Symmetries, parametrizations and potentials of multidimensional linear systems

Thomas Cluzeau
University of Limoges,
CNRS, XLIM UMR 6172,
DMI 123 avenue Albert Thomas, 87060 Limoges cedex, France.
cluzeau@ensil.unilim.fr

Abstract

Within the algebraic analysis approach to linear systems theory, the purpose of this paper is to study how left D homomorphisms between two finitely presented left D-modules associated with two linear systems induce natural transformations on the autonomous elements of the two systems and on the potentials of the parametrizations of the parametrizable subsystems. Extension of these results are also considered for linear systems inducing a chain of successive parametrizations.

I. Homomorphisms of Linear Systems

Let D be a ring of functional operators (e.g., ordinary or partial differential operators, time-delay operators, shift operators) and $R \in D^{q \times p}$ (resp., $R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$) a $q \times p$ (resp., $q^{\prime} \times p^{\prime}$) matrix. We consider the left D-module finitely presented by R (resp., R^{\prime}), namely, $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ (resp., $M^{\prime}=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)$). A left D-homomorphism f (or simply morphism) from M to M^{\prime} is a left D-linear map $f: M \longrightarrow M^{\prime}$. The abelian group of all morphisms from M to M^{\prime} is denoted $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$. If $M=M^{\prime}$, $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ is called a left D-endomorphism of M. We denote by $\operatorname{end}_{D}(M)=\operatorname{hom}_{D}(M, M)$ the ring of all endomorphisms of M also called the endomorphism ring.

Lemma 1.1 ([3], Corollary 2.1): With the previous notations, let us consider the finite presentations of M and M^{\prime}

$$
\begin{align*}
& D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0 \\
& D^{1 \times q^{\prime}} \xrightarrow{. R^{\prime}} D^{1 \times p^{\prime}} \xrightarrow{\pi^{\prime}} M^{\prime} \longrightarrow 0 \tag{1}
\end{align*}
$$

where $(. R)(\lambda)=\lambda R$ for all $\lambda \in D^{1 \times q}$ and similarly for R^{\prime}, namely, (1) are exact sequences, i.e., π (resp., π^{\prime}) is surjective and ker $\pi=D^{1 \times q} R$ (resp., ker $\pi^{\prime}=D^{1 \times q^{\prime}} R^{\prime}$).

1) The existence of a left D-morphism $f: M \longrightarrow M^{\prime}$ is equivalent to the existence of two matrices

$$
P \in D^{p \times p^{\prime}}, \quad Q \in D^{q \times q^{\prime}}
$$

satisfying the commutation relation:

$$
R P=Q R^{\prime}
$$

Then, we have the commutative exact diagram

[^0]where $f(\pi(\lambda))=\pi^{\prime}(\lambda P)$ for all $\lambda \in D^{1 \times p}$.
2) If we denote by $R_{2}^{\prime} \in D^{q_{2}^{\prime} \times q^{\prime}}$ a matrix satisfying
$$
\operatorname{ker}_{D}\left(. R^{\prime}\right) \triangleq\left\{\lambda \in D^{1 \times q^{\prime}} \mid \lambda R=0\right\}=D^{1 \times q_{2}^{\prime}} R_{2}^{\prime}
$$
then P and Q are defined up to homotopy, i.e.,
\[

\left\{$$
\begin{array}{l}
\bar{P}=P+Z_{1} R^{\prime} \\
\bar{Q}=Q+R Z_{1}+Z_{2} R_{2}^{\prime},
\end{array}
$$\right.
\]

where $Z_{1} \in D^{p \times q^{\prime}}$ and $Z_{2} \in D^{q \times q_{2}^{\prime}}$ are two arbitrary matrices, satisfy the same relation

$$
R \bar{P}=\bar{Q} R^{\prime}
$$

and $f(\pi(\lambda))=\pi^{\prime}(\lambda \bar{P})$ for all $\lambda \in D^{1 \times p}$.
See [3] for algorithms which compute the matrices P and Q when D is a commutative polynomial ring over a computable field or a noncommutative polynomial rings for which Buchberger's algorithm terminates for any admissible term order. These algorithms are implemented in the package OreMorphisms ([4]) for classes of Ore algebras ([1]).

In the particular case where $R^{\prime}=R$, from Lemma 1.1, we obtain that the existence of a left D-endomorphism f of M is equivalent to the existence of two matrices $P \in D^{p \times p}$ and $Q \in D^{q \times q}$ satisfying the following commutation relation:

$$
R P=Q R
$$

Let \mathcal{F} be a left D-module and consider the linear systems:

$$
\left\{\begin{array}{l}
\operatorname{ker}_{\mathcal{F}}(R .)=\left\{\eta \in \mathcal{F}^{p} \mid R \eta=0\right\} \\
\operatorname{ker}_{\mathcal{F}}\left(R^{\prime} .\right)=\left\{\zeta \in \mathcal{F}^{p^{\prime}} \mid R^{\prime} \zeta=0\right\}
\end{array}\right.
$$

The linear systems $\operatorname{ker}_{\mathcal{F}}\left(R\right.$.) and $\operatorname{ker}_{\mathcal{F}}\left(R^{\prime}\right.$.) are also called behaviours. The following lemma shows how left D morphisms from M to M^{\prime} induce abelian group morphisms between the abelian groups $\operatorname{ker}_{\mathcal{F}}\left(R^{\prime}\right)$ and $\operatorname{ker}_{\mathcal{F}}(R)$.

Lemma 1.2 ([3], Corollary 2.2): With the hypotheses and notations of Lemma 1.1, if \mathcal{F} is a left D-module, then the behaviour morphism ([7]) is defined by:

$$
\begin{aligned}
P .: \operatorname{ker}_{\mathcal{F}}\left(R^{\prime}\right) & \longrightarrow \operatorname{ker}_{\mathcal{F}}(R .) \\
\zeta & \longmapsto \eta=P \zeta .
\end{aligned}
$$

Lemma 1.2 illustrates how morphisms provide some kind of "Galois transformations" which send solutions of the
second system to solutions of the first one. If $M=M^{\prime}$, then Galois transformations are "Galois symmetries" of $\operatorname{ker}_{\mathcal{F}}(R$.).

II. Parametrizations of linear systems

Let us introduce a few concepts and results of module theory and homological algebra (see, e.g., [8]).

Definition 2.1 ([8]): Let D be a left noetherian domain and $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ the left D-module finitely presented by the matrix $R \in D^{q \times p}$.

1) M is free of rank $r \in \mathbb{N}=\{0,1, \ldots\}$ if $M \cong D^{1 \times r}$, where \cong denotes an isomorphism.
2) M is projective if there exist $r \in \mathbb{N}$ and a left D module P such that $M \oplus P \cong D^{1 \times r}$, where \oplus denotes the direct sum of left D-modules.
3) M is reflexive if the canonical left D-homomorphism $\varepsilon: M \longrightarrow \operatorname{hom}_{D}\left(\operatorname{hom}_{D}(M, D), D\right)$ defined by $\varepsilon(m)(f)=f(m)$ for all $f \in \operatorname{hom}_{D}(M, D)$ and all $m \in M$, is bijective, i.e., ε is a left D-isomorphism.
4) M is torsion-free if the torsion left D-submodule

$$
t(M)=\{m \in M \mid \exists d \in D \backslash\{0\}: d m=0\}
$$

of M is reduced to 0 , i.e., $t(M)=0$.
5) M is torsion if $t(M)=M$, i.e., every $m \in M$ is a torsion element of M, namely, $m \in t(M)$.

