
15

A historical journey through
the internal stabilization problem

Alban Quadrat
INRIA Sophia Antipolis,

APICS project,
2004 Route des Lucioles, BP 93,
06902 Sophia Antipolis Cedex,

France.
Alban.Quadrat@sophia.inria.fr

Abstract

The purpose of this talk is to give a historical but personal journey through the in-
ternal stabilization problem. We study the evolution of themathematical formulation of
this concept and its characterizations from the seventies to the present day. In particular,
we explain how the different mathematical formulations allow one to parametrize all
the stabilizing controllers of an internally stabilizableplant. Finally, we focus on the
important contributions of F. M. Callier on the internal stabilization problem of classes
of infinite-dimensional systems.
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Recognizing when a real plant can be stabilized by means of a feedback law is one of the
oldest issues in automatic control. This problem, developed for clear practical reasons, was
recently abstracted within the mathematical language in order to be studied on its own and
generalized to larger and larger classes of systems, slowlypassing from the engineer world
to the mathematical one. With a very few concepts such as controllability, observability and
robustness, the concept of stabilizability is one of the main interesting cross-fertilizations
between very practical engineering problems and mathematics. The evolution of this new
mathematical concept should attract more attention from science historians and researchers
as we shall show.
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We want to take the opportunity of the celebration of F. M. Callier’s scientific career
who, with C. A. Desoer, G. Zames, M. Vidyasagar, B. A. Francisand others, has brought sig-
nificant contributions to the study of this concept particularly for infinite-dimensional linear
systems ([3, 4, 5, 7, 9, 21, 26]), to give a historical but personal journey through the internal
stabilization problem. We are convinced that there is a lot to learn from the historical study of
this central concept. Reading directly the papers where this concept was created, developed
and used (see, e.g., [8, 10, 13, 16, 22, 27] and the referencestherein) is a source of enlight-
enment, bringing a new light on the evolutions developed since and the comings and goings
between different approaches. See [2, 24] for some historical accounts.

We study the evolution of the mathematical formulation of the concept of internal sta-
bilizability and its characterizations from the seventiesto the present day. We explain how
the different mathematical formulations allowed one to parametrize all the stabilizing con-
trollers of the corresponding plant. We emphasize on the fractional representation approach
developed by M. Vidyasagar, C. A. Desoer, F. M. Callier, B. A.Francis and others based on
the existence of doubly coprime factorizations of the transfer matrices ([6, 10, 15, 22, 23])
and on a mainly forgotten approach developed by G. Zames and B. A. Francis based on the
particular transfer matrixQ = C (I − P C)−1 ([13, 27]). See also [1, 2, 11, 12] for the
second one. In particular, we focus on the significant contributions of F. M. Callier on the
internal stabilization problem of infinite-dimensional linear systems (see, e.g., [3, 4, 5, 7]).

We explain how the use of modern algebraic techniques (fractional ideals, lattices, mod-
ules) allows us to show that the approach developed by G. Zames and B. A. Francis ([13, 27])
supersedes the classical fractional representation approach ([6, 10, 15, 22, 23]). Within this
lattice approach ([18, 19]), we give general necessary and sufficient conditions for internal
stabilizability and for the existence of (weakly) doubly coprime factorizations of irrational
transfer matrices. Moreover, we give a general parametrization of all stabilizing controllers
of an internally stabilizable plant which reduces to the classical Youla-Kǔcera parametriza-
tion ([10, 14, 25]) when the plant admits a doubly coprime factorization ([18, 20]). The
knowledge of only one stabilizing controller is required toget this new parametrization.

Finally, we explain why the lattice approach was historically developed in algebra by
Kummer, Dedekind and their followers at the end of the nineteen century for solving con-
ditions similar to the ones obtained from the characterization of internal stabilizability (and
from Lamé’s famous mistake on Fermat’s last theorem). Hence, the use of this mathematical
theory was very natural and allowed us to develop our resultsbefore realizing that the main
ideas could be traced back to the pioneering work of G. Zames and B. A. Francis ([13, 27]).
These ideas could not have been completely realized for general classes of systems as the
authors did not know the fractional ideal and lattice approaches. Therefore, this shows that
old approaches can sometimes be still fruitful when the corresponding mathematical tech-
niques are mature even if, as it was unfortunately our case, we had to preliminary rediscover
them before investigating the past literature! The moral ofthis story advocates for the bet-
ter knowledge of the historical development of our field and explains the topic of this talk,
hoping closing the loop!
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