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Abstract— Within the algebraic analysis approach to linear
systems theory, the purpose of this paper is to study how left D-
homomorphisms between two finitely presented left D-modules
associated with two linear systems induce natural transforma-
tions on the autonomous elements of the two systems and on
the potentials of the parametrizations of the parametrizable
subsystems. Extension of these results are also considered for
linear systems inducing a chain of successive parametrizations.

I. HOMOMORPHISMS OF LINEAR SYSTEMS

Let D be a ring of functional operators (e.g., ordinary
or partial differential operators, time-delay operators, shift
operators) and R € DI*P (resp., R’ € Dq/Xp/) aqgXxp
(resp., ¢’ x p') matrix. We consider the left D-module finitely
presented by R (resp., R'), namely, M = D'*?P/(D1*4 R)
(resp., M’ = D'¥¥' /(D% R")). A left D-homomorphism
f (or simply morphism) from M to M’ is a left D-linear
map f : M — M’. The abelian group of all morphisms
from M to M’ is denoted homp(M,M'). If M = M’,
f € homp(M, M) is called a left D-endomorphism of M.
We denote by endp(M) = homp(M, M) the ring of all
endomorphisms of M also called the endomorphism ring.

Lemma 1.1 ([3], Corollary 2.1): With the previous nota-
tions, let us consider the finite presentations of M and M’

pixa L pixe Tar g,

D1><q' i D1><p' L/) M — 0’ (1)
where (\R)(A\) = AR for all A € D'*? and similarly for
R/, namely, (1) are exact sequences, i.e., m (resp., @) is
surjective and ker m = D1%4 R (resp., ker#/ = D'*4 R').

1) The existence of a left D-morphism f: M — M’ is

equivalent to the existence of two matrices

Pepr Qe prd
satisfying the commutation relation:
RP=QR.
Then, we have the commutative exact diagram
pixe L pe T, o,
l.Q L.p L
P L o N V (——(}
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where f(m(A\)) = 7/ (A P) for all A\ € D'*P,
2) If we denote by R}, € D%2*9 a matrix satisfying

kerp(\R) £ {A e D' | AR =0} = D'*% R},
then P and @ are defined up to homotopy, i.e.,
P=P+ AR
Q=Q+RZ i+ Zy R,
where Z; € DP*9" and Z, € D9%% are two arbitrary
matrices, satisfy the same relation
RP=QR,
and f(m(\)) = 7/ (A P) for all A € D**P,

See [3] for algorithms which compute the matrices P
and Q when D is a commutative polynomial ring over a
computable field or a noncommutative polynomial rings for
which Buchberger’s algorithm terminates for any admissible

term order. These algorithms are implemented in the package
OREMORPHISMS ([4]) for classes of Ore algebras ([1]).

In the particular case where R’ = R, from Lemma 1.1, we
obtain that the existence of a left D-endomorphism f of M
is equivalent to the existence of two matrices P € DP*P and
Q@ € D71 satisfying the following commutation relation:

RP=QR.
Let F be a left D-module and consider the linear systems:

kerz(R.) = {n € F?|Rn =0},
kerz(R'.) = {¢ € F¥' | R' ¢ = 0}.

The linear systems kerxz(R.) and kerz(R’.) are also
called behaviours. The following lemma shows how left D-
morphisms from M to M’ induce abelian group morphisms
between the abelian groups ker z(R’) and ker #(R).

Lemma 1.2 ([3], Corollary 2.2): With the hypotheses and
notations of Lemma 1.1, if F is a left D-module, then the
behaviour morphism ([7]) is defined by:

P.:kerg(R') — kerg(R.)

¢ — n=P¢
Lemma 1.2 illustrates how morphisms provide some kind
of “Galois transformations” which send solutions of the



second system to solutions of the first one. If M = M’, then
Galois transformations are “Galois symmetries” of ker #(R.).

II. PARAMETRIZATIONS OF LINEAR SYSTEMS

Let us introduce a few concepts and results of module
theory and homological algebra (see, e.g., [8]).

Definition 2.1 ([8]): Let D be a left noetherian domain
and M = DY?/(D'*9R) the left D-module finitely
presented by the matrix R € D*P,

1) M is free of rank r € N = {0,1,..

where =2 denotes an isomorphism.

