
OreModules: A Symbolic Package for the Study
of Multidimensional Linear Systems

Frédéric Chyzak1, Alban Quadrat2, and Daniel Robertz3

1 INRIA Rocquencourt, ALGO project, Domaine de Voluceau BP 105, 78153 Le
Chesnay Cedex, France
frederic.chyzak@inria.fr

2 INRIA Sophia Antipolis, CAFE project, 2004, Route des Lucioles BP 93, 06902
Sophia Antipolis Cedex, France
Alban.Quadrat@sophia.inria.fr

3 Lehrstuhl B für Mathematik, RWTH - Aachen, Templergraben 64, 52056 Aachen,
Germany
daniel@momo.math.rwth-aachen.de

1 Introduction

In the seventies, the study of transfer matrices of time-invariant linear systems of
ordinary differential equations (ODEs) led to the development of the polynomial
approach [20, 22, 44]. In particular, the univariate polynomial matrices play a
central role in this approach (e.g., Hermite, Smith and Popov forms, invariant
factors, primeness, Bézout/Diophantine equations).

In the middle of the seventies, while generalizing linear systems defined by
ODEs to differential time-delay systems, ODEs with parameters, 2-D and 3-D
filters. . . , one had to face the case of systems described by means of matrices
with entries in multivariate commutative polynomial rings. All these new sys-
tems were called 2-D or 3-D linear systems and, more generally, n-D systems or
multidimensional linear systems with constant coefficients [4, 16]. It was quickly
realized that no canonical forms such as Hermite, Smith and Popov forms ex-
isted for polynomial matrices with two and three variables (i.e., with entries
in k[x1, x2, x3], where k is a field such as Q, R, C). Moreover, more than only
one type of primeness was needed in order to classify n-D systems (e.g., fac-
tor/minor/zero primeness [48, 49]). Hence, it is not very surprising that, in the
eighties, Gröbner bases were introduced in the study of multidimensional linear
systems with constant coefficients [4, 16]. A Gröbner basis defines normal forms
for polynomials with respect to a certain monomial ordering of the variables
xi [2, 17, 23]. Given a Gröbner basis, there is a simple algorithm to effectively
compute these normal forms. In many ways, the computation of these normal
forms can be seen as an extension of the Gaussian elimination algorithm to
commutative polynomial rings [2, 17].

In a pioneering work, R. E. Kalman developed a module-theoretic approach
to time-invariant ordinary differential linear systems [21]. In his PhD thesis un-
der the supervision of R. E. Kalman, Y. Rouchaleau considered Kalman-type

J. Chiasson and J.J. Loiseau (Eds.): Appl. of Time Delay Systems, LNCIS 352, pp. 233–264, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

234 F. Chyzak, A. Quadrat, and D. Robertz

systems where the entries of (A, B, C, D) belong to a commutative ring. In par-
ticular, he studied their structural properties using module theory. Such systems
are nowadays called systems over rings and they have been considerably studied
in the literature [43] since. An extension of the geometric approach [46] to linear
systems over rings has also been recently developed [1, 12, 18, 19]. Using effective
algebra methods (Gröbner bases, characteristic sets), the computational aspects
of the systems over rings (e.g., differential time-delay systems) were firstly stud-
ied by L. Habets in [18, 19].

In the nineties, U. Oberst developed a general module-theoretic approach to
multidimensional linear systems with constant coefficients [28]. Using B. Mal-
grange’s approach [24], in which a finitely presented D-module M is associated
with a linear system of equations over a polynomial ring D, he showed how
some structural properties of the system corresponded to algebraic properties
of the D-module M . He then was able to develop a complete duality between
his module-theoretic approach and the behavioural approach developed by J. C.
Willems [30]. Based on U. Oberst’s ideas, the behavioural approach to multi-
dimensional linear systems has been successfully developed in the recent years.
See [30, 29, 36, 47, 49] and the references therein.

Within a similar module-theoretic approach, the concepts of flatness and π-
freeness were introduced in [15, 26] for differential time-delay linear systems
with constant coefficients. As it is shown in [26, 27] on different concrete ex-
amples, the detection of such structural properties is important for the study
of the motion planning problem. In the behavioural approach, the concept of
flatness corresponds to the existence of an observable image representation for
the multidimensional system [32].

In the same years as [28], J.-F. Pommaret studied underdetermined systems
of partial differential equations (PDEs) coming from mathematical physics and
differential geometry (e.g., elasticity, electromagnetism, hydrodynamics, general
relativity). See also [3]. In particular, he showed how his mathematical approach
was a generalization of U. Oberst’s module-theoretic approach for multidimen-
sional (linear) systems with varying coefficients. See [31] for more details and
references. In particular, the problem of checking whether or not a multidimen-
sional linear system described by PDEs with varying coefficients could be for-
mally parametrized was solved within the theory of differential operators. More-
over, the work of M. Fliess on linear systems defined by ODEs with variable
coefficients also illustrated the need to pass from the commutative polynomial
viewpoint to the non-commutative one [14].

Based on B. Malgrange’s approach [24], algebraic analysis has been developed
in mathematics in order to study general linear systems of PDEs with variable co-
efficients using module theory, algebraic geometry, homological algebra and func-
tional analysis. Algebraic analysis has recently been introduced in control theory
in [38] in order to study multidimensional linear systems defined by PDEs with
varying coefficients. In particular, using the formal theories of PDEs (Spencer’s,
Riquier-Janet’s theories), it was shown in [31, 32, 33, 34, 38] how some structural
properties of systems could be checked by means of constructive algorithms.

OreModules: A Symbolic Package 235

Finally, using the homological algebra approach developed in [38], we have
recently shown in [9, 11] how the previous results could be generalized to some
classes of multidimensional linear systems with varying coefficients encountered
in the literature (e.g., ODEs, PDEs, differential time-delay systems, multidimen-
sional discrete systems, partial differential delay systems). In order to do that,
the concept of multidimensional linear systems over Ore algebras was introduced
in [9, 11]. An Ore algebra is a ring of non-commutative polynomials in functional
operators with polynomial or rational coefficients [5, 6, 7]. Characterizations of
algebraic structural properties such as, for instance, controllability, parametriz-
ability and flatness were obtained.

The recent progress of Gröbner bases over Ore algebras (i.e., over some classes
of non-commutative polynomial rings) [5, 6, 7, 23] allows us to effectively test
the algebraic properties of general multidimensional linear systems (e.g., control-
lability, observability, parametrizability, flatness, π-freeness) and compute differ-
ent types of parametrizations and to propose feedback laws (motion planning,
tracking, Bézout equations, optimal control).

In this paper, we shall develop the following methodology for the study of
multidimensional linear systems over Ore algebras (see also [11]):

1. A linear system is defined by means of a (q × p)-matrix R with entries in an
Ore algebra D, i.e., it corresponds to a system of linear equations R z = 0,
where z is composed of the system variables (see Section 2).

2. We associate the finitely presented left D-module M = D1×p/(D1×q R) with
the system R z = 0.

3. We develop a dictionary between the structural properties of the system and
the properties of the left D-module M . Using module theory, we can then
classify the properties of the left D-module M (see Section 3).

4. Homological algebra permits to check these properties of the left D-module
M using extension and torsion functors (see Section 4).

5. Gröbner bases over Ore algebras allow to develop effective algorithms which
check the properties of the left D-module M , and thus, of the system R z = 0
(see Section 5).

6. Implementations of these algorithms in the package OreModules for the
computer algebra system Maple (see Section 6).

The purpose of this paper is to give an introduction to the package OreMod-

ules [8] for Maple which offers symbolic methods to investigate the structural
properties of multidimensional linear systems over Ore algebras. The advantage
of describing these properties in the language of homological algebra carries over
to the implementation of OreModules: up to the choice of the domain of oper-
ators which occur in a given system, all algorithms are stated and implemented
in sufficient generality such that ODEs, PDEs, differential time-delay systems,
discrete systems with constant, polynomial or rational coefficients. . . are covered
at the same time.

This paper is an extension of the congress paper [10].

236 F. Chyzak, A. Quadrat, and D. Robertz

2 Multidimensional Linear Systems over Ore Algebras

The mathematical framework of this paper is built on the concept of Ore algebras
[5, 6, 7]. Ore algebras are non-commutative polynomial rings that represent linear
functional operators in a natural way.

We recall that a ring with a unit 1 is a domain if the product of non-zero
elements is non-zero. In what follows, we shall denote by A a domain which has
a k-algebra structure, where k is a field.

Definition 1. 1. [25] A skew polynomial ring A[∂; σ, δ] is a non-commutative
ring consisting of all polynomials in ∂ with coefficients in A obeying the
commutation rule

∀ a ∈ A, ∂ a = σ(a) ∂ + δ(a), (1)

where σ is a k-algebra endomorphism of A, namely, σ : A −→ A satisfies

σ(1) = 1, ∀ a, b ∈ A, σ(a + b) = σ(a) + σ(b), σ(a b) = σ(a)σ(b),

and δ is a σ-derivation of A, namely, δ : A −→ A satisfies:

∀ a, b ∈ A, δ(a + b) = δ(a) + δ(b), δ(a b) = σ(a) δ(b) + δ(a) b.

