.) is called differentially flat [5]. Moreover,
a torsion-free left D-module defines a controllable linear
system kerz(R.) [4]. For more details, see [2, 15]. 2 of
Theorem 4 asserts that every controllable linear control
system with at least two inputs is differentially flat [15].

3. UNIMODULAR ELEMENTS

Let us introduce the concept of unimodular elements.

Definition 5. An element m of a left D-module M is called

unimodular if there exists ¢ € homp(M, D) such that:
p(m) = 1.

The set of unimodular elements of M is denoted by U(M).

Let us show how unimodular elements of M can be used to
decompose M into a direct sum. If m € U(M), then there
exists ¢ € homp(M, D) such that ¢(m) = 1. Thus, for
any d € D, d = dyo(m) = ¢(dm), which shows that ¢ is
surjective, and we have the following short exact sequence:

0 — kerp — M 25 D —0. (3)

Since D is free, (3) splits (see, e.g., [17]). Therefore, we
have M 2 kerp & D as left D-modules. More precisely,
o € homp(D, M) defined by o(d) =dm for all d € D sa-
tisfies poo = idp. Thus, M = ker p@im o = ker p & D m.
Remark 6. If m is a torsion element of M, then Proposi-
tion 3 shows that ¢(m) = 0 for all ¢ € homp (M, D). This
implies t(M)NU(M) =0, i.e., m € UM) = m ¢ t(M).

Let us now study the problem of computing unimodular
elements of M. Let M = D'*?/(D'*9R) be a left D-
module finitely presented by R € D?*P. Using Malgrange’s
remark (see Section 2), we obtain the following lemma.

Lemma 7. Let M = DYP/(D'¥4 R) be a finitely pre-
sented left D-module, 7: D**P — M the canonical pro-
jection onto M, and
R.: D? — D1
n+—— Rn

the right D-homomorphism represented by R. Then, we
have homp(M, D) = kerp(R.) := {n € D? | Rn = 0}.
In particular, for every ¢ € homp(M, D), there exists
u € kerp(R.), i.e., Ry =0, such that:

YAeDY>P o(r(N) = M. (4)
In what follows, ¢ defined by (4) will be denoted by ¢,,.

Remark 6 shows that if M is a torsion left D-module, then
U(M) = . Hence, let us suppose that M is not torsion.
Thus, by Proposition 3, kerp(R.) 2 homp(M, D) # 0.
Since D is a right noetherian ring, kerp(R.) is a finitely

generated right D-module, and thus there exists a matrix
Q € DP*™ such that kerp(R.) = imp(Q.) := Q D™. Then

we have the exact sequence DY Lopp L pm and, since
RQ = 0, the following complex of left D-modules:

pDlxa LN DLxp _Q> pixm
Lemma 8. ([2], Theorem 5). With the above notations:
t(M) = kerp(.Q)/imp(.R), M/t(M) = D"*?/kerp(.Q).
In particular, w(X) is a torsion element of M iff AQ = 0.

Remark 9. Combining Lemmas 7 and 8, we obtain that
for every m(A\) € M \ t(M), i.e., AQ # 0, there exists

p € kerp(R.) = imp(Q.) such that ¢, € homp(M,D)
satisfies @, (m(A\)) = Ap # 0. Since pp = Q¢ for £ € D™
and A @Q # 0, we only need to fix £ such that (A Q)& # 0.

By Lemma 7, every ¢ € homp(M, D) is of the form ¢,
for a certain p € kerp(R.) = imp(Q.), i.e., for p = Q& for
some & € D™. Thus, the problem of finding a unimodular
element 7(\) € M amounts to the following:

Problem 10. Find \* € D'*P and £~ € D™ such that:
A =1.

We point out that Problem 10 corresponds to solving an
inhomogeneous quadratic equation in the A;’s and the ;’s.
We also note that the problem of checking whether or not
7m(A) is a unimodular element of M is a linear problem:
Check whether or not A Q € D™ admits a right inverse
over D. For instance, this can be answered constructively
for (not necessarily commutative) polynomial rings which
admit Grobner basis techniques (see, e.g., [2]).

If one entry of @ is invertible in D, then Problem 10 can
be solved easily: if Q;; € U(D) and {fi}i=1,..p (resp.,
{h;}j=1,...m) is the standard basis of D'*? (resp., D™),
then A\* := f; and &* := Q;jl h; are such that A* Q&* = 1.
Then, m* := w(f;) € M is unimodular and @g ¢« (m*) = 1.

