Yoneda product of multidimensional systems

Alban Quadrat
Inria Saclay - Île-de-France, DISCO project, L2S, Supélec,
3 rue Joliot Curie,
91192 Gif-sur-Yvette cedex, France.
Email: alban.quadrat@inria.fr

Abstract

The paper aims at developing the algebraic analysis approach to multidimensional systems and behaviours. Within the algebraic analysis approach, if D is a (noncommutative) polynomial ring in n functional operators and \mathcal{F} a signal space, i.e., a left D-module, then a behaviour B can be defined as $\operatorname{hom}_{D}(M, \mathcal{F})$, i.e., as the dual of a (left) D-module M finitely presented by a matrix $R \in D^{q \times p}$ defining the multidimensional system. The homomorphisms from a behaviour C to a behaviour B can be studied by means of the (left) D-homomorphisms from M to N, where M and N are respectively the (left) D-module defining B and C. Within algebraic analysis, a linear system is not only defined as a behaviour $\operatorname{ext}_{D}^{0}(M, \mathcal{F}):=\operatorname{hom}_{D}(M, \mathcal{F})$ but as the collection of $n+1$ vector spaces $\left\{\operatorname{ext}_{D}^{i}(M, \mathcal{F})\right\}_{i=0, \ldots, n}$, defining the solvability in \mathcal{F} of the successive compatibility conditions induced by the multidimensional system. If the signal space \mathcal{F} is rich enough (i.e., is an injective left D-module), then $\left\{\operatorname{ext}^{i}(M, \mathcal{F})\right\}_{i=0, \ldots, n}$ reduces to the behaviour $\operatorname{ext}_{D}^{0}(M, \mathcal{F})$. In this paper, we generalize the homomorphisms of behaviours to consider the full characterization of a linear system as $\left\{\operatorname{ext}_{D}^{i}(M, \mathcal{F})\right\}_{i=0, \ldots, n}$. To do that, we explicitly characterize the abelian group $\operatorname{ext}_{D}^{i}(M, N)$ and the maps:

$$
\forall i, j \geq 0, \quad \operatorname{ext}_{D}^{i}(M, N) \otimes_{\mathbb{Z}} \operatorname{ext}_{D}^{j}(N, \mathcal{F}) \longrightarrow \operatorname{ext}_{D}^{i+j}(M, \mathcal{F})
$$

The classical behaviour homomorphisms correspond to $i=j=0$.

I. Algebraic analysis

In what follows, we assume that D is a noetherian ring, i.e., a ring D such that all left/right ideals of D are finitely generated as left/right D-modules [12]. Let $R \in D^{q \times p}$ be a $q \times p$ matrix with entries in D and.R the left D-homomorphism (i.e., the left D-linear map) defined by:

$$
\begin{aligned}
& . R: D^{1 \times q} \longrightarrow D^{1 \times p} \\
& \lambda=\left(\lambda_{1} \ldots \lambda_{q}\right) \longmapsto \\
& \lambda R .
\end{aligned}
$$

The image $\operatorname{im}_{D}(. R)$ of.R, also denoted by $D^{1 \times q} R$, is the left D-submodule of $D^{1 \times p}$ formed by all the left D-linear combinations of the rows of R. The cokernel coker $_{D}(. R)$ of .R is the left D-module $M:=D^{1 \times p} /\left(D^{1 \times q} R\right)$ formed by the residue classes $\pi(\lambda)$ of $\lambda \in D^{1 \times p}$ in M, i.e.:

$$
\begin{equation*}
\pi(\lambda)=\pi\left(\lambda^{\prime}\right) \Leftrightarrow \exists \mu \in D^{1 \times q}: \lambda=\lambda^{\prime}+\mu R . \tag{1}
\end{equation*}
$$

The left D-module structure of M is defined by:
$\forall \lambda_{1}, \lambda_{2} \in D^{1 \times p}, \forall d \in D,\left\{\begin{array}{l}\pi\left(\lambda_{1}\right)+\pi\left(\lambda_{2}\right)=\pi\left(\lambda_{1}+\lambda_{2}\right), \\ d \pi(\lambda)=\pi(d \lambda) .\end{array}\right.$

The identity 2 implies that $\pi: D^{1 \times p} \longrightarrow M$ is a left D homomorphism. The left D-module M is said to be finitely presented by the matrix R [12]. Let us describe M. Let $\left\{f_{j}\right\}_{j=1, \ldots, p}$ be the standard basis of $D^{1 \times p}$, i.e., f_{j} is the row vector of length p defined by 1 at the $j^{\text {th }}$ position and 0 anywhere else, and $y_{j}=\pi\left(f_{j}\right) \in M$ for $j=1, \ldots, p$. Since every $m \in M$ is the residue class $\pi(\lambda)$ of a certain $\lambda \in D^{1 \times p}$, writing $\lambda=\sum_{j=1}^{p} \lambda_{j} f_{j}$, we get

$$
\pi(\lambda)=\pi\left(\sum_{j=1}^{p} \lambda_{j} f_{j}\right)=\sum_{j=1}^{p} \lambda_{j} \pi\left(f_{j}\right)=\sum_{j=1}^{p} \lambda_{j} y_{j}
$$

which shows that M is finitely generated by $\left\{y_{j}\right\}_{j=1, \ldots, p}$ as a left D-module, i.e., $\left\{y_{j}\right\}_{j=1, \ldots, p}$ is a family of generators of the left D-module M. If R_{i}. denotes the $i^{\text {th }}$ row of the matrix R, i.e., $R_{i \bullet}=\sum_{j=1}^{p} R_{i j} f_{j} \in D^{1 \times q} R$, then we have $\pi\left(R_{i}\right)=0$ for $i=1, \ldots, q$, which yields

$$
\begin{equation*}
\pi\left(\sum_{j=1}^{p} R_{i j} f_{j}\right)=\sum_{j=1}^{p} R_{i j} \pi\left(f_{j}\right)=\sum_{j=1}^{p} R_{i j} y_{j}=0 \tag{3}
\end{equation*}
$$

for $i=1, \ldots, q$. Hence, the generators $\left\{y_{j}\right\}_{j=1, \ldots, p}$ of M satisfy $\sqrt{3}$ and all their the left D-linear combinations.

If \mathcal{F} is a left D-module and $\mathcal{F}^{p}:=\mathcal{F}^{p \times 1}$, then the linear system or behaviour is defined by:

$$
\operatorname{ker}_{\mathcal{F}}(R .)=\left\{\eta \in \mathcal{F}^{p} \mid R \eta=0\right\}
$$

Let us now explain the links between $\operatorname{ker}_{\mathcal{F}}(R$.) and M. Let $\operatorname{hom}_{D}(M, \mathcal{F})$ be the abelian group, i.e., the \mathbb{Z}-module, formed by all the left D-homomorphisms from M to \mathcal{F}. We can check that the following \mathbb{Z}-homomorphism

$$
\begin{align*}
\chi: \operatorname{hom}_{D}(M, \mathcal{F}) & \longrightarrow \operatorname{ker}_{\mathcal{F}}(R .) \\
\phi & \longmapsto\left(\phi\left(y_{1}\right) \ldots \phi\left(y_{p}\right)\right)^{T} \tag{4}
\end{align*}
$$

is an isomorphism and, for $\eta=\left(\eta_{1} \ldots \eta_{p}\right)^{T} \in \operatorname{ker}_{\mathcal{F}}(R$.$) ,$ $\phi_{\eta}:=\chi^{-1}(\eta) \in \operatorname{hom}_{D}(M, \mathcal{F})$ is defined by:

$$
\forall \lambda_{1}, \ldots, \lambda_{p} \in D, \quad \phi_{\eta}\left(\sum_{j=1}^{p} \lambda_{j} y_{j}\right)=\sum_{j=1}^{p} \lambda_{j} \eta_{j}
$$

We note that (4) shows that $\operatorname{ker}_{\mathcal{F}}(R$.) depends only on M and \mathcal{F} up to isomorphism, i.e., depends on the isomorphism type of M and of \mathcal{F}. Two isomorphic finitely presented left D-modules $M \cong M^{\prime}$ yield two isomorphic behaviours
$\operatorname{hom}_{D}(M, \mathcal{F}) \cong \operatorname{hom}_{D}\left(M^{\prime}, \mathcal{F}\right)$. We get an intrinsic formulation of the behaviour which is independent of the particular embedding $\operatorname{ker}_{\mathcal{F}}(R.) \subseteq \mathcal{F}^{p}$. In the sixties, this remark was the starting point of the development of a mathematical theory called algebraic analysis [8]. This theory studies the behaviour $\operatorname{ker}_{\mathcal{F}}(R$.) by means of the properties of the left D-modules M and \mathcal{F}. For more details, see [2], [9], [10].

