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DISCO project, L2S, Supélec,
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Abstract—The paper aims at developing the algebraic analysis
approach to multidimensional systems and behaviours. Within
the algebraic analysis approach, if D is a (noncommutative)
polynomial ring in n functional operators and F a signal space,
i.e., a left D-module, then a behaviour B can be defined as
homD(M,F), i.e., as the dual of a (left) D-module M finitely
presented by a matrix R ∈ Dq×p defining the multidimensional
system. The homomorphisms from a behaviour C to a behaviour
B can be studied by means of the (left) D-homomorphisms from
M to N , where M and N are respectively the (left) D-module
defining B and C. Within algebraic analysis, a linear system
is not only defined as a behaviour ext0D(M,F) := homD(M,F)
but as the collection of n+1 vector spaces {extiD(M,F)}i=0,...,n,
defining the solvability in F of the successive compatibility
conditions induced by the multidimensional system. If the signal
space F is rich enough (i.e., is an injective left D-module),
then {exti(M,F)}i=0,...,n reduces to the behaviour ext0D(M,F).
In this paper, we generalize the homomorphisms of behaviours
to consider the full characterization of a linear system as
{extiD(M,F)}i=0,...,n. To do that, we explicitly characterize the
abelian group extiD(M,N) and the maps:

∀ i, j ≥ 0, extiD(M,N)⊗Z extjD(N,F) −→ exti+jD (M,F).

The classical behaviour homomorphisms correspond to i = j = 0.

I. ALGEBRAIC ANALYSIS

In what follows, we assume that D is a noetherian ring,
i.e., a ring D such that all left/right ideals of D are finitely
generated as left/right D-modules [12]. Let R ∈ Dq×p be a
q×p matrix with entries in D and .R the left D-homomorphism
(i.e., the left D-linear map) defined by:

.R : D1×q −→ D1×p

λ = (λ1 . . . λq) 7−→ λR.

The image imD(.R) of .R, also denoted by D1×q R, is the
left D-submodule of D1×p formed by all the left D-linear
combinations of the rows of R. The cokernel cokerD(.R) of
.R is the left D-module M := D1×p/(D1×q R) formed by
the residue classes π(λ) of λ ∈ D1×p in M , i.e.:

π(λ) = π(λ′) ⇔ ∃ µ ∈ D1×q : λ = λ′ + µR. (1)

The left D-module structure of M is defined by:

∀ λ1, λ2 ∈ D1×p, ∀ d ∈ D,

{
π(λ1) + π(λ2) = π(λ1 + λ2),
d π(λ) = π(d λ).

(2)

The identity (2) implies that π : D1×p −→ M is a left D-
homomorphism. The left D-module M is said to be finitely
presented by the matrix R [12]. Let us describe M . Let
{fj}j=1,...,p be the standard basis of D1×p, i.e., fj is the
row vector of length p defined by 1 at the jth position and 0
anywhere else, and yj = π(fj) ∈ M for j = 1, . . . , p. Since
every m ∈M is the residue class π(λ) of a certain λ ∈ D1×p,
writing λ =

∑p
j=1 λj fj , we get

π(λ) = π

 p∑
j=1

λj fj

 =
p∑
j=1

λj π(fj) =
p∑
j=1

λj yj ,

which shows that M is finitely generated by {yj}j=1,...,p as
a left D-module, i.e., {yj}j=1,...,p is a family of generators
of the left D-module M . If Ri• denotes the ith row of the
matrix R, i.e., Ri• =

∑p
j=1Rij fj ∈ D1×q R, then we have

π(Ri•) = 0 for i = 1, . . . , q, which yields

π

 p∑
j=1

Rij fj

 =
p∑
j=1

Rij π(fj) =
p∑
j=1

Rij yj = 0, (3)

for i = 1, . . . , q. Hence, the generators {yj}j=1,...,p of M
satisfy (3) and all their the left D-linear combinations.

If F is a left D-module and Fp := Fp×1, then the linear
system or behaviour is defined by:

kerF (R.) = {η ∈ Fp | Rη = 0}.

Let us now explain the links between kerF (R.) and M .
Let homD(M,F) be the abelian group, i.e., the Z-module,
formed by all the left D-homomorphisms from M to F . We
can check that the following Z-homomorphism

χ : homD(M,F) −→ kerF (R.)
φ 7−→ (φ(y1) . . . φ(yp))T

(4)

is an isomorphism and, for η = (η1 . . . ηp)T ∈ kerF (R.),
φη := χ−1(η) ∈ homD(M,F) is defined by:

∀ λ1, . . . , λp ∈ D, φη

 p∑
j=1

λj yj

 =
p∑
j=1

λj ηj .