2. [5, 7] Let A = k[x1, . . . , xn] be a commutative polynomial ring over a field k
(if n = 0 then A = k). The skew polynomial ring

D = A[∂1; σ1, δ1] . . . [∂m; σm, δm]

is called Ore algebra if the σi’s and δj ’s commute for 1 ≤ i, j ≤ m and satisfy:

σi(∂j) = ∂j , δi(∂j) = 0, j < i.

Example 1. In order to model an ordinary differential linear system with poly-
nomial coefficients, we use the Weyl algebra A1(k) = k[t][∂; σ, δ] which is
a non-commutative k-algebra generated by t and ∂. Elements of A1(k) are
non-commutative polynomials in t and ∂ with coefficients in the field k (e.g.,
k = Q, R, C) satisfying the following commutation rule:

∀ a ∈ k[t], ∂ (a ·) = a ∂ · +
da

dt
· .

Therefore, regarding Definition 1, we have σ = idk[t] and δ = d
dt .

More generally, for the study of partial differential linear systems, we shall use
the Weyl algebra An(k) = k[x1, . . . , xn][∂1; σ1, δ1] . . . [∂n; σn, δn], where σi and δi

are the maps on k[x1, . . . , xn] defined by

σi = idk[x1,...,xn], δi =
∂

∂ xi
, i = 1, . . . , n,

and every other commutation rule is prescribed by Definition 1. We have:

∂i xj = xj ∂i + δij , 1 ≤ i, j ≤ n, where δij = 1 if i = j and 0 else.

OreModules: A Symbolic Package 237

Example 2. The algebra of shift operators with polynomial coefficients is another
special case of an Ore algebra. For h in the field k (e.g., k = Q, R), we define
Sh(k) = k[t][δh; σh, δ] by:

∀ a ∈ k[t], σh(a)(t) = a(t − h), δ(a) = 0.

The commutation rule δh t = (t−h) δh represents the action of the shift operator
on polynomials. Forming equations over Sh, we model time-delay (resp., time-
advance) systems if h > 0 (resp., h < 0).

Example 3. For differential time-delay linear systems, we mix the constructions
of the two preceding examples. For h ∈ k (e.g., k = Q, R), we define the Ore
algebra Dh(k) = k[t][∂; σ1, δ1][δh; σ2, δ2] where:

σ1 = idk[t], δ1 =
d

dt
, ∀ a ∈ k[t], σ2(a)(t) = a(t − h), δ2 = 0.

If the considered system also involves an advance operator, then we may work
with the algebra defined by

H(h,l)(k) = k[t][∂; σ1, δ1][δh; σ2, δ2][τl; σ3, δ3],

where σi, δi, i = 1, 2, are as above and:

∀ a ∈ k[t], σ3(a)(t) = a(t + l), δ3 = 0, l > 0.

Example 4. In order to study multidimensional discrete linear systems, we can
define the following Ore algebra k[z1, . . . , zn][∂1; σ1, δ1] . . . [∂n; σn, δn], where σi

and δi, i = 1, . . . , n, are the maps on k[z1, . . . , zn] defined by δi = 0 and:

∀ a ∈ k[z1, . . . , zn], σi(a)(z1, . . . , zn) = a(z1, . . . , zi−1, zi + 1, zi+1, . . . , zn).

We refer to [7] for more examples of Ore algebras using for instance the
difference, the divided differences or the q-dilation functional operators.

We can “concatenate” different Ore algebras in order to combine different
types of functional operators and, by this means, we get Ore algebras for most
of the linear systems commonly considered in control theory. Moreover, we can
also use different rings of coefficients such as the field of rational functions or the
ring of analytic functions. However, as we shall develop computational aspects,
we only consider here polynomial or rational coefficients over Q. Finally, we can
prove that the algebras defined in Examples 1, 2, 3 and 4 are left and right
noetherian rings (namely, every left/right ideal is generated by means of a finite
number of elements). Thus, they have the left and right Ore properties (namely,
for any pair (a1, a2) of elements, there exists a non-zero pair (b1, b2) (resp.,
(c1, c2)) such that b1 a1 = b2 a2 (resp., a1 c1 = a2 c2)) [5, 7, 11, 25].

Linear systems studied in control theory are generally defined by means of
systems of ordinary or partial differential equations, time-delay equations, re-
currence equations. . . These equations usually come from mathematical models.
Hence, we can generally write a system as R z = 0, where R is a matrix with
entries in a certain Ore algebra and z contains the system variables including
the inputs, the outputs, the states, the latent variables.

238 F. Chyzak, A. Quadrat, and D. Robertz

Example 5. • The linear system P
(

d
dt

)
y = Q

(
d
dt

)
u, where P and Q are two

polynomial matrices in the differential operator d
dt and with coefficients in

k[t], can be rewritten as R z = 0, where the entries of the matrix

R =
(

P

(
d

dt

)
, −Q

(
d

dt

))

belong to the Weyl algebra A1(k) and z = (yT , uT)T .
• The differential time-delay linear system ẋ(t) = A(t)x(t) + B(t)u(t − h),

where A and B are two matrices with entries in k[t] and h > 0, can be
rewritten as R z = 0, where the entries of the matrix

R =
(

d

dt
I − A(t), −B(t) δh

)

belong to the Ore algebra Dh(k) and z = (xT , uT)T .
• The partial differential equation (heat equation)

∂y(t, x)
∂t

=
∂

∂x

(
a(x)

∂y(t, x)
∂x

)
+ u(t, x),

where the conductivity of the bar a is assumed to be polynomial in x, can
be rewritten as R z = 0, where the entries of the matrix

R =
(

∂

∂t
− ∂

∂x

(
a(x)

∂

∂x

)
, −1

)

belong to the Weyl algebra A2(k) with x1 = t, x2 = x and z = (y, u)T .

Real systems are generally nonlinear ones, meaning that the theory developed
in this paper is not directly applicable to these systems. However, using a lin-
earization around a (generic/given) trajectory of the system, then the linearized
system has varying coefficients. Therefore, we can examine the structural prop-
erties of the linearized system by means of the approach described here and use
them to study the ones of the nonlinear system.

3 A Module-Theoretical Approach to Linear Systems

In what follows, we denote by D an Ore algebra. The main idea of algebraic
analysis is to study a linear system of the form R z = 0, where R ∈ Dq×p, by
means of the finitely presented (f.p.) left D-module M = D1×p/(D1×q R) [24]. M
is associated with R z = 0 in the sense that, if we denote by zi the residue class
in M of the row vector ei ∈ D1×p defined by 1 in the ith position and 0 elsewhere
and z = (z1, . . . , zp)T , then M is defined by all left D-linear combinations of the
system equations R z = 0. See [11, 28, 31, 47] for more details.

The use of the residue class left D-module M is natural as it is a generalization
of the construction of the algebras commonly studied in algebraic or analytic

OreModules: A Symbolic Package 239

geometry and number theory (e.g., C = R[x]/(x2 + 1), Z[i
√

5] = Z[x]/(x2 + 5),
A = C[x, y]/(x2 + y2 − 1, x y − 1)) [17]. For instance, A = C[x, y]/I, where I is
the ideal I = (x2 + y2 − 1, x y − 1) of C[x, y], can be defined by:

A = C[x, y]/(C[x, y]1×2 R), R =
(

x2 + y2 − 1
x y − 1

)
∈ C[x, y]2×1.

The first main interest regarding the left D-module M instead of the system
R z = 0 is that M is intrinsically well-defined in the sense that it does not depend
on the choice of the representation R z = 0 of the system. Indeed, the same
system can be represented in different equivalent forms having different numbers
of unknowns and equations (e.g., state-space or input-output representations,
Roesser or Fornasini-Marchesini models) [35, 38, 45].

The second main interest of using the finitely presented left D-module M is
that we can classify the structural properties of the system by means of the
module properties of M . We introduce a few definitions [25, 45].

Definition 2. Let M be a finitely generated left module over a left noetherian
domain D. Then, we have the following definitions:

1. M is free if there exists r ∈ Z+ such that M is isomorphic to D1×r, a fact
that we denote by M ∼= D1×r.

2. M is stably free if there exist r, s ∈ Z+ such that M ⊕ D1×s ∼= D1×r, where
⊕ denotes the direct sum.

3. M is projective if there exist a left D-module N and r ∈ Z+ such that we
have M ⊕ N ∼= D1×r. Then, the left D-module N is also projective.

4. M is reflexive if the following canonical D-morphism (i.e., D-linear map)

εM : M −→ homD(homD(M, D), D), εM (m)(f) = f(m),

− where m ∈ M and f belongs to the right D-module homD(M, D) formed
by the left D-morphisms from M to D − is an isomorphism (i.e., εM is both
injective and surjective).

5. M is torsion-free if the left D-submodule

t(M) = {m ∈ M | ∃ 0
= P ∈ D, P m = 0}

of M is reduced to 0. t(M) is called the torsion left D-submodule of M and
the elements of t(M) are the torsion elements of M .