II. Homological algebra

Let us review a few concepts of homological algebra [6], [12]. A sequence of left/right D-modules M_{i} and left/right D homomorphisms $\delta_{i+1} \in \operatorname{hom}_{D}\left(M_{i+1}, M_{i}\right)$ is called a complex if $\delta_{i} \circ \delta_{i+1}=0$ for all $i \in \mathbb{Z}$, i.e., if:

$$
\forall i \in \mathbb{Z}, \quad \operatorname{im} \delta_{i+1} \subseteq \operatorname{ker} \delta_{i}
$$

A complex $\left(\delta_{i+1}: M_{i+1} \longrightarrow M_{i}\right)_{i \in \mathbb{Z}}$ is denoted by:

$$
M_{\bullet} \ldots \xrightarrow{\delta_{i+2}} M_{i+1} \xrightarrow{\delta_{i+1}} M_{i} \xrightarrow{\delta_{i}} M_{i-1} \xrightarrow{\delta_{i-2}} \ldots
$$

The defect of exactness of the complex M_{\bullet} at M_{i} is the left/right D-module defined by $H_{i}\left(M_{\bullet}\right)=\operatorname{ker} \delta_{i} / \operatorname{im} \delta_{i+1}$. The complex M_{\bullet} is said to be exact at M_{i} (resp., exact) if $H_{i}\left(M_{\bullet}\right)=0\left(\right.$ resp., $H_{i}\left(M_{\bullet}\right)=0$ for all $\left.i \in \mathbb{Z}\right)$, i.e., $\operatorname{ker} \delta_{i}=\operatorname{im} \delta_{i+1}$ (resp., ker $\delta_{i}=\operatorname{im} \delta_{i+1}$ for all $i \in \mathbb{Z}$). For instance, the complex $0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0$ is exact if f is injective, g surjective and $\operatorname{ker} g=\operatorname{im} f$.

Let $M=D^{1 \times p_{0}} /\left(D^{1 \times p_{1}} R_{1}\right)$ be a left D-module finitely presented by $R_{1} \in D^{p_{1} \times p_{0}}$. Since D is noetherian, the left D-module $\operatorname{ker}_{D}\left(. R_{1}\right)=\left\{\lambda \in D^{1 \times p_{1}} \mid \lambda R_{1}=0\right\}$ formed by left D-linear relations of the rows of R_{1} is finitely generated [12]. Thus, there exists $R_{2} \in D^{p_{2} \times p_{1}}$ such that $\operatorname{ker}_{D}\left(. R_{1}\right)=$ $D^{1 \times p_{2}} R_{2}$. Then, we obtain the following exact sequence of left D-modules

$$
\begin{equation*}
D^{1 \times p_{2}} \xrightarrow{. R_{2}} D^{1 \times p_{1}} \xrightarrow{. R_{1}} D^{1 \times p_{0}} \xrightarrow{\pi} M \longrightarrow 0 \tag{5}
\end{equation*}
$$

where $\left(. R_{i}\right)(\lambda):=\lambda R_{i}$ for all $\lambda \in D^{1 \times p_{i}}$ and for all $i \geq 1$. Repeating the above arguments with R_{2} and so on, we get a free resolution of M [12], i.e., the exact sequence:

$$
\begin{equation*}
\ldots \xrightarrow{. R_{3}} D^{1 \times p_{2}} \xrightarrow{. R_{2}} D^{1 \times p_{1}} \xrightarrow{. R_{1}} D^{1 \times p_{0}} \xrightarrow{\pi} M \longrightarrow 0 . \tag{6}
\end{equation*}
$$

A left D-module M admits different free resolutions [12].
Free resolutions can be computed for a commutative polynomial ring D over a computable field and for certain classes of noncommutative polynomial rings (see [2], [4], [10] and the references therein). For instance, the OreModules package [3] can handle such a computation for certain classes of Ore algebras of functional operators [2].

Let \mathcal{F} be a left D-module. Since $R_{i+1} R_{i}=0$, we can consider the following complex of abelian groups

$$
\begin{equation*}
\ldots \stackrel{R_{3} \cdot}{\longleftarrow} \mathcal{F}^{p_{2}} \stackrel{R_{2} .}{\longleftarrow} \mathcal{F}^{p_{1}} \stackrel{R_{1} \cdot}{\longleftarrow} \mathcal{F}^{p_{0}} \longleftarrow 0 \tag{7}
\end{equation*}
$$

where $\left(R_{i}.\right)(\eta):=R_{i} \eta$ for all $\eta \in \mathcal{F}^{p_{i-1}}$ and for all $i \geq 1$. We can prove that the defects of exactness of (7) depend only
on M and \mathcal{F} up to isomorphism and not on the free resolution (6) of M. They are denoted by:

$$
\left\{\begin{array}{l}
\operatorname{ext}_{D}^{0}(M, \mathcal{F}) \cong \operatorname{ker}_{\mathcal{F}}\left(R_{1} \cdot\right) \tag{8}\\
\operatorname{ext}_{D}^{i}(M, \mathcal{F}) \cong \operatorname{ker}_{\mathcal{F}}\left(R_{i+1} \cdot\right) / \operatorname{im}_{\mathcal{F}}\left(R_{i} \cdot\right), \forall i \geq 1
\end{array}\right.
$$

If D is a commutative ring, then $\operatorname{ext}_{D}^{i}(M, \mathcal{F})$ has a D-module structure. If D is a noncommutative ring, then $\operatorname{ext}_{D}^{i}(M, \mathcal{F})$ generally only has an abelian group structure. If D is a k-algebra, where k is a field contained in the center $C(D)=\{d \in D \mid \forall e \in D: d e=e d\}$ of D, then $\operatorname{ext}_{D}^{i}(M, \mathcal{F})$ inherits a k-vector space structure.

Let us now study the inhomogeneous linear system

$$
\begin{equation*}
R_{1} \eta=\zeta \tag{9}
\end{equation*}
$$

where ζ is a fixed element of $\mathcal{F}^{p_{2}}$. Since $R_{2} R_{1}=0$, a necessary condition for the existence of $\eta \in \mathcal{F}^{p_{1}}$ such that $R_{1} \eta=\zeta$ is $R_{2} \zeta=\left(R_{2} R_{1}\right) \eta=0$. This condition is sufficient iff the residue class $\sigma_{1}(\zeta)$ of $\zeta \in \operatorname{ker}_{\mathcal{F}}\left(R_{2}.\right)$ in

$$
\begin{equation*}
\operatorname{ker}_{\mathcal{F}}\left(R_{2} \cdot\right) / \operatorname{im}_{\mathcal{F}}\left(R_{1} .\right) \cong \operatorname{ext}_{D}^{1}(M, \mathcal{F}) \tag{10}
\end{equation*}
$$

is 0 , where $\sigma_{1}: \operatorname{ker}_{\mathcal{F}}\left(R_{2}.\right) \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(R_{2}.\right) / \operatorname{im}_{\mathcal{F}}\left(R_{1}.\right)$ is the canonical projection. Indeed, $\sigma_{1}(\zeta)=0$ is equivalent to $\zeta \in \operatorname{im}_{\mathcal{F}}\left(R_{1}.\right)$, i.e., $\zeta=R_{1} \eta$ for a certain $\eta \in \mathcal{F}^{p_{0}}$. Hence, the inhomogeneous linear system (9) is solvable iff $\sigma_{1}(\zeta)=0$. The study of $\operatorname{ext}_{D}^{i}(M, \mathcal{F})$ is generally a difficult issue. In Section V, we shall explain how $\operatorname{ext}^{i}(M, \mathcal{F})$ can indirectly be studied by means of the computation of elements of $\operatorname{ext}_{D}^{j}(M, N)$, where N is another finitely presented left D module (e.g., $N=M$).

