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Abstract— As far as we know, there is no algebraic (poly-
nomial) approach for the study of linear differential time-
delay systems in the case of a (sufficiently regular) time-
varying delay. Based on the concept of skew polynomial rings
developed by Ore in the 30s, the purpose of this paper is to
construct the ring of differential time-delay operators as an
Ore extension and to analyze its properties. Classical algebraic
properties of this ring, such as noetherianity, its homological
and Krull dimensions and the existence of Gröbner bases, are
characterized in terms of the time-varying delay function. In
conclusion, the algebraic analysis approach to linear systems
theory allows us to study linear differential time-varying delay
systems (e.g. existence of autonomous elements, controllabil-
ity, parametrizability, flatness, behavioral approach) through
methods coming from module theory, homological algebra and
constructive algebra.

I. INTRODUCTION

Differential time-delay systems have been extensively
studied in the literature of control theory. Most of these
previous works consider constant or distributed time-delays.
Motivated by applications, such as in incompressible fluid
flows in pipes, material or vehicular flows, metal-rolling
processes, communication networks and so on [9], [12], [20],
[22], the class of differential time-varying delay (DTVD)
systems has been investigated mainly from a stability analysis
viewpoint. See for instance [1], [14], [11], [21] and the
references therein.

At the end of the 90s, following a mathematical theory
developed by Malgrange, Bernstein, Sato, Kashiwara and
others, the algebraic analysis approach to linear systems
theory was initiated by Oberst, Fliess and Pommaret (see
[6], [15], [16], [23] and the references therein). Within
this approach, an intrinsic study of linear systems can be
developed based on module theory, homological algebra
and functional analysis. In particular, built-in properties of
linear systems can be characterized by means of module
properties independently of the system representation. More-
over, Willems’ behavioral approach can also be realized and
developed within this framework [15].

Based on the concepts of a skew polynomial [13] and an
Ore algebra [4], computer algebra methods (e.g. Gröbner
or Janet bases [2], [4]) and a constructive approach to
module theory and homological algebra [19], an effective
algebraic analysis approach to linear functional systems
was initiated in [2], [5]. General classes of linear functional
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systems (e.g. differential systems, constant time-delay sys-
tems, discrete systems) can then be studied by means of
common mathematical concepts, theorems and algorithms.
This approach yields the development of the OREMODULES
and OREMORPHISMS packages [3], [5] allowing the study
of control concepts such as controllability, observability,
parametrizability, flatness and equivalences thoroughly.

The goal of this paper is to develop an algebraic analysis
approach to linear DTVD systems. With this aim in mind,
firstly the ring of DTVD operators is shown to be an
Ore extension D [13]. Important algebraic and homological
properties of D are then characterized. Since D is also a
bijective skew PBW extension [7], using [8], Gröbner basis
techniques can be used to effectively test standard module
properties and thus system properties. The corresponding
algorithms will be implemented in the future.

General definitions of skew polynomial rings and Ore
extensions are given in Section II as well as some examples.
In Section III, we give the explicit construction of the
ring D of DTVD operators as an Ore extension. Algebraic
properties of this Ore extension are analyzed in Section IV,
especially within a homological framework. In Section V,
system properties are characterized in terms of module theory
and homological algebra. Finally, in Section VI, we discuss
some open questions concerning D.

II. SKEW POLYNOMIAL RINGS AND ORE EXTENSIONS

In this section, we briefly recall general concepts such as
the definitions of skew polynomial ring, of an Ore extension
and of an Ore algebra. We also show that the ring of differ-
ential time-varying delay operators is not an Ore algebra.

Definition 1 ([13]): Let A be a ring. An Ore extension
A[∂;σ, δ] of A is the noncommutative ring formed by
elements of the form

∑n
i=0 ai ∂

i with ai ∈ A, obeying the
following commutation rule

∀ a ∈ A, ∂ a = σ(a) ∂ + δ(a), (1)

where σ is a ring endomorphism of A (i.e. σ : A −→ A
satisfies σ(1) = 1, σ(a + b) = σ(a) + σ(b) and σ(a b) =
σ(a)σ(b), for all a, b ∈ A) and δ is a σ-derivation of A, i.e.
δ : A −→ A and it satisfies for all a, b ∈ A:

δ(a+ b) = δ(a) + δ(b), (2)
δ(a b) = σ(a) δ(b) + δ(a) b. (3)

The Ore extension A[∂;σ, δ] of A is also called a skew
polynomial ring over A.



Example 1: Let A be a ring and δ a derivation of A (i.e.
δ : A −→ A satisfies (2) and (3) with σ = idA. Note that
in this case, (2) is the standard Leibniz’s rule). The ring
(A, δ) is called a a differential ring. For instance, in the case
A = k[t] (resp. A = k(t)) denotes the commutative ring of
polynomials (resp. rational functions) in t with coefficients
in a field k (e.g. k = Q, R, or C), or if A is the ring
of analytic (or meromorphic) functions in t, then d

dt is a
derivation of A and

(
A, d

dt

)
is a differential ring. In what

follows, we will denote a derivation by d
dt . The Ore extension

O = A
[
∂; idA,

d
dt

]
of a ring A is then the ring of differential

operators in ∂ with coefficients in A. An element of O is of
the form

∑n
i=0 ai ∂

i, where the product as to be understood
as the composition of the following operators acting on A:

ai : A −→ A
a 7−→ ai a,

∂ : A −→ A
a 7−→ d

dt a.