2) M is projective if there exist r € N and a left D-

module P such that M & P & D1X7, where @& denotes
the direct sum of left D-modules.

3) M is reflexive if the canonical left D-homomorphism

e : M — homp(homp(M,D),D) defined by

e(m)(f) = f(m) for all f € homp(M, D) and all

m € M, is bijective, i.e., € is a left D-isomorphism.
4) M is torsion-free if the torsion left D-submodule

Jif M = DT,

t(M)={meM|3deD\{0}: dm =0}

of M is reduced to 0, i.e., t(M) = 0.
5) M is torsion if t(M) = M, ie., every m € M is a
torsion element of M, namely, m € t(M).

If N = D?/(RDP) is the right D-module finitely pre-
sented by R € D9*P, then N admits a finite free resolution

O<—N<LDSO Q1. DSt Q2. D2 &Dsg_ & .
2)
where So = q, S1 = D, Ql = R and Qz € D%i-1%X8i gpnd
Q;. : D% — D1 is defined by (Q;.)(n) = Q;n for all

n € D?*, namely, an exact sequence, i.e., x is surjective and:
kerp(Q;.) = {n € D% | Q;n =0}
= imp(Qit1.) = Qip1 D

The exact sequence (2) yields the following complex

Vi1,

Q4

—_— ...,
3)

namely, imp(.Q;) C kerp(.Q;41), since Q; Q;+1 = 0, for

all © > 1. The defects of exactness of (3) are defined by

{ ext® (N, D) = homp (N, D) = kerp(.Q1),

0—>D1XSO Q1 D1><Sl Q2 D1><82 Qs D1><S3

extE(N, D) = kerD(.Qi_,_l)/imD(.Qi), Z Z 1

where kerp(.Qi 1) £ {\ € D=
imp(.Q;) & DY*si-1 Q; for all i > 1.

)

>\Qi+1 = 0} and

Theorem 2.1 ([1]): Let D be a noetherian domain with a
finite global dimension gld(D) ([8]), M = D*?/(D'*4 R)
and the Auslander transposed of M, namely, the right D-
module N = D9/(R DP) finitely presented by R.

1) The following left D-isomorphism holds:
t(M) = ext} (N, D). %)

2) M is a torsion-free left D-module iff ext}, (IV, D) = 0.

3) M is reflexive left D-module iff ext’, (N, D) = 0 for
i=1,2.

4) M is projective left D-module iff ext’, (N, D) = 0 for
i=1,...,gld(D).

A left D-module F is injective iff for every ¢ > 1 and
every R € D4, the linear system R 7 = ¢ admits a solution
n € F, for all {( € F1 satisfying the compatibility conditions
of Rn = ¢, namely, Ry ¢ = 0, where kerp(.R) = D" R;.

A left D-module F is called a cogenerator if, for every
left D-module M and every nonzero m € M, there exists
f € homp(M,F) such that f(m) # 0. More generally, a
left D-module F is injective cogenerator if F is both an
injective and a cogenerator left D-module ([8]).

The linear system kerxz(R.) can be studied by means
of the left D-module M finitely presented by the sys-
tem matrix R since, due to a remark of Malgrange ([6]),
we have kerz(R.) = homp(M,F). If the D-module F
(i.e., also called signal space) is rich enough, i.e., is an
injective cogenerator left D-module ([8]), then an exact
duality exists between the systemic properties of kerz(R.)
and the module properties of the left D-module M. For
instance, the autonomous elements of kerz(R.) are in a 1-1
correspondence with the torsion elements of M. Moreover,
the parametrizability property of ker z(R.), i.e., the existence
of Q € DP*™ satisfying ker z(R.) = Q F™, is equivalent to
the torsion-freeness of the left D-module M, i.e., t(M) = 0.
Then, @Q (resp., Q F™) is called a parametrization (resp., an
image representation) of kerz(R.) and £ € F™ satisfying
n=Q¢& € kerr(R.) is called a potential of kerz(R.).

The next lemma and corollary, which will play important
roles in what follows, generalize the above result.