Example 1: Let $D=\mathbb{Q}[\partial, \delta]$ be the commutative polynomial ring of differential time-delay operators

$$
\partial \eta(t)=\dot{\eta}(t), \quad \delta \eta(t)=\eta(t-1)
$$

$R_{1}=\left(\begin{array}{ll}\partial & \delta-1\end{array}\right)^{T}, M=D /\left(D^{1 \times 2} R_{1}\right)=D /(\partial, \delta-1)$, where $(\partial, \delta-1)$ is the ideal of D defined by ∂ and $\delta-1$, and the D-module $\mathcal{F}=C^{\infty}(\mathbb{R})$. We can easily check that M admits the following free resolution

$$
0 \longrightarrow D \xrightarrow{._{2}} D^{1 \times 2} \xrightarrow{. R_{1}} D \xrightarrow{\pi} M \longrightarrow 0
$$

where $R_{2}=\left(\begin{array}{ll}1-\delta & \partial\end{array}\right) \in D^{1 \times 2}$. Then, the defects of exactness of the following complex

$$
0 \longleftarrow \mathcal{F} \stackrel{R_{2} .}{\longleftarrow} \mathcal{F}^{2} \stackrel{R_{1} .}{\longleftarrow} \mathcal{F} \longleftarrow 0
$$

are defined by:

$$
\left\{\begin{aligned}
\operatorname{ext}_{D}^{0}(M, \mathcal{F}) & \cong \operatorname{ker}_{\mathcal{F}}\left(R_{1} .\right) \\
\operatorname{ext}_{D}^{1}(M, \mathcal{F}) & \cong \operatorname{ker}_{\mathcal{F}}\left(R_{2} .\right) / \operatorname{im}_{\mathcal{F}}\left(R_{1} .\right) \\
\operatorname{ext}_{D}^{2}(M, \mathcal{F}) & \cong \mathcal{F} / \operatorname{im}_{\mathcal{F}}\left(R_{2} .\right)
\end{aligned}\right.
$$

We can easily check that $\operatorname{ext}_{D}^{0}(M, \mathcal{F})=\mathbb{R}$ and $\operatorname{ext}_{D}^{2}(M, \mathcal{F})=0$ since for every $\vartheta \in \mathcal{F}$,

$$
\zeta=\binom{0}{\int_{0}^{t} \vartheta(t) d t+c} \in \mathcal{F}^{2}
$$

where c is any real constants, satisfies $\vartheta=R_{2} \zeta$. If c_{1} and c_{2} are two different real constants, then we clearly have $\zeta=\left(\begin{array}{ll}c_{1} & c_{2}\end{array}\right)^{T} \in \operatorname{ker}_{\mathcal{F}}\left(R_{2}.\right)$. If there exists $\eta \in \mathcal{F}$ satisfying $R_{1} \eta=\zeta$, i.e., $\dot{\eta}(t)=c_{1}$ and $\eta(t-1)-\eta(t)=c_{2}$, then, from the first equation, we get $\eta(t)=c_{1} t+c_{3}$, where $c_{3} \in \mathbb{R}$, and thus $\eta(t-1)-\eta(t)-c_{2}=c_{1}-c_{2}$, which is not 0 since $c_{1} \neq c_{2}$. Thus, the residue class $\sigma_{1}\left(\left(\begin{array}{ll}c_{1} & c_{2}\end{array}\right)^{T}\right)$ of $\left(\begin{array}{ll}c_{1} & c_{2}\end{array}\right)^{T}$ is not 0 , i.e., $\operatorname{ext}_{D}^{1}(M, \mathcal{F}) \neq 0$, and the inhomogeneous linear system $R_{1} \eta=\zeta$ is not solvable in $\mathcal{F}=C^{\infty}(\mathbb{R})$.

Within algebraic analysis [8] and derived categories [6], a linear partial differential (PD) system is defined as the collection of the $(n+1) k$-vector spaces $\left\{\operatorname{ext}_{D}^{i}(M, \mathcal{F})\right\}_{i=0, \ldots, n}$ formed by the behaviour $\operatorname{ext}_{D}^{0}(M, \mathcal{F})$ and the obstructions $\operatorname{ext}_{D}^{i}(M, \mathcal{F})$'s of the solvability of the successive compatibility conditions induced by the linear PD system $R_{1} \eta=0$, where $D=A\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ is a ring of PD operators in the ∂_{i} 's with coefficients in a differential ring A containing a field $k \subseteq C(D), R_{1} \in D^{p_{1} \times p_{0}}$ and $M=D^{1 \times p_{0}} /\left(D^{1 \times p_{1}} R_{1}\right)$.

A left D-module \mathcal{F} (resp., M) is called injective (resp., projective) if $\operatorname{ext}_{D}^{i}(M, \mathcal{F})=0$ for all left D-modules M (resp., \mathcal{F}) and for all $i \geq 1$ [6], [12]. In these two cases, $\left\{\operatorname{ext}_{D}^{i}(M, \mathcal{F})\right\}_{i=0, \ldots, n}$ reduces to the behaviour $\operatorname{ext}_{D}^{0}(M, \mathcal{F})$. The purpose of this paper is to generalize results on behaviour homomorphisms [4] to this complete characterization $\left\{\operatorname{ext}_{D}^{i}(M, \mathcal{F})\right\}_{i=0, \ldots, n}$ of a linear system.

III. Characterization of $\operatorname{ext}_{D}^{i}(M, N)$

Let $R_{1} \in D^{p_{1} \times p_{0}}$ and $S_{1} \in D^{q_{1} \times q_{0}}$ be two matrices and $M=D^{1 \times p_{0}} /\left(D^{1 \times p_{1}} R_{1}\right)$ and $N=D^{1 \times q_{0}} /\left(D^{1 \times q_{1}} S_{1}\right)$ two finitely presented left D-modules. Let us explicitly characterize the $\operatorname{ext}_{D}^{i}(M, N)$'s. If 6 is a free resolution of M, then (7) with $\mathcal{F}=N$ yields the following complex

$$
\begin{equation*}
\ldots \stackrel{R_{3} .}{\longleftarrow} N^{p_{2}} \stackrel{R_{2} .}{\longleftarrow} N^{p_{1}} \stackrel{R_{1} \cdot}{\longleftarrow} N^{p_{0}} \longleftarrow 0 \tag{11}
\end{equation*}
$$

whose defects of exactness are:

$$
\left\{\begin{array}{l}
\operatorname{ext}_{D}^{0}(M, N) \cong \operatorname{ker}_{N}\left(R_{1} .\right)=\left\{\eta \in N^{p_{0}} \mid R_{1} \eta=0\right\} \\
\operatorname{ext}_{D}^{i}(M, N) \cong \operatorname{ker}_{N}\left(R_{i+1} .\right) / \operatorname{im}_{N}\left(R_{i} .\right), \forall i \geq 1
\end{array}\right.
$$

See (8). Considering r direct copies of the finite presentation of $N, D^{1 \times q_{1}} \xrightarrow{. S_{1}} D^{1 \times q_{0}} \xrightarrow{\sigma} N \longrightarrow 0$, we get the exact
 $\left(. S_{1}\right)(\Theta)=\Theta S_{1}$ for all $\Theta \in D^{r \times q_{1}}$ and:

$$
\forall \Lambda \in D^{r \times q_{0}}, \quad\left(\operatorname{id}_{r} \otimes \sigma\right)(\Lambda)=\left(\sigma\left(\Lambda_{1}\right) \ldots \sigma\left(\Lambda_{r}\right)\right)^{T}
$$

Let $k \geq 0$. Then, for all $P \in D^{p_{k} \times p_{0}}$, we have

$$
\begin{aligned}
& R_{k+1}\left(\left(\operatorname{id}_{p_{k}} \otimes \sigma\right)(P)\right) \\
& =R_{k+1}\left(\begin{array}{c}
\sigma\left(P_{1} \bullet\right) \\
\vdots \\
\sigma\left(P_{p_{k} \bullet}\right)
\end{array}\right)=\left(\begin{array}{c}
\sum_{j=1}^{p_{k}}\left(R_{k+1}\right)_{1 j} \sigma\left(P_{j \bullet}\right) \\
\vdots \\
\sum_{j=1}^{p_{k}}\left(R_{k+1}\right)_{p_{k+1} j} \sigma\left(P_{j}\right)
\end{array}\right) \\
& =\left(\begin{array}{c}
\sigma\left(\sum_{j=1}^{p_{k}}\left(R_{k+1}\right)_{1 j} P_{j \bullet}\right) \\
\vdots \\
\sigma\left(\sum_{j=1}^{p_{k}}\left(R_{k+1}\right)_{p_{k+1} j} P_{j \bullet}\right)
\end{array}\right) \\
& =\left(\operatorname{id}_{p_{k+1}} \otimes \sigma\right)\left(R_{k+1} P\right),
\end{aligned}
$$

i.e., $\left(R_{k+1}.\right) \circ\left(\operatorname{id}_{p_{k}} \otimes \sigma\right)=\left(\operatorname{id}_{p_{k+1}} \otimes \sigma\right) \circ\left(R_{k+1}.\right)$. Thus, we obtain the following commutative exact diagram