We note that (4) shows that kerF (R.) depends only on M
and F up to isomorphism, i.e., depends on the isomorphism
type of M and of F . Two isomorphic finitely presented
left D-modules M ∼= M ′ yield two isomorphic behaviours



homD(M,F) ∼= homD(M ′,F). We get an intrinsic formula-
tion of the behaviour which is independent of the particular
embedding kerF (R.) ⊆ Fp. In the sixties, this remark was
the starting point of the development of a mathematical theory
called algebraic analysis [8]. This theory studies the behaviour
kerF (R.) by means of the properties of the left D-modules
M and F . For more details, see [2], [9], [10].

II. HOMOLOGICAL ALGEBRA

Let us review a few concepts of homological algebra [6],
[12]. A sequence of left/right D-modules Mi and left/right D-
homomorphisms δi+1 ∈ homD(Mi+1,Mi) is called a complex
if δi ◦ δi+1 = 0 for all i ∈ Z, i.e., if:

∀ i ∈ Z, im δi+1 ⊆ ker δi.

A complex (δi+1 : Mi+1 −→Mi)i∈Z is denoted by:

M• . . .
δi+2−−−→Mi+1

δi+1−−−→Mi
δi−→Mi−1

δi−2−−−→ . . .

The defect of exactness of the complex M• at Mi is the
left/right D-module defined by Hi(M•) = ker δi/im δi+1.
The complex M• is said to be exact at Mi (resp., exact)
if Hi(M•) = 0 (resp., Hi(M•) = 0 for all i ∈ Z), i.e.,
ker δi = im δi+1 (resp., ker δi = im δi+1 for all i ∈ Z). For
instance, the complex 0 −→ M ′

f−→ M
g−→ M ′′ −→ 0 is

exact if f is injective, g surjective and ker g = im f .
Let M = D1×p0/(D1×p1 R1) be a left D-module finitely

presented by R1 ∈ Dp1×p0 . Since D is noetherian, the left
D-module kerD(.R1) = {λ ∈ D1×p1 | λR1 = 0} formed by
left D-linear relations of the rows of R1 is finitely generated
[12]. Thus, there exists R2 ∈ Dp2×p1 such that kerD(.R1) =
D1×p2 R2. Then, we obtain the following exact sequence of
left D-modules

D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0, (5)

where (.Ri)(λ) := λRi for all λ ∈ D1×pi and for all i ≥ 1.
Repeating the above arguments with R2 and so on, we get a
free resolution of M [12], i.e., the exact sequence:

. . .
.R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0.

(6)
A left D-module M admits different free resolutions [12].

Free resolutions can be computed for a commutative poly-
nomial ring D over a computable field and for certain classes
of noncommutative polynomial rings (see [2], [4], [10] and the
references therein). For instance, the OREMODULES package
[3] can handle such a computation for certain classes of Ore
algebras of functional operators [2].

Let F be a left D-module. Since Ri+1Ri = 0, we can
consider the following complex of abelian groups

. . .
R3.←−− Fp2 R2.←−− Fp1 R1.←−− Fp0 ←− 0, (7)

where (Ri.)(η) := Ri η for all η ∈ Fpi−1 and for all i ≥ 1.
We can prove that the defects of exactness of (7) depend only

on M and F up to isomorphism and not on the free resolution
(6) of M . They are denoted by:{

ext0D(M,F) ∼= kerF (R1.),
extiD(M,F) ∼= kerF (Ri+1.)/imF (Ri.), ∀ i ≥ 1.

(8)

If D is a commutative ring, then extiD(M,F) has a
D-module structure. If D is a noncommutative ring, then
extiD(M,F) generally only has an abelian group structure.
If D is a k-algebra, where k is a field contained in the center
C(D) = {d ∈ D | ∀ e ∈ D : d e = e d} of D, then
extiD(M,F) inherits a k-vector space structure.

Let us now study the inhomogeneous linear system

R1 η = ζ, (9)

where ζ is a fixed element of Fp2 . Since R2R1 = 0, a
necessary condition for the existence of η ∈ Fp1 such that
R1 η = ζ is R2 ζ = (R2R1) η = 0. This condition is sufficient
iff the residue class σ1(ζ) of ζ ∈ kerF (R2.) in

kerF (R2.)/imF (R1.) ∼= ext1D(M,F) (10)

is 0, where σ1 : kerF (R2.) −→ kerF (R2.)/imF (R1.) is
the canonical projection. Indeed, σ1(ζ) = 0 is equivalent
to ζ ∈ imF (R1.), i.e., ζ = R1 η for a certain η ∈ Fp0 .
Hence, the inhomogeneous linear system (9) is solvable iff
σ1(ζ) = 0. The study of extiD(M,F) is generally a difficult
issue. In Section V, we shall explain how extiD(M,F) can
indirectly be studied by means of the computation of elements
of extjD(M,N), where N is another finitely presented left D-
module (e.g., N = M ).

