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Abstract Artstein’s results show that a first-order linear differential system with delayed
inputs is equivalent to a first-order linear differential system without delay under an invertible
transformation which includes integral and time-delay operators. Within a constructive algebraic
approach, we show how this reduction can be found again, generalized and interpreted as a
particular isomorphism between modules defining the two above linear systems. Moreover, we
prove that Artstein’s reduction can be obtained in an automatic way by means of symbolic
computation techniques, and thus can be implemented in dedicated computer algebra systems.
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1. INTRODUCTION

Artstein’s famous reduction (Artstein (1982)) proves the
equivalence between linear differential systems with de-
layed inputs and linear differential systems without time-
delays. The purpose of this paper is to show how to find
again the different Artstein’s integral transformations in
a mechanical way, i.e., without educated guess or clever
thoughts. Within the algebraic analysis approach to linear
functional systems (Chyzak et al. (2005); Fliess et al.
(1998); Quadrat (2010)), we first reformulate Artstein’s
reduction in terms of an isomorphism problem (Cluzeau
et al. (2008)) between two finitely presented left modules
over a ring of integro-differential time-delay operators.
These modules are explicitly defined by means of the ma-
trices of functional operators defining the linear functional
systems. Considering the commutation rules for the differ-
ential, integral, time-delay/dilation operators, we present
a constructive method to find again and extend Artstein’s
reduction. These results advocate for a complete algo-
rithmic study of the noncommutative polynomial ring of
integro-differential time-delay/dilation operators (Quadrat
(2015)) and for the development of dedicated packages
such as IntDiffOp (Korporal et al. (2012)) for rings of
integro-differential operators (see Korporal et al. (2012);
Quadrat et al. (2013); Regensburger et al. (2009) and the
references therein). Finally, this algorithmic approach can
also be used to handle different computations over the ring
E introduced in Loiseau (2000) for the study of differential
time-delay systems (see Quadrat (2015)).

2. ALGEBRAIC ANALYSIS APPROACH

Within the algebraic analysis approach, a linear functional
system is studied by means of methods of module theory,
homological algebra and sheaf theory. Let us briefly review

this approach. For more details, see Chyzak et al. (2005);
Fliess et al. (1998); Quadrat (2010) and the references
therein. In what follows, let D be a (non necessarily
commutative) ring, R ∈ Dq×p a q × p matrix with entries
in D, and F a left D-module. Then, a behaviour in the
sense of Willems can be defined as follows:

kerF (R.) := {η ∈ Fp | Rη = 0}. (1)
The behaviour is the analytical side of an underlying
system of D-linear equations defined by means of the left
D-module finitely presented by R, namely:

M := D1×p/(D1×q R). (2)
Let us explain why M defines a linear system of equations.
Let {fj}j=1,...,p denote the standard basis of the free left
D-module D1×p, i.e., fj is the row vector of length p with
1 at the jth entry and 0 elsewhere, π : D1×p −→ M
the canonical projection onto M which sends λ ∈ D1×p

to its residue class π(λ) ∈ M , and yj := π(fj) for
j = 1, . . . , p. Then, {yj}j=1,...,p is a set of generators of
M since every m ∈M is the residue class π(λ) of a certain
λ = (λ1 . . . λp) ∈ D1×p, which yields:

m = π(λ) = π

 p∑
j=1

λj fj

 =
p∑
j=1

λj π(fj) =
p∑
j=1

λj yj .

Let us note by Ri• the ith row of the matrix R. The set of
generators {yj}j=1,...,p of M satisfies the D-linear relations
p∑
j=1

Rij yj =
p∑
j=1

Rij π(fj) = π

 p∑
j=1

Rij fj

 = π(Ri•) = 0,

for i = 1, . . . , q, since Ri• ∈ D1×q R. Hence, if we note
y := (y1 . . . yp)T ∈Mp, then y satisfies Ry = 0.

Let homD(M,F) be the abelian group formed by all the
left D-homomorphisms (i.e., the left D-linear maps) from
M to F . If φ ∈ homD(M,F), then, by definition, we have



φ(d1m1 + d2m2) = d1 φ1(m1) + d2 φ(m2),
for all d1, d2 ∈ D and for all m1, m2 ∈ M . A homomor-
phism φ is an isomorphism if φ is injective and surjective.