0		0		0
\uparrow		\uparrow		\uparrow
$N^{p_{2}}$	$\stackrel{R 2}{ }$	$N^{p_{1}}$	$\stackrel{R}{R_{1}} \stackrel{ }{4}$	$N^{p_{0}}$
$\uparrow \mathrm{id}_{p_{2}} \otimes \sigma$		$\uparrow \mathrm{id}_{p_{1}} \otimes \sigma$		$\uparrow \mathrm{id}_{p_{0}} \otimes \sigma$
$D^{p_{2} \times q_{0}}$	$\stackrel{R 2 .}{ }$	$D^{p_{1} \times q_{0}}$	$\stackrel{R_{1}}{\stackrel{1}{4}}$	$D^{p_{0} \times q_{0}}$
$\uparrow . S_{1}$		$\uparrow . S_{1}$		$\uparrow . S_{1}$
$D^{p_{2} \times q_{1}}$	$\stackrel{R 2}{ }$	$D^{p_{1} \times q_{1}}$	$\stackrel{R 1}{ }{ }_{1}$	$D^{p_{0} \times q_{1}}$,

i.e., every square commutes and the sequences are exact.

We use the commutative diagram 12 to characterize:

$$
\begin{gathered}
\operatorname{ker}_{N}\left(R_{2} .\right)=\left\{\left(\operatorname{id}_{p_{1}} \otimes \sigma\right)(A) \in N^{p_{1}} \mid A \in D^{p_{1} \times q_{0}}:\right. \\
\left.R_{2}\left(\left(\operatorname{id}_{p_{1}} \otimes \sigma\right)(A)\right)=0\right\} \\
\operatorname{im}_{N}\left(R_{1} .\right)=\left\{\left(\operatorname{id}_{p_{1}} \otimes \sigma\right)(A) \in N^{p_{1}} \mid A \in D^{p_{1} \times q_{0}}:\right. \\
\left.\quad \exists X \in D^{p_{0} \times q_{0}},\left(\operatorname{id}_{p_{1}} \otimes \sigma\right)(A)=R_{1}\left(\left(\operatorname{id}_{p_{0}} \otimes \sigma\right)(X)\right)\right\}
\end{gathered}
$$

Since the columns of 12 are exact sequences, we get:

$$
\begin{aligned}
R_{2}\left(\left(\operatorname{id}_{p_{1}} \otimes \sigma\right)(A)\right) & =\quad\left(\operatorname{id}_{p_{2}} \otimes \sigma\right)\left(R_{2} A\right)=0 \\
& \Leftrightarrow \exists B \in D^{p_{2} \times q_{1}}: R_{2} A=B S_{1} . \\
\left.\operatorname{id}_{p_{1}} \otimes \sigma\right)(A)= & R_{1}\left(\left(\operatorname{id}_{p_{0}} \otimes \sigma\right)(X)\right) \\
= & \left(\operatorname{id}_{p_{1}} \otimes \sigma\right)\left(R_{1} X\right) \\
\Leftrightarrow & \left(\operatorname{id}_{p_{1}} \otimes \sigma\right)\left(A-R_{1} X\right)=0 \\
\Leftrightarrow & \exists Y \in D^{p_{1} \times q_{1}}: A=R_{1} B+Y S_{1} .
\end{aligned}
$$

Hence, we obtain:

$$
\begin{gathered}
\operatorname{ker}_{N}\left(R_{2} .\right)=\left\{\left(\operatorname{id}_{p_{1}} \otimes \sigma\right)(A) \in N^{p_{1}} \mid A \in D^{p_{1} \times q_{0}}:\right. \\
\left.\exists B \in D^{p_{2} \times q_{1}}: R_{2} A=B S_{1}\right\} \\
\operatorname{im}_{N}\left(R_{1} .\right)=\left\{\left(\operatorname{id}_{p_{1}} \otimes \sigma\right)(A) \in N^{p_{1}} \mid A \in D^{p_{1} \times q_{0}}:\right. \\
\left.\exists X \in D^{p_{0} \times q_{0}}, \exists Y \in D^{p_{1} \times q_{1}}: A=R_{1} X+Y S_{1}\right\} \\
=\left(R_{1} D^{p_{0} \times q_{0}}+D^{p_{1} \times q_{1}} S_{1}\right) /\left(D^{p_{1} \times q_{1}} S_{1}\right)
\end{gathered}
$$

If we now introduce the following abelian groups

$$
\left\{\begin{array}{l}
\Omega:=\left\{A \in D^{p_{1} \times q_{0}} \mid \exists B \in D^{p_{2} \times q_{1}}: R_{2} A=B S_{1}\right\} \tag{13}\\
E:=\Omega /\left(R_{1} D^{p_{0} \times q_{0}}+D^{p_{1} \times q_{1}} S_{1}\right)
\end{array}\right.
$$

then we have the following isomorphism of abelian groups

$$
\begin{align*}
\operatorname{ext}_{D}^{1}(M, N) \cong \operatorname{ker}_{N}\left(R_{2} \cdot\right) / \operatorname{im}_{N}\left(R_{1} .\right) & \xrightarrow{\longrightarrow} E, \tag{14}\\
\rho\left(\left(\operatorname{id}_{p_{1}} \otimes \sigma\right)(A)\right) & \longmapsto \varepsilon(A),
\end{align*}
$$

where $\rho: \operatorname{ker}_{N}\left(R_{2}.\right) \longrightarrow \operatorname{ker}_{N}\left(R_{2}.\right) / \operatorname{im}_{N}\left(R_{1}.\right)$ (resp., $\varepsilon: \Omega \longrightarrow E$) is the canonical projection. Indeed, the third isomorphism theorem of module theory [12] yields:

$$
\begin{gathered}
\operatorname{ext}_{D}^{1}(M, N) \cong \operatorname{ker}_{N}\left(R_{2} .\right) / \operatorname{im}_{N}\left(R_{1} .\right) \\
= \\
\left(\Omega /\left(D^{p_{1} \times q_{1}} S_{1}\right)\right) /\left(\left(R_{1} D^{p_{0} \times q_{0}}+D^{p_{1} \times q_{1}} S_{1}\right) /\left(D^{p_{1} \times q_{1}} S_{1}\right)\right) \\
\cong E .
\end{gathered}
$$

For more details on $\operatorname{ext}_{D}^{1}(M, N)$, see [1], [7], [10], [11]. Note that $\operatorname{ker}_{D}\left(. R_{1}\right)=0$, i.e., $R_{2}=0$, yields $\Omega=D^{p_{1} \times q_{0}}$.

Example 2: Let us compute the D-module $\operatorname{ext}_{D}^{1}(M, M)$, where M is the D-module defined in Example 1. By (13) and (14), we have:

$$
\begin{aligned}
& \Omega=\left\{A \in D^{2} \mid \exists B \in D^{1 \times 2}: R_{2} A=B R_{1}\right\} \\
& \operatorname{ext}_{D}^{1}(M, M) \cong \Omega /\left(R_{1} D+D^{2 \times 2} R_{1}\right)
\end{aligned}
$$

If $A \in \Omega$, then there exists $B \in D^{1 \times 2}$ such that:

$$
R_{2} A=B R_{1} \quad \Leftrightarrow \quad\left(A^{T} \quad-B\right)\binom{R_{2}^{T}}{R_{1}}=0
$$

Using Gröbner basis techniques (see, e.g., [2]), we get:

$$
\operatorname{ker}_{D}\left(.\left(\begin{array}{ll}
R_{2} & R_{1}^{T}
\end{array}\right)^{T}\right)=D^{1 \times 3}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1-\delta & \partial
\end{array}\right)
$$

The D-module Ω is then generated by the matrices

$$
A_{1}=\binom{1}{0}, \quad A_{2}=\binom{0}{1}, \quad A_{3}=\binom{0}{0}
$$

i.e., by A_{1} and A_{2}, and thus $\left\{\varepsilon\left(A_{1}\right), \varepsilon\left(A_{2}\right)\right\}$ is a family of generators of the D-module $\operatorname{ext}_{D}^{1}(M, M)$.

