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Abstract—The control of infinite dimensional systems with
constraints is a notoriously difficult task. We consider a general
class of linear systems governed by partial differential equations
with boundary control. This problem is here treated in a quite
natural manner through the freeness property, the analogue
of differential flatness for linear systems. Any variable is then
expressed as infinite order differential operators applied to the
basis components, the analogue of the flat output components.
The specialisation of the basis components are functions which
are both of Gevrey regularity (in order for the infinite order dif-
ferential operators to be convergent) and pertaining the flexibility
of polynomial splines. An illustration is made through an Euler
Bernoulli beam example.
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I. INTRODUCTION

Control of infinite dimensional systems with constraints is
known to be a difficult task. We here consider the case of sys-
tems giverned by partial differential equations with a control at
the boundary. We shall study the class of free systems, the lin-
ear analogue of nonlinear finite dimensional differentially flat
systems, and make use of algebraic techniques. The differential
flatness (see [17]) gives a solution to systems governed by
ordinary differential equations. As noticed in [17], this method
is not restricted to ordinary differential equations and can be
adapted to delay differential systems and partial differential
equations with boundary control.

The freeness of a certain modules, whose properties are
obtained through homological arguments (see, e.g., [11], [28];
We especially use the resolution of Serre’s conjecture by
Quillen [45] and Suslin [55], already exploited in [38]; see also
[18], [19], [13], [44]), enables, by assigning a trajectory to a
basis of this module, to obtain the desired trajectory tracking.

We shall, as systematized in [52], envision the equations
of the system as a Cauchy problem in the spatial variable,
a problem which is well posed in some suitable spaces of
generalized functions: the desired convolutional system is
obtained by first solving the Cauchy problem and plugging
its solution into the boundary conditions, i.e., the equations
imposed by the boundary conditions further restrict the Cauchy
data.

Differentially flat systems with constraints are generally
attacked through the use of optimal control problems (see,
e.g. [14], [15], [42], [43], [54]). We here propose to embed

the constraint fulfillment in the trajectory design. We thus
specialize the basis (or flat output) to the convolution of a
so called Gevrey function with a polynomial B-spline.

In Section II we briefly recall general definitions about R-
linear systems. In the next Section, bounday value problems
are modeled as modules over a ring parametrized by space.
In Section IV various controllability definitions are recalled.
Section V is the main section of the paper, dealing with
constraints fulfillment. Application to an Euler–Bernoulli beam
is the subject of Section VI.

II. R-LINEAR SYSTEMS

We shall consider in this section quite general definitions
for linear systems viewed as modules over a ring. In the next
section, we shall be more specific in order to describe boundary
value problems as modules over a ring parametrized by space.

Definition 1: An R-system Λ, or a system over R, is an R-
module. A presentation matrix of a finitely presented R-system
Σ is a matrix P such that Σ ∼= [v]/[Pv] where [v] is free with
basis v. An output y is a subset, which may be empty, of Λ.
An input-output R-system, or an input-output system over R,
is an R-dynamics equipped with an output.

The next definition allows, by extension of scalars, to obtain
much nicer algebraic properties when needed.

Definition 2: Let A be an R-algebra and Λ be an R-
system. The A-module A⊗RΛ is an A-system, which extends
Λ.

III. BOUNDARY VALUE PROBLEMS AS SYSTEMS
PARAMETRIZED BY SPACE

We shall here consider boundary value PDE systems as
modules over rings. A space parametrization is embedded in
the chosen rings.

A. Model class

Models are here considered as space dynamics with time
differential operator coefficients.

1) Distributed equations: The envisioned model equations
are based on a Cauchy-Kowalevski form:

∂xwi = Aiwi +Biu, wi : Ωi → (D
′∗)p,

u ∈ (D
′∗)m, Ai ∈ (R[∂t])

pi×pi , Bi ∈ (R[∂t])
pi×m,

i ∈ {1, . . . , l}
(1a)



where w1, . . . ,wl are the distributed variables, u =
(u1, . . . , um) the lumped variables, and D′∗ denotes a space
of (ultra -) distributions.