6. M is torsion if t(M) = M .

We have the following important results [25, 45].

Theorem 1. 1. We have the following implications of module properties:

free ⇒ stably free ⇒ projective ⇒ reflexive ⇒ torsion-free.

2. Every torsion-free left module over A1(k) (resp., k
[

d
dt

]
, k(t)

[
d
dt

]
) is stably

free (resp., free).

240 F. Chyzak, A. Quadrat, and D. Robertz

3. Every projective module over the commutative polynomial ring k[x1, . . . , xn]
over a field k is free (Quillen-Suslin theorem).

In the recent years, a classification of properties of multidimensional linear
systems has been established in terms of the properties of the corresponding left
D-module M . Let us summarize some of them in Table 1. We refer the reader
to [15, 28, 26, 29, 31, 32, 33, 34, 37, 38, 47, 49] for the precise definitions of the
properties listed in the second and third column of Table 1.

Table 1. Classification of structural properties

Module M Structural properties Optimal control

Torsion Poles/zeros classifications

With torsion Existence of autonomous elements

No autonomous elements, Variational problem
Controllability, without constraints

Torsion-free Parametrizability, (Euler-Lagrange
π-flatness equations)

Reflexive Filter identification

Internal stabilizability, Computation of the
Projective Bézout identities, Lagrange parameters

Stabilizing controllers without integration

Flatness, Poles placement,
Free Doubly coprime factorization, Optimal controller

Youla-Kučera parametrization

4 Homological Algebra

The main issue of checking effectively the system properties via the properties
of modules defined in Section 3 was still open until recently. Only the case of
multidimensional systems defined by a full row rank matrix R with entries in

OreModules: A Symbolic Package 241

the commutative polynomial ring k[x1, . . . , xn] was known using the different
concepts of primeness [26, 34, 48, 49] developed in the middle of the seventies.

The concepts of syzygy modules, free resolutions, extension and torsion func-
tors, projective and homotopic equivalences, projective dimensions. . . developed
in homological algebra [45] form the basis of new algorithms checking the first
column of Table 1, and thus, the system properties. These algorithms were ob-
tained in [38] in the case of PDEs (see also [31, 32, 33, 34]).

We have recently shown in [9, 11] how these algorithms could be extended
to some classes of Ore algebras including the interesting ones from the con-
trol theory point of view (e.g., ODEs, PDEs, recurrence operators, time-delay
operators). The main steps of the algorithms developed in [9, 11] are:

1. Computation of free resolutions of f.p. left modules over an Ore algebra.
2. Dualization of the previous free resolutions using the homD(·, D) functor.
3. Use of involutions in order to pass from right to left D-modules.
4. Computation of the quotient module of f.p. left D-modules.

Using the previous four points, we can then compute the extension modules
exti

D(M, D), i ∈ Z+, of any left D-module of the form M = D1×p/(D1×q R).
Let us explain the previous concepts. See [45] for more details.

Definition 3. We have the following definitions:

• A complex of left D-modules is a sequence formed by left D-modules Pi and
left D-morphisms di : Pi −→ Pi−1 which satisfy im di+1 ⊆ ker di for all
i ∈ Z+. Such a complex is denoted by:

. . .
di+2−−−→ Pi+1

di+1−−−→ Pi
di−→ Pi−1

di−1−−−→ Pi−2
di−2−−−→ . . . (2)

• The left D-module H(Pi) = ker di/imdi+1 is called the defect of exactness
of (2) at Pi. The complex (2) is said to be exact at Pi if H(Pi) = 0, i.e.,
ker di = im di+1, and exact if H(Pi) = 0 for all i ∈ Z+.

• Let M = D1×p/(D1×q R) be a finitely presented left D-module. A free reso-
lution of M is an exact sequence of the form

. . .
.R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π−→ M −→ 0, (3)

where p0 = p, p1 = q, R1 = R, Ri ∈ Dpi×pi−1 and .Ri : D1×pi −→ D1×pi−1

is defined by (.Ri)(λ) = λRi for all λ ∈ D1×pi .
• Let us consider the free resolution (3) of M and the following complex

. . .
R3.←−− Dp2 R2.←−− Dp1 R1.←−− Dp0 ←− 0, (4)

where Ri. : Dpi−1 −→ Dpi is defined by (Ri.)(λ) = Ri λ for all λ ∈ Dpi−1 .
Then, the defects of exactness of the complex (4) are denoted by:

{
ext0D(M, D) = ker(R1.),

exti
D(M, D) = ker(Ri+1.)/(Ri D1×pi−1), i ≥ 1.

exti
D(M, D) inherits a right module structure by the right action of D.

242 F. Chyzak, A. Quadrat, and D. Robertz

Proposition 1. [45] The right D-module exti
D(M, D) only depends on M , i.e.,

we can choose any free resolution of M to compute exti
D(M, D), i ∈ Z+. More-

over, we have ext0D(M, D) = homD(M, D).

Coming back to the four main algorithmic steps outlined above, we recall that
an involution θ of D is a k-linear map θ : D −→ D satisfying:

∀ a1, a2 ∈ D, θ(a1 · a2) = θ(a2) · θ(a1), θ ◦ θ = idD. (5)

Example 6. We have the following examples of involutions:

1. If D = k[x1, . . . , xn] is a commutative polynomial algebra, then θ = id is a
trivial involution.

2. If D = An is the Weyl algebra and P ∈ D, then we let θ(P) be the classical
formal adjoint of P obtained by multiplying a test function on the left of
P z and by integrating by parts [31, 33, 34]. Equivalently, θ is defined by
θ(xi) = xi and θ(∂i) = −∂i, i = 1, . . . , n.

3. Let Sh(k) be the Ore algebra of shift operators defined in Example 2. Then,
an involution θ of Sh(k) is defined by θ(t) = −t and θ(δh) = δh.

4. If Dh(k) is the Ore algebra of differential time-delay operators defined in
Example 3, then an involution θ of Dh(k) can be defined by θ(t) = −t,
θ(δh) = δh and θ(∂) = ∂. This last result shows that a simple involution of
Dh(k) exists contrary to what was written in [11] (we thank V. Levandovskyy
for pointing out to us this trivial mistake).

Now, if R is a matrix with entries in an Ore algebra having an involution θ
(e.g., An(k), Sh(k), Dh(k)), then we can define θ(R) = (θ(Rij))T and the left D-
module Ñ = D1×q/(D1×p θ(R)). The main idea developed in [9, 11, 31, 34, 38]
is that the module properties in the first column of Table 1 are characterized
by the vanishing of certain exti

D(Ñ , D) as it is shown in Table 2. We refer the
reader to [42] for a constructive algorithm which checks freeness and computes
bases of free modules.

The last column of Table 2 explains the correspondence between module prop-
erties and primeness for a multidimensional system defined by a full row rank
matrix R with entries in the commutative polynomial ring D = k[x1, . . . , xn]
[34]. The third column generalizes the last column to multidimensional systems
defined by a full row rank matrix R with entries in the ring of differential op-
erators with rational coefficients and d(Ñ) denotes the Krull dimension of the
characteristic variety of Ñ (see [34, 39]).

5 Computation of exti
D(Ñ, D)

The main difficulty in the computation of exti
D(Ñ , D) is to be able to construct

a free resolution for the left D-module Ñ = D1×q/(D1×p θ(R)) (see point 1 in
the previous section), i.e., an exact sequence of the form

. . .
.R̃4−→ D1×q3 .R̃3−→ D1×q2 .R̃2−→ D1×q1 .R̃1−→ D1×q0 −→ Ñ −→ 0,

OreModules: A Symbolic Package 243

where R̃1 = θ(R), q0 = q, q1 = p and .R̃i : D1×qi → D1×qi−1 is defined by
(.R̃i)(λ) = λ R̃i. The left D-module

Si(Ñ) = ker (.R̃i) = {λ ∈ D1×qi | λ R̃i = 0}

is called the ith syzygy left D-module of Ñ . If D is a noetherian ring, which is
the case for a large class of algebras (e.g., An, Sh, Dh and H(h,l)) [9, 11], then
free resolutions always exist for finitely generated left D-modules [25, 45].

The computation of the matrix R̃i+1 is an elimination problem [2, 17]. Indeed,
multiplying λ ∈ Si(Ñ) on the left of the inhomogeneous system R̃i y = u, we then
obtain λu = 0. Hence, finding a family of generators for Si(Ñ), i.e., {λj}1≤j≤qi+1 ,
λj ∈ D1×qi satisfying Si(Ñ) = D λ1 + . . . + D λqi+1 is equivalent to finding a
family of generators for the compatibility conditions of the inhomogeneous system
R̃i y = u. Then, if we denote by R̃i+1 = (λT

1 , . . . , λT
qi+1

)T , we finally obtain
Si(Ñ) = D1×qi+1 R̃i+1.