Similarly, the abelian group $\operatorname{ext}_{D}^{i}(M, N), i \geq 1$, can be characterized. With the following abelian groups

$$
\begin{aligned}
\Omega_{i} & :=\left\{A \in D^{p_{i} \times q_{0}} \mid \exists B \in D^{p_{i+1} \times q_{1}}: R_{i+1} A=B S_{1}\right\}, \\
E_{i} & :=\Omega_{i} /\left(R_{i} D^{p_{i-1} \times q_{0}}+D^{p_{i} \times q_{1}} S_{1}\right)
\end{aligned}
$$

we have the following \mathbb{Z}-isomorphism:

$$
\begin{align*}
\operatorname{ext}_{D}^{i}(M, N) \cong \operatorname{ker}_{N}\left(R_{i+1} \cdot\right) / \operatorname{im}_{N}\left(R_{i} \cdot\right) & \xrightarrow[v_{i}]{ } E_{i}, \\
\rho_{i}\left(\left(\operatorname{id}_{p_{i}} \otimes \sigma\right)(A)\right) & \longmapsto \varepsilon_{i}(A), \tag{15}
\end{align*}
$$

where $\rho_{i}: \operatorname{ker}_{N}\left(R_{i+1}.\right) \longrightarrow \operatorname{ker}_{N}\left(R_{i+1}.\right) / \operatorname{im}_{N}\left(R_{i}.\right)$ (resp., $\left.\varepsilon_{i}: \Omega_{i} \longrightarrow E_{i}\right)$ is the canonical projection.

Let us now characterize $\operatorname{ext}_{D}^{0}(M, N)=\operatorname{hom}_{D}(M, N)$. By (4), we have $\operatorname{hom}_{D}(M, N) \cong \operatorname{ker}_{N}\left(R_{1}.\right)$. Similarly to what we have done for $\operatorname{ker}_{N}\left(R_{2}.\right)$, we obtain:

$$
\begin{equation*}
\operatorname{hom}_{D}(M, N) \cong \tag{16}
\end{equation*}
$$

$\left\{P \in D^{p_{0} \times q_{0}} \mid \exists Q \in D^{p_{1} \times q_{1}}: R_{1} P=Q S_{1}\right\} /\left(D^{p_{0} \times q_{0}} S_{1}\right)$.
Using (4), we get that $f \in \operatorname{hom}_{D}(M, N)$ is defined by

$$
\begin{equation*}
\forall \lambda \in D^{1 \times p_{0}}, \quad f(\pi(\lambda))=\sigma(\lambda P) \tag{17}
\end{equation*}
$$

where the matrix $P \in D^{p_{0} \times q_{0}}$ satisfies $R_{1} P=Q S_{1}$ for a certain matrix $Q \in D^{p_{1} \times q_{1}}$. We note that 16 shows f can be defined by different matrices: $P^{\prime}:=P+Z S_{1}$, where $Z \in D^{p_{0} \times q_{0}}$ is any arbitrary matrices, also defines f, i.e., $f(\pi(\lambda))=\sigma\left(\lambda P^{\prime}\right)=\sigma(\lambda P)$ for all $\lambda \in D^{1 \times p_{0}}$.

It is interesting to compute $f \in \operatorname{hom}_{D}(M, N)$ because f induces the \mathbb{Z}-homomorphism:

$$
\begin{align*}
f^{\star}: \operatorname{ker}_{\mathcal{F}}\left(S_{1} \cdot\right) & \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(R_{1} .\right) \\
\zeta & \longmapsto \eta=P \zeta . \tag{18}
\end{align*}
$$

Indeed, we have $R_{1} \eta=R_{1}(P \zeta)=Q\left(S_{1} \zeta\right)=0$ for all $\zeta \in \operatorname{ker}_{\mathcal{F}}\left(S_{1}.\right)$. Hence, $f \in \operatorname{hom}_{D}(M, N)$ induces
$f^{\star} \in \operatorname{hom}_{\mathbb{Z}}\left(\operatorname{ker}_{\mathcal{F}}\left(S_{1}.\right), \operatorname{ker}_{\mathcal{F}}\left(R_{1}.\right)\right)$, i.e., maps \mathcal{F}-solutions of $S_{1} \zeta=0$ to \mathcal{F}-solutions of $R_{1} \eta=0$, or in other words, defines a behaviour homomorphism [4]. For instance, if $S_{1}=R_{1}$, i.e., $N=M$, then $f \in \operatorname{hom}_{D}(M, M):=\operatorname{end}_{D}(M)$ induces an internal symmetry f^{\star} of $\operatorname{ker}_{\mathcal{F}}\left(R_{1}.\right)$. For more details and applications, see [4], [5], [10].

Example 3: Let $D=\mathbb{Q}\left[\partial_{t}, \partial_{x}\right]$ be the commutative polynomial ring in the PD operators ∂_{t} and ∂_{x} with coefficients in \mathbb{Q}, the PD operator $R=\partial_{t}^{2}-\partial_{x}^{2} \in D, M=D /(D R)$ and $\mathcal{F}=C^{\infty}\left(\mathbb{R}^{2}\right)$. Using 16) and the commutativity of D, we obtain $\operatorname{end}_{D}(M) \cong M$. Hence, every $P \in D$ induces an internal symmetry of $\operatorname{ker}_{\mathcal{F}}(R)=.\left\{\eta \in \mathcal{F} \mid \partial_{t}^{2} \eta-\partial_{x}^{2} \eta=0\right\}$ defined by (18) with $S_{1}=R_{1}=R$. Now, if we consider the Weyl algebra $D=\mathbb{Q}[t, x]\left\langle\partial_{t}, \partial_{x}\right\rangle$ of PD operators in ∂_{t} and ∂_{x} with coefficients in $\mathbb{Q}[t, x]$, i.e., the noncommutative polynomial algebra formed by elements of the form $\sum_{0 \leq|\nu| \leq r} a_{\nu} \partial^{\nu}$, where $a_{\nu} \in \mathbb{Q}[t, x], \nu=\left(\nu_{t}, \nu_{x}\right) \in \mathbb{N}^{2}$ is a multi-index of length $|\nu|=\nu_{t}+\nu_{x}, \partial^{\nu}=\partial_{t}^{\nu_{t}} \partial_{x}^{\nu_{x}}$, where

$$
\partial_{t} \partial_{x}=\partial_{x} \partial_{t}, \quad \partial_{t} t=t \partial_{t}+1, \quad \partial_{x} x=x \partial_{x}+1,
$$

then 16 shows that $\operatorname{end}_{D}(M)$ is no longer a left or a right D module. Using an algorithm developed in [4] and implemented in the OreMorphisms package [5], we get
$P=a_{0}+a_{1} \partial_{t}+a_{2} \partial_{x}+a_{3}\left(t \partial_{t}+x \partial_{x}\right)+a_{4}\left(x \partial_{t}+t \partial_{x}\right)$,
where $a_{i} \in \mathbb{Q}$ for $i=0, \ldots, 4$, defines $f \in \operatorname{end}_{D}(M)$ since we have $R P=Q R$, where:
$Q=a_{0}+a_{1} \partial_{t}+a_{2} \partial_{x}+a_{3}\left(t \partial_{t}+x \partial_{x}\right)+a_{4}\left(x \partial_{t}+t \partial_{x}\right)$.
Now, a classical result due to d'Alembert shows that:
$\operatorname{ker}_{\mathcal{F}}(R)=.\left\{\zeta(t, x)=\phi(t+x)+\psi(t-x) \mid \phi, \psi \in C^{\infty}(\mathbb{R})\right\}$.
Therefore, using (18), we obtain that

$$
\begin{aligned}
\eta=P \zeta= & a_{0} \phi(t+x)+a_{0} \psi(t-x) \\
& +\left(a_{1}+a_{2}+a_{3}(t+x)+a_{4}(x+t)\right) \dot{\phi}(t+x) \\
& +\left(a_{1}-a_{2}+a_{3}(t-x)+a_{4}(x-t)\right) \dot{\psi}(t-x)
\end{aligned}
$$

is a \mathcal{F}-solution of the wave equation. This result can be checked again by writing $\eta=\phi^{\prime}(t+x)+\psi^{\prime}(t-x)$, where:

$$
\left\{\begin{aligned}
\phi^{\prime}(t+x)= & a_{0} \phi(t+x) \\
& +\left(a_{1}+a_{2}+\left(a_{3}+a_{4}\right)(t+x)\right) \dot{\phi}(t+x) \\
\psi^{\prime}(t-x)= & a_{0} \psi(t-x) \\
& +\left(a_{1}-a_{2}+\left(a_{3}-a_{4}\right)(t-x)\right) \dot{\psi}(t-x)
\end{aligned}\right.
$$

Finally, we note that P yields the vector fields $\partial_{t}, \partial_{x}$, $t \partial_{t}+x \partial_{x}$ and $x \partial_{t}+t \partial_{x}$, which are called infinitesimal symmetries of the wave equation $\partial_{t}^{2} \eta-\partial_{x}^{2} \eta=0$ in the literature of Lie groups and symmetries of differential systems. Similarly, the infinitesimal symmetries of PD operators, which depend only on the independent variables, can be computed by following an algorithm developed in [4] and implemented in the OrEMORPHISMS package [5]. The study of infinitesimal symmetries of PD operators will be developed in a forthcoming publication.