2) Assumptions: We shall make two assumptions:

• The intervals Ω1, . . . ,Ωl are given by an open neigh-
borhood of

Ω̃i = [xi,0, xi,1], `i = xi,1 − xi,0 = qi`

qi ∈ Q, ` ∈ R
(1b)

Without loss of generality, assume xi,0 = 0.

• The characteristic polynomials of the matrices
A1, . . . , Al can be written

Pi(λ) := det(λI −Ai) =

pi∑
ν=0

ai,νλ
ν , (1c)

ai,ν =
∑

ν+µ≤pi

ai,ν,µ∂
µ
t (1d)

with ai,j,k ∈ R, ai,pi,0 = 1. Moreover, their principal
parts

∑
µ+ν=pi

ai,µ,ν∂
µ
t λ

ν are hyperbolic w.r.t. the
time t, i.e. the roots of

∑
µ+ν=pi

ai,µ,νλ
j are real.

Remark 1. – Note that the above assumptions apply to most
spatially one-dimensional boundary controlled evolution equa-
tions including Euler-Bernoulli or Timoshenko beam equa-
tions, more general parabolic diffusion-reaction-convection
equations, damped and undamped wave-equations, etc. The
only notable exception is the case where the maximal order
derivative is a mixed one, such as, e.g. models of structural
damping (α∂t + 1)(∂2x − ∂2t )w = 0

3) Boundary conditions: The models are completed by the
following boundary conditions

l∑
i=1

Liwi(0) +Riwi(`i) +Du = 0 (1e)

with D ∈ (R[∂t])
q×m and Li, Ri ∈ (R[∂t])

q×pi .

B. Solution of the Cauchy Problem

Some properties of the solution of the Cauchy problem (1a)
with initial conditions given by x = ξ, i.e.

∂xw = Aw +Bu, w(ξ) = wξ (2)

with A ∈ (R[∂t])
p×p, B ∈ (R[∂t])

p×q as assumed in the
previous section for Ai, Bi, will be used. The notation of the
previous section is used in what follows, dropping the index
i ∈ {1, . . . , l}.

Consider the initial value problem

P (∂x)v(x) = 0, (∂jxv)(0) = vj ∈ E∗(R), j = 0, . . . , p−1
(3)

associated with the characteristic equation

P (λ) := det(λI −A) =

p∑
j=0

ajλ
j , aj =

∑
j+µ≤p

aj,µ∂
µ.

According to [24, Thrm. 12.5.6] or [48,
Thrm 2.5.2,Prop. 2.5.6] the initial value problem (3)
has a unique solution which may be written as

v(x) =

p−1∑
j=0

Cj(x)vj ,

where juxtaposition of symbols means convolution and
C0, . . . , Cp−1 are smooth functions mapping Ω to the space
of compactly supported Beurling ultradistributions E ′∗(R) :=
E ′(p/(p−1))(R) of Gevrey order p/(p − 1). The functions
C0, . . . , Cp−1 satisfy (k, j ∈ {0, . . . , p− 1})

∂kxCj(0) =

{
1, k = j

0, k 6= j
(4)

and

∂xCj = Cj−1 − ajCp−1, j = 1, . . . , p− 1, (5)
∂xC0 = −a0Cp−1. (6)

With this preparatory steps, the unique solution x 7→
Φ(x, ξ) of the initial value problem (2) can be expressed as

w(x) = Φ(x, ξ)wξ + Ψ(x, ξ)u. (7)

Therein, Φ(x, ξ) ∈ E ′∗(R)p×p is the fundamental matrix of
the initial value problem

w(x) = Φ(x, ξ)w(x), w(ξ) = wξ

and Ψ(x, ξ) ∈ E ′∗(R)p×m corresponds to the particular
solution of (2) with vanishing data wξ = 0.

Explicit expressions for Φ and Ψ can be given using the
ultradistribution-valued functions C0, . . . , Cp−1

Φ(x, ξ) =

p−1∑
j=0

AjCj(x− ξ), Ψ(x, ξ) =

∫ x

ξ

Φ(x, ζ)dζB.