Corollary 2.1 ([1]): Let D be a noetherian domain
(namely, a ring with non zero-divisors and which left and
right ideals are finitely generated as left and right D-
modules) with a finite global dimension gld(D) = n ([8]).
Moreover, let M = D**P/(D'*4 R) be the left D-module
finitely presented by R € D?*P_ If we set Q1 = R, p1 = p
and pg = ¢, then we have the following results:

1) M is a torsion-free left D-module iff there exists a

matrix ()2 € DP1*P2 gsuch that the following exact
sequence of left D-modules holds:

D1xpo ~Q1} DLlxp1 .Q2} Dxp2

2) M is a reflexive left D-module iff there exist two
matrices Qo € DP1*P2 and Q3 € DP2*P3 such that
the following exact sequence of left D-modules holds:

Dixpo Q1 pixpy Q2 pixps Q3 pixps

3) M is a projective left D-module iff there exist n
matrices (Q; € DPi-t*Pi 4§ =2 ... n+ 1, such that
the following exact sequence of left D-modules holds:

pixpo @, plxp Q2 Ol plxpasa



If F is an injective left D-module, then the results of
Corollary 2.1 can be dualized to get the following system-
theoretic interpretations of the module properties in terms of
the existence of a chain of parametrizations.

Corollary 2.2 ([1]): Let D be a noetherian domain with a
finite global dimension gld(D) = n, M = D*?/(D'*4 R)
the left D-module finitely presented by R € D9*P and F
an injective left D-module. If we set )1 = R, p; = p and
po = ¢, then we have the following results:

1) If M is a torsion-free left D-module, then there exists

a matrix Qo € DP1*P2 guch that the following exact
sequence of abelian groups holds

JFPo €Q1~ oz Q2. _7:1727

ie., kerz(Q1.) = Q2 FP2. The matrix (), is then a
parametrization of the linear system kerz(Q;.).

2) If M is a reflexive left D-module, then there exist
Q2 € DPr*Pz and Q3 € DP2*P3 gsuch that the
following exact sequence of abelian groups holds

JFPo éQl' Fp1 €Q2' FP2 €Q3' ].‘I)s’

ie., kerr(Q1.) = Q2 FP? and kerz(Q2.) = Q3 FP3.
3) If M is a projective left D-module, then there exist n

matrices (Q; € DPi-1*Pi for 4 = 2,...,n+1 such that

the following exact sequence of abelian groups holds

po Q1 p @2 @ni1 p,iy
Fro Qi pm Q2 Bt ppa

i.e., ker]:(QZ-.) = Qi+1 FPi+t for ¢ = 1, ey

III. EXTENSION TO MORPHISMS BETWEEN ext’ (-, D)

Let D be a noetherian domain and M and M’ two left
D-modules respectively defined by M = D'*P /(D9 R)
and M’ = DY¥' /(D9 R'). Let N = D?/(R DP) (resp.,
N’ = DY /(R D")) be the Auslander transpose of M
(resp., M"). In this section, we show that f € homp (M, M)
induces f; € homp (ext’, (N, D), ext’, (N’, D)) for i > 0.

From Lemma 1.1, a left D-morphism f € homp (M, M)
can be defined by means of two matrices P € DP*?" and
Q € D77 gatisfying the relation RP = QR and the
following commutative exact diagram holds:

D1><q _R> D1><p SN M —0
lQ l.p Ly
D1><q/ i’) D1><p L/) M’ —0.

The right D-modules N and N’ are respectively defined
by the finite presentations

0 N <& pe e prl2°T homp (M, D) «— 0,

%
’
K Ly OT

0 N < pd B pr' %7 yomp (MY, D) «— o,
where the right D-morphism 7* is defined by
7* : homp (M, D) homp (D'*P, D)

¢ +— o¢om,

—

and ¢, is the right D-isomorphism defined by

tp homp(DY?P D) — DP
o @) )T

where {fj};j=1, . p is the standard basis of D'*P, namely f;
is the row vector of length p with 1 at the j entry and 0
elsewhere. The right D-morphisms 7'* and ¢,/ can similarly
be defined. If we simply denote homp (M, D) by M*, then
f € homp(M, M') induces the right D-morphism

f*: M* =homp(M',D) — M* =homp(M, D)
¢ — ¢of,
and g € homp(N’, N) defined by the commutative exact
diagram given by Figure 1, i.e., g is defined by:
g: N — N
A — w(@QN),