If $N=D^{q} /\left(R D^{p}\right)$ is the right D-module finitely presented by $R \in D^{q \times p}$, then N admits a finite free resolution

$$
\begin{equation*}
0 \longleftarrow N \longleftarrow \stackrel{\kappa}{\longleftarrow} D^{s_{0}} \stackrel{Q_{1} \cdot}{\longleftarrow} D^{s_{1}} \stackrel{Q_{2} \cdot}{\longleftarrow} D^{s_{2}} \stackrel{Q_{3} .}{\longleftarrow} D^{s_{3}} \stackrel{Q_{4} \cdot}{\longleftarrow} \ldots, \tag{2}
\end{equation*}
$$

where $s_{0}=q, s_{1}=p, Q_{1}=R$ and $Q_{i} \in D^{s_{i-1} \times s_{i}}$ and $Q_{i} .: D^{s_{i}} \longrightarrow D^{s_{i-1}}$ is defined by $\left(Q_{i}.\right)(\eta)=Q_{i} \eta$ for all $\eta \in D^{s_{i}}$, namely, an exact sequence, i.e., κ is surjective and:

$$
\begin{aligned}
\forall i \geq 1, \quad \operatorname{ker}_{D}\left(Q_{i} .\right) & \triangleq\left\{\eta \in D^{s_{i}} \mid Q_{i} \eta=0\right\} \\
& =\operatorname{im}_{D}\left(Q_{i+1} .\right) \triangleq Q_{i+1} D^{s_{i+1}}
\end{aligned}
$$

The exact sequence (2) yields the following complex
$0 \longrightarrow D^{1 \times s_{0}} \xrightarrow{Q_{1}} D^{1 \times s_{1}} \xrightarrow{Q_{2}} D^{1 \times s_{2}} \xrightarrow{Q_{3}} D^{1 \times s_{3}} \xrightarrow{Q_{4}} \ldots$,
namely, $\operatorname{im}_{D}\left(. Q_{i}\right) \subseteq \operatorname{ker}_{D}\left(. Q_{i+1}\right)$, since $Q_{i} Q_{i+1}=0$, for all $i \geq 1$. The defects of exactness of (3) are defined by

$$
\left\{\begin{array}{l}
\operatorname{ext}_{D}^{0}(N, D)=\operatorname{hom}_{D}(N, D)=\operatorname{ker}_{D}\left(\cdot Q_{1}\right) \\
\operatorname{ext}_{D}^{i}(N, D) \cong \operatorname{ker}_{D}\left(\cdot Q_{i+1}\right) / \operatorname{im}_{D}\left(\cdot Q_{i}\right), \quad i \geq 1
\end{array}\right.
$$

where $\operatorname{ker}_{D}\left(. Q_{i+1}\right) \triangleq\left\{\lambda \in D^{1 \times s_{i}} \mid \lambda Q_{i+1}=0\right\}$ and $\operatorname{im}_{D}\left(. Q_{i}\right) \triangleq D^{1 \times s_{i-1}} Q_{i}$ for all $i \geq 1$.

Theorem 2.1 ([1]): Let D be a noetherian domain with a finite global dimension $\operatorname{gld}(D)([8]), M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ and the Auslander transposed of M, namely, the right D module $N=D^{q} /\left(R D^{p}\right)$ finitely presented by R.

1) The following left D-isomorphism holds:

$$
\begin{equation*}
t(M) \cong \operatorname{ext}_{D}^{1}(N, D) \tag{4}
\end{equation*}
$$

2) M is a torsion-free left D-module iff $\operatorname{ext}_{D}^{1}(N, D)=0$.
3) M is reflexive left D-module iff $\operatorname{ext}_{D}^{i}(N, D)=0$ for $i=1,2$.
4) M is projective left D-module iff $\operatorname{ext}_{D}^{i}(N, D)=0$ for $i=1, \ldots, \operatorname{gld}(D)$.

A left D-module \mathcal{F} is injective iff for every $q \geq 1$ and every $R \in D^{q}$, the linear system $R \eta=\zeta$ admits a solution $\eta \in \mathcal{F}$, for all $\zeta \in \mathcal{F}^{q}$ satisfying the compatibility conditions of $R \eta=\zeta$, namely, $R_{2} \zeta=0$, where $\operatorname{ker}_{D}(. R)=D^{1 \times r} R_{2}$.

A left D-module \mathcal{F} is called a cogenerator if, for every left D-module M and every nonzero $m \in M$, there exists $f \in \operatorname{hom}_{D}(M, \mathcal{F})$ such that $f(m) \neq 0$. More generally, a left D-module \mathcal{F} is injective cogenerator if \mathcal{F} is both an injective and a cogenerator left D-module ([8]).

The linear system $\operatorname{ker}_{\mathcal{F}}(R$.) can be studied by means of the left D-module M finitely presented by the system matrix R since, due to a remark of Malgrange ([6]), we have $\operatorname{ker}_{\mathcal{F}}(R.) \cong \operatorname{hom}_{D}(M, \mathcal{F})$. If the D-module \mathcal{F} (i.e., also called signal space) is rich enough, i.e., is an injective cogenerator left D-module ([8]), then an exact duality exists between the systemic properties of $\operatorname{ker}_{\mathcal{F}}(R$. and the module properties of the left D-module M. For instance, the autonomous elements of $\operatorname{ker}_{\mathcal{F}}(R$.$) are in a 1-1$ correspondence with the torsion elements of M. Moreover, the parametrizability property of $\operatorname{ker}_{\mathcal{F}}(R$.), i.e., the existence of $Q \in D^{p \times m}$ satisfying $\operatorname{ker}_{\mathcal{F}}(R)=.Q \mathcal{F}^{m}$, is equivalent to the torsion-freeness of the left D-module M, i.e., $t(M)=0$. Then, Q (resp., $Q \mathcal{F}^{m}$) is called a parametrization (resp., an image representation) of $\operatorname{ker}_{\mathcal{F}}(R$.$) and \xi \in \mathcal{F}^{m}$ satisfying $\eta=Q \xi \in \operatorname{ker}_{\mathcal{F}}(R$.$) is called a potential of \operatorname{ker}_{\mathcal{F}}(R$.$) .$

The next lemma and corollary, which will play important roles in what follows, generalize the above result.

Corollary 2.1 ([1]): Let D be a noetherian domain (namely, a ring with non zero-divisors and which left and right ideals are finitely generated as left and right D modules) with a finite global dimension $\operatorname{gld}(D)=n$ ([8]). Moreover, let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ be the left D-module finitely presented by $R \in D^{q \times p}$. If we set $Q_{1}=R, p_{1}=p$ and $p_{0}=q$, then we have the following results:

1) M is a torsion-free left D-module iff there exists a matrix $Q_{2} \in D^{p_{1} \times p_{2}}$ such that the following exact sequence of left D-modules holds:

$$
D^{1 \times p_{0}} \xrightarrow{Q_{1}} D^{1 \times p_{1}} \xrightarrow{Q_{2}} D^{1 \times p_{2}} .
$$

2) M is a reflexive left D-module iff there exist two matrices $Q_{2} \in D^{p_{1} \times p_{2}}$ and $Q_{3} \in D^{p_{2} \times p_{3}}$ such that the following exact sequence of left D-modules holds:

$$
D^{1 \times p_{0}} \xrightarrow{. Q_{1}} D^{1 \times p_{1}} \xrightarrow{. Q_{2}} D^{1 \times p_{2}} \xrightarrow{. Q_{3}} D^{1 \times p_{3}} .
$$

3) M is a projective left D-module iff there exist n matrices $Q_{i} \in D^{p_{i-1} \times p_{i}}, i=2, \ldots, n+1$, such that the following exact sequence of left D-modules holds:

$$
D^{1 \times p_{0}} \xrightarrow{. Q_{1}} D^{1 \times p_{1}} \xrightarrow{. Q_{2}} \ldots \xrightarrow{Q_{n+1}} D^{1 \times p_{n+1}}
$$

If \mathcal{F} is an injective left D-module, then the results of Corollary 2.1 can be dualized to get the following systemtheoretic interpretations of the module properties in terms of the existence of a chain of parametrizations.