(8)

Substituting the general solutions of the initial value prob-
lems into the boundary conditions, one obtains the following
linear system of equations:

w(x) = Wξ(x)cξ, Pξcξ = 0. (9)

Here, ξ = (ξ1, . . . , ξn), cTξ = (wT
1 (ξ1) · · ·wT

l (ξl),u
T ),

Wξ =

Φ1(x, ξ1) 0 0 Ψ1(x, ξ1)

0
. . . 0

...
0 · · · Φl(x, ξl) Ψl(x, ξl)

 ,

Pξ =
(
Pξ,1 · · ·Pξ,l+1

)
with

Pξ,i = LiΦi(0, ξi) +RiΦi(`i, ξi), i = 1, . . . , l

Pξ,l+1
= D +

l∑
i=1

LiΨi(0, ξi) +RiΨi(`i, ξi).



A possible choice for the coefficient ring is the ring
RIR[s,S,SI ]. Here, for any X ⊆ R, RIX = [SX,S

I
X], with

S = {C, S}, SX = {C(z`), S(z`)|z ∈ X},
SI = {CI , SI}, SI

X = {CI(z`), SI(z`)|z ∈ X},

` defined as in (1b), and

SI(x) =

∫ x

0

S(ζ)dζ, CI(x) =

∫ x

0

C(ζ)dζ.

Inspired by the results given in [37], [2], [22], and in view
of the simplification of the analysis of the module properties,
instead of the ring RIR, we shall use a slightly larger ring,
given by RR = C(s)[SR] ∩ E ′∗.

Definition 3: The convolutional system Σ associated with
the boundary value problem (1) is the module generated by
the elements of cξ over R = RR[S,SI ] with presentation
matrix Pξ . By ΣR (resp. ΣQ) we denote the same system but
viewed as a module over RR (resp. RQ).

IV. SYSTEM CONTROLLABILITIES

A. General controllabilities

In this section we emphasize several controllability notions
which are defined directly without referring to a solution space.
Let us start with some purely algebraic definitions:

Definition 4 (see, e.g. , [20, Def. 2.4.]): Let A be an R
algebra. An R-system Λ is said to be A-torsion free control-
lable (resp. A-projective controllable, A-free controllable) if
the A-module A ⊗R Λ is torsion free (resp. projective, free).
An R-torsion free (resp. R-projective, R-free) controllable R-
system is simply called torsion free (resp. projective, free)
controllable.

Elementary homological algebra (see, e.g., [49]) yields

Proposition 1: A-free (resp. A-projective) controllability
implies A-projective (resp. A-torsion free) controllability.

Proposition 2: R-free controllability implies A-free con-
trollability for any R-algebra A. More generally, given any
R-system Σ that is a direct sum of a torsion module tΣ and a
free module Λ, the extended system A ⊗R Σ is a direct sum
of the torsion module A⊗R tΣ and the free module A⊗R Λ.

The importance of the notions of torsion free and free
controllability is intuitively clear: While the first one refers
to the absence of a nontrivial subsystem which is governed
by an autonomous system of equations, the latter refers to the
possibility to freely express all system variables in terms of a
basis of the system module. For this reason, and, secondarily,
in reminiscence to the theory of nonlinear finite dimensional
systems, we have the following:

Definition 5: Take an A-free controllable R-system Λ with
a finite output y. This output is said to be A-flat, or A-basic,
if y is a basis of A ⊗R Λ. If A ∼= R then y is simply called
flat, or basic.

V. CONTROL WITH CONSTRAINTS

A. Gevrey functions

For an A-free controllable R-system Λ , the basis y is
introduced in order to express all system variables through
infinite order differential operators:

w(x, t) =

∞∑
i=0

ai(x)y(i)(t) (10a)

u(t) =

∞∑
i=0

biy
(i)(t) (10b)

This representation make sense only if the series (10a) and
(10b) can be made convergent. When an appropriate basis y is
chosen, these series lead in particular to an open loop control.

