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Abstract: It is well-known that linear systems theory can been studied by means of module
theory. In particular, to a linear ordinary/partial differential system corresponds a finitely pre-
sented left module over a ring of ordinary/partial differential operators. The structure of modules
over rings of partial differential operators was investigated in Stafford’s seminal work [18]. The
purpose of this paper is to make some results obtained in [18] constructive. Our results are
implemented in the Maple package Stafford. Finally, we give system-theoretic interpretations
of Stafford’s results within the behavioural approach (e.g., minimal representations, autonomous
behaviours, direct decomposition of behaviours, differential flatness).

1. INTRODUCTION

It is well-known that linear systems theory can be studied
by means of module theory (see, e.g., [2, 3, 4, 5, 12, 14, 15]
and the references therein). The purpose of this paper is to
develop constructive versions of important results obtained
by Stafford in his seminal paper [18] on the module
structure of rings of partial differential (PD) operators.
Using the duality between linear systems (behaviours) and
finitely presented left modules, we give system-theoretic
interpretations of Stafford’s theorems. Finally, based on
Stafford’s results, we obtain explicit conditions so that a
linear PD system is equivalent to another one defined by
fewer unknowns and fewer equations.

2. ALGEBRAIC ANALYSIS

In this section, we briefly review the algebraic analysis
approach [7] to linear systems theory. For more details,
see [2, 4, 11, 12, 13, 14]. In what follows, we shall assume
that D is a noetherian domain, namely, a ring D without
zero divisors and such that every left/right ideal of D is
finitely generated as a left/right D-module [8, 17].

Let R ∈ Dq×p be a (q × p)-matrix with entries in D and
.R : D1×q −→ D1×p

λ 7−→ λR,

the left D-homomorphism (i.e., the left D-linear map)
represented by R. Then, the cokernel of .R is the factor
left D-module M := D1×p/(D1×q R), finitely presented
by R. In order to describe M by means of generators
and relations, let {fj}j=1,...,p be the standard basis of
D1×p, namely, fj is the row vector of length p with 1 at
position j and 0 elsewhere. Moreover, let π : D1×p −→M
be the canonical projection onto M , i.e., the left D-
homomorphism which maps λ ∈ D1×p to its residue class
π(λ) in M . Then, π is surjective since by definition of

M , every m ∈ M is the class of certain λ’s in D1×p, i.e.,
m = π(λ) = π(λ + ν R) for all ν ∈ D1×q. If yj = π(fj)
for j = 1, . . . , p, then, for every m ∈ M , there exists
λ = (λ1 . . . λp) ∈ D1×p such that

m = π(λ) = π

 p∑
j=1

λj fj

 =
p∑
j=1

λj π(fj) =
p∑
j=1

λj yj ,

which shows that {yj}j=1,...,p is a generating set for M .
Let Ri• (resp., R•j) denote the ith row (resp., jth column)
of R. Then {yj}j=1,...,p satisfies the relations
p∑
j=1

Rij yj =
p∑
j=1

Rij π(fj) = π

 p∑
j=1

Rij fj

 = π(Ri•) = 0

(1)
for all i = 1, . . . , q, since Ri• ∈ D1×q R for i = 1, . . . , q.

Now, let F be a left D-module, Fp := Fp×1, and let
kerF (R.) := {η ∈ Fp | Rη = 0}

be the linear system or behaviour defined by R and
F . A simple but fundamental remark due to Malgrange
[10] is that kerF (R.) is isomorphic to the abelian group
homD(M,F) of left D-homomorphisms from M to F , i.e.,

kerF (R.) ∼= homD(M,F) (2)
as abelian groups, where ∼= denotes an isomorphism (e.g.,
of abelian groups, left/right modules). This isomorphism
can easily be described: if φ ∈ homD(M,F), ηj = φ(yj)
for j = 1, . . . , p, and η = (η1 . . . ηp)T ∈ Fp, then using
(1), Rη = 0 since for i = 1, . . . , q:

p∑
j=1

Rij φ(yj) = φ

 p∑
j=1

Rij yj

 = φ (π (Ri•)) = 0.