The next result, which is a standard result in homological
algebra, shows that the behaviour kerF (R.) can intrinsi-
cally be interpreted as the “dual” homD(M,F) of M .
Theorem 1. With the above notations, we have the follow-
ing isomorphism of abelian groups

χ : homD(M,F) −→ kerF (R.)
φ 7−→ η := (φ(y1) . . . φ(yp))T ,

whose inverse χ−1 is defined by χ−1(η) = φη, where
φη(π(λ)) := λ η for all λ ∈ D1×p and for all η ∈ kerF (R.).

Let us give a sketch of a proof of Theorem 1. Clearly, if
η = χ(φ) is defined as in Theorem 1, then we get

∀ i = 1, . . . , q,
p∑
j=1

Rij φ(yj) = φ

 p∑
j=1

Rij yj

 = φ(0) = 0,

which shows that η ∈ kerF (R.). Now, φη is well-defined
since π(λ) = 0 is equivalent to λ = µR for a certain
µ ∈ D1×q, which yields λ η = µ (Rη) = 0 and shows that
φη(0) = 0. Moreover, φη is clearly left D-linear, and thus
we have φη ∈ homD(M,F). Now, if η ∈ kerF (R.), let us
note σ(η) := φη, where φη(π(λ)) := λ η for all λ ∈ D1×p.
Then, we have (σ ◦ χ)(φ) = φ(φ(y1) ... φ(yp))T , i.e.

(σ ◦ χ)(φ)(π(λ)) =
p∑
j=1

λj φ(yj) = φ

 p∑
j=1

λj π(fj)


= φ(π(λ)),

and thus σ ◦ χ = idhomD(M,F). Finally, if η ∈ kerF (R.),
then we have (χ ◦ σ)(η) = (φη(y1), . . . , φη(yp))T , where
φη(yj) = fj η = ηj , i.e., χ ◦ σ = idkerF (R.).

Theorem 1 shows that the behaviour kerF (R.) can intrin-
sically be studied by means of the left D-modules M and
F using module theory and homological algebra methods.

Let R′ ∈ Dq′×p′ , M ′ := D1×p′/(D1×q′ R′) be the left D-
module finitely presented by R′, π′ : D1×p′ −→ M ′ the
canonical projection onto M ′, and the behaviour:

kerF (R′.) := {η′ ∈ Fp
′
| R′ η′ = 0} ∼= homD(M ′,F).

Let us now show that φ ∈ homD(M,M ′) induces a
homomorphism φ? : kerF (R′.) −→ kerF (R.).
Theorem 2. (Cluzeau et al. (2008)). We have:

• Any φ ∈ homD(M,M ′) is defined by
φ(π(λ)) = π′(λP ), ∀ λ ∈ D1×p, (3)

where P ∈ Dp×p′ satisfies D1×q (RP ) ⊆ D1×q′ R′,
i.e., P is such that there exists Q ∈ Dq×q′ satisfying:

RP = QR′. (4)
The matrices P and Q are not uniquely defined since

∀ Z ∈ Dp×q′ , P ′ := P+Z R′, Q′ := Q+RZ, (5)
also satisfy (4) and φ(π(λ)) = π′(λP ′) for λ ∈ D1×p.

• φ ∈ homD(M,M ′) induces the following homomor-
phism of abelian groups:

φ? : kerF (R′.) −→ kerF (R.)
η′ 7−→ η := P η′.

(6)

Since Theorem 2 plays a fundamental role in what fol-
lows, we give a sketch of a proof. If {fj}j=1,...,p (resp.,
{f ′k}k=1,...,p′) is the standard basis of D1×p (resp., D1×p′),
then {π(fj)}j=1,...,p (resp., {π′(f ′k)}k=1,...,p′) is a set of
generators of M (resp., M ′). Now, φ ∈ homD(M,M ′)
sends the generators of M to elements of M ′, i.e., we have

∀ j = 1, . . . , p, φ(π(fj)) =
p′∑
k=1

Pjk π
′(f ′k),

where the Pjk’s are elements of D which must satisfy the
relations φ(0) = 0, i.e., φ maps

∑p
j=1Rij π(fj) = 0 to 0.