Corollary 2.2 ([1]): Let D be a noetherian domain with a finite global dimension $\operatorname{gld}(D)=n, M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ the left D-module finitely presented by $R \in D^{q \times p}$ and \mathcal{F} an injective left D-module. If we set $Q_{1}=R, p_{1}=p$ and $p_{0}=q$, then we have the following results:

1) If M is a torsion-free left D-module, then there exists a matrix $Q_{2} \in D^{p_{1} \times p_{2}}$ such that the following exact sequence of abelian groups holds

$$
\mathcal{F}^{p_{0}} \stackrel{Q_{1}}{\longleftarrow} \mathcal{F}^{p_{1}} \stackrel{Q_{2} .}{\longleftarrow} \mathcal{F}^{p_{2}},
$$

i.e., $\operatorname{ker}_{\mathcal{F}}\left(Q_{1}\right.$. $)=Q_{2} \mathcal{F}^{p_{2}}$. The matrix Q_{2} is then a parametrization of the linear system $\operatorname{ker}_{\mathcal{F}}\left(Q_{1}.\right)$.
2) If M is a reflexive left D-module, then there exist $Q_{2} \in D^{p_{1} \times p_{2}}$ and $Q_{3} \in D^{p_{2} \times p_{3}}$ such that the following exact sequence of abelian groups holds

$$
\mathcal{F}^{p_{0}} \stackrel{Q_{1}}{\leftrightarrows} \mathcal{F}^{p_{1}} \stackrel{Q_{2}}{\leftrightarrows} \mathcal{F}^{p_{2}} \stackrel{Q_{3} .}{\leftrightarrows} \mathcal{F}^{p_{3}},
$$

i.e., $\operatorname{ker}_{\mathcal{F}}\left(Q_{1}.\right)=Q_{2} \mathcal{F}^{p_{2}}$ and $\operatorname{ker}_{\mathcal{F}}\left(Q_{2}.\right)=Q_{3} \mathcal{F}^{p_{3}}$.
3) If M is a projective left D-module, then there exist n matrices $Q_{i} \in D^{p_{i-1} \times p_{i}}$ for $i=2, \ldots, n+1$ such that the following exact sequence of abelian groups holds

$$
\mathcal{F}^{p_{0}} \stackrel{Q_{1}}{\longleftarrow} \mathcal{F}^{p_{1}} \stackrel{Q_{2}}{\longleftarrow} \ldots \stackrel{Q_{n+1} \cdot}{\longleftarrow} \mathcal{F}^{p_{n+1}}
$$

i.e., $\operatorname{ker}_{\mathcal{F}}\left(Q_{i}.\right)=Q_{i+1} \mathcal{F}^{p_{i+1}}$ for $i=1, \ldots, n$.

III. EXtENSION TO MORPHISMS BETWEEN $\operatorname{ext}_{D}^{i}(\cdot, D)$

Let D be a noetherian domain and M and M^{\prime} two left D-modules respectively defined by $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ and $M^{\prime}=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)$. Let $N=D^{q} /\left(R D^{p}\right)$ (resp., $\left.N^{\prime}=D^{q^{\prime}} /\left(R^{\prime} D^{p^{\prime}}\right)\right)$ be the Auslander transpose of M (resp., M^{\prime}). In this section, we show that $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ induces $f_{i} \in \operatorname{hom}_{D}\left(\operatorname{ext}_{D}^{i}(N, D)\right.$, $\left.\operatorname{ext}_{D}^{i}\left(N^{\prime}, D\right)\right)$ for $i \geq 0$.

From Lemma 1.1, a left D-morphism $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ can be defined by means of two matrices $P \in D^{p \times p^{\prime}}$ and $Q \in D^{q \times q^{\prime}}$ satisfying the relation $R P=Q R^{\prime}$ and the following commutative exact diagram holds:

The right D-modules N and N^{\prime} are respectively defined by the finite presentations

$$
\begin{aligned}
& 0 \longleftarrow N \stackrel{\kappa}{\longleftarrow} D^{q} \stackrel{R .}{\longleftarrow} D^{p} \stackrel{\iota_{p} \circ \pi^{\star}}{\longleftarrow} \operatorname{hom}_{D}(M, D) \longleftarrow 0 \\
& 0 \longleftarrow N^{\prime} \longleftarrow{\kappa^{\prime}}^{q^{\prime}} \stackrel{R^{\prime} .}{\longleftarrow} D^{p^{\prime}} \stackrel{\iota_{p^{\prime}} \circ \pi^{\prime \star}}{\longleftarrow} \operatorname{hom}_{D}\left(M^{\prime}, D\right) \longleftarrow 0
\end{aligned}
$$

where the right D-morphism π^{\star} is defined by

$$
\begin{aligned}
\pi^{\star}: \operatorname{hom}_{D}(M, D) & \longrightarrow \operatorname{hom}_{D}\left(D^{1 \times p}, D\right) \\
\phi & \longmapsto \phi \circ \pi,
\end{aligned}
$$

and ι_{p} is the right D-isomorphism defined by

$$
\begin{aligned}
\iota_{p}: \operatorname{hom}_{D}\left(D^{1 \times p}, D\right) & \longrightarrow D^{p} \\
\psi & \longmapsto\left(\psi\left(f_{1}\right) \ldots \psi\left(f_{p}\right)\right)^{T}
\end{aligned}
$$

where $\left\{f_{j}\right\}_{j=1, \ldots, p}$ is the standard basis of $D^{1 \times p}$, namely f_{j} is the row vector of length p with 1 at the $j^{\text {th }}$ entry and 0 elsewhere. The right D-morphisms $\pi^{\prime *}$ and $\iota_{p^{\prime}}$ can similarly be defined. If we simply denote $\operatorname{hom}_{D}(M, D)$ by M^{\star}, then $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ induces the right D-morphism

$$
\begin{aligned}
f^{\star}: M^{\prime \star}=\operatorname{hom}_{D}\left(M^{\prime}, D\right) & \longrightarrow M^{\star}=\operatorname{hom}_{D}(M, D) \\
\phi & \longmapsto \phi \circ f
\end{aligned}
$$

and $g \in \operatorname{hom}_{D}\left(N^{\prime}, N\right)$ defined by the commutative exact diagram given by Figure 1, i.e., g is defined by:

$$
\begin{aligned}
g: N^{\prime} & \longrightarrow N \\
\kappa^{\prime}(\lambda) & \longmapsto \kappa(Q \lambda), \quad \forall \lambda \in D^{q^{\prime}} .
\end{aligned}
$$

Hence, f^{\star} induces the right D-morphism of exact sequences of right D-modules defined in Figure 2, with the notations $p_{0}=q, p_{1}=p, Q_{1}=R, p_{0}^{\prime}=q^{\prime}, p_{1}^{\prime}=p^{\prime}, Q_{1}^{\prime}=R^{\prime}$, $P_{0}=Q, P_{1}=P$, and where the matrices $Q_{i} \in D^{p_{i-1} \times p_{i}}$, $Q_{i}^{\prime} \in D^{p_{i-1}^{\prime} \times p_{i}^{\prime}}$ and $P_{i} \in D^{p_{i}^{\prime} \times p_{i}}$ are inductively defined by:

$$
\forall i \geq 1, \quad\left\{\begin{array}{l}
\operatorname{ker}_{D}\left(Q_{i} .\right)=Q_{i+1} D^{p_{i+1}} \tag{5}\\
\operatorname{ker}_{D}\left(Q_{i}^{\prime} .\right)=Q_{i+1}^{\prime} D^{p_{i+1}^{\prime}} \\
Q_{i} P_{i}=P_{i-1} Q_{i}^{\prime}
\end{array}\right.
$$

The matrices P_{i} 's exist for $i \geq 2$ because we have $Q_{1} P_{1} Q_{2}^{\prime}=P_{0}\left(Q_{1}^{\prime} Q_{2}^{\prime}\right)=0$, which shows that $\left(P_{1} Q_{2}^{\prime}\right) D^{p_{2}^{\prime}} \subseteq \operatorname{ker}_{D}\left(Q_{1}.\right)=Q_{2} D^{p_{2}}$, and thus there exists a matrix $P_{2} \in D^{p_{2}^{\prime} \times p_{2}}$ such that $P_{1} Q_{2}^{\prime}=Q_{2} P_{2}$, and similarly for the matrices P_{i} 's for $i \geq 3$.