Moreover, for any η = (η1 . . . ηp)T ∈ kerF (R.), the map
φη : M −→ F defined by φη(yj) = ηj for j = 1, . . . , p is
a well-defined left D-homomorphism from M to F , i.e.,



we have φη ∈ homD(M,F). Finally, the abelian group
homomorphism χ : kerF (R.) −→ homD(M,F) defined by
χ(η) = φη is then bijective. For more details, see [2, 3, 14].
Hence, (2) shows that the linear system kerF (R.) can be
studied in terms of homD(M,F), and thus, by means of
the left D-modules M and F . Since matrices R1 and R2

representing equivalent linear systems define isomorphic
modules, homD(M,F) is a more intrinsic description of
the linear system than kerF (R.) (e.g., it does not depend
on the particular embedding of kerF (R.) into Fp).
Example 1. Let A be a differential ring, namely, A is a ring
equipped with commuting derivations δi for i = 1, . . . , n,
namely, maps δi : A −→ A satisfying

∀ a1, a2 ∈ A,
{
δi(a1 + a2) = δi(a1) + δi(a2),
δi(a1 a2) = δi(a1) a2 + a1 δi(a2),

and δi ◦ δj = δj ◦ δi for all 1 ≤ i < j ≤ n. Moreover,
let D = A〈∂1, . . . , ∂n〉 be the (not necessarily commuta-
tive) polynomial ring of PD operators in ∂1, . . . , ∂n with
coefficients in A, namely, every element d ∈ D is of the
form d =

∑
0≤|µ|≤r aµ ∂

µ, where r ∈ Z≥0, aµ ∈ A,
µ = (µ1 . . . µn) ∈ (Z≥0)1×n, ∂µ = ∂µ1

1 . . . ∂µn
n is a mono-

mial in the commuting indeterminates ∂1, . . . , ∂n, and:
∀ a ∈ A, ∂i a = a ∂i + δi(a).

For instance, if k is a field and A = k[x1, . . . , xn]
(resp., k(x1, . . . , xn)), then the so-called Weyl algebra
A〈∂1, . . . , ∂n〉 is simply denoted by An(k) (resp., Bn(k)).

If M = D1×p/(D1×q R) is the left D-module finitely
presented by the matrix of PD operators R ∈ Dq×p and F
a left D-module (e.g., F = A), then the linear PD system
kerF (R.) is intrinsically defined by homD(M,F).

If M , M ′ and M ′′ are three left/right D-modules and
f ∈ homD(M ′,M) and g ∈ homD(M,M ′′) are such that

g ◦ f = 0, i.e., im f ⊆ ker g, then M ′
f−→ M

g−→ M ′′ is
called a complex (see, e.g., [17]). Moreover, if ker g = im f ,
then the complex is said to be exact at M (see, e.g., [17]).

By construction of the finitely presented left D-module
M = D1×p/(D1×q R), the following complex is exact:

D1×q .R−→ D1×p π−→M −→ 0.
It is called a finite presentation of M [17].

The short exact sequence 0 −→M ′
f−→M

g−→M ′′ −→ 0
splits if one of the following equivalent assertions holds:

(1) ∃ u ∈ homD(M ′′,M): g ◦ u = idM ′′ .
(2) ∃ v ∈ homD(M,M ′): v ◦ f = idM ′ .
(3) M ∼= M ′ ⊕M ′′, where ⊕ denotes the direct sum.

For more details, see, e.g., [17].

Within algebraic analysis, the module structure of rings
of PD operators plays a fundamental role for the study
of linear systems of PD equations [7]. In [2, 3, 13, 14], we
have initiated the constructive study of module theory and
homological algebra over Ore algebras, i.e., a certain class
of noncommutative polynomial rings of functional opera-
tors such as rings of ordinary/partial differential operators,
differential time-delay operators, or shift operators. Let us
now recall a few classical definitions.
Definition 2. ([8, 17]). Let D be a noetherian domain and
M a finitely generated left D-module.

• M is free of rank r if M ∼= D1×r.
• M is stably free if there exist r, s ∈ Z≥0 such that:

M ⊕D1×s ∼= D1×r.

• M is torsion-free if its torsion left D-submodule
t(M) = {m ∈M | ∃ d ∈ D \ {0} : dm = 0}

is reduced to {0}, i.e., t(M) = {0}.
• M is torsion if t(M) = M .

Similar definitions hold for right D-modules.

See [2, 13, 14] for algorithms which test whether or not
a finitely presented left D-module M is free, stably free,
torsion-free, has torsion elements, or is torsion.

Since D is a noetherian domain, D has the left (and
the right) Ore property [8], i.e., for all d1, d2 ∈ D \ {0},
there exist e1, e2 ∈ D \ {0} such that e1 d1 = e2 d2 (resp.,
d1 e1 = d2 e2). This implies the existence of the division
ring of fractions Q(D) = S−1D = DS−1 of D, where
S = D \ {0} [8]. If M is a finitely generated left/right D-
module, then Q(D)⊗DM (resp., M⊗DQ(D)) is a finitely
generated left (resp., right) Q(D)-vector space and:

rankD(M) := dimQ(D)(Q(D)⊗D M)
= dimQ(D)(M ⊗D Q(D)).