Hence, for i = 1, . . . , q, we must have

φ

 p∑
j=1

Rij π(fj)

 =
p∑
j=1

Rij φ(π(fj))

=
p∑
j=1

Rij

 p′∑
k=1

Pjk π
′(f ′k)


= π′

 p′∑
k=1

 p∑
j=1

Rij Pjk

 f ′k

 = 0,

and thus
(∑p

j=1Rij Pj1 . . .
∑p
j=1Rij Pjp′

)
∈ D1×q′ R′,

i.e., there exists Qi ∈ D1×q′ such that:

∀ i = 1, . . . , q,

 p∑
j=1

Rij Pj1 . . .

p∑
j=1

Rij Pjp′

 = QiR
′.

If Q := (QT1 . . . Q
T
q )T ∈ Dq×q′ , then we obtain (4).

The Pjk’s are not uniquely defined by φ ∈ homD(M,M ′).
Indeed, if φ(π(fj)) =

∑p′

k=1 P jk π
′(f ′k) for j = 1, . . . , p,

where the P jk’s are elements of D, then we have

π′

 p′∑
k=1

(P jk − Pjk) f ′k

 =
p′∑
k=1

(
P jk − Pjk

)
π′(f ′k) = 0,

i.e., P j• − Pj• = (P j1 − Pj1, . . . , P jp′ − Pjp′) belongs
to D1×q′ R′, and thus there exists Zj ∈ D1×q′ satisfying
P j•−Pj• = Zj R

′. Hence, we obtain P −P = Z R′, where
Z := (ZT1 . . . Z

T
p )T ∈ Dp×q′ . Moreover, using (4), we get

RP = RP +RZ R′ = QR′ +RZ R′ = (Q+RZ)R′,
which proves that RP = QR′ where Q := Q + RZ.
Finally, 2 is a direct consequence of (4), i.e.:

∀ η′ ∈ kerF (R′.), R (P η′) = Q (R′ η′) = 0.

3. TRANSFORMATIONS OF LINEAR DTD SYSTEMS

Let us now consider the following linear differential system
ż(t) = E z(t) + F v(t), (7)

where E ∈ Rn×n and F ∈ Rn×m, and the following linear
differential time-delay (DTD) system

ẋ(t) = Ax(t) +B0 u(t) +B1 u(t− h), (8)
where A ∈ Rn×n, B0, B1 ∈ Rn×m, and:

h ∈ R≥0 := {t ∈ R | t ≥ 0}.
Let D := R[∂, δ] be the polynomial ring of DTD operators,
where (∂ y)(t) := ẏ(t) and (δ y)(t) := y(t− h). The ring D
is commutative since we have:

((∂ ◦ δ) y)(t) = ∂(y(t− h)) = ẏ(t− h) = ((δ ◦ ∂) y)(t).



The composition of operators ◦ will simply be denoted by
the standard product. An element d ∈ D is of the form
d =

∑
0≤i≤r, 0≤j≤s aij ∂

i δj , where aij ∈ R and ∂i is the
ith composition of ∂, i.e., the ith derivative, and:

∀ j ∈ N, (δj y)(t) = y(t− j h).
The matrices of DTD operators associated with (7) and
(8) are respectively defined by:

R = (∂ In − E − F ) ∈ Dn×(n+m),

R′ = (∂ In −A −B0 −B1 δ) ∈ Dn×(n+m).

Let us consider the D-module M := D1×(n+m)/(D1×nR)
(resp., M ′ := D1×(n+m)/(D1×nR′)) finitely presented by
the matrix R (resp., R′). Let π : D1×(n+m) −→M (resp.,
π′ : D1×(n+m) −→ M ′) be the canonical projections onto
M (resp., M ′). By Theorem 2, φ ∈ homD(M,M ′) is
defined by (3), where the matrix

P =
(
P11 P12

P21 P22

)
∈ D(n+m)×(n+m) (9)

satisfies (4) for a certain Q ∈ Dn×n.

Using (5) and the fact that R′ is a matrix of first-order
operators in ∂, without loss of generality, we can assume
that P11 and P21 depend only on δ. If we note C := R[δ],
then P11 ∈ Cn×n, P21 ∈ Cm×n, P12 ∈ Dn×m and
P22 ∈ Dm×m, and thus (4) yields:{

(∂ In − E)P11(δ)− F P21(δ) = Q(∂, δ) (∂ In −A),
(∂ In − E)P12(∂, δ)− F P22(∂, δ) = −Q(∂, δ) (B0 +B1 δ).

(10)
The first equation of (10) implies that:
(P11(δ)−Q(∂, δ)) ∂+Q(∂, δ)A−E P11(δ)−F P21(δ) = 0.
Considering the degree in ∂ of the above element, this last
identity can only hold if deg∂ Q(∂, δ) = 0, i.e., Q depends
only on δ, which yields:{

Q = P11(δ),
P11(δ)A− E P11(δ)− F P21(δ) = 0.