Applying the contravariant left exact functor $\operatorname{hom}_{D}(\cdot, D)$ ([8]) to the commutative exact diagram given by Figure 2, we obtain the morphism of complexes of left D-modules defined by the commutative diagram given in Figure 3, where

$$
\begin{aligned}
\kappa^{\star}: N^{\star} & \longrightarrow\left(D^{p_{0}}\right)^{\star} \\
\phi & \longmapsto \phi \circ \kappa \\
i_{p_{0}}:\left(D^{p_{0}}\right)^{\star} & \longrightarrow D^{1 \times p_{0}} \\
\varphi & \longmapsto\left(\varphi\left(f_{1}\right) \ldots \varphi\left(f_{p_{0}}\right)\right.
\end{aligned}
$$

where $\left\{f_{j}\right\}_{j=1, \ldots, p_{0}}$ is the standard basis of $D^{p_{0}}$. The defects of exactness of the two horizontal complexes are defined by:
$\forall i \geq 1, \quad\left\{\begin{array}{l}\operatorname{ext}_{D}^{i}(N, D)=\operatorname{ker}_{D}\left(. Q_{i+1}\right) /\left(D^{1 \times p_{i-1}} Q_{i}\right), \\ \operatorname{ext}_{D}^{i}\left(N^{\prime}, D\right)=\operatorname{ker}_{D}\left(. Q_{i+1}^{\prime}\right) /\left(D^{1 \times p_{i-1}^{\prime}} Q_{i}^{\prime}\right) .\end{array}\right.$
See [8]. For every $\lambda \in \operatorname{ker}_{D}\left(. Q_{i+1}\right)$, we have $\lambda P_{i} Q_{i+1}^{\prime}=$ $\lambda Q_{i+1} P_{i+1}=0$, i.e., $\lambda P_{i} \in \operatorname{ker}_{D}\left(. Q_{i+1}^{\prime}\right)$ which yields the left D-morphism $. P_{i}: \operatorname{ker}_{D}\left(. Q_{i+1}\right) \longrightarrow \operatorname{ker}_{D}\left(. Q_{i+1}^{\prime}\right)$, for $i \geq 0$. Moreover, for every $\mu \in D^{1 \times p_{i-1}}$, we have $\left(\mu Q_{i}\right) P_{i}=\left(\mu P_{i-1}\right) Q_{i}^{\prime} \in D^{1 \times p_{i-1}^{\prime}} Q_{i}^{\prime}$, which yields the left D-morphism $. P_{i}: D^{1 \times p_{i-1}} Q_{i} \longrightarrow D^{1 \times p_{i-1}^{\prime}} Q_{i}^{\prime}$ for $i \geq 1$. Hence, if we denote by

$$
\begin{gathered}
\rho_{i}: \operatorname{ker}_{D}\left(. Q_{i+1}\right) \longrightarrow \operatorname{ext}_{D}^{i}(N, D), \\
\rho_{i}^{\prime}: \operatorname{ker}_{D}\left(\cdot Q_{i+1}^{\prime}\right) \longrightarrow \operatorname{ext}_{D}^{i}\left(N^{\prime}, D\right),
\end{gathered}
$$

the respective canonical projections, then the matrix P_{i} induces the commutative exact diagram defined in Figure 4, where the left D-morphism f_{i} is defined by:

$$
\begin{align*}
\forall i \geq 1, \quad f_{i}: \operatorname{ext}_{D}^{i}(N, D) & \longrightarrow \operatorname{ext}_{D}^{i}\left(N^{\prime}, D\right) \tag{6}\\
\rho_{i}(\lambda) & \longmapsto \rho_{i}^{\prime}\left(\lambda P_{i}\right) .
\end{align*}
$$

Moreover, we define $f_{0}: \operatorname{ker}_{D}\left(. Q_{1}\right) \longrightarrow \operatorname{ker}_{D}\left(. Q_{1}^{\prime}\right)$ by $f_{0}(\lambda)=\lambda P_{0}$, for all $\lambda \in D^{1 \times p_{0}}$. We note that the left D-morphisms f_{i} 's for $i \geq 1$ do depend only on f^{\star}, i.e., on f, because if we consider different matrices $\bar{P}_{i} \in D^{p_{i}^{\prime} \times p_{i}}$ satisfying (5) instead of P_{i}, then, there exist $Z_{i} \in D^{p_{i+1} \times p_{i}^{\prime}}$, for $i \geq 1$, such that:

$$
\bar{P}_{i}=P_{i}+Z_{i-1} Q_{i}^{\prime}+Q_{i+1} Z_{i}, \quad \forall i \geq 1
$$

Then, we get that the left D-morphism

$$
\begin{aligned}
f_{i}^{\prime}: \operatorname{ext}_{D}^{i}(N, D) & \longrightarrow \operatorname{ext}_{D}^{i}(N, D) \\
\rho_{i}(\lambda) & \longmapsto \rho_{i}^{\prime}\left(\lambda \overline{P_{i}}\right),
\end{aligned}
$$

for all $\lambda \in \operatorname{ker}_{D}\left(. Q_{i+1}\right)$, satisfies:

$$
\begin{aligned}
f_{i}^{\prime}\left(\rho_{i}(\lambda)\right) & =\rho_{i}^{\prime}\left(\lambda P_{i}\right)+\rho_{i}^{\prime}\left(\left(\lambda Z_{i-1}\right) Q_{i}^{\prime}\right)+\rho_{i}^{\prime}\left(\left(\lambda Q_{i+1}\right) Z_{i}\right) \\
& =\rho_{i}^{\prime}\left(\lambda P_{i}\right)=f_{i}\left(\rho_{i}(\lambda)\right)
\end{aligned}
$$

Moreover, f_{0} only depends on P_{0}, i.e., on f.
Proposition 3.1: Let D be a noetherian domain and $Q_{1} \in D^{p_{0} \times p_{1}}, Q_{1}^{\prime} \in D^{p_{0}^{\prime} \times p_{1}^{\prime}}$ two matrices. Consider the finitely presented left D-modules $M=D^{1 \times p_{1}} /\left(D^{1 \times p_{0}} Q_{1}\right)$, $M^{\prime}=D^{1 \times p_{1}^{\prime}} /\left(D^{1 \times p_{0}^{\prime}} Q_{1}^{\prime}\right)$ and their Auslander transposes, namely, the right D-modules $N=D^{p_{0}} /\left(Q_{1} D^{p_{1}}\right)$ and $N^{\prime}=D^{p_{0}^{\prime}} /\left(Q_{1}^{\prime} D^{p_{1}^{\prime}}\right)$. Then, $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$, defined by $P_{1} \in D^{p_{1} \times p_{1}^{\prime}}$ and $P_{0} \in D^{p_{0} \times p_{0}^{\prime}}$ satisfying $Q_{1} P_{1}=P_{0} Q_{1}^{\prime}$, induces left D-morphisms $f_{i}: \operatorname{ext}_{D}^{i}(N, D) \longrightarrow \operatorname{ext}_{D}^{i}\left(N^{\prime}, D\right)$ defined by (6), where the matrices Q_{i} 's, Q_{i}^{\prime} 's and P_{i} 's are defined by (5) for $i \geq 1$.