Proposition 3. ([2], Corollary 1). Let M be a finitely gen-
erated left D-module. Then, the assertions are equivalent:

(1) M is a torsion left D-module.
(2) rankD(M) = 0.
(3) homD(M,D) = 0.

Theorem 4. (1) [8, 17] The following implications
free ⇒ stably free ⇒ torsion-free

hold for finitely generated left/right D-modules.
(2) [15] If k is a field of characteristic zero, A = kJtK

the ring of formal power series with coefficients in
k, or A = k{t} the ring of locally convergent power
series with coefficients in k = R or C (i.e., germs of
real analytic/holomorphic functions), and D = A〈∂〉
the ring of ordinary differential (OD) operators with
coefficients in A, then every stably free left D-module
M with rankD(M) ≥ 2 is free.

(3) [1, 18] If k is a field of characteristic zero, A is
either the polynomial ring k[x1, . . . , xn], the field of
rational functions k(x1, . . . , xn), the field of fractions
k((x1, . . . , xn)) of the domain kJx1, . . . , xnK of formal
power series with coefficients in k, or the field of frac-
tions k{{x1, . . . , xn}} of the domain k{x1, . . . , xn} of
locally convergent power series with coefficients in
k = R or C, and D = A〈∂1, . . . , ∂n〉 the ring of PD
operators with coefficients in A, then every stably free
left D-module M with rankD(M) ≥ 2 is free.

A constructive proof of Stafford’s theorem, i.e., 3 of The-
orem 4 for D = An(k) and Bn(k), was given in [14].
An implementation of computation of bases of finitely
presented free left D-modules is available in the Stafford
package [14] for D = An(Q) and Bn(Q).

Let us now consider the OD case (e.g., D = R{t}〈∂〉).
Since the inputs of a linear control system are generally
considered as independent, then the number of inputs of a
linear system defined by a finitely presented left D-module
M is rankD(M) [4]. Moreover, if a finitely presented left



D-module M = D1×p/(D1×q R) is free, then the linear
system kerF (R.) is called differentially flat [5]. Moreover,
a torsion-free left D-module defines a controllable linear
system kerF (R.) [4]. For more details, see [2, 15]. 2 of
Theorem 4 asserts that every controllable linear control
system with at least two inputs is differentially flat [15].

3. UNIMODULAR ELEMENTS

Let us introduce the concept of unimodular elements.
Definition 5. An element m of a left D-module M is called
unimodular if there exists ϕ ∈ homD(M,D) such that:

ϕ(m) = 1.
The set of unimodular elements of M is denoted by U(M).

Let us show how unimodular elements of M can be used to
decompose M into a direct sum. If m ∈ U(M), then there
exists ϕ ∈ homD(M,D) such that ϕ(m) = 1. Thus, for
any d ∈ D, d = dϕ(m) = ϕ(dm), which shows that ϕ is
surjective, and we have the following short exact sequence:

0 −→ kerϕ −→M
ϕ−→ D −→ 0. (3)

Since D is free, (3) splits (see, e.g., [17]). Therefore, we
have M ∼= kerϕ ⊕ D as left D-modules. More precisely,
σ ∈ homD(D,M) defined by σ(d) = dm for all d ∈ D sa-
tisfies ϕ◦σ = idD. Thus, M = kerϕ⊕ imσ = kerϕ⊕Dm.
Remark 6. If m is a torsion element of M , then Proposi-
tion 3 shows that ϕ(m) = 0 for all ϕ ∈ homD(M,D). This
implies t(M) ∩ U(M) = ∅, i.e., m ∈ U(M)⇒ m /∈ t(M).

Let us now study the problem of computing unimodular
elements of M . Let M = D1×p/(D1×q R) be a left D-
module finitely presented by R ∈ Dq×p. Using Malgrange’s
remark (see Section 2), we obtain the following lemma.
Lemma 7. Let M = D1×p/(D1×q R) be a finitely pre-
sented left D-module, π : D1×p −→ M the canonical pro-
jection onto M , and

R. : Dp −→ Dq

η 7−→ Rη

the right D-homomorphism represented by R. Then, we
have homD(M,D) ∼= kerD(R.) := {η ∈ Dp | Rη = 0}.
In particular, for every ϕ ∈ homD(M,D), there exists
µ ∈ kerD(R.), i.e., Rµ = 0, such that:

∀ λ ∈ D1×p, ϕ(π(λ)) = λµ. (4)
In what follows, ϕ defined by (4) will be denoted by ϕµ.

Remark 6 shows that if M is a torsion left D-module, then
U(M) = ∅. Hence, let us suppose that M is not torsion.
Thus, by Proposition 3, kerD(R.) ∼= homD(M,D) 6= 0.
Since D is a right noetherian ring, kerD(R.) is a finitely
generated right D-module, and thus there exists a matrix
Q ∈ Dp×m such that kerD(R.) = imD(Q.) := QDm. Then

we have the exact sequence Dq R.←− Dp Q.←− Dm and, since
RQ = 0, the following complex of left D-modules:

D1×q .R−→ D1×p .Q−→ D1×m.