Example 1: Let D = Q[∂, δ] be the commutative polyno-
mial ring of differential time-delay operators

∂ η(t) = η̇(t), δ η(t) = η(t− 1),

R1 = (∂ δ − 1)T , M = D/(D1×2R1) = D/(∂, δ − 1),
where (∂, δ − 1) is the ideal of D defined by ∂ and δ − 1,
and the D-module F = C∞(R). We can easily check that M
admits the following free resolution

0 −→ D
.R2−−→ D1×2 .R1−−→ D

π−→M −→ 0,

where R2 = (1 − δ ∂) ∈ D1×2. Then, the defects of
exactness of the following complex

0←− F R2.←−− F2 R1.←−− F ←− 0

are defined by:
ext0D(M,F) ∼= kerF (R1.),
ext1D(M,F) ∼= kerF (R2.)/imF (R1.),
ext2D(M,F) ∼= F/imF (R2.).

We can easily check that ext0D(M,F) = R and
ext2D(M,F) = 0 since for every ϑ ∈ F ,

ζ =

(
0∫ t

0
ϑ(t) dt+ c

)
∈ F2,



where c is any real constants, satisfies ϑ = R2 ζ. If c1
and c2 are two different real constants, then we clearly have
ζ = (c1 c2)T ∈ kerF (R2.). If there exists η ∈ F satisfying
R1 η = ζ, i.e., η̇(t) = c1 and η(t− 1)− η(t) = c2, then, from
the first equation, we get η(t) = c1 t+ c3, where c3 ∈ R, and
thus η(t − 1) − η(t) − c2 = c1 − c2, which is not 0 since
c1 6= c2. Thus, the residue class σ1((c1 c2)T ) of (c1 c2)T

is not 0, i.e., ext1D(M,F) 6= 0, and the inhomogeneous linear
system R1 η = ζ is not solvable in F = C∞(R).

Within algebraic analysis [8] and derived categories [6],
a linear partial differential (PD) system is defined as the
collection of the (n+1) k-vector spaces {extiD(M,F)}i=0,...,n

formed by the behaviour ext0D(M,F) and the obstructions
extiD(M,F)’s of the solvability of the successive compatibil-
ity conditions induced by the linear PD system R1 η = 0,
where D = A〈∂1, . . . , ∂n〉 is a ring of PD operators in the
∂i’s with coefficients in a differential ring A containing a field
k ⊆ C(D), R1 ∈ Dp1×p0 and M = D1×p0/(D1×p1 R1).

A left D-module F (resp., M ) is called injective (resp.,
projective) if extiD(M,F) = 0 for all left D-modules M
(resp., F) and for all i ≥ 1 [6], [12]. In these two cases,
{extiD(M,F)}i=0,...,n reduces to the behaviour ext0D(M,F).
The purpose of this paper is to generalize results on be-
haviour homomorphisms [4] to this complete characterization
{extiD(M,F)}i=0,...,n of a linear system.

III. CHARACTERIZATION OF extiD(M,N)
Let R1 ∈ Dp1×p0 and S1 ∈ Dq1×q0 be two matrices and

M = D1×p0/(D1×p1 R1) and N = D1×q0/(D1×q1 S1) two
finitely presented left D-modules. Let us explicitly character-
ize the extiD(M,N)’s. If (6) is a free resolution of M , then
(7) with F = N yields the following complex

. . .
R3.←−− Np2 R2.←−− Np1 R1.←−− Np0 ←− 0, (11)

whose defects of exactness are:{
ext0D(M,N) ∼= kerN (R1.) = {η ∈ Np0 | R1 η = 0},
extiD(M,N) ∼= kerN (Ri+1.)/imN (Ri.), ∀ i ≥ 1.

See (8). Considering r direct copies of the finite presentation
of N , D1×q1 .S1−−→ D1×q0 σ−→ N −→ 0, we get the exact
sequence Dr×q1 .S1−→ Dr×q0 idr ⊗σ−−−−→ Nr −→ 0, where
(.S1)(Θ) = ΘS1 for all Θ ∈ Dr×q1 and:

∀ Λ ∈ Dr×q0 , (idr ⊗ σ)(Λ) = (σ(Λ1•) . . . σ(Λr•))T .