If $R_{i} \in D^{q_{i-1} \times p_{i}}$ (resp., $R_{i}^{\prime} \in D^{q_{i-1}^{\prime} \times p_{i}^{\prime}}$) is a matrix such that $\operatorname{ker}_{D}\left(. Q_{i+1}\right)=D^{1 \times q_{i-1}} R_{i}$ (resp., $\left.\operatorname{ker}_{D}\left(. Q_{i+1}^{\prime}\right)=D^{1 \times q_{i-1}^{\prime}} R_{i}^{\prime}\right)$, then the left D-morphism $. P_{i}: \operatorname{ker}_{D}\left(. Q_{i+1}\right) \longrightarrow \operatorname{ker}_{D}\left(. Q_{i+1}^{\prime}\right)$ becomes:

$$
\begin{aligned}
. P_{i}: D^{1 \times q_{i-1}} R_{i} & \longrightarrow D^{1 \times q_{i-1}^{\prime}} R_{i}^{\prime} \\
\mu R_{i} & \longmapsto \mu R_{i} P_{i} .
\end{aligned}
$$

Since $\mu R_{i} P_{i} \in D^{1 \times q_{i-1}^{\prime}} R_{i}^{\prime}$ for all $\mu \in D^{1 \times q_{i-1}}$, there exists $P_{i-1}^{\prime} \in D^{q_{i-1} \times q_{i-1}^{\prime}}$ such that:

$$
\begin{equation*}
\forall i \geq 1, \quad R_{i} P_{i}=P_{i-1}^{\prime} R_{i}^{\prime} \tag{7}
\end{equation*}
$$

Using (4), we get:

$$
\left\{\begin{array}{l}
t(M)=\operatorname{ext}_{D}^{1}(N, D)=\operatorname{ker}_{D}\left(. Q_{2}\right) /\left(D^{1 \times p_{0}} Q_{1}\right) \\
t\left(M^{\prime}\right)=\operatorname{ext}_{D}^{1}\left(N^{\prime}, D\right)=\operatorname{ker}_{D}\left(. Q_{2}^{\prime}\right) /\left(D^{1 \times p_{0}^{\prime}} Q_{1}^{\prime}\right)
\end{array}\right.
$$

Hence, Proposition 3.1 implies that $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ induces an element of $\operatorname{hom}_{D}\left(t(M), t\left(M^{\prime}\right)\right)$ which is defined by the following left D-morphism:

$$
\begin{align*}
f_{1}: t(M) & \longrightarrow t\left(M^{\prime}\right) \\
\rho_{1}(\lambda) & \longmapsto \rho_{1}^{\prime}\left(\lambda P_{1}\right) \tag{8}
\end{align*}
$$

We note that ρ_{1} (resp., ρ_{1}^{\prime}) is the restriction of the standard projection $\pi: D^{1 \times p_{1}} \longrightarrow M$ (resp., $\pi^{\prime}: D^{1 \times p_{1}^{\prime}} \longrightarrow M^{\prime}$) to $\operatorname{ker}_{D}\left(. Q_{2}\right) \subseteq D^{1 \times p_{1}}\left(\right.$ resp., $\left.\operatorname{ker}_{D}\left(. Q_{2}^{\prime}\right) \subseteq D^{1 \times p_{1}^{\prime}}\right)$.

Since we have $M / t(M)=D^{1 \times p_{1}} / \operatorname{ker}_{D}\left(. Q_{2}\right)$ and $M^{\prime} / t\left(M^{\prime}\right)=D^{1 \times p_{1}^{\prime}} / \operatorname{ker}_{D}\left(. Q_{2}^{\prime}\right)$ (see Theorem 2.1), we obtain the left D-morphism $h_{1} \in \operatorname{hom}_{D}\left(M / t(M), M^{\prime} / t\left(M^{\prime}\right)\right)$ defined by
$\begin{array}{ccccccl}0 & \begin{array}{c}\operatorname{ker}_{D}\left(. Q_{2}\right) \\ \downarrow \cdot P_{1}\end{array} & \longrightarrow & \begin{array}{c}D^{1 \times p_{1}} \\ \downarrow \cdot P_{1}\end{array} & \xrightarrow{\sigma_{1}} & M / t(M) & \longrightarrow h_{1} \\ 0 & \operatorname{ker}_{D}\left(. Q_{2}^{\prime}\right) & \longrightarrow & D^{1 \times p_{1}^{\prime}} & \xrightarrow{\sigma_{1}^{\prime}} & M^{\prime} / t\left(M^{\prime}\right) & \longrightarrow 0,\end{array}$
i.e.,

$$
\begin{align*}
h_{1}: M / t(M) & \longrightarrow M^{\prime} / t\left(M^{\prime}\right) \tag{9}\\
\sigma_{1}(\lambda) & \longmapsto \sigma_{1}^{\prime}\left(\lambda P_{1}\right)
\end{align*}
$$

for all $\lambda \in D^{1 \times p_{1}}$, where $\sigma_{1}: D^{1 \times p_{1}} \longrightarrow M / t(M)$ (resp., $\left.\sigma_{1}^{\prime}: D^{1 \times p_{1}^{\prime}} \longrightarrow M^{\prime} / t\left(M^{\prime}\right)\right)$ is the canonical projection.

Corollary 3.1: With the previous hypotheses and notations, $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ induces the two left D-morphisms (8) and (9).

Example 3.1: Let us consider the tank model studied in [5] obtained by linearizing the Saint-Venant equations around the Riemann invariants. If $D=\mathbb{R}[\partial, \delta]$, where $\partial=\frac{d}{d t}$ and δ is the shift operator, then the system matrix is given by:

$$
R=\left(\begin{array}{ccc}
\delta^{2} & 1 & -2 \delta \partial \\
1 & \delta^{2} & -2 \delta \partial
\end{array}\right) \in D^{2 \times 3}
$$

Let $M=D^{1 \times 3} /\left(D^{1 \times 2} R\right)$ be the left D-module finitely presented by the matrix R and $N=D^{2} /\left(R D^{3}\right)$ its Auslander transpose. Let us consider a D-endomorphism f of M defined by two matrices $P \in D^{3 \times 3}$ and $Q \in D^{2 \times 2}$ satisfying $R P=Q R$. With the notations $P_{0}=Q, P_{1}=P, Q_{1}=R$, then $\operatorname{ker}_{D}\left(Q_{1}.\right)=Q_{2} D$, where:

$$
Q_{2}=\left(2 \partial \delta \quad 2 \partial \delta \quad \delta^{2}+1\right)^{T}
$$

Then, f induces the commutative exact diagram of D modules defined in Figure 5. Applying the contravariant left exact functor $\operatorname{hom}_{D}(\cdot, D)$ to the previous commutative exact diagram, we obtain the morphism of complexes:
$\begin{array}{ccccccl}0 \longrightarrow & D^{1 \times 2} & \xrightarrow{Q_{1}} & D^{1 \times 3} & \xrightarrow{Q_{2}} & D & \longrightarrow 0 \\ & \downarrow \cdot P_{0} \\ & & \downarrow \cdot P_{1} & & \downarrow \cdot P_{2} & \\ 0 \longrightarrow & D^{1 \times 2} & \xrightarrow{. Q_{1}} & D^{1 \times 3} & \xrightarrow{Q_{2}} & D & \longrightarrow 0 .\end{array}$
The defects of exactness of the horizontal complexes are

$$
\left\{\begin{aligned}
\operatorname{ext}_{D}^{1}(N, D) & =\operatorname{ker}_{D}\left(. Q_{2}\right) /\left(D^{1 \times 2} Q_{1}\right) \\
& =\left(D^{1 \times 2} R_{1}\right) /\left(D^{1 \times 2} Q_{1}\right)=t(M) \\
\operatorname{ext}_{D}^{2}(N, D) & =D /\left(D^{1 \times 3} Q_{2}\right)=D /\left(2 \partial \delta, \delta^{2}+1\right)
\end{aligned}\right.
$$

where the matrix $R_{1} \in D^{2 \times 3}$ is defined by:

$$
R_{1}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & -1-\delta^{2} & 2 \partial \delta
\end{array}\right)
$$