Lemma 8. ([2], Theorem 5). With the above notations:
t(M) = kerD(.Q)/imD(.R), M/t(M) = D1×p/ kerD(.Q).
In particular, π(λ) is a torsion element of M iff λQ = 0.
Remark 9. Combining Lemmas 7 and 8, we obtain that
for every π(λ) ∈ M \ t(M), i.e., λQ 6= 0, there exists

µ ∈ kerD(R.) = imD(Q.) such that ϕµ ∈ homD(M,D)
satisfies ϕµ(π(λ)) = λµ 6= 0. Since µ = Qξ for ξ ∈ Dm

and λQ 6= 0, we only need to fix ξ such that (λQ) ξ 6= 0.

By Lemma 7, every ϕ ∈ homD(M,D) is of the form ϕµ
for a certain µ ∈ kerD(R.) = imD(Q.), i.e., for µ = Qξ for
some ξ ∈ Dm. Thus, the problem of finding a unimodular
element π(λ) ∈M amounts to the following:
Problem 10. Find λ? ∈ D1×p and ξ? ∈ Dm such that:

λ?Qξ? = 1.

We point out that Problem 10 corresponds to solving an
inhomogeneous quadratic equation in the λi’s and the ξj ’s.
We also note that the problem of checking whether or not
π(λ) is a unimodular element of M is a linear problem:
Check whether or not λQ ∈ D1×m admits a right inverse
over D. For instance, this can be answered constructively
for (not necessarily commutative) polynomial rings which
admit Gröbner basis techniques (see, e.g., [2]).

If one entry of Q is invertible in D, then Problem 10 can
be solved easily: if Qij ∈ U(D) and {fi}i=1,...,p (resp.,
{hj}j=1,...,m) is the standard basis of D1×p (resp., Dm),
then λ? := fi and ξ? := Q−1

ij hj are such that λ?Qξ? = 1.
Then, m? := π(fi) ∈M is unimodular and ϕQξ?(m?) = 1.

More generally, if one row (resp., one column) of Q
admits a right inverse (resp., a left inverse) over D, then
Problem 10 can be solved easily. For instance, if the jth
column Q•j of Q admits a left inverse T ∈ D1×p, then
considering λ? := T and ξ? := hj , where {hk}k=1,...,m

is the standard basis of Dm, and µ? := Qhj , we get
λ? µ? = 1, which proves that m? := π(T ) ∈ U(M) and
ϕµ?(m?) = 1. Now, if the ith row Qi• of Q admits a
right inverse S ∈ Dm, then considering λ? := fi, where
{fk}k=1,...,p is the standard basis of D1×p, ξ? := S, and
µ? := QS, we then have λ? µ? = 1, which shows that
m? := π(fi) ∈ U(M) and ϕµ?(m?) = 1.

4. VERY SIMPLE RINGS

Let us introduce the concept of a very simple domain.
Definition 11. A domain D is called very simple if D is
noetherian and satisfies:
∀ a, b, c ∈ D, ∀ d ∈ D \ {0}, ∃ u, v ∈ D :
Da+D b+D c = D (a+ d u c) +D (b+ d v c).

(5)

Remark 12. If D is very simple, then considering d = 1 in
(5), we obtain Da+D b+D c = D (a+ u c) +D (b+ v c)
for some u, v ∈ D, which shows that every left ideal of D
generated by three elements, and thus, every finitely gen-
erated left ideal of D, can be generated by two elements.

If D is very simple, then choosing a = b = 0, c = 1, and
d ∈ D \ {0}, there exist u, v ∈ D such that

D = Ddu+Ddv,

which implies that there exist s, t ∈ D such that:
s d u+ t d v = 1.

Thus, DdD = D, which shows that every two-sided ideal
of D is trivial, and thus, that D is a simple ring [8].

In fact, the following variant of (5) holds for D:
∀ a, b, c ∈ D, ∀ d1, d2 ∈ D \ {0}, ∃ u, v ∈ D :
Da+D b+D c = D (a+ d1 u c) +D (b+ d2 v c).



Since D is a noetherian domain, it satisfies the right Ore
condition (see Section 2). Hence, given d1, d2 ∈ D \ {0},
there exist e1, e2 ∈ D \ {0} such that d := d1 e1 = d2 e2. If
D is very simple, then there exist u, v ∈ D such that:
Da+D b+D c = D (a+ d u c) +D (b+ d v c)

= D (a+ d1 (e1 u) c) +D (b+ d2 (e2 v) c).
Theorem 13. ([18]). If k is a field of characteristic 0 (e.g.,
Q, R, C), then the Weyl algebras An(k) and Bn(k) are
very simple domains.