We may check that (1) is satisfied for σ = idA:

(∂ ai)(a) = ∂(ai a) =
d
dt (ai a) = ai

(
d
dt a
)
+
(
d
dt ai

)
a

=
(
ai ∂ + d

dt ai
)
(a), ∀ a ∈ A.

Example 2: Let h ∈ R>0 := {t ∈ R | t > 0} and A
be a ring of real-valued functions of t equipped with the
endomorphism σ defined by σ(a(t)) = a(t−h) for all a ∈ A.
The Ore extension O = A[S;σ, 0] of A is the ring of time-
delay (TD) operators with coefficients in A. An element of
O is of the form

∑n
i=0 ai S

i, where the product as to be
understood as the composition of the two operators:

ai : A −→ A
a 7−→ ai a,

S : A −→ A
a(t) 7−→ a(t− h).

Similarly as above, if A is a ring of real-valued sequences
on Z, i.e. A = RZ, then an element a ∈ A can be written as
a = (ai)i∈Z. Let σ be the endomorphism defined by forward
(resp. backward) shift σ (ai) = (ai+1) for (resp. σ (ai) =
(ai−1)) all i ∈ Z. Then, A [S;σ, 0] is the skew polynomial
ring of forward (resp. backward) shift operators.

If our goal is to study linear systems of differential time-
delay (DTD) equations, of differential difference equations,
of partial differential equations and so on, i.e. rings of
multivariate functional operators, then the Ore extension
construction can be iterated. Hence, if O = A[∂;σ, δ] is an
Ore extension of A and σ2 (resp. δ2) is an endomorphism
(resp. a σ2-derivation) of O, then the Ore extension B =
O [∂2;σ2, δ2] = A [∂;σ, δ] [∂2;σ2, δ2] of O can be defined.
Note that we then have:

∀ o ∈ O, ∂2 o = σ2(o) ∂2 + δ2(o).

For ∂ ∈ O, we have ∂2 ∂ = σ2(∂) ∂2 + δ2(∂). That implies
that ∂2 ∂ is usually not equal to ∂ ∂2, i.e. ∂ and ∂2 do
not usually commute. In many standard applications though,
functional operators commute with each other. This remark
led to the introduction of the concept of an Ore algebra.

Definition 2 ([4]): If A is a k-algebra, then an Ore ex-
tension A[∂1;σ1, δ1] · · · [∂n;σn, δn] of A is called an Ore

algebra if σj(A) ⊆ A and δj(A) ⊆ A for j = 1, . . . , n, and:

1 ≤ i < j ≤ n, σj(∂i) = ∂i, δj(∂i) = 0,

1 ≤ i, j ≤ n, i 6= j,


(σj ◦ σi)|A = (σi ◦ σj)|A,
(δj ◦ σi)|A = (σi ◦ δj)|A,
(δj ◦ δi)|A = (δi ◦ δj)|A.

Example 3: Note that β1 = ∂
∂x1

is a derivation of the
polynomial ring A = R[x1, x2]. Hence, we can define the
Ore extension O = A [∂1; idA, β1] of A formed by the
differential operators in ∂1 with coefficients in A. Consider
the following derivation of O:

β2 =
∂

∂x2
: O −→ O∑r

i=0 ai(x1, x2) ∂
i
1 7−→

∑r
i=0

∂ai(x1, x2)

∂x1
∂i1.

Thus, the Ore extension B = O [∂2; idO, β2] of O can be
formed. The conditions of an Ore algebra are clearly fulfilled
(β2 ◦ β1 = β1 ◦ β2 is the Schwarz’s theorem), which shows
that B is an Ore algebra and ∂2 ∂1 = ∂1 ∂2, i.e. the operators
∂1 and ∂2 commute.

Example 4: Let O = A [∂; idA, δ] be a ring of differential
operators with coefficients in a differential R-algebra A of
functions of t with δ = d

dt . Let h be a non-negative real and
σ be the following map:

σ : O −→ O∑r
i=0 ai(t) ∂

i 7−→
∑r
i=0 ai(t− h) ∂i.

Then, σ is an endomorphism of O since h is a constant.
Thus, we can consider the Ore extension B = O[S;σ, 0] of
O. For a ∈ A, we have

(δ ◦ σ) (a(t)) = d

dt
a(t− h) = ȧ(t− h) = (σ ◦ δ) (a(t)) ,

which shows that (δ ◦ σ)|A = (σ ◦ δ)|A. The remaining
conditions for an Ore algebra can easily be checked and that
shows that B is an Ore algebra. In particular, we have:

S (∂) = σ(∂)S = ∂ S.

We now show that the ring of DTVD operators is not an
Ore algebra. Let h be a smooth or an analytic function which
satisfies:

∀ t ∈ R≥0 := {t ∈ R | t ≥ 0}, h(t) ≥ 0. (4)

Let
(
A, δ = d

dt

)
be a differential ring of real-valued functions

of t equipped with an endomorphism σ defined by σ (a(t)) =
a (t− h(t)) for all a ∈ A. Then, we obtain

(δ ◦ σ)(a(t)) = δ(a(t− h(t))) = (1− ḣ(t)) ȧ(t− h(t))
= (1− ḣ(t)) (σ ◦ δ)(a(t)),

which shows that (δ ◦ σ)|A = (1 − ḣ) (σ ◦ δ)|A. Hence, we
cannot construct an Ore algebra of DTVD operators.