Hence, the D-module $t(M)$ is generated by

$$
\left\{\begin{array}{l}
\tau_{1}=y_{1}-y_{2} \\
\tau_{2}=-\left(1+\delta^{2}\right) y_{2}+2 \partial \delta y_{3}
\end{array}\right.
$$

which satisfy $\left(\delta^{2}-1\right) \tau_{i}=0$ for $i=1,2$. If $\left\{e_{i}\right\}_{i=1,2,3}$ is the standard basis of $D^{1 \times 3}$ and $\sigma_{1}: D^{1 \times 3} \longrightarrow M / t(M)=$ $D^{1 \times 3} /\left(D^{1 \times 2} R_{1}\right)$ the canonical projection onto $M / t(M)$, then the $z_{i}=\sigma_{1}\left(e_{i}\right)$'s generate $M / t(M)$ and satisfy:

$$
\left\{\begin{array}{l}
z_{1}-z_{2}=0 \\
-\left(1+\delta^{2}\right) z_{2}+2 \partial \delta z_{3}=0
\end{array}\right.
$$

Using (6), (7) and Corollary 3.1, we obtain the D-morphisms

$$
\begin{aligned}
\left(D^{1 \times 2} R_{1}\right) /\left(D^{1 \times 2} Q_{1}\right) & \xrightarrow[f_{1}]{ }\left(D^{1 \times 2} R_{1}\right) /\left(D^{1 \times 2} Q_{1}\right) \\
\pi\left(\mu R_{1}\right) & \longmapsto \pi\left(\mu R_{1} P_{1}\right)=\pi\left(\mu P_{0}^{\prime} R_{1}\right), \\
D /\left(D^{1 \times 3} Q_{2}\right) & \xrightarrow[f_{2}]{ } D /\left(D^{1 \times 3} Q_{2}\right) \\
\rho_{2}(\lambda) & \longmapsto \rho_{2}\left(\lambda P_{2}\right),
\end{aligned}
$$

the commutative exact diagram of D-modules defined in Figure 6, where $P_{0}^{\prime} \in D^{2 \times 2}$ satisfies $R_{1} P_{1}=P_{0}^{\prime} R_{1}$ and:

$$
\begin{aligned}
h_{1}: M / t(M) & \longrightarrow M / t(M) \\
\sigma_{1}(\lambda) & \longmapsto \sigma_{1}\left(\lambda P_{1}\right) .
\end{aligned}
$$

$$
\begin{array}{ccccccc}
D^{1 \times p_{0}} & \xrightarrow{\cdot Q_{1}} & D^{1 \times p_{1}} \\
\downarrow \cdot P_{0} & \downarrow \cdot P_{1} & \xrightarrow{Q_{2}} & D^{1 \times p_{2}} & \xrightarrow{\pi_{2}} & M_{2} & \longrightarrow 0 \\
D^{1 \times p_{0}^{\prime}} & \xrightarrow{Q_{1}^{\prime}} & D^{1 \times p_{1}^{\prime}} & \xrightarrow{Q_{2}^{\prime}} & D^{1 \times p_{2}^{\prime}} & \xrightarrow{\pi_{2}^{\prime}} & \downarrow h_{2}
\end{array}
$$

We find that $f \in \operatorname{end}_{D}(M)$ defined by

$$
P_{0}=\left(\begin{array}{cc}
-2 \partial & 2 \partial \\
0 & 0
\end{array}\right), \quad P_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
2 \partial & -2 \partial & 0 \\
\delta & -\delta & 0
\end{array}\right)
$$

yields

$$
P_{2}=0, \quad P_{0}^{\prime}=\left(\begin{array}{cc}
-2 \partial & 0 \\
-2 \partial & 0
\end{array}\right)
$$

and induces that the D-morphisms f_{1}, f_{2} and h_{1} defined by:

$$
\left\{\begin{array}{l}
f_{1}\left(\tau_{1}\right)=-2 \partial \tau_{1}, \\
f_{1}\left(\tau_{2}\right)=-2 \partial \tau_{1},
\end{array} \quad f_{2}=0,\left\{\begin{array}{l}
h_{1}\left(z_{1}\right)=0 \\
h_{1}\left(z_{2}\right)=2 \partial\left(z_{1}-z_{2}\right)=0 \\
h_{1}\left(z_{3}\right)=\delta\left(z_{1}-z_{2}\right)=0
\end{array}\right.\right.
$$

where $\pi_{2}: D^{1 \times p_{2}} \longrightarrow M_{2}$ (resp., $\pi_{2}^{\prime}: D^{1 \times p_{2}^{\prime}} \longrightarrow M_{2}^{\prime}$) is the canonical projection onto $M_{2}=D^{1 \times p_{2}} /\left(D^{1 \times p_{1}} Q_{2}\right)$ (resp., $M_{2}^{\prime}=D^{1 \times p_{2}^{\prime}} /\left(D^{1 \times p_{1}^{\prime}} Q_{2}^{\prime}\right)$) and:

$$
\forall \lambda \in D^{1 \times q_{2}}, \quad h_{2}\left(\pi_{2}(\lambda)\right)=\pi_{2}^{\prime}\left(\lambda P_{2}\right)
$$

If M and M^{\prime} are both reflexive left D-modules, then we get the commutative exact diagram of left D-modules defined in Figure 7, where $\pi_{3}: D^{1 \times p_{3}} \longrightarrow M_{3}$ (resp., $\left.\pi_{3}^{\prime}: D^{1 \times p_{3}^{\prime}} \longrightarrow M_{3}^{\prime}\right)$ is the canonical projection onto the finitely presented left D-module $M_{3}=D^{1 \times p_{3}} /\left(D^{1 \times p_{2}} Q_{3}\right)$ (resp., $\left.M_{3}^{\prime}=D^{1 \times p_{3}^{\prime}} /\left(D^{1 \times p_{2}^{\prime}} Q_{3}^{\prime}\right)\right)$ and:

$$
\forall \lambda \in D^{1 \times q_{3}}, \quad h_{3}\left(\pi_{3}(\lambda)\right)=\pi_{3}^{\prime}\left(\lambda P_{3}\right) .
$$

If M and M^{\prime} are both projective left D-modules and D has a finite global dimension $\operatorname{gld}(D)=n$ ([8]), then we get the commutative exact diagram of left D-modules defined in Figure 8, where $\pi_{n}: D^{1 \times p_{n}} \longrightarrow M_{n}$ (resp., $\left.\pi_{n}^{\prime}: D^{1 \times p_{n}^{\prime}} \longrightarrow M_{n}^{\prime}\right)$ is the canonical projection onto the left D-module $M_{n}=D^{1 \times p_{n}} /\left(D^{1 \times p_{n-1}} Q_{n}\right)$ (resp., $\left.M_{n}^{\prime}=D^{1 \times p_{n}^{\prime}} /\left(D^{1 \times p_{n-1}^{\prime}} Q_{n}^{\prime}\right)\right)$ and:

$$
\forall \lambda \in D^{1 \times q_{n}}, \quad h_{n}\left(\pi_{n}(\lambda)\right)=\pi_{n}^{\prime}\left(\lambda P_{n}\right)
$$

Finally, if M and M^{\prime} are both free left D-modules, then there exist two matrices $Q_{2} \in D^{p_{1} \times p_{2}}$ and $Q_{2}^{\prime} \in D^{p_{1}^{\prime} \times p_{2}^{\prime}}$ such that the following commutative exact diagram holds:

The next corollary directly follows from Corollary 4.1.

$$
\begin{aligned}
& 0 \longleftarrow N^{\prime} \quad \stackrel{\kappa^{\prime}}{\longleftarrow} D^{q^{\prime}} \quad \stackrel{R^{\prime} .}{\longleftarrow} D^{p^{\prime}} \stackrel{\iota_{p^{\prime} \circ} \circ \pi^{\prime \star}}{\longleftarrow} \quad M^{\prime \star} \quad \longleftarrow 0
\end{aligned}
$$