Definition 6 (Gevrey Class): [see, e.g., [25], [47], [48]] A
smooth function φ : R → R is of Gevrey order α if on any
compact subset K ⊂ R

∃mK , γK ∈ R+,∀k ∈ N, sup
t∈K
|φ(k)(t)| ≤ mK

γkK
(k!)α.

The functions of Gevrey order α < 1 are entire, while analytic
for α = 1 and non-analytic if α > 1.

The Taylor expansion of a smooth function is not con-
vergent, unless the function is analytic. The Gevrey order α
estimates this divergence. Gevrey functions of order α > 1
have divergent Taylor expansion; the larger α , the more di-
vergent the Taylor expansion. Important properties of analytic
functions generalize to Gevrey functions of order α > 1:
the scaling, addition, multiplication and derivation of Gevrey
functions of order α ≤ 1 is of order α. But contrary to analytic
functions, functions of order α > 1 may be constant on an
open set without being constant everywhere.

B. Identity approximation

We shall make use of identity approximation whose defi-
nition we recall:

Definition 7: An identity approximation is a family φε in
L1(R) indexed by ε > 0 such that:

1) ‖φε‖1 is bounded, independently of ε > 0.

2) ∀ε > 0,

∫
R
φε = 1.

3) ∀η > 0, lim
ε→0

∫
|t|<η
|φε| = 0.

The following regularisation result explains the previous ter-
minology

Proposition 3: Consider an identity approximation (φε).
For any function f in Lp (1 6 p <∞) the sequence (φε ∗ f)
converges towards f in Lp.

Thus, the sequence (φε) can be seen to converge to the Dirac
distribution. The following lemma is a useful construction of
an identity approximation.



Lemma 1: Let φ : R→ C be a function in D(R) with non
zero integral, then the sequence (φε) with

φε(t) =
φ (t/ε)

ε

∫
R
φ(τ)dτ

is an identity approximation.

1) Gevrey identity approximation: Consider the following
function

g(τ) =

{
exp(−(1− τ2)−σ), if τ ∈ [−1, 1]

0, otherwise

which is Gevrey of order 1 + 1/σ and with compact support
[−1, 1].

The previous construction leads to an identity approxima-
tion which is Gevrey of order 1 + 1/σ (see [34], [52]:

gε(t) =
g (t/ε)

ε

∫
R
g(τ)dτ

C. Basis as a B-spline Gevrey approximation

We shall consider the following functions for the basis y:

y = gε ∗ S (11)

where S is a polynomial B-spline curve of order m (see [8])
and gε is the previously defined Gevrey identity approximation.

Since y is a convolution with the Gevrey function gε it
is Gevrey of the same order as gε. Since gε is an identity
approximation:

lim
ε→0

gε ∗ S = S

Hence, to design a reference trajectory yr for y, one has the
same flexibility as in the B-spline curve design.

The variables w(x, t) and u(t) are thus expressed as

w(x, t) =
( ∞∑
i=0

ai(x)g(i)ε (t)
)
∗ S(t) , Aε(x, t) ∗ S(t) (12)

u(t) =
( ∞∑
i=0

big
(i)
ε (t)

)
∗ S(t) , Bε(t) ∗ S(t) (13)

in virtue of the identity ḟ ∗ g = f ∗ ġ.

D. Constraints fulfillment

By Young’s inequality, one obtains

‖u‖1 = ‖Bε ∗ S‖1 6 ‖Bε‖1 ‖S‖1 (14)

Since gε is Gevrey of order 1 + 1/σ, one has the following
estimates for its derivatives:

‖g(i)ε ‖∞ 6
mI

γiK
(i!)1+

1
σ

Considering the preceding inequality for i = 0, one gets this
possible choice mI :

mI = ‖gε‖1 = gε(0) =
1

eεIg

where Ig =

∫
R
g(τ)dτ .

Then, for i = 1, one obtains a possible γK

γK =
‖gε‖∞
‖ġε‖∞

= − (1− t∗2)σ+1

2σt∗g(t∗)eεIg

Note that t∗ ∈ [−ε, 0] and

∀i ∈ I, ġ(t∗) > ġ(ti).