More generally, if one row (resp., one column) of @
admits a right inverse (resp., a left inverse) over D, then
Problem 10 can be solved easily. For instance, if the j*%"
column Q.; of @ admits a left inverse T € D'*P, then
considering \* := T and &* := hj, where {hi}r=1,..m
is the standard basis of D™, and p* := Qh;, we get
A*p* = 1, which proves that m* = 7(T) € U(M) and
@+ (m*) = 1. Now, if the i'" row Qe of Q admits a
right inverse S € D™, then considering \* := f;, where
{fr}tk=1,.p is the standard basis of D'*P ¢* := S, and
= @QS, we then have \* u* = 1, which shows that
m* = 7(f;) € UM) and ¢, «(m*) = 1.

4. VERY SIMPLE RINGS

Let us introduce the concept of a very simple domain.

Definition 11. A domain D is called very simple if D is
noetherian and satisfies:
Va,byce D,Vde D\{0}, Ju,ve D: 5
Da+Db+Dc=D(a+duc)+D((b+dvc). (5)

Remark 12. If D is very simple, then considering d = 1 in
(5), we obtain Da+ Db+ Dec=D(a+uc)+ D (b+wvc)
for some u, v € D, which shows that every left ideal of D
generated by three elements, and thus, every finitely gen-
erated left ideal of D, can be generated by two elements.

If D is very simple, then choosing a = b =0, ¢ = 1, and
d € D\ {0}, there exist u, v € D such that
D=Ddu+ Dduw,
which implies that there exist s, t € D such that:
sdu+tdv=1.
Thus, Dd D = D, which shows that every two-sided ideal
of D is trivial, and thus, that D is a simple ring [8].
In fact, the following variant of (5) holds for D:
Ya,b,ceD,Vdy,dy€ D\{0}, Ju,veD:
Da+Db+Dc=D(a+diuc)+D((b+davc).



Since D is a noetherian domain, it satisfies the right Ore
condition (see Section 2). Hence, given dy,ds € D\ {0},
there exist ey, ea € D\ {0} such that d := dj e; = dg ey. If
D is very simple, then there exist u, v € D such that:
Da+Db+Dc=D(a+duc)+D(b+dvc)

=D(a+di(eru)c)+ D (b+da(eav)c).
Theorem 13. ([18]). If k is a field of characteristic 0 (e.g.,
Q, R, C), then the Weyl algebras A, (k) and B, (k) are
very simple domains.

The computation of elements u and v defined in (5)
is implemented in the STAFFORD package [14] based on
algorithms developed in [6, 9] for the computation of two
generators of left /right ideals generated by three elements.
Ezample 14. Let D = A3(Q), a = 01, b = 0o, ¢ = 1,
d1 € D arbitrary, and do = x1. If we consider u = 0,
v=1,a3:=a+dyuc=0,and by :=b+dyvc=0r+2?,
then (5) holds, i.e., a = az and

{b = ((1‘1 (82 —|—.73%) az + (—331 o1 + 2) b2)/2,
Cc = —((82 —|—£l?%) ags — 81 bg)/Q,
which shows that Da+ Db+ Dc= Das + D bs.

Theorem 15. ([14]). The ring D = A(9) of OD operators
with coefficients in the differential ring A = k[t] (resp.,
k{t}, where k = R, C) of formal power series (resp., locally
convergent power series) is a very simple domain.

Theorem 16. ([1]). Let A = k((z1,...,2,)) be the field of
fractions of the domain of formal power series with coeffi-
cients in k. Then, the ring A(91,...,0,) of PD operators
with coefficients in A is a very simple domain. The same
result holds if A is the field of fractions k{{z1,...,zn}}
of the domain of locally convergent power series with
coefficients in k = R or C.

Corollary 17. ([18]). Let D be a very simple domain and
dy, dy € D\ {0}. Then, the following quadratic equation

yldlzl —|—y2d2z2:1 (6)
admits a solution (y1, 2, 21, 22)7 € D*.

Proof. This is the particular case a = b =0, ¢ = 1 of the
condition given in 1 of Definition 11.

Elements y1, yo2, 21, and 2o as in Corollary 17 can be
computed by the STAFFORD package [14].

Since the stable range sr(D) [14] of a very simple domain
D is 2, the following result holds.

Corollary 18. ([14]). Let D be a very simple domain and
M a finitely generated stably free left D-module. If
rankp (M) > 2, then M is free.

5. COMPUTATION OF UNIMODULAR ELEMENTS

Let us now show how to use Corollary 17 to solve Prob-
lem 10, and more generally, to give a constructive proof of
the following theorem due to Stafford [18].