Such a difficult problem has largely been studied for linear systems of PDEs
since the 19th century [31, 38, 39]. But, only recently some computational ans-
wers were found based on the concepts of Janet and Gröbner bases for non-
commutative polynomial rings. We recall the definition of Gröbner bases for
polynomial ideals. This definition can easily be extended to modules [2, 17].
The algorithmic methods used in the theory of Gröbner bases require that a
monomial order is chosen to compare polynomials.

Table 2. Characterization of module properties

Module M exti
D(Ñ, D) d(Ñ) Primeness

With torsion ext1D(Ñ , D) ∼= t(M) n − 1 ∅

Torsion-free ext1D(Ñ, D) = 0 n − 2 Minor left-prime

exti
D(Ñ , D) = 0,

Reflexive
i = 1, 2 n − 3

exti
D(Ñ , D) = 0,

Projective 1 ≤ i ≤ n
-1 Zero left-prime

244 F. Chyzak, A. Quadrat, and D. Robertz

Definition 4. 1. Let D be an Ore algebra. A monomial order < on D is defined
as a total order on the set of monomials Mon(D) satisfying the following two
conditions:
a) For all monomials m ∈ Mon(D)\{1}, we have 1 < m.
b) If m1 < m2 holds for two monomials m1, m2 ∈ Mon(D), then, for all

n ∈ Mon(D), we have n · m1 < n · m2.
2. Given a polynomial P ∈ D\{0} and a monomial order < on D, we can com-

pare the monomials with a non-zero coefficient in P w.r.t. <. The greatest
of these monomials is the leading monomial lm(P) of P .

Definition 5. [2, 17] Let D be a polynomial ring and I a (left) ideal of D. A
set of non-zero polynomials G = {g1, . . . , gt} ⊂ I is called a Gröbner basis for I
if for all 0
= f ∈ I, there exists 1 ≤ i ≤ t such that lm(gi) divides lm(f).

One consequence of the condition that defines Gröbner bases is that every poly-
nomial f in I is reduced to 0 modulo G, i.e., by subtraction of suitable left
multiples of the gi ∈ G from f , we then obtain the zero polynomial.

For the case of commutative polynomial rings, Buchberger’s algorithm [2, 17]
computes Gröbner bases of polynomial ideals. Recently, Buchberger’s algorithm
was extended to some non-commutative polynomial rings and, in particular, to
some classes of Ore algebras [5, 7] that are important for the study of multidi-
mensional linear systems. Hence, manipulations of (one-sided) ideals and mod-
ules over many classes of Ore algebras have been turned effective. Moreover, the
Maple library Mgfun [6] has been developed for the symbolic manipulation of a
large class of special functions and combinatorial sequences. It offers implemen-
tations of Gröbner bases for some classes of Ore algebras.

6 The Package OreModules

Using the Maple library Mgfun, the authors of this paper have recently been
developing the package OreModules [8, 10]. OreModules as well as a library
of examples are freely available at:

http://wwwb.math.rwth-aachen.de/OreModules.

This second release of OreModules focuses on the following problems:

• Compute free resolutions, formal adjoints, extension functors, duals and bi-
duals of f.p. left D-modules over some classes of Ore algebras D.

• Recognize the properties of a finitely presented left D-module M (torsion-
free, reflexive, projective, stably free, free).

• Decide the existence of torsion elements in the corresponding system and, if
so, compute a family of generators for them.

• Compute left/right/generalized inverses of matrices with entries in D.
• Check whether or not a multidimensional linear system is controllable in

the sense of [14, 15, 26, 30, 29, 31, 32, 47, 49] or compute the autonomous
elements of the system [30, 31, 32, 47, 49].

OreModules: A Symbolic Package 245

• Check whether or not a multidimensional linear system is parametrizable in
the sense of [11, 31, 32, 33].

• Check whether or not a multidimensional linear system is flat and, if so,
compute an injective parametrization and a flat output [15, 26, 31, 33, 42].

• Check whether or not a multidimensional linear system with constant co-
efficients is π-free and, if so, compute the ideal of all the π-polynomials
[11, 15, 26].

A list of the most important functions of OreModules is given in Table 3 (the
suffix “Rat” distinguishes the procedures which deal with polynomial/rational
coefficients). Detailed documentation of OreModules is available in form of
Maple help pages.

7 Worked Examples Using OreModules

OreModules comes with a library of examples which demonstrates the above
features by means of systems like two pendula mounted on a cart, stirred tank
models, electric transmission line, wind tunnel model, Maxwell equations, Ein-
stein equations, equations of linear elasticity, Lie-Poisson structures. . . We only
give here four simple examples but we refer the reader to [8, 9, 11] for more
sophisticated examples. All examples were run on a Pentium III, 1 GHz with
1 GB RAM using Maple 8 (OreModules is available for Maple V release 5,
Maple 6, Maple 8, Maple 9 and Maple 10).

Example 7. We study a linearized bipendulum [31], i.e., a system composed of
a bar, where two pendula are fixed, one of length l1 and one of length l2. The
appropriate Ore algebra for this example is the Weyl algebra Alg = A1, i.e.,
A1 = Q(l1, l2, g)[t][D], where D = d

dt is the differential operator w.r.t. time t:

> with(OreModules):

> Alg:=DefineOreAlgebra(diff=[D,t],polynom=[t],comm=[g,l1,l2]):

Note that we have to declare all constants appearing in the system equations (the
gravitational constant g and the lengths l1 and l2) as variables that commute
with D and t. Next, we enter the system matrix:

> R:=evalm([[D^2+g/l1, 0, -g/l1], [0, D^2+g/l2, -g/l2]]);

R :=

⎡

⎢
⎣

D2 +
g

l1
0 − g

l1

0 D2 +
g

l2
− g

l2

⎤

⎥
⎦

In terms of equations, the linearized bipendulum is described by:

> ApplyMatrix(R, [x1(t),x2(t),u(t)], Alg) = evalm([[0],[0]]);
⎡

⎢
⎢
⎣

g x1(t)
l1

+ (d2

dt2 x1(t)) − g u(t)
l1

g x2(t)
l2

+ (d2

dt2 x2(t)) − g u(t)
l2

⎤

⎥
⎥
⎦ =

[
0
0

]

246 F. Chyzak, A. Quadrat, and D. Robertz

Table 3. List of the most important functions of OreModules

Main functions for the treatment of linear systems over Ore algebras D

Parametrization(Rat) Find parametrization of the system
MinimalParametriza- Find minimal parametrization(s) of the system

tion(s)(Rat)
AutonomousElements(Rat) Find a generating set of autonomous elements of

the system (i.e., solve the system of equations for
the torsion elements) in case of PDEs

LeftInverse(Rat) Compute a left-inverse for a matrix over D
LocalLeftInverse Given a 0 �= π ∈ k[x1, . . . , xn], compute a left

inverse for a matrix over k[x1, . . . , xn, π−1]
RightInverse(Rat) Compute a right-inverse for a matrix over D
GeneralizedInverse(Rat) Compute a generalized inverse matrix over D
PiPolynomial Given a system matrix over a commutative poly-

nomial ring D and a variable xi ∈ D, compute
the ideal of all π-polynomials in xi for the system

FirstIntegral For ODEs, find first integrals of motion
LQEquations Compute the Euler-Lagrange equations of a linear

quadratic problem and a controllable OD system

Module theory over Ore algebras D

TorsionElements(Rat) Compute the torsion submodule of a
f.p. D-module

Exti(Rat) Given a f.p. left D-module M and j, compute
extj

D(M, D)
Extn(Rat) Given a f.p. left D-module M and m, compute

exti
D(M, D) for 0 ≤ i ≤ m

Quotient(Rat) Compute the quotient module of two left
D-modules generated by the rows of matrices

SyzygyModule(Rat) Compute the first syzygy module of a f.p. left
D-module

Resolution(Rat) Given i, compute the first ith terms of a free
resolution of a f.p. left D-module

FreeResolution(Rat) Compute a free resolution of a f.p. left D-module
OreRank(Rat) Compute the rank of a f.p. left D-module

Some low-level functions of OreModules

DefineOreAlgebra Set up an Ore algebra D in OreModules

Involution Apply an involution to a matrix over D
Factorize(Rat) Right-divide a matrix over D by another one
Mult Multiply two or more matrices over D
ApplyMatrix Apply (matrices of) operators in D to

(vectors of) functions

OreModules: A Symbolic Package 247

We compute the formal adjoint of R:

> R_adj:=Involution(R, Alg);

R adj :=

⎡

⎢
⎢
⎢
⎢
⎣

D2 +
g

l1
0

0 D2 +
g

l2

− g

l1
− g

l2

⎤

⎥
⎥
⎥
⎥
⎦

By computing ext1A1
(A1×2

1 /(A1×3 R adj), A1), we check whether or not the left
A1-module M = A1×3

1 /(A1×2
1 R) is torsion-free, i.e., whether or not the bipen-

dulum is controllable and parametrizable:

> Ext:=Exti(R_adj, Alg, 1);

Ext :=
[[

1 0
0 1

]
,

[
D2 l1 + g 0 −g

0 D2 l2 + g −g

]
,

⎡

⎣
l2 D2 g + g2

g2 + D2 l1 g
l2 D2 g + l2 l1 D4 + D2 l1 g + g2

⎤

⎦

⎤

⎦

From the output, we can see that the system is generically controllable because
Ext[1] is the identity matrix which means that there are no torsion elements
in the left A1-module M associated with the system. The interpretation of this
structural fact is that the system has no autonomous elements in the generic
case (see Section 3). There may be a few configurations of the constants g, l1,
l2, in which the bipendulum is not controllable. We will actually find the only
configuration where it is not controllable below. Let us write down the generic
parametrization Ext [3] in a more familiar way with a free function ξ1.