Hence, f* induces the right D-morphism of exact sequences
of right D-modules defined in Figure 2, with the notations
po=a¢p =p Q1 =Rp=q.p)=p.Q =R,
Py = @, P, = P, and where the matrices (); € DPi—1%Pi,
Qe DPi-1%Pi and P; € DPi*Pi are inductively defined by:

kerp(Q;.) = Qiy1 DPit?,

Ve DY,

Vi>1, kerp(Q).) = Qi y DPi+1, (5)

Qi P =P 1 Q;.
The matrices P;’s exist for ¢ > 2 because we have
Q1PQ, = P (QyQ) = 0, which shows that

(Py Q%) DP> C kerp(Q1.) = Qo DP, and thus there exists a
matrix P, € DP2*P2 guch that P; Q4 = Q2 P», and similarly
for the matrices P;’s for ¢ > 3.

Applying the contravariant left exact functor homp( -, D)
([8]) to the commutative exact diagram given by Figure 2, we
obtain the morphism of complexes of left D-modules defined
by the commutative diagram given in Figure 3, where

K*: N* — (DPo)*
¢ — ok,
R
Y (@(fl) @(fpo%

where {f;};=1. p, is the standard basis of DP°. The defects
of exactness of the two horizontal complexes are defined by:

vi>1 extly (N, D) = kerp(.Qi41)/(DV*Pi=1 Q;),
VA 5 . ’
- ext’ (N', D) = kerp(. ;+1)/(D1Xpi—1 Q7).

See [8]. For every A € kerp(.Qi41), we have A P; Qj,, =
AQis1 Piy1 = 0, ie, AP € kerp(.Q,,,) which yields
the left D-morphism .P; : kerp(.Qiy1) — kerp(.Qj ),
for i > 0. Moreover, for every p € D' Pi-1 we have
(LQ:i) P, = (uPi_1)Q, € DYPi-1Q!, which yields the
left D-morphism .P; : D'*Pi-1Q, —s D' Pi-1 Q! for
i > 1. Hence, if we denote by

pi kerp(.Qiy1) — ext (N, D),
P kerp(.Q} 1) — exti(N', D),



the respective canonical projections, then the matrix P;
induces the commutative exact diagram defined in Figure 4,
where the left D-morphism f; is defined by:

Vi>1, firexth(N,D) — exth(N’,D) ©)

pi(A) > pi(AP).

Moreover, we define fy : kerp(.Q1) — kerp(.Q}) by
fo(A) = APy, for all A € D'*Po. We note that the left
D-morphisms f;’s for ¢ > 1 do depend only on f*, i.e., on
f, because if we consider different matrices P; € DPi%pi
satisfying (5) instead of P;, then, there exist Z; € D’“‘rle’/i,
for ¢ > 1, such that:

Pi=P+7Zi1Qi+Qi1Zi, YVix>1

Then, we get that the left D-morphism
[l iextt,(N,D) — exth(N,D)
pi(A) —  pi(AP),
for all A € kerp(.Q;+1), satisfies:

fi(pi(N) = pi(A Py) + pi(A Zi—1) Q) + pi(A Qit1) Zi)
= PQ(A Py) = fi(pi(N).
Moreover, fy only depends on Py, i.e., on f.

Proposition 3.1: Let D be a noetherian domain and
Q1 € DPox*Pr Q) € DPoXPi two matrices. Consider the
finitely presented left D-modules M = D'*P1 /(D1*Po @),
M' = DY\ /(D'P0 Q%) and their Auslander transposes,
namely, the right D-modules N = DPo/(Q), DP?)
and N’ = DPo/(Q) D). Then, f € homp(M,M’),
defined by P, € DP*Pi and Py € DPoxro
satisfying Q1 Py = Py Q), induces left D-morphisms
fi @ extt, (N, D) — extl, (N, D) defined by (6), where
the matrices @Q;’s, Q;’s and P;’s are defined by (5) for i > 1.