The computation of elements u and v defined in (5)
is implemented in the Stafford package [14] based on
algorithms developed in [6, 9] for the computation of two
generators of left/right ideals generated by three elements.
Example 14. Let D = A2(Q), a = ∂1, b = ∂2, c = x1,
d1 ∈ D arbitrary, and d2 = x1. If we consider u = 0,
v = 1, a2 := a+d1 u c = ∂1, and b2 := b+d2 v c = ∂2 +x2

1,
then (5) holds, i.e., a = a2 and{

b = ((x1 (∂2 + x2
1) a2 + (−x1 ∂1 + 2) b2)/2,

c = −((∂2 + x2
1) a2 − ∂1 b2)/2,

which shows that Da+D b+D c = Da2 +D b2.
Theorem 15. ([14]). The ring D = A〈∂〉 of OD operators
with coefficients in the differential ring A = kJtK (resp.,
k{t}, where k = R, C) of formal power series (resp., locally
convergent power series) is a very simple domain.
Theorem 16. ([1]). Let A = k((x1, . . . , xn)) be the field of
fractions of the domain of formal power series with coeffi-
cients in k. Then, the ring A〈∂1, . . . , ∂n〉 of PD operators
with coefficients in A is a very simple domain. The same
result holds if A is the field of fractions k{{x1, . . . , xn}}
of the domain of locally convergent power series with
coefficients in k = R or C.
Corollary 17. ([18]). Let D be a very simple domain and
d1, d2 ∈ D \ {0}. Then, the following quadratic equation

y1 d1 z1 + y2 d2 z2 = 1 (6)
admits a solution (y1, y2, z1, z2)T ∈ D4.

Proof. This is the particular case a = b = 0, c = 1 of the
condition given in 1 of Definition 11.

Elements y1, y2, z1, and z2 as in Corollary 17 can be
computed by the Stafford package [14].

Since the stable range sr(D) [14] of a very simple domain
D is 2, the following result holds.
Corollary 18. ([14]). Let D be a very simple domain and
M a finitely generated stably free left D-module. If
rankD(M) ≥ 2, then M is free.

5. COMPUTATION OF UNIMODULAR ELEMENTS

Let us now show how to use Corollary 17 to solve Prob-
lem 10, and more generally, to give a constructive proof of
the following theorem due to Stafford [18].
Theorem 19. ([18]). Let M and N be finitely generated
left D-modules satisfying M ⊆ N and rankD(M) ≥ 2.
Then, there exists m ∈ M such that m ∈ U(N). Hence,
M = Dm⊕M ′ ⊆ N = Dm⊕N ′, where M ′ = N ′ ∩M .

Proof. We shall consider the slightly more general case
of an injection ι : M −→ N rather than just an inclusion

M ⊆ N . Since D is a noetherian ring and M and N are
finitely generated, they are finitely presented (see, e.g.,
[17]). Let R ∈ Dq×p and R′ ∈ Dq′×p′

be two matrices such
that M := D1×p/(D1×q R) and N := D1×p′

/(D1×q′ R′).
Let ι : M −→ N be an injection and π : D1×p −→ M
(resp., π′ : D1×p′ −→ N) the canonical projection. Then,
the following diagram is commutative with exact rows

D1×q .R−→ D1×p π−→ M −→ 0
↓ .P ′ ↓ .P ↓ ι

D1×q′ .R′

−→ D1×p′ π′

−→ N −→ 0,

i.e., ι(π(η)) = π′(η P ) for all η ∈ D1×p, where P ∈ Dp×p′

is such that RP = P ′R′ for some P ′ ∈ Dq×q′ . For more
details, see [3]. The injectivity of ι is equivalent to the fact
that for all S ∈ Ds×p and for all T ∈ Ds×q′ satisfying
S P = T R′, there exists L ∈ Ds×q such that S = LR. For
more details, see [3]. Moreover, we have:

ι(M) =
(
D1×(p+q′) (PT R′T )T

)
/(D1×p′

R′) ⊆ N.