Fig. 1. Figure 1

$$
\begin{aligned}
& 0 \longleftarrow \quad N \quad \stackrel{\kappa}{\longleftarrow} D^{p_{0}} \stackrel{Q_{1} .}{\longleftarrow} \quad D^{p_{1}} \stackrel{Q_{2} .}{\longleftarrow} \quad D^{p_{2}} \quad \stackrel{Q_{3}}{\longleftarrow} \ldots \\
& 0 \longleftarrow N^{\prime} \quad \kappa^{\prime} \quad D^{p_{0}^{\prime}} \quad \stackrel{Q_{1}^{\prime} .}{\longleftarrow} D^{p_{1}^{\prime}} \stackrel{Q_{2}^{\prime} .}{\longleftarrow} \quad D^{p_{2}^{\prime}} \quad \stackrel{Q_{3}^{\prime}}{\longleftarrow} \ldots
\end{aligned}
$$

Fig. 2. Figure 2

$$
\begin{array}{ccccccccc}
0 \longrightarrow & N^{\star} \\
& \downarrow g^{\star} & \xrightarrow{i_{p_{0}} \circ \kappa^{\star}} & D^{1 \times p_{0}} & \xrightarrow{. Q_{1}} & D^{1 \times p_{1}} & \xrightarrow{. Q_{2}} & D^{1 \times p_{2}} & \xrightarrow{. Q_{3}} \ldots \\
0 \longrightarrow & N^{\prime \star} & \xrightarrow{i_{p_{0}^{\prime}} \circ \kappa^{\prime \star}} & D_{0} & & \downarrow \cdot P_{1} & & \downarrow \cdot P_{2} & \\
& D^{1 \times p_{0}^{\prime}} & \xrightarrow{. Q_{1}^{\prime}} & D^{1 \times p_{1}^{\prime}} & \xrightarrow{. Q_{2}^{\prime}} & D^{1 \times p_{2}^{\prime}} & \xrightarrow{. Q_{3}^{\prime}} \ldots
\end{array}
$$

Fig. 3. Figure 3

$$
\begin{array}{rccccc}
0 \longrightarrow & D^{1 \times p_{i-1}} Q_{i} & \longrightarrow & \operatorname{ker}_{D}\left(. Q_{i+1}\right) & \xrightarrow{\rho_{i}} \quad \operatorname{ext}_{D}^{i}(N, D)=\operatorname{ker}_{D}\left(\cdot Q_{i+1}\right) /\left(D^{1 \times p_{i-1}} Q_{i}\right) & \longrightarrow 0 \\
\downarrow \cdot P_{i} & & \downarrow \cdot P_{i} & & \downarrow f_{i} \\
0 \longrightarrow & D^{1 \times p_{i-1}^{\prime}} Q_{i}^{\prime} & \longrightarrow & \operatorname{ker}_{D}\left(. Q_{i+1}^{\prime}\right) & \xrightarrow{\rho_{i}^{\prime}} & \operatorname{ext}_{D}^{i}\left(N^{\prime}, D\right)=\operatorname{ker}_{D}\left(. Q_{i+1}^{\prime}\right) /\left(D^{1 \times p_{i-1}^{\prime}} Q_{i}^{\prime}\right)
\end{array} \quad \longrightarrow 0
$$

Fig. 4. Figure 4

Fig. 5. Figure 5

$$
\begin{aligned}
& \begin{array}{cccccc}
0 \longrightarrow & D^{1 \times 2} \\
\downarrow \cdot P_{0}^{\prime} & \xrightarrow{R_{1}} & D^{1 \times 3} & \xrightarrow{. Q_{2}} & D & \\
& \downarrow \cdot P_{1} & & \downarrow \cdot P_{2} & & \\
& & \operatorname{ext}_{D}^{2}(N, D) & \downarrow f_{2}
\end{array} \\
& 0 \longrightarrow D^{1 \times 2} \quad \xrightarrow{. R_{1}} D^{1 \times 3} \quad \xrightarrow{. Q_{2}} \quad \longrightarrow \operatorname{ext}_{D}^{2}(N, D) \quad \longrightarrow
\end{aligned}
$$

Fig. 6. Figure 6

$$
\begin{array}{rrrrrrrrrl}
D^{1 \times p_{0}} & \xrightarrow{Q_{1}} & D^{1 \times p_{1}} & \xrightarrow{Q_{2}} & D^{1 \times p_{2}} & \xrightarrow{Q_{3}} & D^{1 \times p_{3}} & \xrightarrow{\pi_{3}} & M_{3} & \longrightarrow 0 \\
\downarrow \cdot P_{0} & & \downarrow \cdot P_{1} & & \downarrow \cdot P_{2} & & \downarrow \cdot P_{3} & & \downarrow h_{3} & \\
D^{1 \times p_{0}^{\prime}} & \xrightarrow{. Q_{1}^{\prime}} & D^{1 \times p_{1}^{\prime}} & \xrightarrow{. Q_{2}^{\prime}} & D^{1 \times p_{2}^{\prime}} & \xrightarrow{Q_{3}^{\prime}} & D^{1 \times p_{3}^{\prime}} & \xrightarrow{\pi_{3}^{\prime}} & M_{3}^{\prime} & \longrightarrow 0
\end{array}
$$

Fig. 7. Figure 7

Fig. 8. Figure 8

Corollary 4.2: With the previous hypotheses and notations, if M and M^{\prime} are both torsion-free left D-modules and \mathcal{F} an injective left D-module, then every $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ induces the commutative exact diagram of abelian groups defined in Figure 9, where $k_{2}: \operatorname{ker}_{\mathcal{F}}\left(Q_{2}^{\prime}.\right) \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(Q_{2}.\right)$ is defined by $k_{2}\left(\zeta^{\prime}\right)=P_{2} \zeta^{\prime}$ for all $\zeta^{\prime} \in \operatorname{ker}_{\mathcal{F}}\left(Q_{2}^{\prime}.\right)$.

Now, if M and M^{\prime} are two reflexive left D-modules and \mathcal{F} an injective left D-module, then $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ induces the commutative exact diagram of abelian groups defined in Figure 10, where $k_{3}: \operatorname{ker}_{\mathcal{F}}\left(Q_{3}^{\prime}.\right) \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(Q_{3}.\right)$ is defined by $k_{3}\left(\zeta^{\prime}\right)=P_{3} \zeta^{\prime}$ for all $\zeta^{\prime} \in \operatorname{ker}_{\mathcal{F}}\left(Q_{3}^{\prime}.\right)$.

Moreover, if M and M^{\prime} are two projective left D-modules and \mathcal{F} is a left D-module, then $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ induces the following commutative exact diagram of abelian groups defined in Figure 11, where $k_{n}: \operatorname{ker}_{\mathcal{F}}\left(Q_{n}^{\prime}.\right) \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(Q_{n}.\right)$ is defined by $k_{n}\left(\zeta^{\prime}\right)=P_{n} \zeta^{\prime}$ for all $\zeta^{\prime} \in \operatorname{ker}_{\mathcal{F}}\left(Q_{n}^{\prime}.\right)$.