IV. The functor $\operatorname{ext}_{D}^{i}(\cdot, \mathcal{F})$

The purpose of this paper is to generalize the relations between 17 and 18 to the case of inhomogeneous linear systems. In Section III, we have shown that the contravariant $\operatorname{ext}_{D}^{i}(\cdot, \mathcal{F})$ associates an abelian $\operatorname{group}_{\operatorname{ext}}^{D}{ }_{D}^{i}(M, \mathcal{F})$ to a finitely generated left D-module M. Let us now show that $\operatorname{ext}_{D}^{i}(\cdot, \mathcal{F})$ assigns a \mathbb{Z}-homomorphism $\operatorname{ext}_{D}^{i}(f, \mathcal{F})$ to $f \in \operatorname{hom}_{D}(M, N)$. If M and N are two finitely generated left D-modules and $f \in \operatorname{hom}_{D}(M, N)$, then considering free resolutions of M and N of the form (6), and using (16) and 17 , there exist $P_{0} \in D^{p_{0} \times q_{0}}$ and $P_{1} \in D^{p_{1} \times q_{1}}$ such that $R_{1} P_{0}=P_{1} S_{1}$. Now, since $\operatorname{ker}_{D}\left(. R_{1}\right)=D^{1 \times p_{2}} R_{2}$, $R_{2} P_{1} S_{1}=\left(R_{2} R_{1}\right) P_{0}=0$, i.e., $D^{1 \times p_{2}}\left(R_{2} P_{1}\right) \subseteq$ $\operatorname{ker}_{D}\left(. S_{1}\right)=D^{1 \times q_{2}} S_{2}$, there exists a matrix $P_{2} \in D^{p_{2} \times q_{2}}$ such that $R_{2} P_{1}=P_{2} S_{2}$. Repeating the arguments, we get $P_{i} \in D^{p_{i} \times q_{i}}$ such that $R_{i} P_{i-1}=P_{i} S_{i}$ for all $i \geq 1$. Hence, we obtain the following commutative exact diagram

which yields the following chain complex:

If $\eta \in \operatorname{ker}_{\mathcal{F}}\left(S_{2}.\right)$ and $\zeta=P_{1} \eta$, then we have:

$$
R_{2} \zeta=\left(R_{2} P_{1}\right) \eta=P_{2}\left(S_{2} \eta\right)=0 \Rightarrow P_{1} \eta \in \operatorname{ker}_{\mathcal{F}}\left(R_{2} .\right)
$$

Now, if $\theta \in \operatorname{im}_{\mathcal{F}}\left(S_{1}.\right)$, i.e., if there exists $\xi \in \mathcal{F}^{q_{0}}$ such that $\theta=S_{1} \xi$, then $\omega:=P_{1} \theta$ satisfies:

$$
\omega=\left(P_{1} S_{1}\right) \xi=R_{1}\left(P_{0} \xi\right) \in \operatorname{im}_{\mathcal{F}}\left(R_{1} .\right)
$$

Thus, if κ_{i} and τ_{i} are the canonical projections, i.e.,
$\kappa_{i}: \operatorname{ker}_{\mathcal{F}}\left(R_{i+1}.\right) \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(R_{i+1}.\right) / \operatorname{im}_{\mathcal{F}}\left(R_{i}.\right) \cong \operatorname{ext}_{D}^{i}(M, \mathcal{F})$,
$\tau_{i}: \operatorname{ker}_{\mathcal{F}}\left(S_{i+1}.\right) \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(S_{i+1}.\right) / \operatorname{im}_{\mathcal{F}}\left(S_{i}.\right) \cong \operatorname{ext}_{D}^{i}(N, \mathcal{F})$,
then, up to isomorphism, we get the \mathbb{Z}-homomorphism:

$$
\begin{align*}
f_{1}: \operatorname{ext}_{D}^{1}(N, \mathcal{F}) & \longrightarrow \operatorname{ext}_{D}^{1}(M, \mathcal{F}) \tag{19}\\
\tau_{1}(\eta) & \longmapsto \kappa_{1}\left(P_{1} \eta\right)
\end{align*}
$$

f_{1} is well-defined: if $\tau_{1}(\eta)=\tau_{1}\left(\eta^{\prime}\right)$, then $\eta^{\prime}=\eta+\theta$ for a certain $\theta \in \operatorname{im}_{\mathcal{F}}\left(S_{1}.\right)$, which yields $\kappa_{1}\left(P_{1} \eta^{\prime}\right)=\kappa_{1}\left(P_{1} \eta\right)$ since $P_{1} \theta \in \operatorname{im}_{\mathcal{F}}\left(R_{1}.\right)$, i.e., $\kappa_{1}\left(P_{1} \theta\right)=0$.

Let us show that f_{1} depends only on $f \in \operatorname{hom}_{D}(M, N)$ and not on a particular choice of P_{0} and P_{1} satisfying $R_{1} P_{0}=$ $P_{1} S_{1}$. If $P_{0}^{\prime}:=P_{0}+Z_{0} S_{1}$, where $Z_{0} \in D^{p_{0} \times q_{1}}$, then, in Section III we proved that $f(\pi(\lambda))=\sigma\left(\lambda P_{0}^{\prime}\right)$ for all $\lambda \in$ $D^{1 \times p_{0}}$. Now, we have

$$
\begin{aligned}
R_{1} P_{0}^{\prime} & =R_{1}\left(P_{0}+Z_{0} S_{1}\right)=\left(P_{1}+R_{1} Z_{0}\right) S_{1} \\
& =\left(P_{1}+R_{1} Z_{0}+Z_{1} R_{2}\right) S_{1}, \quad \forall Z_{1} \in D^{p_{1} \times q_{2}}
\end{aligned}
$$

i.e., $R_{1} P_{0}^{\prime}=P_{1}^{\prime} S_{1}$, where $P_{1}^{\prime}:=P_{1}+R_{1} Z_{0}+Z_{1} S_{2}$. Then, for $\eta \in \operatorname{ker}_{\mathcal{F}}\left(S_{2}.\right)$, we obtain

$$
\begin{aligned}
\kappa_{1}\left(P_{1}^{\prime} \eta\right) & =\kappa_{1}\left(\left(P_{1}+R_{1} Z_{0}+Z_{1} S_{2}\right) \eta\right) \\
& =\kappa_{1}\left(P_{1} \eta\right)+\kappa_{1}\left(R_{1}\left(Z_{0} \eta\right)\right)=\kappa_{1}\left(P_{1} \eta\right)
\end{aligned}
$$

which shows that f_{1} depends only f, and thus f_{1} can be denoted by $\operatorname{ext}_{D}^{1}(f, \mathcal{F})$. We get the following map:

$$
\begin{aligned}
\operatorname{hom}_{D}(M, N) \times \operatorname{ext}_{D}^{1}(N, \mathcal{F}) & \longrightarrow \operatorname{ext}_{D}^{1}(M, \mathcal{F}) \\
\left(f, \tau_{1}(\eta)\right) & \longmapsto \kappa_{1}\left(P_{1} \eta\right)
\end{aligned}
$$