III. AN ORE EXTENSION CONSTRUCTION

Let us develop an explicit Ore extension construction
for the ring of DTVD operators. Let

(
A, δ = d

dt

)
be a

differential ring of real-valued functions of t equipped with
an endomorphism σ defined by σ (a(t)) = a (t− h(t)) for
all a ∈ A. We assume that t ∈ A so that h(t) = t−σ(t) ∈ A.
Let O = A

[
∂; idA,

d
dt

]
be the skew polynomial ring of

differential operators with coefficients in A.

We first note that the following map σ

σ : O −→ O∑r
i=0 ai(t) ∂

i 7−→
∑r
i=0 ai(t− h(t)) ∂i,

cannot be an endomorphism of O. Indeed, if so, then using
the identity ∂ a(t) = a(t) ∂ + ȧ(t) of O, we would get

σ(∂ a(t)) = σ(∂)σ(a(t)) = ∂ a(t− h(t))
= a(t− h(t)) ∂ + (1− ḣ(t)) a(t− h(t)),

σ(a(t) ∂ + ȧ(t)) = σ(a(t))σ(∂) + σ(ȧ(t))

= a(t− h(t)) ∂ + ȧ(t− h(t)),
(5)

which yields σ(∂ a(t)) 6= σ(a(t) ∂ + ȧ(t)) apart from the
case ḣ(t) = 0, i.e. h(t) = h ∈ R≥0 is a constant function.

In what follows, we suppose that h satisfies the conditions

∀ t ∈ R≥0, ḣ(t) 6= 1,

and 1/(1− ḣ) ∈ A. Then, we consider the following map:

σ : O −→ O∑r
i=0 ai(t) ∂

i 7−→
∑r
i=0 ai(t− h(t))

(
1

1− ḣ
∂

)i
.

(6)
We claim that σ is an endomorphism of O.

Remark 1: If we note x(t) := t− h(t), then we have:

d

dt
=
dx

dt

d

dx
=
(
1− ḣ(t)

) d

dx
⇒ d

dx
=

1

1− ḣ(t)
d

dt
.

Therefore, if we set ∂t := ∂ =
d

dt
and ∂x :=

d

dx
, then the

map σ can be understood as:

σ(a(t)) = a(x), σ(∂t) = ∂x.

Hence, σ corresponds to the change of time-scale, i.e. we
pass from time t to time x(t) := t− h(t).

Using the notation of Remark 1, we have:

σ

(
r∑
i=0

ai(t) ∂
i
t

)
=

r∑
i=0

ai(x) ∂
i
x. (7)

We clearly have σ(1) = 1. Moreover, σ is an additive
map. Let us prove that σ is multiplicative. If we consider

d1 :=

r∑
i=0

ai(t) ∂
i
t , d2 :=

s∑
j=0

bj(t) ∂
j ∈ O,

then we have d1 d2 =
∑r+s
k=0 ck(t) ∂

k
t , for some ck ∈ A.

Using (7), we have:

σ(d1) =

r∑
i=0

ai(x) ∂
i
x, σ(d2) =

s∑
j=0

bj(x) ∂
j
x,

σ(d1 d2) =

r+s∑
k=0

ck(x) ∂
k
x .

Since O = A
[
∂x; idA,

d
dx

]
is a ring of differential operators

in ∂x with function coefficients in x, we also have:

r+s∑
k=0

ck(x) ∂
k
x =

(
r∑
i=0

ai(x) ∂
i
x

)  s∑
j=0

bj(x) ∂
j
x

 .

That shows that σ(d1 d2) = σ(d1)σ(d2) and proves that σ
is an endomorphism of O.

Since σ is an endomorphism of O, we can then introduce
the Ore extension of O defined by:

D = O [S;σ, 0] = A

[
∂; idA,

d

dt

]
[S;σ, 0] .

In the rest of the text, this ring will be called a ring of
differential time-varying delay (DTVD) operators over A.
An element d ∈ D is then of the form:

d =
∑

0≤i+j≤r

aij(t) ∂
i Sj , aij ∈ A.

From the definition of an Ore extension, we have:

∀ o ∈ O, S o = σ(o)S. (8)

Considering o := ∂, we obtain:

S ∂ =
1

1− ḣ
∂ S, i.e. ∂ S = (1− ḣ)S ∂. (9)

Note that (9) corresponds to the following identity:

(∂ S)(y(t)) =
d

dt
y(t− h(t)) = (1− ḣ(t)) ẏ(t− h(t))

= (1− ḣ(t)) (S ∂)(y(t)).

Remark 2: The ring D of DTVD operators can also be
obtained by extending the ring A[S;σ, 0] of time-varying de-
lay operators, where σ is defined by σ (a(t)) = a (t− h(t)).
Indeed, if we define the following maps

σ2 : A[S;σ, 0] −→ A[S;σ, 0]∑r
i=0 ai(t)S

i 7−→
∑r
i=0 ai(t) ((1− ḣ(t))S)i,

δ2 : A[S;σ, 0] −→ A[S;σ, 0]∑r
i=0 ai(t)S

i 7−→
∑r
i=0 ȧi(t)S

i,

then we can check that σ2 is an endomorphism of A[S;σ, 0]
and β2 a σ2-derivation of A[S;σ, 0]. Therefore, we can define
the Ore extension D′ = A[S;σ, 0][∂;σ2, δ2]. Then, we have{

∂ a(t) = σ2(a(t)) ∂ + δ2(a(t)) = a(t) ∂ + ȧ(t),

∂ S = σ2(S) ∂ + δ2(S) = (1− ḣ(t))S ∂,

and we can check that D′ = D.