> P:=Parametrization(R, Alg);

P :=

⎡

⎢
⎣

g (g ξ1(t) + l2 d2

dt2 ξ1(t)
g (g ξ1(t) + l1 d2

dt2 ξ1(t)
g2 ξ1(t) + g l2 d2

dt2 ξ1(t) + g l1 d2

dt2 ξ1(t) + l1 l2 (d4

dt4 ξ1(t))

⎤

⎥
⎦

Therefore, all smooth solutions of the system are parametrized by P , i.e.,

R (x1, x2, u)T = 0 ⇔ (x1, x2, u)T = Ext[3] ξ1 = P ξ1.

Since the bipendulum is generically a time-invariant controllable system, it is
also generically a flat system. A flat output of the system can be computed as a
left-inverse of the parametrization Ext[3]:

> S:=LeftInverse(Ext[3], Alg);

S :=
[

l1
g2 (l1 − l2)

− l2
g2 (l1 − l2)

0
]

248 F. Chyzak, A. Quadrat, and D. Robertz

i.e., a flat output is defined by ξ1 = S (x1, x2, u)T , namely:

> xi[1](t)=ApplyMatrix(S, [x1(t),x2(t),u(t)], Alg)[1,1];

ξ1(t) =
l1 x1(t)

g2 (l1 − l2)
− l2 x2(t)

g2 (l1 − l2)

We remark that this flat output is defined only if l1 − l2
= 0. In this case, let us
compute the Brunovský canonical form of the system.

> B:=Brunovsky(R, Alg);

B :=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

l1
g2 (l1 − l2)

− l2
g2 (l1 − l2)

0

D l1
g2 (l1 − l2)

− D l2
g2 (l1 − l2)

0

− 1
g (l1 − l2)

1
g (l1 − l2)

0

− D
g (l1 − l2)

D
g (l1 − l2)

0

1
(l1 − l2) l1

− 1
(l1 − l2) l2

1
l1 l2

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

In other words, we have the following transformation between the system vari-
ables x1, x2 and u and the Brunovský variables zi, i = 1, . . . , 4, and v:

> evalm([seq([z[i](t)],i=1..4),[v(t)]])=ApplyMatrix(B,
> [x1(t),x2(t),u(t)], Alg);

⎡

⎢
⎢
⎢
⎢
⎣

z1(t)
z2(t)
z3(t)
z4(t)
v(t)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

l1 x1(t)
g2 (l1 − l2)

− l2 x2(t)
g2 (l1 − l2)

l1 (d
dt x1(t))

g2 (l1 − l2)
−

l2 (d
dt x2(t))

g2 (l1 − l2)

− x1(t)
g (l1 − l2)

+
x2(t)

g (l1 − l2)

−
d
dt x1(t)

g (l1 − l2)
+

d
dt x2(t)

g (l1 − l2)
x1(t)

(l1 − l2) l1
− x2(t)

(l1 − l2) l2
+

u(t)
l1 l2

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

Let us check that the new variables zi, i = 1, . . . , 4, and v satisfy a Brunovský
canonical form:

> F:=Elimination(linalg[stackmatrix](B, R), [x1,x2,u],
> [seq(z[i],i=1..4),v,0,0], Alg):
> ApplyMatrix(F[1], [x1(t),x2(t),u(t)], Alg)=ApplyMatrix(F[2],
> [seq(z[i](t),i=1..4),v(t)], Alg);

OreModules: A Symbolic Package 249

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0

u(t)
x2(t)
x1(t)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

−(d
dt z4(t)) + v(t)

−(d
dt z3(t)) + z4(t)

−(d
dt z2(t)) + z3(t)

−(d
dt z1(t)) + z2(t)

g2 z1(t) + (g l2 + g l1) z3(t) + l1 l2 v(t)
g2 z1(t) + g l1 z3(t)
g2 z1(t) + g l2 z3(t)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

The last three equations give u, x1 and x2 in terms of the zi and v.

l1 = l2 describes the only case in which the bipendulum may be uncontrollable.
We now turn to the case where the lengths of the pendula are equal:

> R_mod:=subs(l2=l1, evalm(R));

R mod :=

⎡

⎢
⎣

D2 +
g

l1
0 − g

l1

0 D2 +
g

l1
− g

l1

⎤

⎥
⎦

> Ext_mod:=Exti(Involution(R_mod, Alg), Alg, 1);

Ext mod :=

⎡

⎣
[

D2 l1 + g 0
0 1

]
,

[
1 −1 0
0 D2 l1 + g −g

]
,

⎡

⎣
g
g

D2 l1 + g

⎤

⎦

⎤

⎦

The computation of ext1A1
(A1×2

1 /(A1×3
1 θ(Rmod)), A1) gives the torsion submod-

ule t(M) of M : it is generated by the residue class of the row r of Ext mod[2]
which corresponds to the row with entry l1 D2 + g in Ext mod[1]. This means
that (l1 D2 + g) r = 0 in M , and the difference of the positions of the pendula
(relative to the bar) is an autonomous element of the system. We can conclude
that the bipendulum is controllable if and only if l1
= l2.

We can directly obtain the torsion elements of M as follows:

> TorsionElements(R_mod, [x1(t),x2(t),u(t)], Alg);

[
[
g θ1(t) + l1 (d2

dt2 θ1(t)) = 0
]
,
[
θ1(t) = x1(t) − x2(t)

]
]

We can also explicitly integrate this torsion element of M :

> AutonomousElements(R_mod, [x1(t),x2(t),u(t)], Alg)[2];
[

θ1 = C1 sin(
√

g t√
l1

) + C2 cos(
√

g t√
l1

)
]

The fact that there exists an autonomous element in the system is equivalent to
the existence of a first integral of motion in the system. Indeed, we recall that
we have a one-to-one correspondence between the torsion elements and the first
integrals of motion. For more details, see [33]. We can compute this first integral
of motion by using the command FirstIntegral:

250 F. Chyzak, A. Quadrat, and D. Robertz

> V:=FirstIntegral(R_mod, [x1(t),x2(t),u(t)], Alg);

V := −(−(d
dt x1(t)) C1 sin(

√
g t√
l1

)
√

l1 − (d
dt x1(t)) C2 cos(

√
g t√
l1

)
√

l1

+
√

g x1(t) C1 cos(
√

g t√
l1

) − √
g x1(t) C2 sin(

√
g t√
l1

)

+ (d
dt x2(t)) C1 sin(

√
g t√
l1

)
√

l1 + (d
dt x2(t)) C2 cos(

√
g t√
l1

)
√

l1

− √
g x2(t) C1 cos(

√
g t√
l1

) +
√

g x2(t) C2 sin(
√

g t√
l1

))
/√

l1

We let the reader check by himself that we have V̇ (t) = 0. For the explicit
computations, see [8].

Finally, even if we have some autonomous elements in the system, we can
parametrize all solutions of the system in terms of one arbitrary function ξ1 and
two arbitrary constants C1 and C2 (these constants can easily be computed in
terms of the initial conditions of the system):

> P2:=Parametrization(R_mod, Alg);

P2 :=

⎡

⎢⎢
⎣

g ξ1(t)

− C1 sin(
√

g t√
l1

) − C2 cos(
√

g t√
l1

) + g ξ1(t)

l1 (d2

dt2 ξ1(t)) + g ξ1(t)

⎤

⎥⎥
⎦

i.e., we have R (x1, x2, u)T = 0 ⇔ (x1, x2, u)T = P2(ξ1, C1, C2). We can
easily check that P2 gives a parametrization of some solutions of the system as
we have:

> simplify(ApplyMatrix(R_mod, P2, Alg));
[

0
0

]

We can prove that P2 parametrizes all smooth solutions of the system [40].

Example 8. This example demonstrates the study of structural properties of a
simple linear time-varying ordinary differential system [41, 43]. See [8] for more
sophisticated examples.

> Alg:=DefineOreAlgebra(diff=[D,t], polynom=[t]):

Let us consider the following matrix of ordinary differential operators:

> R:=evalm([[D, -t]]);

R :=
[
D −t

]

The matrix R corresponds to the following time-varying linear system:

> ApplyMatrix(R, [x(t),u(t)], Alg)[1,1]=0;

OreModules: A Symbolic Package 251

(d
dt x(t)) − t u(t) = 0

Let us check whether or not this system is controllable and flat. In order to do
that, let us define the formal adjoint R adj of R.