Then, the L1 norm for Bε can be estimated as

‖Bε‖1 =

∥∥∥∥∥
∞∑
i=0

big
(i)
ε (t)

∥∥∥∥∥
1

6
∞∑
i=0

∥∥∥big(i)ε (t)
∥∥∥
1

=

∞∑
i=0

|bi|
∥∥∥g(i)ε (t)

∥∥∥
1
6
∞∑
i=0

2ε |bi|
∥∥∥g(i)ε (t)

∥∥∥
∞

6
∞∑
i=0

2ε |bi|
mI

γiK
(i!)1+

1
σ

(15)

Then, ‖S‖1 is estimated since an approximating B-spline
curve is always contained in the convex hull defined by its
control points. Thus, one has to choose the highest control
point of S such that

‖u‖1 = ‖Bε ∗ S‖1 6 ‖Bε‖1 ‖S‖1 (16)

is bounded by the constraint on the control.

Remark 2. – In practice, the infinite series (13) will be
truncated (for implementation reasons) to a sufficiently high
order. Since the bound we will consider in (15) is of uniform
type (i.e. we take norms inside the sum), the inequality (14)
will still be fulfilled.

VI. APPLICATION TO AN EULER–BERNOULLI BEAM

A. The model

The model of an Euler–Bernoulli beam is described below
(see [1]).

∂2w

∂t2
= −∂

4w

∂4x
(17a)

w(0, t) = 0,
∂w(0, t)

∂x
= Lu(t) (17b)

∂2w(1, t)

∂x2
= −λ ∂3w

∂x2∂t
(1, t), (17c)

∂3w(1, t)

∂x3
= µ

∂2w

∂t2
(1, t) (17d)

with

λ =
J

ρSL3
, µ =

M

ρSL



B. Open loop control

It has been shown in [1] that the system corresponding to
eqs. (17) is free over a suitable ring.

The state and input parametrizations can be determined as:

If y(t) is of class Gevrey, with α < 2, the following series,
which corresponds to cosh(

√
2s)y is absolutely convergent∑

n≥0

2n

(2n)!
y(n)(t)

For all specialisation of the basis y to a function of the class
Gevrey, α < 2, the control is

u(t) =
−Jm
Lα2

[
1+

∞∑
n=0

22n+1

(4n+ 4)!

(
(1 + λµ)

d2

dt2
+

(4n+ 4)(µ+
4n+ 3

2
λ)
) d2n+4

dt2n+4

]
y(t)+

EI

L2

[ ∞∑
n=0

22n+1

(4n+ 4)!

(
(4n+ 4)

(1

2
+
λµ

2

) d2
dt2

+

(4n+ 3)(µ+
(4n+ 1)(4n+ 2)

2
λ)
) d2n+2

dt2n+2

]
y(t)

(18)
and

w(x, t) =

[ ∞∑
n=0

(−1)ns2n

(4n)!

(
x4n+1

2(4n+ 1)
+

(=− <)(1 + i− x)4n+1

2(4n+ 1)
+ µ=(1 + i− x)4n

)]
y(t)+[ ∞∑

n=0

(−1)ns2n+2

(4n+ 4)!

(
λµ

2
+

(4n+ 2)!

(4n+ 4)!

[
(=− <)(1 + i− x)4n+1 − x4n+1

]
−λ(4n+ 3)(4n+ 4)<(1 + i− x)4n+2

)]
y(t)

where < (resp. =) denotes the real (resp. imaginary) part.
In other words, the two relations above define a family of
trajectories for the hybrid system (17).

Then, the constraint depicted in (16) can be satisfied when
replacing the bi’s by the ones found in the expression above.

VII. CONCLUSION

We have outlined a framework for tackling boundary
controlled flat PDE systems open loop trajectory tracking with
contraints. We have made use of Gevrey identity approxima-
tion convolved with a polynomial B-spline for the basis. This
retains the flexibility of approximating polynomial B-splines
while maintaining the Gevrey character. Constraints fulfillment
is ensured through young’s inequality and Gevrey estimates.
An application to the Euler–Bernoulli beam is outlined.
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