IV. ALGEBRAIC PROPERTIES OF THE ORE EXTENSION D

In this section, we study the properties of the ring D of
DTVD operators defined in Section III.

We refer to [2], [13], [19] for basic algebraic definitions.
Let us state again standard results on Ore extensions.

Theorem 1 ([13]): Let A be a noncommutative ring and
D = A[∂;σ, δ] a skew polynomial ring. Then, we have:

1) If A is a domain (i.e. A has no non-zero zero divisors)
and σ is injective endomorphism of A, then D is a
domain.

2) If A is a left Ore domain (i.e. A is a domain satisfying
Aa1 ∩ Aa2 6= 0 for all a1, a2 ∈ A \ {0}) and σ is
injective, then D is a left Ore domain.

3) If A is a left (right) noetherian ring (i.e. every left
(right) ideal of A is finitely generated) and σ is an
automorphism of A, then D is a left (right) noetherian
ring. Moreover, if A is a domain, then D is a left (right)
Ore domain.

We obtain the following important corollary of Theorem 1.

Corollary 1: Let D = A
[
∂; idA,

d
dt

]
[S;σ, 0] be the ring

of DTVD operators defined in Section III. Then, we have:
1) If A is a domain, then so is D.
2) If A is a left Ore domain, then so is D.
3) If A is a left (right) noetherian ring and if σ|A is an

automorphism of A, then D is a left (right) noetherian
ring. Moreover, σ|A is an automorphism of A if and
only if the function l defined by

l : R≥0 −→ R
t 7−→ t− h(t),

(10)

admits an inverse l−1 ∈ A which satisfies a ◦ l−1 ∈ A
for all a ∈ A (e.g. h(t) := q t + h, where h ∈ R≥0
and 0 < q < 1). Finally, if A is a domain, then D is a
left (right) Ore domain.

Proof: 1 and 2 are direct consequences of 1 and 2
of Theorem 1 and of the fact that idA and σ, defined in
Section III, are both injective endomorphisms of A.

3. Let us first prove that σ|A is an automorphism of A if
and only if the function l defined by (10) admits an inverse in
A. If σ is an automorphism of A, then for every a ∈ A, there
exists a unique b ∈ A such that a(t) = σ(b(t)) = b(l(t)).
Taking a = t ∈ A, we get t = (b ◦ l)(t), i.e., b ◦ l =
idR≥0

, which proves that l is injective and thus bijective on
its image, and b = l−1 ∈ A. Moreover, for every c ∈ A,
σ−1(c) ∈ A, where σ−1(c(t)) = c(σ−1(t)) = c(l−1(t)),
which shows that c ◦ l−1 ∈ A. Conversely, if (10) admits an
inverse l−1 ∈ A and a ◦ l−1 ∈ A for all a ∈ A, then we can
define the endomorphism σ′ of A by

σ′ : A −→ A

a(t) 7−→ a(l−1(t)),

and we can easily check that we have σ′ ◦ σ = idA and
σ ◦σ′ = idA, i.e., σ is an automorphism of A and σ′ = σ−1.

Let us now show that the automorphism σ of A extends
to an automorphism of the ring O = A

[
∂; idA,

d
dt

]
of

differential operators by considering the action on O

σ′ : O −→ O
r∑

i=0

ai(t) ∂
i
t 7−→

r∑
i=0

a(l−1(t))

(
1
˙(l−1)(t)

∂t

)i

=

r∑
i=0

a(y) ∂i
y,

with the notations y := l−1(t) and ∂y := 1
˙(l−1)(t)

∂t. Similarly
as for (6), we can prove that σ′ is an endomorphism of A.
Using l−1 ◦ l = id and l ◦ l−1 = id, we get:

l(l−1(t)) = t ⇒ l̇(l−1(t)) ˙(l−1)(t) = 1,

l−1(l(t)) = t ⇒ ˙l−1(l(t)) l̇(t) = 1.

Since l̇ = 1 − ḣ ∈ A, we obtain 1/ ˙(l−1) = l̇(l−1) ∈ A.
Moreover, we have

(σ′ ◦ σ)
(∑r

i=0 ai(t) ∂
i
t

)
= σ′

(∑r
i=0 ai(l(t))

(
1
l̇(t)

∂t

)i)
=

∑r
i=0 ai(t)

(
1

l̇(l−1(t)) ˙(l−1)(t)
∂t

)i
=

∑r
i=0 ai(t) ∂

i
t ,

(σ ◦ σ′)
(∑r

i=0 ai(t) ∂
i
t

)
= σ

(∑r
i=0 ai(l

−1(t))
(

1
˙(l−1)(t)

∂t

)i)
=

∑r
i=0 ai(t)

(
1

˙(l−1)(l(t)) l̇(t)
∂t

)i
=

∑r
i=0 ai(t) ∂

i
t ,

and shows that σ is an automorphism of O and σ′ = σ−1.
Finally, the results are consequences of 3 of Theorem 1.

Corollary 1 can be found again using the second construc-
tion of the ring of DTVD operators given in Remark 2.

Example 5: Let us consider h1(t) := 1/(1 + t2) and
h2(t) = 1 − h1(t). We have h1(t), h2(t) ∈ [0, 1[ for all
t ∈ R≥0. We can check that 1− ḣ1(t) = 1+ 2 t

(1+t2)2 = 0 and
1−ḣ2(t) = 1− 2 t

(1+t2)2 = 0 have no real (positive) solutions.
The functions li : t ∈ R≥0 7−→ t−hi(t) ∈ [0, 1[ are bijective
for i = 1, 2. For x ≥ 0, the equation l1(t) = t− h1(t) = x
admits a unique real positive solution defined by:

l−11 (x) :=
x

3
+
α1

6
− 1

3α1
(3− x2),

α1 :=
(
8x3 + 72x+ 108

+12
√
3 (4x4 + 4x3 + 8x2 + 36x+ 31)

)1/3
.