(11)

For the study of the second equation of (10), see Quadrat
(2015). To simplify, we suppose here that P12 ∈ Cn×m and
P22 ∈ Cm×m, i.e., the transformation (6) defined by P , i.e.{

z = P11 x+ P12 u,

v = P21 x+ P22 u,
(12)

does not contain derivatives of u. Then, we get:
(∂ In − E)P12(δ)− F P22(δ) + P11(δ) (B0 +B1 δ) = 0

⇔ ∂ P12(δ) + P11(δ) (B0 +B1 δ)− E P12(δ)− F P22(δ) = 0.
(13)

The identity only holds if we have:{
P12 = 0,
P11(δ) (B0 +B1 δ)− F P22(δ) = 0.

(14)

To simplify again, we consider the particular case where
the matrix P is defined by P11 ∈ GLn(R), P22 ∈ GLm(R)
and P21 = 0, where GLn(R) is the group of invertible
matrices of Rn×n. Note that P21 corresponds to a feedback
(see (12)). P is invertible and its inverse P−1 is defined by:

P−1 =

(
P−1

11 −P
−1
11 P12 P

−1
22

0 P−1
22

)
. (15)

Hence, the matrix P defines an isomorphism (Cluzeau
et al. (2008)), i.e., M ∼= M ′. Then, (11) and (14) yield:


Q = P11,

P12 = 0,
E = P11AP

−1
11 ,

P11B1 δ + P11B0 − F P22 = 0.

(16)

Considering the degree of the last equation in δ, we get
P11B1 = 0 and P11B0 − F P22 = 0, which yields B1 = 0
since P11 ∈ GLn(R) and F = P11B0 P

−1
22 . If B1 is assumed

to be nonzero, then (10) has no solutions in D, and thus
(8) cannot be equivalent to (7) under a transformation P
satisfying P11 ∈ GLn(R), P22 ∈ GLm(R) and P21 = 0.

4. RINGS OF INTEGRO-DIFFERENTIAL DELAY
OPERATORS AND ARTSTEIN’S REDUCTION

Analyzing the arguments of Section 3, the fact that (10)
does not admit a solution of the form P11 ∈ GLn(R),
P22 ∈ GLm(R) and P21 = 0 comes from the fact that
deg∂ ∂ P12(δ) = 1 (see (13)). Now, if P12 contains a right
inverse of ∂, i.e., an integral operator, then the term ∂ can
be cancelled in ∂ P12.

Let I be the integral operator defined by the R-linear map
which maps a function y to its integral z, i.e.:

I : y(·) 7−→ z(·), z(t) :=
∫ t

0

y(τ) dτ.

We recall that the differential operator ∂, the multiplica-
tion operator defined by an a ∈ A := C∞(R≥0) and the
TD operator are respectively defined by:

∂ : y(·) 7−→ ẏ(·), a(·) : y(·) 7−→ a(·) y(·),
δ : y(·) 7−→ y( · − h).

The operators I and ∂ satisfy the following relations
∂ I = 1, I ∂ = 1− e0, (17)

where 1 is the identity operator and e0 is the evaluation
character, i.e., e0(y) = y(0) (Regensburger et al. (2009)).
If a ∈ A, then the composition of I with a is defined by

I a : y(·) 7−→ z(·), z(t) =
∫ t

0

a(τ) y(τ) dτ, (18)

i.e., a corresponds to the kernel of the integral operator
I a. The composition of a with I is defined by:

a I : y(·) 7−→ z(·), z(t) = a(t)
∫ t

0

y(τ) dτ. (19)

Since we now suppose that the support of the function of
y is included in R≥0, i.e., y(t) = 0 for t < 0, then we have

(δ I)(y)(t) = δ

∫ t

0

y(τ) dτ =
∫ t−h

0

y(τ) dτ =
∫ t

h

y(s− h) ds

=
∫ t

0

y(s− h) ds =
∫ t

0

(δ y)(s) ds,

i.e., the following relation between I and δ holds:
δ I = I δ. (20)

If P12 is supposed to depend also on I, then (13) becomes:
(∂ In − E)P12(δ, I) + P11 (B0 +B1 δ)− F P22 = 0. (21)

In order that (21) holds, using (17), P12(δ, I) must contain
I so that the operator ∂ can be cancelled in the term
∂ P12(δ, I). Now, considering the degree of (21) in δ, we
also get that P12(δ, I) contains δ. Hence, let us consider
the following ansatz for P12

P12 = a0 δ I a1 + a2 I a3 + a4 δ + a5, (22)



where the ai’s belong to A. Let us also note:
∆ := (∂ In − E)P12 + P11 (B0 +B1 δ)− F P22.