Since rankD(M) ≥ 2, by Proposition 3, M is not torsion,
i.e., there exists m1 := π(η1) ∈ M \ t(M). Let Q ∈ Dp×m

be such that kerD(R.) = imD(Q.). Lemma 8 shows that
we have to choose η1 ∈ D1×p so that η1Q 6= 0. Note that
m1 ∈ t(M) if and only if ι(m1) ∈ t(N) since ι is injective.
Hence, if Q′ ∈ Dp′×m′

is such that kerD(R′.) = imD(Q′.)
and λ1 := η1 P ∈ D1×p′

, then η1 ∈ D1×p can equivalently
be chosen such that it satisfies λ1Q

′ = η1 P Q
′ 6= 0. By

Remark 9, there exists µ1 ∈ kerD(R′.) = imD(Q′.) such
that ϕ1 := ϕµ1 ∈ homD(N,D) satisfies ϕ1(ι(m1)) 6= 0,
i.e., ξ1 ∈ Dm′

can be chosen such that µ1 := Q′ ξ1 satisfies:
ϕ1(ι(m1)) = λ1 µ1 = (η1 P Q′) ξ1 6= 0.

The following diagram is commutative with exact rows:

D1×q .R−→ D1×p π−→ M −→ 0
↓ ↓ .(P µ1) ↓ ϕ1 ◦ ι

0 −→ D
id−→ D −→ 0.

Since im(ϕ1 ◦ ι) is a left ideal of D containing the non-
zero element (ϕ1 ◦ ι)(m1), we have rankD(im(ϕ1 ◦ ι)) = 1.
Then, using the following canonical short exact sequence

0 −→ ker(ϕ1 ◦ ι) −→M −→ im(ϕ1 ◦ ι) −→ 0,
we get rankD(ker(ϕ1 ◦ ι)) = rankD(M)− 1 ≥ 1 (see, e.g.,
[13]). Hence, ker(ϕ1 ◦ ι) is not a torsion left D-module and
there exists m2 ∈ ker(ϕ1 ◦ ι) such that m2 /∈ t(M), or,
equivalently, such that ι(m2) /∈ t(N). Let S ∈ Dr×p be
such that kerD(.(P µ1)) = imD(.S). Since we have
ker(ϕ1◦ι)=kerD(.(P µ1))/(D1×q R)=(D1×r S)/(D1×q R),
η2 := ν S ∈ D1×p and ν ∈ D1×r defining m2 := π(η2) have
to be chosen so that ν (S Q) 6= 0 or, equivalently, so that
ν (S P Q′) 6= 0. Let λ2 := η2 P and consider ξ2 ∈ Dm′

such
that (λ2Q

′) ξ2 = (ν S P Q′) ξ2 6= 0 and µ2 := Q′ ξ2 ∈ Dp′
.

Then, ϕ2 := ϕµ2 ∈ homD(N,D) satisfies:
ϕ2(ι(m2)) = λ2 µ2 = ν S P Q′ ξ2 6= 0.

By construction, we have m2 ∈ ker(ϕ1 ◦ ι), which yields:
ϕ1(ι(m2)) = λ2 µ1 = 0.

If ϕ2(ι(m1)) = λ1 µ2 6= 0, then, by the right Ore property
(see Section 2), there exist r1, r2 ∈ D \ {0} such that:

(λ1 µ1) r1 + (λ1 µ2) r2 = 0. (7)



Let us then consider:{
µ′2 := µ1 r1 + µ2 r2 ∈ kerD(R′.),
ϕ′2 := ϕµ1 r1 + ϕµ2 r2 = ϕµ′

2
∈ homD(N,D).

Then, using (7), we have:{
ϕ′2(ι(m1)) = λ1 µ

′
2 = λ1 (µ1 r1 + µ2 r2) = 0,

ϕ′2(ι(m2)) = λ2 µ
′
2 = λ2 (µ1 r1 + µ2 r2) = (λ2 µ2) r2 6= 0.

Therefore, without loss of generality, we may assume that
ϕ2(ι(m1)) = λ1 µ2 = 0.

Let d1 := λ1 µ1 6= 0 and d2 := λ2 µ2 6= 0. Corollary 17 then
shows that there exists (y1, y2, z1, z2)T ∈ D4 satisfying

y1 (λ1 µ1) z1 + y2 (λ2 µ2) z2 = 1.
If we now introduce

η? := y1 η1 + y2 η2 ∈ D1×p,

m? := π(η?) ∈M,

µ? := µ1 z1 + µ2 z2 ∈ kerD(R′.),
ϕ := ϕµ? ∈ homD(N,D),

then we have
ϕ(ι(m?)) = η? P µ? = (y1 η1 + y2 η2)P (µ1 z1 + µ2 z2)

= (y1 λ1 + y2 λ2) (µ1 z1 + µ2 z2)
= y1 (λ1 µ1) z1 + y2 (λ2 µ2) z2 = 1,

which shows that ι(m?) ∈ U(N) and yields:
N = D ι(m?)⊕ kerϕ.