Similarly, for $i \in \mathbb{N}$, we have

$$
\begin{aligned}
\operatorname{ext}_{D}^{i}(f, \mathcal{F}): \operatorname{ext}_{D}^{i}(N, \mathcal{F}) & \longrightarrow \operatorname{ext}_{D}^{i}(M, \mathcal{F}) \\
\tau_{i}(\eta) & \longmapsto \kappa_{i}\left(P_{i} \eta\right)
\end{aligned}
$$

and we obtain the following map:

$$
\begin{align*}
\operatorname{ext}_{D}^{0}(M, N) \times \operatorname{ext}_{D}^{i}(N, \mathcal{F}) & \longrightarrow \operatorname{ext}_{D}^{i}(M, \mathcal{F}) \tag{20}\\
\left(f, \tau_{i}(\eta)\right) & \longmapsto \kappa_{i}\left(P_{i} \eta\right)
\end{align*}
$$

We can check that 20 is a \mathbb{Z}-bilinear map, a fact which yields the following \mathbb{Z}-homomorphism:

$$
\begin{aligned}
\operatorname{ext}_{D}^{0}(M, N) \otimes_{\mathbb{Z}} \operatorname{ext}_{D}^{i}(N, \mathcal{F}) & \longrightarrow \operatorname{ext}_{D}^{i}(M, \mathcal{F}) \\
f \otimes \tau_{i}(\eta) & \longmapsto \kappa_{i}\left(P_{i} \eta\right)
\end{aligned}
$$

If $\xi \in \mathcal{F}^{p_{i-1}}$ is a solution of $S_{i} \xi=\eta$ for a fixed right member $\eta \in \operatorname{ker}_{\mathcal{F}}\left(S_{i+1}.\right)$, then $\psi:=P_{i-1} \xi$ is a solution of $R_{i} \psi=P_{i} \eta$. Hence, if $\zeta=P_{i} \eta$ for a certain $\eta \in \mathcal{F}^{q_{i}}$, then a particular solution of $S_{i} \xi=\eta$ yields a particular solution of the inhomogeneous linear system $R_{i} \psi=\zeta$.

V. Yoneda product

A. $\operatorname{ext}_{D}^{1}(M, N) \otimes_{\mathbb{Z}} \operatorname{ext}_{D}^{0}(N, \mathcal{F}) \longrightarrow \operatorname{ext}_{D}^{1}(M, \mathcal{F})$

With the notations of Section III, if we consider $A \in \Omega$ and $\eta \in \operatorname{ker}_{\mathcal{F}}\left(S_{1}.\right)$, then we have

$$
R_{2}(A \eta)=B\left(S_{1} \eta\right)=0
$$

which shows that $A \in \Omega$ induces the \mathbb{Z}-homomorphism:

$$
\begin{align*}
A .: \operatorname{ker}_{\mathcal{F}}\left(S_{1} .\right) & \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(R_{2} .\right) \tag{21}\\
\eta & \longmapsto A \eta .
\end{align*}
$$

If $Z \in\left(R_{1} D^{p_{0} \times q_{0}}+D^{p_{1} \times q_{1}} S_{1}\right)$, i.e., $Z=R_{1} U+V S_{1}$, where $U \in D^{p_{0} \times q_{0}}$ and $V \in D^{p_{1} \times q_{1}}$, and if $\eta \in \operatorname{ker}_{\mathcal{F}}\left(S_{1}\right.$.), then $Z \eta=R_{1} U \eta+V\left(S_{1} \eta\right)=R_{1}(U \eta) \in \operatorname{im}_{\mathcal{F}}\left(R_{1}.\right)$, which shows that Z induces the \mathbb{Z}-homomorphism:

$$
\begin{aligned}
Z .: \operatorname{ker}_{\mathcal{F}}\left(S_{1} .\right) & \longrightarrow \operatorname{im}_{\mathcal{F}}\left(R_{1} .\right) \\
\eta & \longmapsto Z \eta .
\end{aligned}
$$

Now, if $\varepsilon\left(A^{\prime}\right)=\varepsilon(A)$, then we have $A^{\prime}=A+Z$, where $Z \in\left(R_{1} D^{p_{0} \times q_{0}}+D^{p_{1} \times q_{1}} S_{1}\right)$, and using $\operatorname{im}_{\mathcal{F}}\left(R_{1}.\right) \subseteq$ $\operatorname{ker}_{\mathcal{F}}\left(R_{2}.\right)$, we obtain $A^{\prime} \eta=A \eta+Z \eta \in \operatorname{ker}_{\mathcal{F}}\left(R_{2}.\right)$ for all $\eta \in \operatorname{ker}_{\mathcal{F}}\left(S_{1}.\right)$, and thus $\sigma_{1}\left(A^{\prime} \eta\right)=\sigma_{1}(A \eta)$, where $\sigma_{1}: \operatorname{ker}_{\mathcal{F}}\left(R_{2}.\right) \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(R_{2}.\right) / \operatorname{im}_{\mathcal{F}}(R.) \cong \operatorname{ext}_{D}^{1}(M, \mathcal{F})$ is the canonical projection, since $Z \eta \in \operatorname{im}_{\mathcal{F}}\left(R_{1}.\right)$. Thus, we get the following \mathbb{Z}-homomorphism

$$
\begin{align*}
\varepsilon(A): \operatorname{ker}_{\mathcal{F}}\left(S_{1} \cdot\right) & \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(R_{2} .\right) / \operatorname{im}_{\mathcal{F}}\left(R_{1} .\right) \\
\eta & \longmapsto \sigma_{1}(A \eta) \tag{22}
\end{align*}
$$

and then, up to isomorphism, the \mathbb{Z}-bilinear map

$$
\begin{aligned}
\operatorname{ext}_{D}^{1}(M, N) \times \operatorname{ext}_{D}^{0}(N, \mathcal{F}) & \longrightarrow \operatorname{ext}_{D}^{1}(M, \mathcal{F}) \\
(\varepsilon(A), \eta) & \longmapsto \sigma_{1}(A \eta)
\end{aligned}
$$

which finally yields the following \mathbb{Z}-homomorphism:

$$
\begin{aligned}
\operatorname{ext}_{D}^{1}(M, N) \otimes_{\mathbb{Z}} \operatorname{ext}_{D}^{0}(N, \mathcal{F}) & \longrightarrow \operatorname{ext}_{D}^{1}(M, \mathcal{F}) \\
\varepsilon(A) \otimes \eta & \longmapsto \sigma_{1}(A \eta)
\end{aligned}
$$

Example 4: Let us consider again Example 1. Using Example 2, (22) yields:

$$
\begin{aligned}
\varepsilon\left(A_{1}\right): \operatorname{ker}_{\mathcal{F}}\left(R_{1} \cdot\right)=\mathbb{R} & \longrightarrow \operatorname{ext}_{D}^{1}(M, \mathcal{F}) \\
\eta=c & \longmapsto \sigma\left(A_{1} \eta\right)=\sigma_{1}\left(\left(\begin{array}{ll}
c & 0
\end{array}\right)^{T}\right), \\
\varepsilon\left(A_{2}\right): \operatorname{ker}_{\mathcal{F}}\left(R_{1} \cdot\right)=\mathbb{R} & \longrightarrow \operatorname{ext}_{D}^{1}(M, \mathcal{F}) \\
\eta=c & \longmapsto \sigma\left(A_{2} \eta\right)=\sigma_{1}\left(\left(\begin{array}{ll}
0 & c
\end{array}\right)^{T}\right)
\end{aligned}
$$

B. $\operatorname{ext}_{D}^{i}(M, N) \otimes_{\mathbb{Z}} \operatorname{ext}_{D}^{j}(N, \mathcal{F}) \longrightarrow \operatorname{ext}_{D}^{i+j}(M, \mathcal{F})$

With the notations of Section III, an element $P_{1} \in \Omega$, i.e., satisfying $R_{2} P_{1}=P_{2} S_{1}$ for a certain $P_{2} \in D^{p_{2} \times q_{1}}$, induces the commutative exact diagram 24 for $i=1$. Dualizing 24) for $i=1$, we obtain the chain complex:

Up to isomorphism, we get the \mathbb{Z}-group homomorphism

$$
\begin{aligned}
\gamma_{1}: \operatorname{ker}_{\mathcal{F}}\left(S_{2}\right) / \operatorname{im}_{\mathcal{F}}\left(S_{1} .\right) & \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(R_{3} .\right) / \operatorname{im}_{\mathcal{F}}\left(R_{2} .\right) \\
\varpi_{1}(\zeta) & \longmapsto \sigma_{2}\left(P_{2} \zeta\right),
\end{aligned}
$$

where ϖ_{1} and σ_{2} are the canonical projections:

$$
\begin{aligned}
\varpi_{1}: \operatorname{ker}_{\mathcal{F}}\left(S_{2} .\right) \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(S_{2} .\right) / \operatorname{im}_{\mathcal{F}}\left(S_{1} .\right) \cong \operatorname{ext}_{D}^{1}(N, \mathcal{F}) \\
\sigma_{2}: \operatorname{ker}_{\mathcal{F}}\left(R_{3} .\right) \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(R_{3} .\right) / \operatorname{im}_{\mathcal{F}}\left(R_{2} .\right) \cong \operatorname{ext}_{D}^{2}(M, \mathcal{F})
\end{aligned}
$$

Let us now prove that γ_{1} depends only on $\varepsilon\left(P_{1}\right)$. Let $P_{1}^{\prime} \in$ Ω be such that $\varepsilon\left(P_{1}^{\prime}\right)=\varepsilon\left(P_{1}\right)$, i.e., $P_{1}^{\prime}=P_{1}+Z$, where $Z=R_{1} U+V S_{1}, U \in D^{p_{0} \times q_{0}}$ and $V \in D^{p_{1} \times q_{1}}$. Then, using $R_{2} R_{1}=0$ and $R_{2} P_{1}=P_{2} S_{1}$, we get:

$$
\begin{aligned}
R_{2} P_{1}^{\prime} & =R_{2}\left(P_{1}+R_{1} U+V S_{1}\right)=R_{2} P_{1}+R_{2} V S_{1} \\
& =P_{2} S_{1}+R_{2} V S_{1}=\left(P_{2}+R_{2} V\right) S_{1}
\end{aligned}
$$

Hence, for every $W \in D^{p_{2} \times q_{2}}, P_{2}^{\prime}:=P_{2}+R_{2} V+W S_{2}$ satisfies $R_{2} P_{1}^{\prime}=P_{2}^{\prime} S_{1}$. Then, for every $\zeta \in \operatorname{ker}_{\mathcal{F}}\left(S_{2}.\right)$,
$\sigma_{2}\left(P_{2}^{\prime} \zeta\right)=\sigma_{2}\left(P_{2} \zeta\right)+\sigma_{2}\left(R_{2} V \zeta\right)+\sigma_{2}\left(W S_{2} \zeta\right)=\sigma_{2}\left(P_{2} \zeta^{\prime}\right)$,
since $R_{2}(V \zeta) \in \operatorname{im}_{\mathcal{F}}\left(R_{2}.\right)$, and thus $\sigma_{2}\left(R_{2} V \zeta\right)=0$, which proves that the \mathbb{Z}-homomorphism γ_{1} depends only on $\varepsilon\left(P_{1}\right)$. Then, we have the following \mathbb{Z}-bilinear map

$$
\begin{aligned}
\operatorname{ext}_{D}^{1}(M, N) \times \operatorname{ext}_{D}^{1}(N, \mathcal{F}) & \longrightarrow \operatorname{ext}_{D}^{2}(M, \mathcal{F}) \\
\left(\varepsilon\left(P_{1}\right), \varpi_{1}(\zeta)\right) & \longmapsto \sigma_{2}\left(P_{2} \zeta\right)
\end{aligned}
$$

where $P_{2} \in D^{p_{2} \times q_{2}}$ is a matrix satisfying $R_{2} P_{1}=P_{2} S_{1}$, which finally yields the following \mathbb{Z}-homomorphism:

$$
\begin{align*}
\operatorname{ext}_{D}^{1}(M, N) \otimes_{\mathbb{Z}} \operatorname{ext}_{D}^{1}(N, \mathcal{F}) & \longrightarrow \operatorname{ext}_{D}^{2}(M, \mathcal{F}) \tag{23}\\
\varepsilon\left(P_{1}\right) \otimes \varpi_{1}(\zeta) & \longmapsto \sigma_{2}\left(P_{2} \zeta\right)
\end{align*}
$$

More generally, we get the following \mathbb{Z}-homomorphism

$$
\begin{aligned}
\operatorname{ext}_{D}^{i}(M, N) \otimes_{\mathbb{Z}} \operatorname{ext}_{D}^{j}(N, \mathcal{F}) & \longrightarrow \operatorname{ext}_{D}^{i+j}(M, \mathcal{F}) \\
\varepsilon_{i}\left(P_{i}\right) \otimes \varpi_{j}(\zeta) & \longmapsto \sigma_{i+j}\left(P_{i+j} \zeta\right),
\end{aligned}
$$

called the Yoneda product [1], [6], where $P_{i} \in D^{p_{i} \times q_{0}}$ satisfies $R_{i+1} P_{i}=P_{i+1} S_{1}$ for a certain matrix $P_{i+1} \in D^{p_{i+1} \times q_{1}}$, i.e., which induces

$$
\begin{aligned}
g_{i}: \operatorname{im}_{D}\left(. R_{i}\right)=D^{1 \times p_{i}} R_{i} & \longrightarrow N \\
\lambda R_{i} & \longmapsto \sigma\left(\lambda P_{i}\right),
\end{aligned}
$$

and thus yields the following commutative exact diagram

where $P_{i+j} \in D^{p_{i+j} \times q_{j}}$ satisfies $R_{i+j} P_{i+j-1}=P_{i+j} S_{j}$ for $j \geq 1$. The above commutative exact diagram yields the following chain complex

\[

\]

and thus the following \mathbb{Z}-homomorphism:

$$
\begin{aligned}
\gamma_{i}: \operatorname{ker}_{\mathcal{F}}\left(S_{j+1} .\right) / \operatorname{im}_{\mathcal{F}}\left(S_{j} .\right) & \longrightarrow \operatorname{ker}_{\mathcal{F}}\left(R_{i+j+1} .\right) / \operatorname{im}_{\mathcal{F}}\left(R_{i+j} .\right) \\
\varpi_{j}(\zeta) & \longmapsto \sigma_{i+j}\left(P_{i+j} \zeta\right) .
\end{aligned}
$$

Finally, $\varepsilon\left(P_{i}^{\prime}\right)=\varepsilon\left(P_{i}\right)$ yields $P_{i}^{\prime}=P_{i}+Z$ for a certain $Z=R_{i} U+V S_{1}$, where $U \in D^{p_{i-1} \times q_{0}}$ and $V \in D^{p_{i} \times q_{1}}$, which induces a homotopy of g_{i} [4], [12], and thus γ_{i} is a \mathbb{Z}-homomorphism which depends only on $\varepsilon\left(P_{i}\right)$.

References

[1] M. Barakat, B. Bremer, "Higher extension modules and the Yoneda product", http://arxiv.org/abs/0802.3179 submitted for publication.
[2] F. Chyzak, A. Quadrat, D. Robertz, "Effective algorithms for parametrizing linear control systems over Ore algebras", Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376.
[3] F. Chyzak, A. Quadrat, D. Robertz, "OreModules: A symbolic package for the study of multidimensional linear systems", Applications of Time-Delay Systems, LNCIS 352, Springer, 2007, 233-264, OreModules project, http://wwwb.math.rwth-aachen.de/OreModules
[4] T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra Appl., 428 (2008), 324-381.
[5] T. Cluzeau, A. Quadrat, "OreMorphisms: A homological algebraic package for factoring and decomposing linear functional systems", Topics in Time-Delay Systems: Analysis, Algorithms and Control, LNCIS 388, Springer, 2009, 179-196, OREMORPHISMS project, http://pages. saclay.inria.fr/alban.quadrat//OreMorphisms/index.html
[6] S. I. Gelfand, Y. I. Manin, Methods of Homological Algebra, Springer, 2003.
[7] V. Lomadze, E. Zerz, "Control and interconnection revisited: The linear multidimensional case", Proceedings of $n D S$, Poland, 2000.
[8] M. Kashiwara, T. Kawai, T. Kimura, Foundations of algebraic analysis, Princeton Mathematical Series 37, 1986.
[9] U. Oberst, "Multidimensional constant linear systems", Acta Appl. Math., 20 (1990), 1-175.
[10] A. Quadrat, "An introduction to constructive algebraic analysis and its applications", Les cours du CIRM, 1 (2010), 281-471, http://hal. archives-ouvertes.fr/inria-00506104/fr/
[11] A. Quadrat, D. Robertz, "Baer's extension problem for multidimensional linear systems", Proceedings of the MTNS 2008, USA.
[12] J. J. Rotman, An Introduction to Homological Algebra, Springer, 2009.