Substituting (22) into (21) and using (17), (18), (19), (20),
∂ a = a ∂ + ȧ and δ a = a( · − h) δ for all a ∈ A (Chyzak
et al. (2005)), we obtain:
∆ = a0 (∂ I) δ a1 + ȧ0 δ I a1 + a2 (∂ I) a3 + ȧ2 I a3 + a4 ∂ δ

+ȧ4 δ + a5 ∂ + ȧ5 − E (a0 δ I a1 + a2 I a3 + a4 δ + a5)
+P11 (B0 +B1 δ)− F P22

= (ȧ0 − E a0) δ I a1 + (ȧ2 − E a2) I a3 + a4 ∂ δ + a0 δ a1

+(ȧ4 − E a4 + P11B1) δ + a5 ∂ + ȧ5 − E a5 + a2 a3

+P11B0 − F P22

= (ȧ0 − E a0) δ I a1 + (ȧ2 − E a2) I a3 + a4 ∂ δ

+(a0 a1( · − h) + ȧ4 − E a4 + P11B1) δ + a5 ∂

+ȧ5 − E a5 + a2 a3 + P11B0 − F P22.

Let us suppose that a1 6= 0 and a3 6= 0. Then, ∆ = 0 if:

ȧ0 − E a0 = 0,
ȧ2 − E a2 = 0,
a4 = 0,
a0 a1( · − h) + ȧ4 − E a4 + P11B1 = 0,
a5 = 0,
ȧ5 − E a5 + a2 a3 + P11B0 − F P22 = 0,

⇔



ȧ0 − E a0 = 0,
ȧ2 − E a2 = 0,
a4 = 0,
a5 = 0,
a0 a1( · − h) + P11B1 = 0,
a2 a3 + P11B0 − F P22 = 0.

(23)

Integrating the first two equations of (23), we get:{
a0 = eE t c0, c0 ∈ Rn×n,
a2 = eE t c2, c2 ∈ Rn×n.

(24)

Substituting (24) into (23), we obtain the following equa-
tions on the initial conditions c0 and c2{

eE t c0 a1( · − h) + P11B1 = 0,
eE t c2 a3 + P11B0 − F P22 = 0,

⇔

{
c0 a1 = −e−E (t+h) P11B1,

c2 a3 = e−E t (F P22 − P11B0).

(25)

Hence, (22) becomes:
P12 = eE t c0 δ I a1 + eE t c2 I a3 = eE t (δ I (c0 a1) + I (c2 a3))

= eE t (−δ I e−E (t+h) P11B1 + I e−E t (F P22 − P11B0))

= −eE t δ I e−E (t+h) P11B1 + eE t I e−E t (F P22 − P11B0).
In other words, the operator P12 is defined by

(P12 u)(t) =− eE t
∫ t−h

0

e−E (τ+h) P11B1 u(τ) dτ

+ eE t
∫ t

0

e−E τ (F P22 − P11B0)u(τ) dτ

=−
∫ t−h

0

eE (t−(τ+h)) P11B1 u(τ) dτ

+
∫ t

0

eE (t−τ) (F P22 − P11B0)u(τ) dτ,

where P11 ∈ GLn(R) and P22 ∈ GLm(R), and (12) yields:
z(t) =P11 x(t)−

∫ t−h

0

eE (t−(τ+h)) P11B1 u(τ) dτ

+
∫ t

0

eE (t−τ) (F P22 − P11B0)u(τ) dτ,

v(t) = P22 u(t).

Now, using the third identity of (16), i.e., E = P11AP
−1
11 ,

we get eE t = P11 e
A t P−1

11 , which yields:

z(t) = P11

(
x(t)−

∫ t−h

0

eA (t−(τ+h))B1 u(τ) dτ

+
∫ t

0

eA (t−τ) (P−1
11 F P22 −B0)u(τ) dτ

)
.