Moreover, ψ := ϕ|ι(M) ∈ homD(ι(M), D) satisfies
ψ(ι(m?)) = 1. Thus, ι(m?) is a unimodular element of
ι(M), which shows that

ι(M) = D ι(m?)⊕ kerψ,
and thus,

ι(M) = D ι(m?)⊕M ′ ⊆ N = D ι(m?)⊕N ′,
where N ′ := kerϕ and M ′ := kerϕ|ι(M) = kerϕ ∩ ι(M).

For the precise description of the algorithm corresponding
to Theorem 19 and examples, see [16]. Theorem 19 resem-
bles the characterization of vector spaces over a division
ring D [8] (e.g., a field) for which rankD(M) ≥ 1.
Theorem 20. ([18]). Let D be a very simple domain and
M a finitely generated left D-module. Then, there exist
r ∈ Z≥0 and a left D-module M ′ with rankD(M ′) ≤ 1
such that M ∼= D1×r⊕M ′. Moreover, if M is torsion-free,
then M ′ can be chosen as a left ideal of D, which can be
generated by two elements.

Proof. If rankD(M) ≤ 1, the first statement holds with
r = 0 and M ′ = M . If rankD(M) ≥ 2, then applying
Theorem 19 to N = M and ι = idM , then there exists
m ∈ U(M) such that M = Dm ⊕ N ∼= D ⊕ N , where
rankD(N) = rankD(M)−1. Repeating the same argument
on rankD(N) and so on, we obtain:

M ∼= D1×r ⊕M ′, rankD(M ′) ≤ 1.
Now, if M is torsion-free, so is M ′. Moreover, if M ′ 6= 0,
then rankD(M ′) = 1 by Proposition 3, and thus, M ′
admits a minimal parametrization [2], namely, M ′ is iso-
morphic to a finitely generated left ideal I of D, which can
be generated by two elements by Remark 12.

For the precise description of the algorithm corresponding
to Theorem 20 and explicit examples, see [16].

A system-theoretic interpretation of Theorem 20 is that
every linear system kerF (R.) defined by a matrix R with
entries in a very simple domain D satisfies

kerF (R.) ∼= Fr ⊕ kerF (R′.), (8)

where M ′ = D1×p′
/(D1×q′ R′) and rankD(M ′) ≤ 1.

(8) states that a linear differential system kerF (R.) is
isomorphic to the direct sum of a differentially flat system
and a linear system kerF (R′.) with at most one input.

6. STAFFORD’S REDUCTION

We give an application of Theorem 19 by studying when
a linear system kerF (Q.) is isomorphic to a linear system
defined by fewer unknowns and fewer equations.

Let Q ∈ Dp×m, R ∈ Dq×p be such that
kerD(.Q) = imD(.R) (9)

(possibly R = 0 and q = 0), and let us consider the left
D-modules N := D1×m and M := D1×p/(D1×q R). Using

coim f := M/ ker f ∼= im f,

for all f ∈ homD(M,N) (see, e.g., [17]), and (9), we get:
M = D1×p/imD(.R) = D1×p/ kerD(.Q)

= coimD(.Q) ∼= imD(.Q).
Hence, if we consider ι ∈ homD(M,N) defined by

∀ λ ∈ D1×p, ι(π(λ)) := λQ,

where π : D1×p −→M is the canonical projection onto M ,
then L := ι(M) = imD(.Q) ⊆ N = D1×m. The following
diagram is commutative with exact rows:

D1×q .R−→ D1×p π−→ M −→ 0
↓ ↓ .Q ↓ ι
0 −→ D1×m id−→ D1×m −→ 0.

If rankD(L) = rankD(M) ≥ 2, then we can apply The-
orem 19 to find η? ∈ D1×p and ξ? ∈ Dm such that
m? := π(η?) ∈ M satisfies ι(m?) = η?Q ∈ U(N) and
ϕ := ϕξ? satisfies ϕ(ι(m?)) = η?Qξ? = 1. Then, we have

D1×m = D ι(m?)⊕ kerϕ = D (η?Q)⊕ kerϕ.
Since ι(m?) is also a unimodular element of L, we get

D1×pQ = D ι(m?)⊕ kerϕ|L = D (η?Q)⊕ kerϕ|L,
where kerϕ|L = kerϕ ∩ L. Hence, we obtain:

P := D1×m/(D1×pQ)
= (D (η?Q)⊕ kerϕ)/(D (η?Q)⊕ kerϕ|L)
∼= P ′ := kerϕ/ kerϕ|L.

Now, kerϕ = kerD(.ξ?) and kerϕ|L = kerD(.(Qξ?))Q, so
that we have P ′ = kerD(.ξ?)/(kerD(.(Qξ?))Q), and:{

rankD(kerϕ) = rankD(N)− 1 = m− 1,
rankD(kerϕ|L) = rankD(L)− 1.