Let k ≥ 0. Then, for all P ∈ Dpk×p0 , we have

Rk+1((idpk
⊗ σ)(P ))

= Rk+1

 σ(P1•)
...

σ(Ppk•)

 =


Ppk
j=1(Rk+1)1j σ(Pj•)

...Ppk
j=1(Rk+1)pk+1j σ(Pj•)



=


σ
“Ppk

j=1(Rk+1)1j Pj•
”

...
σ
“Ppk

j=1(Rk+1)pk+1j Pj•
”


= (idpk+1 ⊗ σ)(Rk+1 P ),

i.e., (Rk+1.) ◦ (idpk
⊗ σ) = (idpk+1 ⊗ σ) ◦ (Rk+1.). Thus, we

obtain the following commutative exact diagram

0 0 0
↑ ↑ ↑
Np2 R2.←−− Np1 R1.←−− Np0

↑ idp2 ⊗ σ ↑ idp1 ⊗ σ ↑ idp0 ⊗ σ

Dp2×q0 R2.←−− Dp1×q0 R1.←−− Dp0×q0

↑ .S1 ↑ .S1 ↑ .S1

Dp2×q1 R2.←−− Dp1×q1 R1.←−− Dp0×q1 ,
(12)

i.e., every square commutes and the sequences are exact.
We use the commutative diagram (12) to characterize:

kerN (R2.) = {(idp1 ⊗ σ)(A) ∈ Np1 | A ∈ Dp1×q0 :
R2 ((idp1 ⊗ σ)(A)) = 0},

imN (R1.) = {(idp1 ⊗ σ)(A) ∈ Np1 | A ∈ Dp1×q0 :
∃ X ∈ Dp0×q0 , (idp1 ⊗ σ)(A) = R1 ((idp0 ⊗ σ)(X))}.

Since the columns of (12) are exact sequences, we get:

R2((idp1 ⊗ σ)(A)) = (idp2 ⊗ σ)(R2A) = 0
⇔ ∃ B ∈ Dp2×q1 : R2A = B S1.

(idp1 ⊗ σ)(A) = R1 ((idp0 ⊗ σ)(X))
= (idp1 ⊗ σ)(R1X)
⇔ (idp1 ⊗ σ)(A−R1X) = 0
⇔ ∃ Y ∈ Dp1×q1 : A = R1B + Y S1.

Hence, we obtain:

kerN (R2.) = {(idp1 ⊗ σ)(A) ∈ Np1 | A ∈ Dp1×q0 :
∃ B ∈ Dp2×q1 : R2A = B S1}

imN (R1.) = {(idp1 ⊗ σ)(A) ∈ Np1 | A ∈ Dp1×q0 :
∃ X ∈ Dp0×q0 , ∃ Y ∈ Dp1×q1 : A = R1X + Y S1}

= (R1D
p0×q0 +Dp1×q1 S1)/(Dp1×q1 S1).

If we now introduce the following abelian groups{
Ω := {A ∈ Dp1×q0 | ∃ B ∈ Dp2×q1 : R2A = B S1},
E := Ω/(R1D

p0×q0 +Dp1×q1 S1),
(13)

then we have the following isomorphism of abelian groups

ext1D(M,N) ∼= kerN (R2.)/imN (R1.)
υ−→ E,

ρ((idp1 ⊗ σ)(A)) 7−→ ε(A),
(14)

where ρ : kerN (R2.) −→ kerN (R2.)/imN (R1.) (resp.,
ε : Ω −→ E) is the canonical projection. Indeed, the third
isomorphism theorem of module theory [12] yields:

ext1D(M,N) ∼= kerN (R2.)/imN (R1.)
=

(Ω/(Dp1×q1 S1))/((R1D
p0×q0 +Dp1×q1 S1)/(Dp1×q1 S1))
∼= E.

For more details on ext1D(M,N), see [1], [7], [10], [11].
Note that kerD(.R1) = 0, i.e., R2 = 0, yields Ω = Dp1×q0 .



Example 2: Let us compute the D-module ext1D(M,M),
where M is the D-module defined in Example 1. By (13) and
(14), we have:

Ω = {A ∈ D2 | ∃ B ∈ D1×2 : R2A = BR1},
ext1D(M,M) ∼= Ω/(R1D +D2×2R1).

If A ∈ Ω, then there exists B ∈ D1×2 such that:

R2A = BR1 ⇔ (AT −B)

(
RT2
R1

)
= 0.