> R_adj:=Involution(R, Alg);

R adj :=
[

−D
−t

]

We compute the first extension module ext1A1(Q)(A1(Q)/(A1(Q)1×2 R adj),
A1(Q)) of the left Alg-module associated with R adj :

> Ext:=Exti(R_adj, Alg, 1);

Ext := [
[
1
]
,
[
D −t

]
,

[
−t2 −1 + t D

−2 − t D D2

]
]

Therefore, we obtain that the left A1-module M = A1(Q)1×2/(A1(Q)R) associ-
ated with R is torsion-free, and thus, stably free as A1(Q) is a hereditary ring.
A parametrization of the system is given by Ext [3]. This result can directly be
obtained by using the following command:

> Parametrization(R, Alg);
[

−t2 ξ1(t) − ξ2(t) + t (d
dt ξ2(t))

−2 ξ1(t) − t (d
dt ξ1(t)) + (d2

dt2 ξ2(t))

]

Let us notice that the previous parametrization depends on two arbitrary func-
tions ξ1 and ξ2. However, the system has only 1 input, and thus, the rank of the
left A1(Q)-module M is 1. Let us check this result:

> OreRank(R, Alg);

1

Hence, we deduce that there exist some minimal parametrizations of the system
which depend on 1 arbitrary function. Let us compute some of them.

> P:=MinimalParametrizations(R, Alg);

P := [
[

−t2

−2 − t D

]
,

[
−1 + t D

D2

]
]

Let us check whether or not the first minimal parametrization P [1] is injective.

> LeftInverse(P[1], Alg);

[]

We obtain that P [1] is not an injective parametrization of the system. Let us
examine the second minimal parametrization P [2] in a similar way:

> LeftInverse(P[2], Alg);

[]

252 F. Chyzak, A. Quadrat, and D. Robertz

We find that P [2] is not an injective parametrization of the system either. There-
fore, we cannot conclude that the left A1(Q)-module M associated with the
system is free. In fact, we can prove that M is not a free left A1(Q)-module,
and thus, the corresponding time-varying system is not flat. See [39, 42] for
more details. However, we already know that M is a stably free left A1(Q)-
module as the matrix R has full row rank and R admits a right-inverse
defined by:

> RightInverse(R, Alg);
[

t
D

]

See [11] for more details. One of the main interests of the non-minimal para-
metrization Ext [3] is that it admits a generalized inverse, namely, there exists a
matrix G with entries in A1(Q) satisfying Ext [3] G Ext [3] = Ext [3] (contrary to
P [1] and P [2]). This last result implies that the non-minimal parametrization
parametrizes all the solutions of the corresponding time-varying system which
belong to any left A1(Q)-module F (e.g., F = C∞(R), R(t), R[t]). Let us com-
pute one generalized inverse of Ext [3]:

> G:=GeneralizedInverse(Ext[3], Alg);

G :=
[

0 −1
−1 0

]

> Mult(Ext[3], G, Ext[3], Alg);
[

−t2 −1 + t D
−2 − t D D2

]

Let us determine the obstruction of flatness. In order to do that, we study the
system over the ring Q(t)

[
d
dt

]
of ordinary differential operators with rational

coefficients in t. Let us compute a parametrization of the system by allowing to
invert non-zero polynomials in t:

> Extrat:=ExtiRat(R_adj, Alg, 1);

Extrat := [
[
1
]
,
[
D −t

]
,

[
−t2

−2 − t D

]
]

We obtain that the left Q(t)
[

d
dt

]
-module M ′ = Q(t)

[
d
dt

]1×2
/(Q(t)

[
d
dt

]
R) is

torsion-free, and thus, free because Q(t)
[

d
dt

]
is a left principal ideal domain.

Moreover, a (minimal) parametrization of the system is defined by Extrat [3].
This result can directly be obtained by using ParametrizationRat:

> ParametrizationRat(R, Alg);
[

−t2 ξ1(t)
−2 ξ1(t) − t (d

dt ξ1(t))

]

OreModules: A Symbolic Package 253

The fact that the left Q(t)[D]-module M associated with R is free implies that,
away from some singularities that we are going to determine, the system is
flat. Let us compute a basis for this module which gives a flat output of the
system.

> S:=LeftInverseRat(Extrat[3], Alg);

S :=
[

− 1
t2

0
]

Therefore, we obtain that a basis of the left Q(t)[D]-module M is defined by ξ1
= S (x, u)T and satisfies:

(x, u)T = Extrat[3] ξ1.

In particular, we see that this parametrization is not defined for t = 0 as we
have a singularity. Therefore, the system is flat except for t = 0. Finally, we
note that, away from t = 0, we have another right-inverse of R defined by:

> RightInverseRat(R, Alg);
[

0

−1
t

]

Let us compute the Brunovský canonical form:

> B:=BrunovskyRat(R, Alg);

B :=

⎡

⎢
⎣

− 1
t2

0

2
t3

−1
t

⎤

⎥
⎦

Let us check that the variables z and v defined by (z, v)T = B (x, u)T satisfy
a Brunovský canonical form:

> E:=EliminationRat(linalg[stackmatrix](B, R), [x,u], [z,v,0],
> Alg):
> ApplyMatrix(E[1], [x(t),u(t)], Alg)=ApplyMatrix(E[2],
> [z(t),v(t)], Alg);

⎡

⎣
0

u(t)
x(t)

⎤

⎦ =

⎡

⎣
−(d

dt z(t)) + v(t)
−2 z(t) − t v(t)

−t2 z(t)

⎤

⎦

The first equation shows that z and v satisfy a Brunovský canonical form.
The last two equations give x and u in terms of z and v. We refer to [8]
for more difficult examples of time-varying ordinary differential linear systems.

254 F. Chyzak, A. Quadrat, and D. Robertz

Example 9. Let us consider the example of a two reflector antenna [26]. We first
define an Ore algebra with a differential operator Dt w.r.t. time t and a constant
time-delay operator δ. Note also that the constants K1 , K2 , Te, Kp, Kc have
to be declared in the definition of the Ore algebra.

> Alg:=DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s],
> polynom=[t,s], comm=[K1,K2,Te,Kp,Kc], shift_action=[delta,t]):

Enter the matrix R of the differential time-delay linear system:

> R:=evalm([[Dt,-K1,0,0,0,0,0,0,0],
> [0,Dt+K2/Te,0,0,0,0,-Kp/Te*delta,-Kc/Te*delta,-Kc/Te*delta],
> [0,0,Dt,-K1,0,0,0,0,0],
> [0,0,0,Dt+K2/Te,0,0,-Kc/Te*delta,-Kp/Te*delta,-Kc/Te*delta],
> [0,0,0,0,Dt,-K1,0,0,0],
> [0,0,0,0,0,Dt+K2/Te,-Kc/Te*delta,-Kc/Te*delta,-Kp/Te*delta]]);

R :=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

Dt −K1 0 0 0 0 0 0 0

0 Dt +
K2
Te

0 0 0 0 −Kp δ

Te
−Kc δ

Te
−Kc δ

Te
0 0 Dt −K1 0 0 0 0 0

0 0 0 Dt +
K2
Te

0 0 −Kc δ

Te
−Kp δ

Te
−Kc δ

Te
0 0 0 0 Dt −K1 0 0 0

0 0 0 0 0 Dt +
K2
Te

−Kc δ

Te
−Kc δ

Te
−Kp δ

Te

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

Then, we use an involution θ of Alg in order to obtain R adj = θ(R):

> R_adj:=Involution(R, Alg):

By means of the next command, we compute the torsion-free part (if Ext1 [1] is
not the identity matrix, then the torsion submodule is generated by the rows of
Ext1 [2] modulo the module generated by the rows of R) and a parametrization
of the torsion-free part in Ext1 [3]. Equivalently, we check whether or not the
two reflector antenna is controllable:

> st:=time(): Ext1:=Exti(R_adj, Alg, 1): time() - st;

0.920
> Ext1[1];

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

We conclude that the first extension module ext1Alg(Ñ , Alg) of the Alg-module
Ñ = Alg1×6/(A1×9 θ(R)) associated with R adj = θ(R) is the zero module.
Hence, the module defined by R is torsion-free. Equivalently, R is parametrizable
and Ext1 [3] gives a parametrization of R involving three free parameters:

OreModules: A Symbolic Package 255

> Ext1[3];
⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

K1 δ Kc K1 δ Kc Kp K1 δ
Dt δ Kc Dt δ Kc Kp δ Dt
K1 δ Kc Kp K1 δ K1 δ Kc
Dt δ Kc Kp δ Dt Dt δ Kc
Kp K1 δ K1 δ Kc K1 δ Kc
Kp δ Dt Dt δ Kc Dt δ Kc

0 0 Dt2 Te + Dt K2
0 Dt2 Te + Dt K2 0

Dt2 Te + Dt K2 0 0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

The same parametrization can be obtained by using Parametrization. The
result involves three free functions ξ1, ξ2, ξ3:

> Parametrization(R, Alg);
⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