If R € D%*Pi (resp., R, € D%-1%P) is a
matrix such that kerp(.Q;r1) = DY%-1R; (resp.,
kerp(.Qj ) = D™ %1 RY), then the left D-morphism
P kerp(.Qiq1) — kerp(.Qj, ) becomes:

P : D41 R, — D41 R
uR;, — uR;P.

Since p R; P; € Dlxqéfle for all ¢ € D' %-1_ there
exists P/_; € D%-1*%-1 guch that:

Vi>1, R;Pi=P ,R. (7)

Using (4), we get:
{ t(M) = exth (N, D) = kerp(.Q2) /(D™ Qy),
t(M') = extp (N, D) = kerp(.Q})/ (D70 Q4).
Hence, Proposition 3.1 implies that f € homp(M,M’)

induces an element of homp (t(M), t(M')) which is defined
by the following left D-morphism:

frot(M)  — t(M)

n(N) — AP, ®

We note that p; (resp., p}) is the restriction of the standard
projection 7 : DYP1 — M (resp., ©’ : DY*P1 — M') to
kerp(.Q2) € DY*P1 (resp., kerp(.Qh) C DY*P),

Since we have M/t(M) = DYP1/kerp(.Q2) and
M’ Jt(M') = DY\ / kerp(.Q}) (see Theorem 2.1), we ob-
tain the left D-morphism hy € homp (M /t(M), M’ /t(M'))
defined by

0 — kerp(.Q2) — DVPr L M/H(M) —0
l.p l.p 1 Ay
0— kerp(.Qy) — DV L MIHM) —0,
ie.,
hyt M/t(M) — M’ /t(M') ©
o1(A) — di(AP),

for all A € DYXP1, where oy : DY*P1 — M /t(M) (resp.,
o : DY*P1 — M'/t(M')) is the canonical projection.

Corollary 3.1: With the previous hypotheses and nota-
tions, f € homp (M, M") induces the two left D-morphisms
(8) and (9).

Example 3.1: Let us consider the tank model studied in
[5] obtained by linearizing the Saint-Venant equations around

the Riemann invariants. If D = R [9, 6], where 0 = £ and
0 is the shift operator, then the system matrix is given by:
2 1 —260
R = c D2X3.
1 6 —260

Let M = D'Y3/(D'™™2R) be the left D-module finitely
presented by the matrix R and N = D?/(R D?3) its Auslan-
der transpose. Let us consider a D-endomorphism f of M
defined by two matrices P € D3*3 and Q € D?*? satisfying
R P = @ R. With the notations Py =Q, P, =P, Q1 = R,
then kerp(Q1.) = Q2 D, where:

Q2= (206 206 &*+1)T.

Then, f induces the commutative exact diagram of D-
modules defined in Figure 5. Applying the contravariant
left exact functor homp( -, D) to the previous commutative
exact diagram, we obtain the morphism of complexes:

0> DIx2 Q1 D1x3 Q2 D .0
L P 1.~ 1l .P
0— D2 S, pus L p o,

The defects of exactness of the horizontal complexes are

exth (N, D) = kerp(.Q2)/(D**? Q1)
= (DV?Ry)/(D? Q1) = t(M),
exth(N, D) = D/(DY**Qy) = D/(206,5% + 1),

where the matrix Ry € D?*3 is defined by:

a (1 1 0
"Tlo 1262 206 )



Hence, the D-module t(M) is generated by

T = Y1 — Y2,
To=—(1+6%)y2+200ys,

which satisfy (62 —1)7; =0 for i = 1, 2. If {e;}i=1,2,3 18
the standard basis of D'*3 and oy : D'*3 — M/t(M) =
D3 /(DY*2 R}) the canonical projection onto M /t(M),
then the z; = o1(e;)’s generate M /t(M) and satisfy:

Z1 — 29 = O,
—(1 +(52)22 +20623 =0.
Using (6), (7) and Corollary 3.1, we obtain the D-morphisms

(D'*2 R,)/(D**2 Q) iR (D'*2 R,)/(D**2 Q)

m(uRy) +— w(uwRy P1)=m(pnP)Ry),
D/(D3Q,) REN D/(D3 Q,)
p2(A) +—— pa(A ),

the commutative exact diagram of D-modules defined in
Figure 6, where P € D?*? satisfies Ry P, = P} Ry and:

hi: MJHM) —  M/t(M)
0'1()\) [— 0'1()\P1).