Using Gröbner basis techniques (see, e.g., [2]), we get:

kerD(.(R2 RT1 )T ) = D1×3

 1 0 0 1
0 1 −1 0
0 0 1− δ ∂

 .

The D-module Ω is then generated by the matrices

A1 =

(
1
0

)
, A2 =

(
0
1

)
, A3 =

(
0
0

)
,

i.e., by A1 and A2, and thus {ε(A1), ε(A2)} is a family of
generators of the D-module ext1D(M,M).

Similarly, the abelian group extiD(M,N), i ≥ 1, can be
characterized. With the following abelian groups

Ωi := {A ∈ Dpi×q0 | ∃ B ∈ Dpi+1×q1 : Ri+1A = B S1},
Ei := Ωi/(RiDpi−1×q0 +Dpi×q1 S1),

we have the following Z-isomorphism:

extiD(M,N) ∼= kerN (Ri+1.)/imN (Ri.)
υi−→ Ei,

ρi((idpi
⊗ σ)(A)) 7−→ εi(A),

(15)
where ρi : kerN (Ri+1.) −→ kerN (Ri+1.)/imN (Ri.) (resp.,
εi : Ωi −→ Ei) is the canonical projection.

Let us now characterize ext0D(M,N) = homD(M,N). By
(4), we have homD(M,N) ∼= kerN (R1.). Similarly to what
we have done for kerN (R2.), we obtain:

homD(M,N) ∼=
{P ∈ Dp0×q0 | ∃ Q ∈ Dp1×q1 : R1 P = QS1}/(Dp0×q0 S1).

(16)
Using (4), we get that f ∈ homD(M,N) is defined by

∀ λ ∈ D1×p0 , f(π(λ)) = σ(λP ), (17)

where the matrix P ∈ Dp0×q0 satisfies R1 P = QS1 for
a certain matrix Q ∈ Dp1×q1 . We note that (16) shows f
can be defined by different matrices: P ′ := P + Z S1, where
Z ∈ Dp0×q0 is any arbitrary matrices, also defines f , i.e.,
f(π(λ)) = σ(λP ′) = σ(λP ) for all λ ∈ D1×p0 .

It is interesting to compute f ∈ homD(M,N) because f
induces the Z-homomorphism:

f? : kerF (S1.) −→ kerF (R1.)
ζ 7−→ η = P ζ.

(18)

Indeed, we have R1 η = R1 (P ζ) = Q (S1 ζ) = 0 for
all ζ ∈ kerF (S1.). Hence, f ∈ homD(M,N) induces

f? ∈ homZ(kerF (S1.), kerF (R1.)), i.e., maps F-solutions of
S1 ζ = 0 to F-solutions of R1 η = 0, or in other words, defines
a behaviour homomorphism [4]. For instance, if S1 = R1,
i.e., N = M , then f ∈ homD(M,M) := endD(M) induces
an internal symmetry f? of kerF (R1.). For more details and
applications, see [4], [5], [10].

Example 3: Let D = Q[∂t, ∂x] be the commutative poly-
nomial ring in the PD operators ∂t and ∂x with coefficients
in Q, the PD operator R = ∂2

t − ∂2
x ∈ D, M = D/(DR)

and F = C∞(R2). Using (16) and the commutativity of D,
we obtain endD(M) ∼= M . Hence, every P ∈ D induces an
internal symmetry of kerF (R.) = {η ∈ F | ∂2

t η − ∂2
x η = 0}

defined by (18) with S1 = R1 = R. Now, if we consider the
Weyl algebra D = Q[t, x]〈∂t, ∂x〉 of PD operators in ∂t and ∂x
with coefficients in Q[t, x], i.e., the noncommutative polyno-
mial algebra formed by elements of the form

∑
0≤|ν|≤r aν ∂

ν ,
where aν ∈ Q[t, x], ν = (νt, νx) ∈ N2 is a multi-index of
length |ν| = νt + νx, ∂ν = ∂νt

t ∂νx
x , where

∂t ∂x = ∂x ∂t, ∂t t = t ∂t + 1, ∂x x = x ∂x + 1,

then (16) shows that endD(M) is no longer a left or a right D-
module. Using an algorithm developed in [4] and implemented
in the OREMORPHISMS package [5], we get

P = a0 + a1 ∂t + a2 ∂x + a3 (t ∂t + x ∂x) + a4 (x ∂t + t ∂x),

where ai ∈ Q for i = 0, . . . , 4, defines f ∈ endD(M) since
we have RP = QR, where:

Q = a0 + a1 ∂t + a2 ∂x + a3 (t ∂t + x ∂x) + a4 (x ∂t + t ∂x).