K1 Kc ξ1(t − 1) + K1 Kc ξ2(t − 1) + Kp K1 ξ3(t − 1)
Kc D(ξ1)(t − 1) + Kc D(ξ2)(t − 1) + Kp D(ξ3)(t − 1)
K1 Kc ξ1(t − 1) + Kp K1 ξ2(t − 1) + K1 Kc ξ3(t − 1)
Kc D(ξ1)(t − 1) + Kp D(ξ2)(t − 1) + Kc D(ξ3)(t − 1)
Kp K1 ξ1(t − 1) + K1 Kc ξ2(t − 1) + K1 Kc ξ3(t − 1)
Kp D(ξ1)(t − 1) + Kc D(ξ2)(t − 1) + Kc D(ξ3)(t − 1)

Te (D(2))(ξ3)(t) + K2 D(ξ3)(t)
Te (D(2))(ξ2)(t) + K2 D(ξ2)(t)
Te (D(2))(ξ1)(t) + K2 D(ξ1)(t)

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

The two reflector antenna is not a flat system [15, 26] because ext2Alg(Ñ , Alg) of
the Alg-module Ñ is different from zero as it is shown next:

> st:=time(): Ext2:=Exti(R_adj, Alg, 2): time() - st;

0.750
> Ext2[1];

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

δ 0 0
Dt2 Te + Dt K2 0 0

0 δ 0
0 Dt2 Te + Dt K2 0
0 0 δ

0 0 Dt2 Te + Dt K2

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

Since the torsion-free degree i(M) of M = Alg1×9/(Alg1×6 R) is equal to 1 (i.e.,
M is a torsion-free but not a projective Alg-module [11, 47]), we can find a
polynomial π in the variable δ such that the system is π-free [15, 26]:

> PiPolynomial(R, Alg, [delta]);

[δ]

256 F. Chyzak, A. Quadrat, and D. Robertz

We obtain π = δ. By definition of the π-polynomial [15, 26], this means that if we
can permit the time-advance operator δ−1, then the system of the two reflector
antenna becomes flat, i.e., the new D = Alg[δ−1]-module P = D1×9/(D1×6 R)
associated with the system is free. We shall find a basis for the D-module P
below.

We note that the fact that the two reflector antenna is not a flat system
(without the advance operator δ−1) is coherent with the fact that the full row-
rank matrix R does not admit a right-inverse. Indeed, we can prove that a
full row-rank matrix R admits a right-inverse if and only if the Alg-module
M = Alg1×9/(Alg1×6 R) is projective [11]. By the Quillen-Suslin theorem (see 3
of Theorem 1), projective modules over commutative polynomial rings are free.
This remark applies to our situation as we have:

> SyzygyModule(R, Alg); RightInverse(R, Alg);

INJ(6)

[]

The fact that the system is not flat is also coherent with the fact that its
parametrization Ext1 [3] does not admit a left-inverse. Indeed, a linear system is
flat if and only if it admits a left-invertible parametrization [11].

> LeftInverse(Ext1[3], Alg);

[]

We finish by computing a basis of the free D = Alg[δ−1]-module P . In the ter-
minology of control, such a basis is called a flat output. We apply LocalLeft-

Inverse to the parametrization Ext1 [3] by allowing to invert δ:

> S:=LocalLeftInverse(Ext1[3], [delta], Alg);

S :=

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

− Kc
δ K1 %1

0 − Kc
δ K1 %1

0
Kp + Kc
δ K1 %1

0 0 0 0

− Kc
δ K1 %1

0
Kp + Kc
δ K1 %1

0 − Kc
δ K1 %1

0 0 0 0

Kp + Kc
δ K1 %1

0 − Kc
δ K1 %1

0 − Kc
δ K1 %1

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

%1 := Kp2 − 2 Kc2 + Kp Kc

By construction, the matrix S is a left-inverse of Ext1 [3]:

> Mult(S, Ext1[3], Alg);
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

OreModules: A Symbolic Package 257

Therefore, (z1, z2, z3)T = S (x1, . . . , x6, u1, u2, u3)T is a basis of the D-
module P associated with R, and thus, a flat output of the two reflector antenna.
Therefore, a flat output (z1, z2, z3)T of the system is defined by:

> evalm([seq([z[i](t)], i=1..3)])=
> ApplyMatrix(S,[seq(x[i](t),i=1..6),seq(u[i](t),i=1..3)],Alg);

⎡

⎣
z1(t)
z2(t)
z3(t)

⎤

⎦ =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

−Kc x1(t + 1)
K1 %1

− Kc x3(t + 1)
K1 %1

+
(Kc + Kp)x5(t + 1)

K1 %1

−Kc x1(t + 1)
K1 %1

+
(Kc + Kp)x3(t + 1)

K1 %1
− Kc x5(t + 1)

K1 %1
(Kc + Kp)x1(t + 1)

K1 %1
− Kc x3(t + 1)

K1 %1
− Kc x5(t + 1)

K1 %1

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

%1 := Kp Kc − 2 Kc2 + Kp2

Finally, if we substitute (z1, z2, z3)T into the parametrization Ext1 [3] of the
system, we obtain (x1, . . . , x6, u1, u2, u3)T = T (x1, . . . , x6, u1, u2, u3)T , where
the matrix T is defined by:

> T:=Mult(Ext1[3], S, Alg);

T :=

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
Dt
K1

, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0

0 , 0 ,
Dt
K1

, 0 , 0 , 0 , 0 , 0 , 0

0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0

0 , 0 , 0 , 0 ,
Dt
K1

, 0 , 0 , 0 , 0

Dt (Dt Te + K2) (Kp + Kc)
δ K1 %1

, 0 , %2 , 0 , %2 , 0 , 0 , 0 , 0

%2 , 0 ,
Dt (Dt Te + K2) (Kp + Kc)

δ K1 %1
, 0 , %2 , 0 , 0 , 0 , 0

%2 , 0 , %2 , 0 ,
Dt (Dt Te + K2) (Kp + Kc)

δ K1 %1
, 0 , 0 , 0 , 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

%1 := Kp2 − 2Kc2 + Kp Kc

%2 := −Dt (Dt Te + K2)Kc
δ K1 %1

We note that (x2, x4, x6, u1, u2, u3)T is expressed in terms of x1, x3 and x5
only. Thus, (x1, x3, x5) is also a basis of the D = Alg[δ−1]-module P (compare
with [26]). More precisely, we have:

> evalm([seq([x[i](t)=ApplyMatrix(T,[seq(x[j](t),j=1..6),
> seq(u[j](t),j=1..3)],Alg)[i,1]],i=1..6)]);

258 F. Chyzak, A. Quadrat, and D. Robertz

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

x1(t) = x1(t)

x2(t) =
D(x1)(t)

K1
x3(t) = x3(t)

x4(t) =
D(x3)(t)

K1
x5(t) = x5(t)

x6(t) =
D(x5)(t)

K1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

We refer to [26] for applications of the previous results to the motion planning
and tracking problems. See also [8] for more details.

Example 10. We consider the differential time-delay system of a vibrating string
with an interior mass [27]. We define the Ore algebra Alg, where D is the dif-
ferential operator w.r.t. t and σ1 and σ2 are two non-commensurate time-delay
operators. The constant parameters η1, η2 (composition of the mass, tensions
and densities) of the system must be declared in the algebra Alg:

> Alg:=DefineOreAlgebra(diff=[D,t], dual_shift=[sigma1,y1],
> dual_shift=[sigma2,y2], polynom=[t,y1,y2], comm=[eta1,eta2]):

> evalm([seq([u[i](t)=ApplyMatrix(T,[seq(x[j](t),j=1..6),
> seq(u[j](t),j=1..3)],Alg)[6+i,1]],i=1..3)]);

[

u1(t) =
K2 (Kc + Kp) D(x1)(t + 1)

K1 %1
+

Te (Kc + Kp) (D(2))(x1)(t + 1)
K1 %1

− K2 Kc D(x3)(t + 1)
K1 %1

− Te Kc (D(2))(x3)(t + 1)
K1 %1

− K2 Kc D(x5)(t + 1)
K1 %1

− Te Kc (D(2))(x5)(t + 1)
K1 %1

]

[

u2(t)=− K2 Kc D(x1)(t + 1)
K1 %1

− Te Kc (D(2))(x1)(t + 1)
K1 %1

+
K2 (Kc + Kp)D(x3)(t + 1)

K1 %1

+
Te (Kc + Kp) (D(2))(x3)(t + 1)

K1 %1
− K2 Kc D(x5)(t + 1)

K1 %1
− Te Kc (D(2))(x5)(t + 1)

K1 %1

]

[

u3(t) = −K2 Kc D(x1)(t + 1)
K1 %1

− Te Kc (D(2))(x1)(t + 1)
K1 %1

− K2 Kc D(x3)(t + 1)
K1 %1

− Te Kc (D(2))(x3)(t + 1)
K1 %1

+
K2 (Kc + Kp) D(x5)(t + 1)

K1 %1

+
Te (Kc + Kp) (D(2))(x5)(t + 1)

K1 %1

]