We find that f € endp (M) defined by
0 0 0
—-20 20
Py = . P=| 20 —20 o
0 0

6 =6 0
yields

)

and induces that the D-morphisms f;, fo and h; defined by:
hl (Zl) = 0,

-20 0

P, =0, P(')<_28 0

f2 :O7

fi(m) = =20,
fi(m) =—-20m,

hl(Zg) =6 (Zl - 22) = 0.
Finally, if we consider another f € endp (M) defined by

0 0 206
Py=0, P=|0 0 200 |,
0 0 1462
then
P,=6+1, Pj=0,

which induces the D-morphisms f;, fo and hy defined by:

fi(m) =0, B B

{ F1(7) = 0, fa(p2(1)) = (6% + 1) pa(1) = 0,

hi(z1) =200 23 = (1 + 62) 29,

hl(Zg) =200z23 = (1 +62) 22,
hl(Zg) = (1"‘52)23.

hl(ZQ) = 26(2’1 — 22) = 0,

IV. MORPHISMS, PARAMETRIZATIONS AND POTENTIALS

Corollary 3.1 is a well-known result in module theory,
which can directly be proved without using the extension
modules exth (N, D) and ext},(N’, D). However, we recall
that the left D-modules ext’, (N, D)’s for i > 1, characterize
whether or not the left D-module M is torsion-free, reflexive
or projective (see Theorem 2.1 and [1]). Hence, for every
f € homp(M,M’), Proposition 3.1 shows that the left
D-morphisms f;’s defined by (6) send the obstructions
ext’,(N,D)’s for i > 1 for M to be projective to the
obstructions ext’, (N’, D)’s for i > 1 for M to be projective.
Hence, Corollary 3.1 is just a particular case of the previous
remark.

We obtain the straightforward corollary of Proposition 3.1
and of the previous remark.

Corollary 4.1: With the previous hypotheses and nota-
tions, if M and M’ are both torsion-free left D-modules,
then every f € homp(M, M’) induces the following com-
mutative exact diagram

Q2

Dixro Q1 pDixp Dixp2 T2, Mo —0
1 .Po 1P 1P | ho
ixpl, Q1 1xp} Q 1 x p} 5 /

D**P0 — D1 —=  D*P2 — M, — 0,

where my : DY*P> — M, (resp., wh : D'*P> — M)
is the canonical projection onto My = D'*P2 /(D1*P1 (,)
(resp., M} = DY*P2 /(D1*P1 Q) and:

ha(m2(N)) = m5(A Po).

If M and M’ are both reflexive left D-modules, then
we get the commutative exact diagram of left D-modules
defined in Figure 7, where w3 : D'*P3 — My (resp.,
mh : DYPs — M}) is the canonical projection onto the
finitely presented left D-module Mz = D1*P2 /(D1*P2 (3)
(resp., M} = DV¥Ps /(D72 %)) and:

ha(ms(A)) = m3(A Ps).

Ve Dtz

VA€ D,

If M and M’ are both projective left D-modules and
D has a finite global dimension gld(D) = n ([8]), then
we get the commutative exact diagram of left D-modules
defined in Figure 8, where m, : D> — M, (resp.,
x! : DY Pn — M) is the canonical projection onto

the left D-module M, = DYPn/(D*Pn-1Q),) (resp.,
M! = DYPn /(D *Pn-1 Q")) and:

VAe DY b (1) =7, (A Py).

Finally, if M and M’ are both free left D-modules, then
there exist two matrices Qo € DP'*P2 and Q) € DP1*P2
such that the following commutative exact diagram holds:

Q2

Dixpo -9, pixpn 92 pixp
| P l.p L.P
/ Qll ’ Q’2 ’
D1xpo BAIN DLxp1 X2, D1Xps —0.

The next corollary directly follows from Corollary 4.1.
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Corollary 4.2: With the previous hypotheses and nota-
tions, if M and M’ are both torsion-free left D-modules and
F an injective left D-module, then every f € homp (M, M’)
induces the commutative exact diagram of abelian groups
defined in Figure 9, where ko : kerz(Q5.) — kerz(Q2.)
is defined by k2(¢') = Py ¢’ for all (' € kerx(Q5.).