Now, a classical result due to d’Alembert shows that:

kerF (R.) = {ζ(t, x) = φ(t+x)+ψ(t−x) | φ, ψ ∈ C∞(R)}.

Therefore, using (18), we obtain that

η = P ζ = a0 φ(t+ x) + a0 ψ(t− x)

+ (a1 + a2 + a3 (t+ x) + a4 (x+ t)) φ̇(t+ x)

+ (a1 − a2 + a3 (t− x) + a4 (x− t)) ψ̇(t− x)

is a F-solution of the wave equation. This result can be
checked again by writing η = φ′(t+ x) + ψ′(t− x), where:

φ′(t+ x) =a0 φ(t+ x)

+ (a1 + a2 + (a3 + a4) (t+ x)) φ̇(t+ x),
ψ′(t− x) =a0 ψ(t− x)

+ (a1 − a2 + (a3 − a4) (t− x)) ψ̇(t− x).

Finally, we note that P yields the vector fields ∂t, ∂x,
t ∂t + x ∂x and x ∂t + t ∂x, which are called infinitesimal
symmetries of the wave equation ∂2

t η − ∂2
x η = 0 in the

literature of Lie groups and symmetries of differential systems.
Similarly, the infinitesimal symmetries of PD operators, which
depend only on the independent variables, can be computed by
following an algorithm developed in [4] and implemented in
the OREMORPHISMS package [5]. The study of infinitesimal
symmetries of PD operators will be developed in a forthcom-
ing publication.



IV. THE FUNCTOR extiD( · ,F )

The purpose of this paper is to generalize the relations
between (17) and (18) to the case of inhomogeneous linear
systems. In Section III, we have shown that the contravari-
ant extiD( · ,F) associates an abelian group extiD(M,F) to
a finitely generated left D-module M . Let us now show
that extiD( · ,F) assigns a Z-homomorphism extiD(f,F) to
f ∈ homD(M,N). If M and N are two finitely generated
left D-modules and f ∈ homD(M,N), then considering free
resolutions of M and N of the form (6), and using (16)
and (17), there exist P0 ∈ Dp0×q0 and P1 ∈ Dp1×q1 such
that R1 P0 = P1 S1. Now, since kerD(.R1) = D1×p2 R2,
R2 P1 S1 = (R2R1)P0 = 0, i.e., D1×p2 (R2 P1) ⊆
kerD(.S1) = D1×q2 S2, there exists a matrix P2 ∈ Dp2×q2

such that R2 P1 = P2 S2. Repeating the arguments, we get
Pi ∈ Dpi×qi such that Ri Pi−1 = Pi Si for all i ≥ 1. Hence,
we obtain the following commutative exact diagram

. . .
.R2−−→ D1×p1 .R1−−→ D1×p0 π−→ M −→ 0

↓ .P1 ↓ .P0 ↓ f
. . .

.S2−−→ D1×q1 .S1−−→ D1×q0 σ−→ N −→ 0.

which yields the following chain complex:

. . .
R3.←−− Fp2 R2.←−− Fp1 R1.←−− Fp0 ←− 0

↑ P2. ↑ P1. ↑ P0.

. . .
S3.←−− Fq2 S2.←−− Fq1 S1.←−− Fq0 ←− 0.

If η ∈ kerF (S2.) and ζ = P1 η, then we have:

R2 ζ = (R2 P1) η = P2 (S2 η) = 0 ⇒ P1 η ∈ kerF (R2.).

Now, if θ ∈ imF (S1.), i.e., if there exists ξ ∈ Fq0 such that
θ = S1 ξ, then ω := P1 θ satisfies:

ω = (P1 S1) ξ = R1 (P0 ξ) ∈ imF (R1.).

Thus, if κi and τi are the canonical projections, i.e.,

κi : kerF (Ri+1.) −→ kerF (Ri+1.)/imF (Ri.) ∼= extiD(M,F),
τi : kerF (Si+1.) −→ kerF (Si+1.)/imF (Si.) ∼= extiD(N,F),

then, up to isomorphism, we get the Z-homomorphism:

f1 : ext1D(N,F) −→ ext1D(M,F)
τ1(η) 7−→ κ1(P1 η). (19)

f1 is well-defined: if τ1(η) = τ1(η′), then η′ = η + θ for
a certain θ ∈ imF (S1.), which yields κ1(P1 η

′) = κ1(P1 η)
since P1 θ ∈ imF (R1.), i.e., κ1(P1 θ) = 0.