Now, note that if we set P−1
11 F P22 − B0 = e−AhB1, i.e.,

if F = P11 (B0 + e−AhB1)P−1
22 , then we obtain:

z(t) =P11

(
x(t)−

∫ t−h

0

eA (t−(τ+h))B1 u(τ) dτ

+
∫ t

0

eA (t−(τ+h))B1 u(τ) dτ
)

=P11

(
x(t) +

∫ t

t−h
eA (t−(τ+h))B1 u(τ) dτ

)
.

We find again Artstein’s transformation Artstein (1982).
Theorem 3. Let P11 ∈ GLn(R) and P22 ∈ GLm(R). Then,
the following two linear systems
ẋ(t) = Ax(t)+B0 u(t)+B1 u(t−h), ż(t) = E z(t)+F v(t),
where A, E ∈ Rn×n and B0, B1, F ∈ Rn×m are such
that E = P11AP

−1
11 , are equivalent under the following

invertible transformation:
z(t) = P11

(
x(t)−

∫ t−h

0

eA (t−(τ+h))B1 u(τ) dτ

+
∫ t

0

eA (t−τ) (P−1
11 F P22 −B0)u(τ) dτ

)
,

v(t) = P22 u(t).

We note that Theorem 3 also holds when B1 = 0, i.e., the
following two linear differential systems

ẋ(t) = Ax(t) +B0 u(t), ż(t) = E z(t) + F v(t),
are equivalent under the invertible transformation z(t) = P11

(
x(t) +

∫ t

0

eA (t−τ) (P−1
11 F P22 −B0)u(τ) dτ

)
,

v(t) = P22 u(t),

where P11 ∈ GLn(R) and P22 ∈ GLm(R). Indeed, we have
to solve (13) where B1 = 0 and P12 does not depend on δ.
Hence, we can consider (22) where a0 = 0 and a4 = 0, and
the result directly follows from the above computations.
Corollary 4. Let P11 ∈ GLn(R) and P22 ∈ GLm(R). Then,
the two following two linear systems
ẋ(t) = Ax(t)+B0 u(t)+B1 u(t−h), ż(t) = E z(t)+F v(t),
where A, E ∈ Rn×n and B0, B1, F ∈ Rn×m are such that{

E = P11AP
−1
11 ,

F = P11 (B0 + e−AhB1)P−1
22 ,



are equivalent under the invertible transformation: z(t) = P11

(
x(t) +

∫ t

t−h
eA (t−(τ+h))B1 u(τ) dτ

)
,

v(t) = P22 u(t).

See Quadrat (2015) for the case of multi-delays.

5. TIME-VARYING CASE

If E, F , A, B0 and B1 now depend on the time t, then
the same computations as the ones done in Section 4 yield
(10), and using ∂ a = a ∂ + ȧ for all a ∈ A, we obtain:

Q = P11,

Ṗ11 = E P11 − P11A,

∂ P12(δ)− E P12(δ) + P11 (B0 +B1 δ)− F P22 = 0.

Then, repeating the same computations as in Section 4
with the last equation of the above system, we get:

ȧ0(t)− E(t) a0 = 0,
ȧ2(t)− E(t) a2 = 0,
a4 = 0,
a5 = 0,
a0(t) a1(t− h) + P11(t)B1(t) = 0,
a2(t) a3(t) + P11(t)B0(t)− F (t)P22(t) = 0.

If Φ is a fundamental matrix of ȧ = E(t) a, then the first
two equations of the above system yield a0 = Φ(t, t0) c0
and a2 = Φ(t, t0) c2, where c0, c2 ∈ Rn×n and t0 ∈ R≥0.
Substituting them into the last two equations, we obtain:{

c0 a1(t) = −Φ−1(t+ h, t0)P11(t+ h)B1(t+ h),
c2 a3(t) = Φ−1(t, t0)(F (t)P22(t)− P11(t)B0(t)).

Hence, (22) becomes:

P12 = Φ(t, t0) c0 δ I a1 + Φ(t, t0) c2 I a3

= Φ(t, t0) (δ I c0 a1 + I c2 a3)
= Φ(t, t0)

(
−δ I Φ−1(t+ h, t0)P11(t+ h)B1(t+ h)

+I Φ−1(t, t0)(F (t)P22(t)− P11(t)B0(t))
)
.