Similarly, for x ≥ 0, l2(t) = t− h2(t) = x admits a unique
real solution defined by:

l−12 (x) =
1

3
(x+ 1) +

1

6
α2 +

(x2 + 2x− 2)

3α2
,

α2 :=
(
8x3 + 24x2 + 96x+ 188

+
√

3 (4x4 + 20x3 + 44x2 + 80x+ 83)
)1/3

.



For i = 1, 2, if Ai is a differential field such that a ◦ li ∈ A
and a ◦ l−1i ∈ A for all a ∈ A, then using Corollary 1,
Di = Ai

[
∂; idAi ,

d
dt

]
[Si;σhi , 0] are noetherian domains.

We have the following important result for the effective
study of linear systems over the ring D of DTVD operators.

Theorem 2: Every left ideal of the Ore extension D =
A
[
∂; idA,

d
dt

]
[S;σ, 0], where A is a field and σ an automor-

phism, admits a Gröbner basis for an admissible monomial
order [10] which can be computed by means of Buchberger’s
algorithm [10]. More generally, every left D-submodule of
D1×p admits a Gröbner basis for p ∈ Z≥0.

Proof: If A is a field, then the Ore extension D =
A
[
∂; idA,

d
dt

]
[S;σ, 0] of DTVD operators is a bijective

skew PBW extension [7]. In [8], it is proved that Gröbner
techniques [10] hold over a bijective skew PBW extension.

Within the algebraic analysis approach to linear systems
theory, if D is a ring (of functional operators), R ∈ Dq×p a
q× p matrix with entries in D and F a left D-module, then
a linear functional system or a behavior is defined by:

kerF (R.) := {η ∈ Fp := Fp×1 | Rη = 0}.

Now, if we consider the left D-submodule D1×q R :=
{µR | µ ∈ D1×q} of D1×r defined by all the left D-linear
combinations of the rows of R and the factor left D-module
M := D1×p/(D1×q R), then a standard homological algebra
result (also called Malgrange’s remark) states that we have

kerF (R.) ∼= homD(M,F), (11)

where homD(M,F) denotes the abelian group (i.e. the Z-
module) of D-homomorphisms (i.e. left D-linear maps) from
M to F [19]. For more details, see [2], [15], [17], [23].
A consequence of (11) is that a linear system/behavior can
be studied by means of M (which encodes the system
equations) and by F (which is the functional space where
the solutions are sought, also called the signal space in the
behavioral approach [15]). In particular, the module proper-
ties of M characterize built-in properties of the linear system
kerF (R.) such as controllability, observability, flatness, etc.
Let us state again basic module properties [19].

Definition 3: Let D be a domain and M a finitely gener-
ated left D-module, i.e. M =

∑r
i=1Dmi, where mi ∈M .

1) M is free if there exists r ∈ Z≥0 such that M ∼= D1×r,
where ∼= stands for an isomorphism, i.e. a bijective
homomorphism of left D-modules.

2) M is stably free if there exist r, s ∈ Z≥0 such that
M ⊕D1×s ∼= D1×r.

3) M is projective if there exist r ∈ Z≥0 and a left D-
module N such that M ⊕N ∼= D1×r.

4) M is reflexive if the canonical evaluation homomor-
phism ε : M −→ M?? := homD(homD(M,D), D),
defined by ε(m)(f) := f(m) for all m ∈ M and for
all f ∈M? := homD(M,D), is an isomorphism.

5) The torsion submodule t(M) of M is defined by:

t(M) := {m ∈M | ∃ d ∈ D \ {0} : dm = 0}.

6) M is torsion-free if t(M) = 0.
7) M is torsion if t(M) =M .

A free module is clearly stably free (take s = 0) and a
stably free module is projective (take N := D1×s). Since a
projective module is a direct summand of a finitely generated
free module, we can easily check that M ∼=M??, i.e. M is
a reflexive module. Note that we have:

ker ε = {m ∈M | ∀ f ∈M? : f(m) = 0}.

Now, if m ∈ t(M), then there exists d ∈ D \ {0} such that
dm = 0, which yields d f(m) = f(dm) = f(0) = 0 for all
f ∈ M?, and thus f(m) = 0 since D is a domain, which
shows that t(M) ⊆ ker ε. Hence, if M is a reflexive, then
M is torsion-free. The study of the converse of these results
is an important issue in control theory since it is related,
for instance, to recognizing when a controllable system is
parametrizable or flat [2], [6], [17], [18]. Note that if D is
a principal ideal domain (i.e. every left (resp. right) ideal of
D are of the form Dd (resp. dD) for a certain d ∈ D) [19],
as, e.g. D := k[∂; id, 0] where k is a field, then a torsion-free
module is free.

We now characterize homological invariants [13], [19] of
the ring of DTVD operators which play important roles in
the algebraic analysis approach [2], [17]. To do that, we first
review basic definitions of homological algebra [19].

Definition 4: 1) A sequence of left (right) D-modules
Mi and of δi ∈ homD(Mi,Mi−1) for i ∈ Z is a
complex if δi ◦ δi+1 = 0, i.e. if im δi+1 ⊆ ker δi for all
i ∈ Z. This complex is denoted by:

M• : . . .
δi+2 // Mi+1

δi+1 // Mi
δi // Mi−1

δi−1 // . . .