Let us show that f1 depends only on f ∈ homD(M,N) and
not on a particular choice of P0 and P1 satisfying R1 P0 =
P1 S1. If P ′0 := P0 + Z0 S1, where Z0 ∈ Dp0×q1 , then, in
Section III, we proved that f(π(λ)) = σ(λP ′0) for all λ ∈
D1×p0 . Now, we have

R1 P
′
0 = R1 (P0 + Z0 S1) = (P1 +R1 Z0)S1

= (P1 +R1 Z0 + Z1R2)S1, ∀ Z1 ∈ Dp1×q2 ,

i.e., R1 P
′
0 = P ′1 S1, where P ′1 := P1 +R1 Z0 +Z1 S2. Then,

for η ∈ kerF (S2.), we obtain

κ1(P ′1 η) = κ1((P1 +R1 Z0 + Z1 S2) η)
= κ1(P1 η) + κ1(R1 (Z0 η)) = κ1(P1η),

which shows that f1 depends only f , and thus f1 can be
denoted by ext1D(f,F). We get the following map:

homD(M,N)× ext1D(N,F) −→ ext1D(M,F)
(f, τ1(η)) 7−→ κ1(P1 η).

Similarly, for i ∈ N, we have

extiD(f,F) : extiD(N,F) −→ extiD(M,F)
τi(η) 7−→ κi(Pi η),

and we obtain the following map:

ext0D(M,N)× extiD(N,F) −→ extiD(M,F)
(f, τi(η)) 7−→ κi(Pi η). (20)

We can check that (20) is a Z-bilinear map, a fact which yields
the following Z-homomorphism:

ext0D(M,N)⊗Z extiD(N,F) −→ extiD(M,F)
f ⊗ τi(η) 7−→ κi(Pi η).

If ξ ∈ Fpi−1 is a solution of Si ξ = η for a fixed right
member η ∈ kerF (Si+1.), then ψ := Pi−1 ξ is a solution of
Ri ψ = Pi η. Hence, if ζ = Pi η for a certain η ∈ Fqi , then a
particular solution of Si ξ = η yields a particular solution of
the inhomogeneous linear system Ri ψ = ζ.

V. YONEDA PRODUCT

A. ext1D(M,N)⊗Z ext0D(N,F) −→ ext1D(M,F)

With the notations of Section III, if we consider A ∈ Ω and
η ∈ kerF (S1.), then we have

R2 (Aη) = B (S1 η) = 0,

which shows that A ∈ Ω induces the Z-homomorphism:

A. : kerF (S1.) −→ kerF (R2.)
η 7−→ Aη.

(21)

If Z ∈ (R1D
p0×q0 + Dp1×q1 S1), i.e., Z = R1 U + V S1,

where U ∈ Dp0×q0 and V ∈ Dp1×q1 , and if η ∈ kerF (S1.),
then Z η = R1 U η+V (S1 η) = R1 (U η) ∈ imF (R1.), which
shows that Z induces the Z-homomorphism:

Z. : kerF (S1.) −→ imF (R1.)
η 7−→ Z η.

Now, if ε(A′) = ε(A), then we have A′ = A + Z, where
Z ∈ (R1D

p0×q0 + Dp1×q1 S1), and using imF (R1.) ⊆
kerF (R2.), we obtain A′ η = Aη + Z η ∈ kerF (R2.) for
all η ∈ kerF (S1.), and thus σ1(A′ η) = σ1(Aη), where
σ1 : kerF (R2.) −→ kerF (R2.)/imF (R.) ∼= ext1D(M,F) is
the canonical projection, since Z η ∈ imF (R1.). Thus, we get
the following Z-homomorphism

ε(A) : kerF (S1.) −→ kerF (R2.)/imF (R1.)
η 7−→ σ1(Aη), (22)



and then, up to isomorphism, the Z-bilinear map

ext1D(M,N)× ext0D(N,F) −→ ext1D(M,F)
(ε(A), η) 7−→ σ1(Aη),

which finally yields the following Z-homomorphism:

ext1D(M,N)⊗Z ext0D(N,F) −→ ext1D(M,F)
ε(A)⊗ η 7−→ σ1(Aη).

Example 4: Let us consider again Example 1. Using Ex-
ample 2, (22) yields:

ε(A1) : kerF (R1.) = R −→ ext1D(M,F)
η = c 7−→ σ(A1 η) = σ1((c 0)T ),

ε(A2) : kerF (R1.) = R −→ ext1D(M,F)
η = c 7−→ σ(A2 η) = σ1((0 c)T ).