In other words, the operator P12 is defined by

(P12 u)(t) =

Φ(t, t0)

(
−
∫ t−h

t0

Φ−1(τ + h, t0)P11(τ + h)B1(τ + h)u(τ) dτ

+
∫ t

t0

Φ−1(τ, t0)(F (τ)P22(τ)− P11(τ)B0(τ))u(τ) dτ
)
.

(26)

Since P11 and Φ are non-singular matrices, so is P−1
11 Φ.

Now, using Ṗ11 = E P11 − P11A, we get

d

dt
(P−1

11 Φ)−A (P−1
11 Φ) =

dP−1
11

dt
Φ + P−1

11 Φ̇−AP−1
11 Φ

= −P−1
11 Ṗ11 P

−1
11 Φ + P−1

11 E Φ−AP−1
11 Φ

= −P−1
11 ((Ṗ11 − E P11 + P11A )P−1

11 ) Φ = 0,

which shows that Ψ := P−1
11 Φ is a fundamental matrix of

ȧ = Aa. Then, (26) can be rewritten as follows:

(P12 u)(t)

= P11(t) Ψ(t, t0)

(
−
∫ t−h

t0

Ψ−1(τ + h, t0)B1(τ + h)u(τ) dτ

+
∫ t

t0

Ψ−1(τ, t0) (P11(τ)−1 F (τ)P22(τ)−B0(τ))u(τ) dτ
)

= P11(t)

(
−
∫ t−h

t0

Ψ(t, t0) Ψ−1(τ + h, t0)B1(τ + h)u(τ) dτ

+
∫ t

t0

Ψ(t, t0) Ψ−1(τ, t0) (P11(τ)−1 F (τ)P22(τ)−B0(τ))

u(τ) dτ) .
(27)

Using the properties of the fundamental matrix Ψ, i.e.,
∀ t1, t2, t3 ∈ R≥0, Ψ(t3, t2) Ψ(t2, t1) = Ψ(t3, t1),

∀ t ∈ R≥0, det Ψ(t, t0) 6= 0,
Ψ−1(t2, t1) = Ψ(t1, t2),

we get Ψ(t, t0) Ψ−1(τ + h, t0) = Ψ(t, τ + h). Thus, (27)
finally becomes:

(P12 u)(t) = P11(t)

(
−
∫ t−h

t0

Ψ(t, τ + h)B1(τ + h)u(τ) dτ

+
∫ t

t0

Ψ(t, τ) (P11(τ)−1 F (τ)P22(τ)−B0(τ))u(τ) dτ
)
.

Theorem 5. Let P11 ∈ GLn(A) and P22 ∈ GLm(A). Then,
the following two linear systems

ẋ(t) = A(t)x(t) +B0(t)u(t) +B1(t)u(t− h),
ż(t) = E(t) z(t) + F (t) v(t),

where A, E ∈ An×n and B0, B1, F ∈ An×m are such
that E = Ṗ11 P

−1
11 + P11AP

−1
11 , are equivalent under the

following invertible transformation:
z(t) =P11(t)

(
x(t)−

∫ t−h

t0

Ψ(t, τ + h)B1(τ + h)u(τ) dτ

+
∫ t

t0

Ψ(t, τ) (P11(τ)−1 F (τ)P22(τ)−B0(τ))u(τ) dτ
)
,

v(t) =P22(t)u(t).

With the above notations, if we set
P11(t)−1 F (t)P22(t)−B0(t) = Ψ(t+ h, t)−1B1(t+ h),

then we obtain:

z(t) = P11(t)
(
x(t) +

∫ t

t−h
Ψ(t, τ + h)B1(τ + h)u(τ) dτ

)
.

Corollary 6. Let P11 ∈ GLn(A) and P22 ∈ GLm(A).
Then, the following two linear systems

ẋ(t) = A(t)x(t) +B0(t)u(t) +B1(t)u(t− h),
ż(t) = E(t) z(t) + F (t) v(t),

where A, E ∈ An×n and B0, B1, F ∈ An×m are such that{
E(t) = Ṗ11(t)P−1

11 (t) + P11(t)A(t)P−1
11 (t),

F (t) = P11(t)
(
B0(t) + Ψ(t, t+ h)−1B1(t+ h)

)
P22(t)−1,

where Ψ is a fundamental matrix of ȧ = Aa, are equivalent
under the following invertible transformation: z(t) = P11(t)

(
x(t) +

∫ t

t−h
Ψ(t, τ + h)B1(τ + h)u(τ) dτ

)
,

v(t) = P22(t)u(t).