2) The defect of exactness of the complex M• at Mi is
the left (right) D-module defined by:

Hi(M•) := ker δi/im δi+1.

3) The complex M• is said to be exact at Mi if we have
Hi(M•) = 0, i.e. if ker δi = im δi+1, and is exact if
Hi(M•) = 0 for all i ∈ Z.

4) A projective (resp. free) resolution of a left D-module
M is an exact sequence of the form

P• : . . .
δ3 // P2

δ2 // P1
δ1 // P0

δ1 // M // 0,

where the Pi’s are projective (resp. free) left D-
modules. If Pi = 0 for i ≥ m + 1, then the length
of the resolution P• is set to be m. Similar definitions
hold for right D-modules.

5) The left projective dimension of a left D-module M ,
denoted by lpdD(M), is the length of the shortest
projective resolution of M (and similarly for the right
projective dimension of a right D-module).

6) The left (resp. right) global dimension of D, denoted
by lgdD (resp. rgdD), is the supremum of lpdD(M)
(resp. rpdD(M)) over all the left (resp. right) D-
modules M .



Theorem 3 (Auslander’s theorem, Corollary 8.28 of [19]):
If A is a noetherian ring (i.e. both left and right noetherian
ring), then lgldA = rgldA. Then, we simply note gldA.

Definition 5: A ring A for which every finitely generated
left (resp. right) A-module has finite projective dimension is
called a left (resp. right) regular ring.

Theorem 4 ([13]): Let A be a ring with finite left (resp.
right) global dimension lgldA (resp. rgldA) and σ an
automorphism of A. Then, we have:

1) lgldA ≤ lgldA[∂;σ, δ] ≤ lgldA+ 1
(resp. rgldA ≤ rgldA[∂;σ, δ] ≤ rgldA+ 1).

2) If δ = 0, then we have lgldA[∂;σ, δ] = lgldA + 1
(resp. rgldA[∂;σ, δ] = rgldA+ 1).

3) If A is a semisimple Artinian ring (e.g. A is a field),
then lgldA[∂;σ, δ] = 1 (resp. rgldA[∂;σ, δ] = 1).

Corollary 2: Let D = A
[
∂; idA,

d
dt

]
[S;σ, 0] be the ring

of DTVD operators defined in Section III, where the function
l : t 7−→ t − h(t) is bijective (e.g. h(t) := q t + h where
h ∈ R≥0 and 0 < q < 1). If A has finite left (resp. right)
global dimension lgldA (resp. rgldA), then we have:

lgldA+ 1 ≤ lgldD ≤ lgldA+ 2

(resp. rgldA+1 ≤ rgldD ≤ rgldA+2). In particular, D is
a left (resp. right) regular ring. If A a semisimple Artinian
ring (e.g. A is a field), then we have lgldD = 2 (resp.
rgldD = 2). Finally, if A is a noetherian ring, then we have
gldD = lgldD = lrgldD.

Example 6: Considering again Example 5, if D = D1 or
D = D2, then we have gldD = 2.

Definition 6: A ring A is said to be projective stably free
if every finitely generated projective left/right A-module is
stably free.

Theorem 5 (Serre’s theorem): If A is a left regular
noetherian ring and projective stably free (e.g. A is a field),
then so is the ring D = A

[
∂; idA,

d
dt

]
[S;σ, 0].

Proof: It is a consequence of Corollary 12.3.3 of [13].

Corollary 3: Let D = A
[
∂; idA,

d
dt

]
[S;σ, 0] be the ring

of DTVD operators defined in Section III, where the function
l : t 7−→ t−h(t) is bijective (e.g. h(t) := q t+h, where h ∈
R≥0 and 0 < q < 1), R ∈ Dq×p, and M = D1×p/(D1×q R)
the left D-module finitely presented by R. Then, M admits
a free resolution of length less than or equal to lgldD + 1.

Proof: This can be proved as in Proposition 8 of [2].

For an explicit way to compute free resolutions of finitely
generated left D-modules based on Gröbner basis techniques,
see [2], [17] and the OREMODULES package [3].

We denote by lKdimA the left Krull dimension of the ring
A. For more details, see [13] and the references therein.

Theorem 6 (Proposition 6.5.4 of [13]): If A is a left
noetherian ring, σ an automorphism of A and δ a σ-
derivation, then we have:

1) lKdimA ≤ lKdimA[∂;σ, δ] ≤ lKdimA+ 1.
2) lKdimA[S;σ, 0] = lKdimA.
3) If A is a left Artinian ring, then lKdimA[S;σ, 0] = 1.

Corollary 4: Let D = A
[
∂; idA,

d
dt

]
[S;σ, 0] be the ring

of DTVD operators defined in Section III, where the function
l : t 7−→ t − h(t) is bijective (e.g. h(t) := q t + h, where
h ∈ R≥0 and 0 < q < 1), then we have:

lKdimA ≤ lKdimD ≤ lKdimA+ 1.

If D is a left noetherian domain, then we can define its
total quotient field K := {d−1 n | 0 6= d, n ∈ D} and the
rank of a left D-module M is then defined by

rankD(M) := dimK(K ⊗D M),

where K ⊗D M is the left K-vector space obtained by
extending the scalars of M from D to K [19]. In control
theory, the rank of the left D-module M = D1×p/(D1×q R)
corresponds to the number of inputs of the linear system.