Theorem 19. ([18]). Let M and N be finitely generated
left D-modules satisfying M C N and rankp(M) > 2.
Then, there exists m € M such that m € U(N). Hence,
M=Dm&M CN=Dm& N', where M’ = N' N M.

Proof. We shall consider the slightly more general case
of an injection ¢ : M — N rather than just an inclusion

M C N. Since D is a noetherian ring and M and N are
finitely generated, they are finitely presented (see, e.g.,
[17]). Let R € D?*? and R’ € D7 *¥' be two matrices such
that M := D'?/(D'¥4R) and N := D'*¥'/(D'*4 R').
Let t: M — N be an injection and 7: D'XP — M
(resp., ©’: DY*P" — N) the canonical projection. Then,
the following diagram is commutative with exact rows

pixa B pixp 7 .0

l.P l.P Le

D1><q' i/) Dlxp’ L/) N — O7
ie., u(n(n)) = «'(nP) for all n € D'*P_ where P € DP*?’
is such that RP = P’ R’ for some P’ € D?*¢ . For more
details, see [3]. The injectivity of ¢ is equivalent to the fact
that for all S € D*P and for all T € D*¢ satisfying

S P =T R, there exists L € D**? such that S = L R. For
more details, see [3]. Moreover, we have:

W(M) = (D) (P RTYT) /(D R') € N.

Since rankp (M) > 2, by Proposition 3, M is not torsion,
i.e., there exists my :=7w(n) € M \ t(M). Let Q € DP*™
be such that kerp(R.) = imp(Q.). Lemma 8 shows that
we have to choose 11 € D'*P so that 11 Q # 0. Note that
my € t(M) if and only if «(mq) € ¢(N) since ¢ is injective.
Hence, if Q' € D™ is such that kerp(R'.) = imp(Q’.)
and \; :=m P € DlXp/, then n; € D'P can equivalently
be chosen such that it satisfies A\ Q" = my PQ" # 0. By
Remark 9, there exists pu1 € kerp(R’.) = imp(Q'.) such
that @1 = ¢,, € homp(N, D) satisfies i (c(m1)) # 0,
ie, & € D™ can be chosen such that w1 = Q' & satisfies:

1(e(my)) = 1 = (m PQ) & #0.

The following diagram is commutative with exact rows:
R
—

D1><q D1><p L) M 0
! } (Pu1) ' Lwioe
0 — D A, D — 0.

Since im(¢q o¢) is a left ideal of D containing the non-
zero element (1 o ¢)(my), we have rankp (im(p; 0 ¢)) = 1.
Then, using the following canonical short exact sequence

0 — ker(py0t) — M — im(py 0t) — 0,
we get rankp (ker(py o)) = rankp(M) —1 > 1 (see, e.g.,
[13]). Hence, ker(¢1 o ¢) is not a torsion left D-module and
there exists mgy € ker(yq o¢) such that ms ¢ ¢(M), or,
equivalently, such that t(ms) ¢ t(N). Let S € D"*P be
such that kerp(.(P p1)) = imp(.S). Since we have
ker(p101) =kerp(.(P 1))/ (D1 R)=(D"*" §) /(D" R),
ne :=v S € DYP and v € D" defining my := 7(1)2) have
to be chosen so that v (S Q) # 0 or, equivalently, so that
v(SPQ') #0.Let Ay := 19 P and consider & € D™ such
that (A2 Q)& = (vSP Q)& #0 and iy 1= Q' & € D'
Then, @2 := ¢,, € homp(N, D) satisfies:
@2(t(mg)) = Xope =vSPQ & #0.

By construction, we have mg € ker(y1 o ¢), which yields:

p1(t(ma2)) = Ao pr = 0.
If po(e(mq)) = A1 pa # 0, then, by the right Ore property
(see Section 2), there exist 1, ro € D\ {0} such that:

(A pr)rr + (A pz)re = 0. (7)



Let us then consider:
ph = 1y + pere € kerp(R'),
{ ©h 1= Puy 11+ P, T2 = Py € homp(N, D).
Then, using (7), we have:

{ po(umi1)) = M py = A1 (p171 + p2r2) =0,

@5(1(ma)) = Ao piy = Xa (1 11 + pa m2) = (Ag p2) 72 # 0.
Therefore, without loss of generality, we may assume that
@2(t(m1)) = Ay pz = 0.