6. THE DILATION CASE

The following system is considered in Artstein (1982):
ẋ(t) = Ax(t) +B0 u(t) +B1 u(t/2).

Let us suppose that q ∈ R \ {0} is not a root of unity. Let
δq : y(t) 7−→ y(q t) be the dilation operator. We then get:

(∂ δq)(y(t)) =
d

dt
y(q t) = q ẏ(q t) = q (δq ∂)(y(t)),

(δq I)(y(t)) = δq

∫ t

0

y(τ) dτ =
∫ q t

0

y(τ) dτ

= q

∫ t

0

y(q s) ds = q (I δq)(y(t)).

(28)

Let us consider the following two linear systems
ż(t) = E(t) z(t)+F (t) v(t), ẋ(t) = Ax(t)+B0 u(t)+B1 u(q t),
the following matrices of functional operators
R = (∂ In − E − F ), R′ = (∂ In −A −B0 −B1 δq)

with entries in the ring D of integro-differential dilation
operators and the two finitely presented left D-modules:
M = D1×(n+m)/(D1×nR), M ′ = D1×(n+m)/(D1×nR′).

Let φ ∈ homD(M,M ′) be an isomorphism defined by (9)
where P11 ∈ GLn(R), P21 = 0 and P22 ∈ GLm(R). Then,
repeating what is done in Sections 3 and 4, we get

Q = P11,

E = P11AP
−1
11 ,

∆ := (∂ In − E)P12 + P11 (B0 +B1 δq)− F P22 = 0,
where P12 = a0 δq I a1 + a2 I a3. Then, using the identities
∂ I = 1, δq a = a(q ·) δq for all a ∈ A, and (28), we obtain:
∆ = a0 ∂ δq I a1 + ȧ0 δq I a1 + a2 ∂ I a3 + ȧ2 I a3

−E (a0 δq I a1 + a2 I a3) + P11 (B0 +B1 δq)− F P22

= (ȧ0 − E a0) δq I a1 + (q a0) δq a1 + P11B1 δq
+(ȧ2 − E a2) I a3 + a2 a3 + P11B0 − F P22

= (ȧ0 − E a0) δq I a1 + (q a0 a1(q · ) + P11B1) δq
+(ȧ2 − E a2) I a3 + a2 a3 + P11B0 − F P22.

Let us suppose that a1 6= 0 and a3 6= 0. Then, ∆ = 0 if:
ȧ0 − E a0 = 0,
ȧ2 − E a2 = 0,
q a0 a1(q · ) + P11B1 = 0,
a2 a3 + P11B0 − F P22 = 0.

(29)

Solving the first two equations of (29), we get a0 = eE t c0
and a2 = eE t c2, where c0, c2 ∈ Rn×n. Substituting these
solutions into the last two equations of (29), we obtain:{

c0 a1(t) = −q−1 e−q
−1 E t P11B1,

c2 a3(t) = e−E t (F P22 − P11B0),

P12 = eE t c0 δq I a1 + eE t c2 I a3 = eE t (δq I c0 a1 + I c2 a3)

= eE t (δq I (−q−1 e−q
−1 E t P11B1)

+ I e−E t (F P22 − P11B0)).
Hence, we obtain:

(P12 u)(t) =− q−1

∫ q t

0

eE (t−q−1 τ) P11B1 u(τ)

+
∫ t

0

eE (t−τ) (F P22 − P11B0)u(τ) dτ.

Now, using E = P11AP
−1
11 , we obtain:

z(t) = P11

(
x(t) +

∫ t

0

eA (t−τ) (P−1
11 F P22 −B0)u(τ) dτ

−q−1

∫ q t

0

eA (t−q−1 τ)B1 u(τ)
)
,

v(t) = P22(t)u(t).

If we set F P22 − P11B0 = q−1 e(1−q
−1)E τ P11B1, i.e.,

F = P11

(
B0 + q−1 e(1−q

−1)E tB1

)
P−1

22 ,

then we obtain

P12 u(t) = q−1

∫ t

q t

eE (t−q−1 τ) P11B1 u(τ) dτ,

and thus: z(t) = P11(t)
(
x(t) + q−1

∫ t

q t

eA (t−q−1 τ)B1 u(τ) dτ
)
,

v(t) = P22(t)u(t).

For similar results on other classes of linear functional
systems and more results on rings of integro-differential
delay operators, see Quadrat (2015).
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