Theorem 7 (Theorems 11.1.14 and 11.1.17 of [13]): If
D is a left noetherian domain, then any stably free left
D-module M with rankD(M) ≥ lKdim(D) + 1 is free.

V. ALGEBRAIC ANALYSIS APPROACH

Let us introduce the concept of extension modules [19].
In this section, we suppose that D is a noetherian domain.
Let M = D1×p/(D1×q R) be the left D-module finitely pre-
sented by the system matrix R ∈ Dq×p, which is associated
with the linear system kerF (R.) = {η ∈ Fp | Rη = 0}.
Then, we have the following exact sequence

0 // kerD(.R)
i // D1×q .R // D1×p π // M // 0,

where i is the canonical injection, .R ∈ homD(D
1×q, D1×p)

is defined by (.R)(µ) = µR for all µ ∈ D1×q and
π ∈ homD(D

1×p,M) is the canonical projection which
sends λ ∈ D1×p onto its residue class π(λ) ∈ M (note
that π(λ) = π(λ′) iff λ − λ′ ∈ D1×q R). Since D is a left
noetherian ring, the finitely generated left D-module D1×q

is noetherian, and thus kerD(.R) = {µ ∈ D1×q | µR = 0}
is a finitely generated left D-module. Thus, there exists a
finite set of generators {µj}j=1,...,r of kerD(.R). If we note
R2 = (µT1 . . . µTr )

T ∈ Dr×q , then we have kerD(.R) =
imD(.R2) = D1×r R2. Thus, we get the following long
exact sequence of left D-modules:

0 // kerD(.R2)
i2 // D1×r .R2 // D1×q .R //

D1×p π // M // 0.

Repeating the same arguments as above for kerD(.R2) and
so on, we finally obtain a free resolution of M

. . .
.R3 // D1×p2 .R2 // D1×p1 .R1 // D1×p0 π //

M // 0,



where p0 = p, p1 = q, p2 = r and R1 = R. Applying
the contravariant left exact functor homD( · ,F) [19] to the
truncated free resolution defined by

. . .
.R3 // D1×p2 .R2 // D1×p1 .R1 // D1×p0 // 0,

(12)
i.e. dualizing (12), we get the following complex

F• : . . . Fp2R3.oo Fp1R2.oo Fp0R1.oo 0,oo

where (Ri.)(η) = Ri η for all η ∈ Fpi−1 for i ≥ 1. The
defects of exactness of F•, also cohomologies of F•, are
defined by:{

H0(F•) = kerF (R1.),

Hi(F•) = kerF (Ri+1.)/imF (Ri.), i ≥ 1.

Using (11), we obtain H0(F•) ∼= homD(M,F). More
generally, an important result of homological algebra proves
that the cohomologies Hi(F•)’s do not depend on the choice
of the free resolution of M , i.e. up to isomorphism, they
depend only on M and F [19]. They are then denoted by{

extiD(M,F) = homD(M,F),
extiD(M,F) = Hi(F•), i ≥ 1,

and are called extension abelian groups. In the case where
F = D, we can prove that the extiD(M,D)’s inherit a right
D-module structure. Similarly, if M is a right D-module,
then the extiD(M,D)’s inherit left D-module structures. For
an implementation of the computation of the extiD(M,D)’s
for certain Ore algebras, see the OREMODULES package [3].

Due to the homological nature of the main results of [2]
(see also [17]), they can directly be applied to the ring of
DTVD operators.

Theorem 8: Let A be a regular noetherian ring and D =
A
[
∂; idA,

d
dt

]
[S;σ, 0] the ring of DTVD operators with

coefficients in A defined in Section III, where the function
l : t 7−→ t − h(t) is bijective (e.g. h(t) := q t + h, where
h ∈ R≥0 and 0 < q < 1), R ∈ Dq×p, M = D1×p/(D1×q R)
and N = Dq/(RDp) the Auslander transpose of M . Then:

1) t(M) ∼= ext1D(N,D).
2) M is torsion-free iff ext1D(N,D) = 0.
3) M is reflexive iff extiD(N,D) = 0 for i = 1, 2.
4) M is projective iff extiD(N,D) = 0 for i =

1, . . . , gldD.
5) If A is a projective stably free ring (e.g. A is a field),

then M is projective left D-module if and only if M is
stably free left D-module. Moreover, M is free when
rankD(M) ≥ lKdim(D) + 1.

Proof: 1 and 2 are direct consequences of Theorem 5
of [2]. 3 (resp. 4) is a consequence of Theorem 6 (resp.
Theorem 7) of [2]. Finally, let us prove 5. A stably free
left D-module is well-known to be a projective one. The
converse is proved in Corollary 12.3.3 of [13].

Within the algebraic analysis approach, the concept of an
injective cogenerator signal space F plays a similar role as

the one of an algebraic closed field in algebraic geometry
(think about the solutions of x2 + 1 = 0 in R). A non-
trivial module M = D1×p/(D1×q R) then defines a non-
zero linear system/behavior kerF (R.). Moreover, a complete
duality exists between linear systems/behaviors and finitely
presented left modules [2], [15], [17], [23].

Definition 7 ([19]): 1) A left D-module F is cogener-
ator if for every left D-module M and m ∈M \ {0},
there exists f ∈ homD(M,F) such that f(m) 6= 0.

2) A left D-module F is injective if extiD(M,F) = 0 for
all i ≥ 1 and for all left D-modules M .

For a given ring D, it can be shown that an injective
cogenerator left D-module F always exists [19].

According to [2], [6], [15], [16], [17], [23], we can state
the following general definitions.