Let dy := A1 p1 # 0 and ds := Ag o # 0. Corollary 17 then

shows that there exists (y1, y2, 21, 22)7 € D* satisfying

Y1 (A1 pn) 21 +y2 (A2 piz) 22 = 1.
If we now introduce

N =y +yame € DV,

m* :=n(n*) € M,

W= gy 21 + po 22 € kerp(R'),

@ = @, € homp(N, D),
then we have

o(t(m*)) =n" Pu* = (y1m +y2m2) P (u1 21 + p2 22)
= (y1 M1 +y2 A2) (p1 21 + pi2 22)
=y (Arp1) 21 +y2 (Ao p2) 22 = 1,
which shows that «(m*) € U(N) and yields:
N = D (m*) & ker p.
Moreover, ¢ := @) € homp((M),D) satisfies
Y(e(m*)) = 1. Thus, ¢«(m*) is a unimodular element of
(M), which shows that
(M) = D v(m*) ® ker 1,
and thus,
t((M)=Di(m*)® M C N =Dum*)d N,

where N’ := ker ¢ and M’ := ker ¢|,(p) = ker ¢ N o(M).

For the precise description of the algorithm corresponding
to Theorem 19 and examples, see [16]. Theorem 19 resem-
bles the characterization of vector spaces over a division
ring D [8] (e.g., a field) for which rankp (M) > 1.
Theorem 20. ([18]). Let D be a very simple domain and
M a finitely generated left D-module. Then, there exist
r € Z>o and a left D-module M’ with rankp(M') < 1
such that M = D" @ M'. Moreover, if M is torsion-free,
then M’ can be chosen as a left ideal of D, which can be
generated by two elements.

Proof. If rankp (M) < 1, the first statement holds with
r = 0 and M’ = M. If rankp(M) > 2, then applying
Theorem 19 to N = M and ¢ = idy;, then there exists
m € U(M) such that M = Dm @& N = D @& N, where
rankp(N) = rankp (M) —1. Repeating the same argument
on rankp(N) and so on, we obtain:

M= DY o M rankp(M')<1.
Now, if M is torsion-free, so is M’. Moreover, if M’ # 0,
then rankp(M’) = 1 by Proposition 3, and thus, M’
admits a minimal parametrization [2], namely, M’ is iso-
morphic to a finitely generated left ideal I of D, which can
be generated by two elements by Remark 12.

For the precise description of the algorithm corresponding
to Theorem 20 and explicit examples, see [16].

A system-theoretic interpretation of Theorem 20 is that
every linear system kerz(R.) defined by a matrix R with
entries in a very simple domain D satisfies

kerr(R.) = F" @ kerg(R'.), (8)
where M’ = DY /(D4 R') and rankp(M’) < 1.
(8) states that a linear differential system kerg(R.) is

isomorphic to the direct sum of a differentially flat system
and a linear system kerz(R'.) with at most one input.

6. STAFFORD’S REDUCTION

We give an application of Theorem 19 by studying when
a linear system kerz(Q.) is isomorphic to a linear system
defined by fewer unknowns and fewer equations.

Let Q € DP*™ R € D?*P be such that
kerp(.Q) = imp(.R) (9)

(possibly R = 0 and ¢ = 0), and let us consider the left
D-modules N := D™ and M := D'*?/(D'*4 R). Using

coim f := M/ ker f = im f,
for all f € homp(M,N) (see, e.g., [17]), and (9), we get:
M = DY? /imp(.R) = DY*P/kerp(.Q)

= COimD(.Q) = 1mD(Q)
Hence, if we consider ¢ € homp (M, N) defined by
YAeDYP o y(n()) = \Q,

where 7: D'*P — M is the canonical projection onto M,
then L := (M) = imp(.Q) C N = D**™. The following
diagram is commutative with exact rows:
Dqu _R> D1><p L} M _ 0
! la p
0 _ D1><m i} D1><m —0.
If rankp(L) = rankp(M) > 2, then we can apply The-
orem 19 to find n* € DYP and £* € D™ such that
m* := 7w(n*) € M satisfies «(m*) = n*@Q € U(N) and
1= e« satisfies p(e(m*)) = n* Q& = 1. Then, we have
DY ™ = Dy(m*) @ ker o = D (n* Q) @ ker ¢.
Since ¢(m*) is also a unimodular element of L, we get
DYP Q = D u(m*) @ ker oL =D (" Q) Skerpp,
where ker |7, = ker ¢ N L. Hence, we obtain:
P = Dle/(DIXp Q)
= (D" Q) @kerp)/(D(n" Q) & kerp)
> P':=keryp/kery.
Now, ker ¢ = kerp(.£*) and ker ¢, = kerp(.(Q£*)) Q, so
that we have P’ = kerp(.£*)/(kerp(.(Q£*)) @), and:
rankp (ker ) = rankp(N) — 1 =m — 1,
rankp (ker ¢|1,) = rankp (L) — 1.
Since n* Q £* = 1, the following left D-homomorphisms
n*:D — DYP (9*Q): D — D™
satisfy .(Q &*)o.* = idp and .£* o (.(n* Q)) = idp. Hence,
we have the following split short exact sequences
0 — kerp(.£%) — D™ 5 p L,
0 — kerp(.(Q€*)) — D 2 p g,