Since η?Qξ? = 1, the following left D-homomorphisms
.η? : D −→ D1×p, .(η?Q) : D −→ D1×m

satisfy .(Qξ?)◦ .η? = idD and .ξ? ◦(.(η?Q)) = idD. Hence,
we have the following split short exact sequences

0 −→ kerD(.ξ?) −→ D1×m .ξ?

−→ D −→ 0,

0 −→ kerD(.(Qξ?)) −→ D1×p .(Qξ?)−−−−→ D −→ 0,
i.e., D1×m ∼= D⊕kerD(.ξ?) and D1×p ∼= D⊕kerD(.(Qξ?)),
which shows that kerD(.ξ?) (resp., kerD(.(Qξ?))) is a
stably free left D-module of rank m− 1 (resp., p− 1).



Then, we have the following commutative exact diagram
0
↓

0 −→ kerD(.(Qξ?)) −→ D1×p .(Qξ?)−−−−→ D −→ 0
↓ .Q ↓ .Q ‖

0 −→ kerD(.ξ?) −→ D1×m .ξ?

−→ D −→ 0
↓ τ ′ ↓ τ ↓

0 −→ P ′
α−→ P −→ 0,

↓ ↓
0 0

where the left D-isomorphism α : P ′ −→ P is defined by
∀ θ ∈ kerD(.ξ?), α(τ ′(θ)) = τ(θ), and τ (resp., τ ′) is the
canonical projection onto P (resp., P ′).

Now, if m ≥ 3, kerϕ = kerD(.ξ?) is a free left D-module
of rank m−1 by Corollary 18. Computing a basis of kerϕ,
there exists a full row rank matrix X ∈ D(m−1)×m such
that kerϕ = D1×(m−1)X. Let Y ∈ Ds×p be such that
kerD(.(Qξ?)) = D1×s Y and Z = Y Q ∈ Ds×m. Thus:

P ′ = (D1×(m−1)X)/(D1×s Z).
Since kerD(.X) = 0, if F ∈ Ds×(m−1) is such that
Z = F X, then Lemma 3.1 of [3] shows that
γ : P ′′ := D1×(m−1)/(D1×s F ) −→ P = D1×m/(D1×pQ)

σ(ν) 7−→ τ(ν X),

is an isomorphism, where σ : D1×(m−1) −→ P ′′ is the
canonical projection onto P ′′, which yields

P = D1×m/(D1×pQ) ∼= P ′′ = D1×(m−1)/(D1×s F ),
and shows that one generator of the left D-module P can
be removed from the presentation given by the matrix Q.

Moreover, if p ≥ 3, then kerD(.(Qξ?)) is a free left
D-module of rank p − 1 by Corollary 18. Thus, there
exists a full row rank matrix G ∈ D(p−1)×p such that
kerD(.(Qξ?)) = D1×(p−1)G, i.e., s = p− 1, and:
P = D1×m/(D1×pQ) ∼= P ′′ = D1×(m−1)/(D1×(p−1)G).

Theorem 21. Let D be a very simple domain and P a left
D-module given by P = D1×m/(D1×pQ). Then, we have:

(1) If rankD(D1×pQ) ≥ 2 and m ≥ 3, then there exists
Q ∈ Ds×(m−1) such that

P ∼= P := D1×(m−1)/(D1×sQ).
(2) Moreover, if p ≥ 3, then Q can be chosen so that

s = p− 1, i.e., we have:
P ∼= P := D1×(m−1)/(D1×(p−1)Q).

Strangely enough, Theorem 21 does not appear in [18].
Theorem 21 is implemented in the Stafford package [14].
We note that rankD(D1×pQ) ≥ 2 means that at least two
equations of Qζ = 0 are D-linearly independent.

Using (2) and P ∼= P , the following isomorphisms hold
kerF (Q.) ∼= homD(P,F) ∼= homD(P ,F) ∼= kerF (Q.),

which shows that the number of unknowns and equations
of kerF (Q.) can be reduced according to Theorem 21.
Corollary 22. ([18]). Let D be a very simple domain and
P = D1×m/(D1×pQ) a torsion left D-module. Then, P
can be generated by two elements.

Proof. If m ≤ 2, then there is nothing to show. Let us
suppose that m ≥ 3. Since rankD(P ) = 0 (see Proposi-

tion 3), rankD(imD(.Q)) = m. Applying m− 2 times 1 of
Theorem 21, we obtain P ∼= P := D1×2/(D1×sQ).

Since a torsion left D-module P defines an autonomous
linear system (see, e.g., [2]), Corollary 22 shows that
every autonomous linear differential system is equivalent
to a linear differential system in two unknown functions.
Moreover, any state space representation ẋ − Ax = 0 is
observable with respect to two outputs y1, y2 given by two
generators of the corresponding torsion D-module.

For more results, see [16].
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