Now, if M and M’ are two reflexive left D-modules and F
an injective left D-module, then f € homp (M, M') induces
the commutative exact diagram of abelian groups defined in
Figure 10, where k3 : ker #(Q%.) — kerx(Q3.) is defined
by k3(¢') = P3¢’ for all ¢’ € ker #(Q%.).

Moreover, if M and M’ are two projective left D-modules
and F is a left D-module, then f € homp (M, M’) induces
the following commutative exact diagram of abelian groups
defined in Figure 11, where k,, : kerz(Q.,.) — kerz(Q,.)
is defined by k,(¢") = P, ¢’ for all (' € kerx(QY,.).

Finally, if M and M’ are both free left D-modules
and F is a left D-module, then there exist two matrices
Qy € DPv*P2 and Q) € DPi*P> such that the following
commutative exact diagram of left D-modules holds:

Q1~ QQ.
— —

FPo Fp1 Fp2 0
T Po. T Py T Pa.
2 A SR - SC: B S )

Example 4.1: Let D = Q[01, 02, 03] and consider the left
D-module M = D'3/(D @) finitely presented by the
divergence operator Q; = (01 02 03) in R3. The left
D-module M is reflexive ([1]) and M can be parametrized
by the matrix

0 —-03 O
Q2 = 83 0 *81 € l)3><3
-0y O 0

defining the curl operator, i.e., kerp(.Q2) = D Q1. More-
over, the matrix Q3 = QT defining the gradient op-
erator parametrizes the D-module D'*3/(D1*3Qs), i.e.,
kerp(.Q3) = D'@3(Q,. Using OREMORPHISMS ([4]),
we obtain that an element f € endp(M) is defined by
f(x(N\) = 7(\ P1), where 7w : D'*3 — M is the canonical
projection onto M, A € D'*3 and P, € D3*3 is defined by

P =
as —a3 03 — ar 02 —ay 03 — ag 02
—as503 as+ a7+ (a1 —ag) O3 —a2 03 + ag O1
s 02 as O+ (—a1 + ag) 02 o Os + g O1 + g

where the «;’s are arbitrary elements of D for i =1,...,9.
We can check that Q; P, = ag@;. According to Corol-
lary 4.1, there exist two matrices

P, =
ag + ag 0o + (a1 — ag) O3 as O3
—ay O + a3 03 a0y + 0 01 + g
04682—04763 (65) 83—04661
—Q5 32

—Qs3 81 + (Oél — Ckg) 82
ag + a7 01 + (a1 — ag) O3

P3:a8+04282+(a1—a9) 33

such that the commutative exact diagram defined in Figure 7
holds, i.e., such that QQ P,=P QQ and Qg P; =P Qg.

If F is a D-module, then the endomorphism f of M
defined by the matrix P; induces the Galois transformation:

klzkery:(Ql.) — keI‘]:(Ql.)
n o =PI

Now, if F is an injective D-module (e.g., F = C>(Q),
where 2 is an open convex subset of R3) and 1) € ker £(Q1.)
is parametrized by a potential £ € F3, i.e., n = Q2 &, then
the Galois transformation P;. induces a transformation on &
defined by & = P, ¢ which satisfies 7 = Q5 £.

This result can be checked again as follows: combining
n=Pin,n=0Q2§ and Q2 P, = P, 2, we get

=P (Q28) = Q2 (P2§) = Q2&,
where £ = P, €.

In its turn, the transformation P». induces the following
Galois transformation of ker z(Qs.):

]{52 : keI‘f(Qg.) — lfer]:(Qg.)
£ — (=h¢

If £ € kerz(Q2.) is parametrized by a potential § € F,
ie., £ = @30, then the Galois transformation Ps. induces
the transformation on 6 defined by 6 = P50, which is such
that £ = Q3 0. Indeed, combining £ = P» &, &€ = Q36 and
Qs Ps = P, (3, we finally obtain

E=Py(Q30) = Q3 (P36) =Q30,
where 6 = P5 6.
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