i.e., DY*™ = Dakerp(.£*) and D'*P = Dakerp(.(Q £)),
which shows that kerp(.£*) (resp., kerp(.(Q&*))) is a
stably free left D-module of rank m — 1 (resp., p — 1).



Then, we have the following commutative exact diagram
0

!
0 — kerp(.(Q€*)) — Dx» 1@ p g

l.Q l.Q [
0— kerp(&) — D™ 55 D0
L LT l
0— P’ = P — 0,
! !
0 0

where the left D-isomorphism « : P’ — P is defined by
YV 0 € kerp(.£%),a(7'(0)) = 7(0), and 7 (resp., 7’) is the
canonical projection onto P (resp., P’)
Now, if m > 3, ker ¢ = kerp(.£*) is a free left D-module
of rank m — 1 by Corollary 18. Computing a basis of ker ¢,
there exists a full row rank matrix X € D"=D>" guch
that kerp = D=1 X, Let Y € D**P be such that
kerp(.(Q€*)) = DY**Y and Z =Y Q € D**™. Thus:
P = (Dlx(m—l) X)/(Dlxs Z).
Since kerp(.X) = 0, if F € D**(™=1) is such that
Z = F X, then Lemma 3.1 of [3] shows that
o P’ = Dlx(mfl)/(Dlxs F) ., p= Dlxm/(Dlxp Q)
o(v) — 1(v X),
is an isomorphism, where o : DY*(m=1) __, pP” ig the
canonical projection onto P”, which yields
P = Dle/(DIXp Q) o~ P// —_ Dlx(m—l)/(Dlxs F),
and shows that one generator of the left D-module P can
be removed from the presentation given by the matrix Q.

Moreover, if p > 3, then kerp(.(Q&*)) is a free left
D-module of rank p — 1 by Corollary 18. Thus, there
exists a full row rank matrix G € D®=D*P guch that
kerp(.(Q&%)) = D>~V G e, s =p— 1, and:

P= Dlxm/(Dlxp Q) ~ pl— Dlx(mfl)/(Dlx(pfl) G)
Theorem 21. Let D be a very simple domain and P a left
D-module given by P = D™ /(D'*? Q). Then, we have:

(1) If rankp(D**P Q) > 2 and m > 3, then there exists
Q € D**(m=1) guch that
P ? = Dlx(m—l)/(Dlxs@).
(2) Moreover, if p > 3, then @ can be chosen so that
s =p—1, i.e., we have:
PP .— Dlx(m—l)/(Dlx(p—l) @)

Strangely enough, Theorem 21 does not appear in [18].
Theorem 21 is implemented in the STAFFORD package [14].
We note that rankp (D**P Q) > 2 means that at least two
equations of Q ( = 0 are D-linearly independent.

Using (2) and P = P, the following isomorphisms hold
ker}-(Q.) = homD(P, .7:) = homD(?, .7:) = kery:(@.),
which shows that the number of unknowns and equations

of ker#(Q.) can be reduced according to Theorem 21.

Corollary 22. ([18]). Let D be a very simple domain and
P = DY™™/(DY? Q) a torsion left D-module. Then, P
can be generated by two elements.

Proof. If m < 2, then there is nothing to show. Let us
suppose that m > 3. Since rankp(P) = 0 (see Proposi-

tion 3), rankp (imp(.Q)) = m. Applying m — 2 times 1 of
Theorem 21, we obtain P = P := D*2/(D*5 Q).

Since a torsion left D-module P defines an autonomous
linear system (see, e.g., [2]), Corollary 22 shows that
every autonomous linear differential system is equivalent
to a linear differential system in two unknown functions.
Moreover, any state space representation @ — Ax = 0 is
observable with respect to two outputs y1, y2 given by two
generators of the corresponding torsion D-module.

For more results, see [16].
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