Finally, if M and M^{\prime} are both free left D-modules and \mathcal{F} is a left D-module, then there exist two matrices $Q_{2} \in D^{p_{1} \times p_{2}}$ and $Q_{2}^{\prime} \in D^{p_{1}^{\prime} \times p_{2}^{\prime}}$ such that the following commutative exact diagram of left D-modules holds:

Example 4.1: Let $D=\mathbb{Q}\left[\partial_{1}, \partial_{2}, \partial_{3}\right]$ and consider the left D-module $M=D^{1 \times 3} /\left(D Q_{1}\right)$ finitely presented by the divergence operator $Q_{1}=\left(\begin{array}{lll}\partial_{1} & \partial_{2} & \partial_{3}\end{array}\right)$ in \mathbb{R}^{3}. The left D-module M is reflexive ([1]) and M can be parametrized by the matrix

$$
Q_{2}=\left(\begin{array}{ccc}
0 & -\partial_{3} & \partial_{2} \\
\partial_{3} & 0 & -\partial_{1} \\
-\partial_{2} & \partial_{1} & 0
\end{array}\right) \in D^{3 \times 3}
$$

defining the curl operator, i.e., $\operatorname{ker}_{D}\left(. Q_{2}\right)=D Q_{1}$. Moreover, the matrix $Q_{3}=Q_{1}^{T}$ defining the gradient operator parametrizes the D-module $D^{1 \times 3} /\left(D^{1 \times 3} Q_{2}\right)$, i.e., $\operatorname{ker}_{D}\left(. Q_{3}\right)=D^{1 \times 3} Q_{2}$. Using OreMorphisms ([4]), we obtain that an element $f \in \operatorname{end}_{D}(M)$ is defined by $f(\pi(\lambda))=\pi\left(\lambda P_{1}\right)$, where $\pi: D^{1 \times 3} \longrightarrow M$ is the canonical projection onto $M, \lambda \in D^{1 \times 3}$ and $P_{1} \in D^{3 \times 3}$ is defined by

$$
P_{1}=
$$

$\left(\begin{array}{ccc}\alpha_{8} & -\alpha_{3} \partial_{3}-\alpha_{7} \partial_{2} & -\alpha_{4} \partial_{3}-\alpha_{6} \partial_{2} \\ -\alpha_{5} \partial_{3} & \alpha_{8}+\alpha_{7} \partial_{1}+\left(\alpha_{1}-\alpha_{9}\right) \partial_{3} & -\alpha_{2} \partial_{3}+\alpha_{6} \partial_{1} \\ \alpha_{5} \partial_{2} & \alpha_{3} \partial_{1}+\left(-\alpha_{1}+\alpha_{9}\right) \partial_{2} & \alpha_{2} \partial_{2}+\alpha_{4} \partial_{1}+\alpha_{8}\end{array}\right)$,
where the α_{i} 's are arbitrary elements of D for $i=1, \ldots, 9$. We can check that $Q_{1} P_{1}=\alpha_{8} Q_{1}$. According to Corollary 4.1, there exist two matrices

$$
\begin{array}{cc}
P_{2}= & \\
\left(\begin{array}{cc}
\alpha_{8}+\alpha_{2} \partial_{2}+\left(\alpha_{1}-\alpha_{9}\right) \partial_{3} & \alpha_{5} \partial_{3} \\
-\alpha_{4} \partial_{2}+\alpha_{3} \partial_{3} & \alpha_{2} \partial_{2}+\alpha_{4} \partial_{1}+\alpha_{8} \\
\alpha_{6} \partial_{2}-\alpha_{7} \partial_{3} & \alpha_{2} \partial_{3}-\alpha_{6} \partial_{1} \\
-\alpha_{5} \partial_{2} & \\
-\alpha_{3} \partial_{1}+\left(\alpha_{1}-\alpha_{9}\right) \partial_{2} \\
\alpha_{8}+\alpha_{7} \partial_{1}+\left(\alpha_{1}-\alpha_{9}\right) \partial_{3}
\end{array}\right)
\end{array}
$$

$$
P_{3}=\alpha_{8}+\alpha_{2} \partial_{2}+\left(\alpha_{1}-\alpha_{9}\right) \partial_{3}
$$

such that the commutative exact diagram defined in Figure 7 holds, i.e., such that $Q_{2} P_{2}=P_{1} Q_{2}$ and $Q_{3} P_{3}=P_{2} Q_{3}$.

If \mathcal{F} is a D-module, then the endomorphism f of M defined by the matrix P_{1} induces the Galois transformation:

$$
\begin{aligned}
k_{1}: \operatorname{ker}_{\mathcal{F}}\left(Q_{1} .\right) & \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(Q_{1} .\right) \\
\eta & \longmapsto \bar{\eta}=P_{1} \eta
\end{aligned}
$$

Now, if \mathcal{F} is an injective D-module (e.g., $\mathcal{F}=C^{\infty}(\Omega)$, where Ω is an open convex subset of \mathbb{R}^{3}) and $\eta \in \operatorname{ker}_{\mathcal{F}}\left(Q_{1}.\right)$ is parametrized by a potential $\xi \in \mathcal{F}^{3}$, i.e., $\eta=Q_{2} \xi$, then the Galois transformation P_{1}. induces a transformation on ξ defined by $\bar{\xi}=P_{2} \xi$ which satisfies $\bar{\eta}=Q_{2} \bar{\xi}$.

This result can be checked again as follows: combining $\bar{\eta}=P_{1} \eta, \eta=Q_{2} \xi$ and $Q_{2} P_{2}=P_{1} Q_{2}$, we get

$$
\bar{\eta}=P_{1}\left(Q_{2} \xi\right)=Q_{2}\left(P_{2} \xi\right)=Q_{2} \bar{\xi}
$$

where $\bar{\xi}=P_{2} \xi$.
In its turn, the transformation P_{2}. induces the following Galois transformation of $\operatorname{ker}_{\mathcal{F}}\left(Q_{2}.\right)$:

$$
\begin{aligned}
k_{2}: \operatorname{ker}_{\mathcal{F}}\left(Q_{2} .\right) & \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(Q_{2} .\right) \\
\xi & \longmapsto \bar{\xi}=P_{2} \xi
\end{aligned}
$$

If $\xi \in \operatorname{ker}_{\mathcal{F}}\left(Q_{2}\right.$. $)$ is parametrized by a potential $\theta \in \mathcal{F}$, i.e., $\xi=Q_{3} \theta$, then the Galois transformation P_{2}. induces the transformation on θ defined by $\bar{\theta}=P_{3} \theta$, which is such that $\bar{\xi}=Q_{3} \bar{\theta}$. Indeed, combining $\bar{\xi}=P_{2} \xi, \xi=Q_{3} \theta$ and $Q_{3} P_{3}=P_{2} Q_{3}$, we finally obtain

$$
\bar{\xi}=P_{2}\left(Q_{3} \theta\right)=Q_{3}\left(P_{3} \theta\right)=Q_{3} \bar{\theta}
$$

where $\bar{\theta}=P_{3} \theta$.

REFERENCES

[1] F. Chyzak, A. Quadrat, D. Robertz, Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Engrg. Comm. Comput. 16 (2005), 319-376.
[2] F. Chyzak, A. Quadrat, D. Robertz, OreModules: A symbolic package for the study of multidimensional linear systems. Applications of Time-Delay Systems, J. Chiasson and J. -J. Loiseau (Eds.), LNCIS 352, Springer, 2007, 233-264, OreModules project: http:// wwwb.math.rwth-aachen.de/OreModules.
[3] T. Cluzeau, A. Quadrat, Factoring and decomposing a class of linear functional systems. Linear Algebra and Its Applications 428 (2008), 324-381.
[4] T. Cluzeau, A. Quadrat, OreMorphisms: A homological algebraic package for factoring and decomposing linear functional systems. Topics in Time-Delay Systems: Analysis, Algorithms and Control, J.-J. Loiseau, W. Michiels, S.-I. Niculescu and R. Sipahi (Eds.), LNCIS 388, Springer, 2009, 179-196, OreMorphisms project: http://www-sop.inria.fr/members/ Alban.Quadrat/OreMorphisms/index.html.
[5] F. Dubois, N. Petit, P. Rouchon. Motion planning and nonlinear simulations for a tank containing a fluid. In Proceedings of the $5^{\text {th }}$ European Control Conference, Karlsruhe (Germany), 1999.
[6] B. Malgrange, Systèmes à coefficients constants. Séminaire Bourbaki, 1962/63, 1-11.
[7] H. K. Pillai, J. Wood, E. Rogers, On homomorphisms of $n-D$ behaviours. IEEE Trans. Circ. Syst. 46 (2002), 732-742.
[8] J. J. Rotman, An Introduction to Homological Algebra. $2^{\text {nd }}$ edition, Springer, 2009.

Fig. 9. Figure 9

Fig. 10. Figure 10

Fig. 11. Figure 11

[^0]: Dedicated to Professor Ulrich Oberst on the occasion of his 70th birthday.