B. extiD(M,N)⊗Z extjD(N,F) −→ exti+jD (M,F)
With the notations of Section III, an element P1 ∈ Ω, i.e.,

satisfying R2 P1 = P2 S1 for a certain P2 ∈ Dp2×q1 , induces
the commutative exact diagram (24) for i = 1. Dualizing (24)
for i = 1, we obtain the chain complex:

Fp3 R3.←−− Fp2 R2.←−− Fp1
↑ P3. ↑ P2. ↑ P1.

Fq2 S2.←−− Fq1 S1.←−− Fq0 .

Up to isomorphism, we get the Z-group homomorphism

γ1 : kerF (S2.)/imF (S1.) −→ kerF (R3.)/imF (R2.)
$1(ζ) 7−→ σ2(P2 ζ),

where $1 and σ2 are the canonical projections:

$1 : kerF (S2.) −→ kerF (S2.)/imF (S1.) ∼= ext1D(N,F),
σ2 : kerF (R3.) −→ kerF (R3.)/imF (R2.) ∼= ext2D(M,F).

Let us now prove that γ1 depends only on ε(P1). Let P ′1 ∈
Ω be such that ε(P ′1) = ε(P1), i.e., P ′1 = P1 + Z, where
Z = R1 U + V S1, U ∈ Dp0×q0 and V ∈ Dp1×q1 . Then,
using R2R1 = 0 and R2 P1 = P2 S1, we get:

R2 P
′
1 = R2 (P1 +R1 U + V S1) = R2 P1 +R2 V S1

= P2 S1 +R2 V S1 = (P2 +R2 V )S1.

Hence, for every W ∈ Dp2×q2 , P ′2 := P2 + R2 V + W S2

satisfies R2 P
′
1 = P ′2 S1. Then, for every ζ ∈ kerF (S2.),

σ2(P ′2 ζ) = σ2(P2 ζ)+σ2(R2 V ζ)+σ2(W S2 ζ) = σ2(P2 ζ
′),

since R2 (V ζ) ∈ imF (R2.), and thus σ2(R2 V ζ) = 0, which
proves that the Z-homomorphism γ1 depends only on ε(P1).
Then, we have the following Z-bilinear map

ext1D(M,N)× ext1D(N,F) −→ ext2D(M,F)
(ε(P1), $1(ζ)) 7−→ σ2(P2 ζ),

where P2 ∈ Dp2×q2 is a matrix satisfying R2 P1 = P2 S1,
which finally yields the following Z-homomorphism:

ext1D(M,N)⊗Z ext1D(N,F) −→ ext2D(M,F)
ε(P1)⊗$1(ζ) 7−→ σ2(P2 ζ).

(23)

More generally, we get the following Z-homomorphism

extiD(M,N)⊗Z extjD(N,F) −→ exti+jD (M,F)
εi(Pi)⊗$j(ζ) 7−→ σi+j(Pi+j ζ),

called the Yoneda product [1], [6], where Pi ∈ Dpi×q0 satisfies
Ri+1 Pi = Pi+1 S1 for a certain matrix Pi+1 ∈ Dpi+1×q1 , i.e.,
which induces

gi : imD(.Ri) = D1×pi Ri −→ N
λRi 7−→ σ(λPi),

and thus yields the following commutative exact diagram

. . .
.Ri+2−−−−→ D1×pi+1

.Ri+1−−−−→ D1×pi
.Ri−−→ imD(.Ri) −→ 0

↓ .Pi+1 ↓ .Pi ↓ gi

. . .
.S2−−→ D1×q1 .S1−−→ D1×q0 σ−→ N −→ 0,

(24)
where Pi+j ∈ Dpi+j×qj satisfies Ri+j Pi+j−1 = Pi+j Sj
for j ≥ 1. The above commutative exact diagram yields the
following chain complex

Fpi+j+1
Ri+j+1.←−−−−− Fpi+j

Ri+j .←−−−− Fpi+j−1

↑ Pi+j+1. ↑ Pi+j . ↑ Pi+j−1.

Fqj+1
Sj+1.←−−−− Fqj

Sj .←−− Fqj−1 ,

and thus the following Z-homomorphism:

γi : kerF (Sj+1.)/imF (Sj .) −→ kerF (Ri+j+1.)/imF (Ri+j .)
$j(ζ) 7−→ σi+j(Pi+j ζ).

Finally, ε(P ′i ) = ε(Pi) yields P ′i = Pi + Z for a certain
Z = Ri U + V S1, where U ∈ Dpi−1×q0 and V ∈ Dpi×q1 ,
which induces a homotopy of gi [4], [12], and thus γi is a
Z-homomorphism which depends only on ε(Pi).
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