Definition 8: Let D be a noetherian domain, R ∈ Dq×p,
F an injective cogenerator left D-module and kerF (R.).

1) An observable ψ(η) of kerF (R.) is a D-linear combi-
nation of the system variables, i.e. ψ(η) =

∑p
i=1 di ηi,

where di ∈ D and η = (η1 . . . ηp)
T ∈ kerF (R.).

2) An observable ψ(η) is called autonomous if it satisfies
a D-linear relation by itself, i.e. dψ(η) = 0 for some
d ∈ D \ {0}. It is called free it is not autonomous.

3) The linear system is said to be controllable if every
observable is free.

4) The linear system is said to be parametrizable if there
exists a matrix Q ∈ Dp×m such that

kerF (R.) = imF (Q.) = QFm,

i.e. if for every η ∈ kerF (R.), there exists ξ ∈ Fm
such that η = Qξ. Then, Q is called a parametrization
and ξ a potential.

5) The linear system is said to be flat if there exists a
parametrization Q ∈ Dp×m which admits a left inverse
T ∈ Dm×p, i.e. T Q = Ip. In other words, a flat system
is a parametrizable system such that every component
ξi of a potential ξ is an observable of the system. The
potential ξ is then called a flat output.

The next theorem explicitly characterizes the above defi-
nitions in terms of properties of modules.

Theorem 9 ([2], [6]): Let M = D1×p/(D1×q R) be the
finitely presented left D-module associated with the linear
system kerF (R.) = {η ∈ Fp | Rη = 0}. With the
hypotheses of Definition 8, we have:

1) The observables of the linear system are in one-to-one
correspondence with the elements of M .

2) The autonomous elements of the linear system are in
one-to-one correspondence with the torsion elements
of M . The linear system is controllable iff M is
torsion-free.

3) The linear system is parametrizable iff there exists a
matrix Q ∈ Dp×m such that we have M ∼= D1×pQ,
i.e. iff M is a torsion-free left D-module. Then, the



matrix Q is a parametrization, i.e. kerF (R.) = QFm.
A parametrization Q can be computed by checking that
ext1D(N,D) = 0, where N = Dq/(RDp).

4) The linear system is flat iff M is a free left D-module.
Then, the bases of M are in one-to-one correspondence
with the flat outputs of the linear system.

Combining Theorems 8 and 9, system properties listed in
Definition 8 can be explicitly characterized in terms of mod-
ule properties and in terms of the vanishing of the extension
modules extiD(N,D)’s. Hence, the future implementation of
Gröbner basis techniques for the ring D (see Theorem 2) in
the OREMODULES package [3] will give us an effective way
to check the system properties given in Definition 8.

Example 7: Let us consider the system ẋ(t) = u(t−h(t)),
where l : t 7−→ t − h(t) is bijective (e.g. h(t) := q t + h,
where h ∈ R≥0 and 0 < q < 1). Let D be a ring of DTVD
operators, R = (∂ − S) ∈ D1×2, M = D1×2/(DR) the
left D-module finitely presented by R and N = D/(RD2)
be the Auslander transpose of M . Let study M .

Using (9), i.e. ∂ S = (1− ḣ)S ∂ = S
(
σ−1

(
1− ḣ

)
∂
)

,

if Q =
(
S σ−1

(
1− ḣ

)
∂
)T
∈ D2, then we obtain

imD(Q.) = kerD(R.), and thus we obtain the free res-

olution 0 Noo D
κoo D2R.oo D

Q.oo 0.oo

Dualizing this free resolution, we get the complex

0 // D
.R // D1×2 .Q // D // 0, which yields:{

ext1D(N,D) = kerD(.Q)/imD(.R) ∼= t(M),

ext2D(N,D) = D/(D1×2Q) = D/ (S, ∂) 6= 0.

We obtain that M is a torsion-free but not a projective left
D-module because kerD(.Q) = imD(.R) and gldD = 2.

If F is an injective left D-module, then applying the con-
travariant exact functor homD( · ,F) to the above complex,
we obtain the following exact sequence of abelian groups:

0 Foo F2R.oo F
Q.oo kerF (Q.)oo 0.oo

In particular, we have kerF (R.) = imF (Q.), which shows
that Q is a parametrization of kerF (R.), i.e. we have:{

x(t) = S ξ(t) = ξ(t− h(t)),

u(t) = σ−1
(
1− ḣ

)
∂ ξ(t) =

(
1− ḣ(l−1(t))

)
ξ̇(t).

Since σ is an automorphism of A
[
∂; idA,

d
dt

]
, then

we can define the skew Laurent polynomial ring E =
A
[
∂; idA,

d
dt

]
[S;σ, 0][S−1;σ−1, 0] [13]. Hence, E⊗DM is

a free left E-module of rank 1 and x is a basis of E⊗DM ,
i.e. the DTVD system is a S-flat system [6].

VI. CONCLUSION

In this paper, we propose an algebraic analysis approach
for the ring of differential time-varying delay operators real-
ized as an Ore extension D. The corresponding construction
is explicit and provides a new algebraic approach for the

study of linear differential varying time-delay systems. More-
over, homological algebraic properties of D were studied and
its global and Krull dimensions were analyzed.

Nevertheless, some questions remain open. For instance,
to determine whether or not D is an Auslander regular ring
or Cohen Macaulay [13]. Another important point would be
to define an involution of D so that Gröbner bases can be
calculated for right D-modules. For more details, see [2].
Finally, an implementation of Gröbner basis techniques for
D is an important issue for the constructive aspects.
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