%1 := Kp Kc 2 Kc2 + Kp2

OreModules: A Symbolic Package 259

We only study the case of position control on both boundaries [27]. For the case
of a single control, we refer to [8]. We enter the system matrix R:

> R:=evalm([[1,1,-1,-1,0,0],[D+eta1,D-eta1,-eta2,eta2,0,0],
> [sigma1^2,1,0,0,-sigma1,0],[0,0,1,sigma2^2,0,-sigma2]]);

R :=

⎡

⎢
⎢
⎣

1 1 −1 −1 0 0
D + η1 D − η1 −η2 η2 0 0

σ12 1 0 0 −σ1 0
0 0 1 σ22 0 −σ2

⎤

⎥
⎥
⎦

We use an involution θ of Alg in order to obtain R adj = θ(R):

> R_adj:=Involution(R, Alg):

We check controllability of the system by applying Exti to R adj:

> st:=time(): Ext1:=Exti(R_adj, Alg, 1): time()-st; Ext1[1];

1.191
⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

Since Ext1[1] is the identity matrix, then we obtain that the Alg-module
M = Alg1×6/(Alg1×4 R) associated with the system is torsion-free. This means
that the vibrating string with interior mass is controllable and, equivalently,
parametrizable. A parametrization of the system is then given by Ext1[3]:

> Ext1[3];
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 σ2 η2 , −σ2 σ1 η2 , −η2 σ1 + σ1 η1 − σ1 D
0 , σ2 σ1 η2 , η2 σ1 + σ1 D + σ1 η1

σ2 D + σ2 η2 + σ2 η1 , −σ2 σ1 η1 , 0
−σ2 D + σ2 η2 − σ2 η1 , σ2 σ1 η1 , 2 σ1 η1

2 σ2 σ1 η2 , σ2 η2 − σ2 η2 σ12 , −η2 σ12 + η2 + η1 σ12 − σ12 D + D + η1
D − Dσ22 + η2 σ22 − η1 σ22 + η2 + η1 , −σ1 η1 + σ1 η1 σ22 , 2 σ2 σ1 η1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Therefore, the system can be parametrized by means of three free functions. We
now want to check whether this parametrization is a minimal one [11, 33]. In
order to do that, let us compute the rank of the Alg-module M .

> OreRank(R, Alg);

2

Hence, we know that there exist some parametrizations of the system with only
two arbitrary functions [11, 33]. We find some minimal parametrizations:

> P:=MinimalParametrizations(R, Alg);

260 F. Chyzak, A. Quadrat, and D. Robertz

P :=

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

2σ2 η2 −σ2σ1 η2
0 σ2σ1 η2

σ2D + σ2 η2 + σ2 η1 −σ2σ1 η1
−σ2D + σ2 η2 − σ2 η1 σ2σ1 η1

2σ2σ1 η2 σ2 η2 − σ2 η2 σ12

D − Dσ22 + η2σ22 − η1σ22 + η2 + η1 −σ1 η1 + σ1 η1σ22

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

,

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

2σ2 η2 , −η2 σ1 + σ1 η1 − σ1D
0 , η2σ1 + σ1D + σ1 η1
σ2D + σ2 η2 + σ2 η1 , 0

−σ2D + σ2 η2 − σ2 η1 , 2σ1 η1
2σ2σ1 η2 , −η2σ12 + η2 + η1σ12 − σ12 D + D + η1
D − Dσ22 + η2σ22 − η1σ22 + η2 + η1 , 2σ2σ1 η1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

,

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

−σ2σ1 η2 −η2σ1 + σ1 η1 − σ1D
σ2σ1 η2 η2σ1 + σ1D + σ1 η1

−σ2σ1 η1 0
σ2σ1 η1 2σ1 η1

σ2 η2 − σ2 η2 σ12 −η2σ12 + η2 + η1 σ12 − σ12 D + D + η1
−σ1 η1 + σ1 η1σ22 2σ2σ1 η1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎦

Since R has full row rank (this fact can be checked by computing
SyzygyModule(R, Alg)), we know that M is projective, and thus, free if and
only if R admits a right-inverse (see [11, 33] for more details).

> RightInverse(R, Alg);

[]

Hence, M is not projective, which implies that M is not free, i.e., the vibrating
string with interior mass is not a flat system [27]. Another way to verify this
fact is to compute ext2Alg(Ñ , Alg) and ext3Alg(Ñ , Alg) of the Alg-module Ñ =
Alg1×4/(Alg1×6 R adj):

> Exti(R_adj, Alg, 2);
⎡

⎣

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

⎡

⎣
σ2 η2 0 σ1 η1

η2 + η1 + D −σ1 η1 0
0 σ2 η2 η2 + η1 + D

⎤

⎦ ,

⎡

⎣
−σ1 η1

−D − η2 − η1
σ2 η2

⎤

⎦

⎤

⎦

> Exti(R_adj, Alg, 3);
⎡

⎣

⎡

⎣
σ2
σ1

η2 + η1 + D

⎤

⎦ ,
[
1
]
, SURJ(1)

⎤

⎦

We see that ext2Alg(Ñ , Alg) equals zero but ext3Alg(Ñ , Alg) is different from zero.
Therefore, M is a reflexive but not a projective Alg-module. Indeed, we recall
that M is reflexive (resp., projective) iff exti

Alg(Ñ , Alg) equals zero for i = 1, 2
(resp., i = 1, 2, 3). Let us find a polynomial π in the variable σ1 such that the
system is π-free [15, 26, 27].

OreModules: A Symbolic Package 261

> PiPolynomial(R, Alg, [sigma1]);

[σ1]

Let us find a polynomial π in the variable σ2 such that the system is π-free.

> PiPolynomial(R, Alg, [sigma2]);

[σ2]

Hence, if we invert σ1 or σ2, i.e., we allow ourselves to have a time-advance
operator, then, by definition of the π-polynomial, the system becomes flat. A
flat output for this system can be computed from a left-inverse of the minimal
parametrization P , where we allow σ1 or σ2 to appear in the denominators.

We compute the annihilator of the Alg-module M1 = Alg1×2/(Alg1×6 P [1])
of the minimal parametrization P [1].

> Ann1:=AnnExti(linalg[transpose](P[1]), Alg, 1);

Ann1 := [σ2]

Let us compute a left-inverse of the minimal parametrization P [1] by allowing
σ2 to appear in the denominators.

> L1:=LocalLeftInverse(P[1], Ann1, Alg);

L1 :=

⎡

⎢
⎢
⎣

0 0
1

2 σ2 η2
1

2 σ2 η2
0 0

0
σ1

σ2 η2
− σ1

σ2 η2
− σ1

σ2 η2
1

σ2 η2
0

⎤

⎥
⎥
⎦

We easily check that L1 is a left-inverse of P [1].

> Mult(L1, P[1], Alg);
[

1 0
0 1

]

If we use σ−1
2 , then we obtain that a flat output of the system is defined by

(ξ1, ξ2)T = L1 (φ1, ψ1, φ2, ψ2, u, v)T ,

where φ1, ψ1, φ2, ψ2, u, v are the system variables [27]. Let us point out that any
multiplication of (ξ1, ξ2)T by a unimodular matrix over the commutative ring
Q(η1, η2)[d

dt , σ1, σ2, σ−1
2] gives a new flat output of the system. For instance,we

obtain the following flat output of the system [27]:

ξ′1 = 2 η2 σ2 ξ1 = φ2 + ψ2, ξ′2 = η2 σ2(ξ2 + 2 σ1 ξ1) = σ1 ψ1 + u.

We can repeat the same procedure for P [2] and P [3].

> Ann2:=AnnExti(linalg[transpose](P[2]), Alg, 1);
> Ann3:=AnnExti(linalg[transpose](P[3]), Alg, 1);

Ann2 := [η2 + η1 + D]

262 F. Chyzak, A. Quadrat, and D. Robertz

Ann3 := [σ1]

The annihilator of P [3] only contains σ1. Let us compute a flat output by allowing
the time-advance operator σ−1

1 to appear in the basis.

> L3:=LocalLeftInverse(P[3], Ann3, Alg);

L3 :=

⎡

⎢
⎢
⎣

0 0 0
σ2

σ1 η1
0 − 1

σ1 η1

0 0
1

2 σ1 η1
1

2 σ1 η1
0 0

⎤

⎥
⎥
⎦

L3 is a left-inverse of P [3] over Q(η1, η2)[d
dt , σ1, σ2, σ

−1
1] as we can check:

> Mult(L3, P[3], Alg);
[

1 0
0 1

]

Therefore, if we use the time-advance operator σ−1
1 , we obtain the flat output

of the system (ξ1, ξ2)T = L3 (φ1, ψ1, φ2, ψ2, u, v)T . Using trivial linear com-
binations of ξ1 and ξ2 over the ring Q(η1, η2)[d

dt , σ1, σ2, σ
−1
1], we then obtain

that (ξ′1 = σ2 ψ2 − v, ξ′2 = φ2 + ψ2) is another flat output of the system over
Q(η1, η2)[d

dt , σ1, σ2, σ
−1
1].

We refer to [27] for applications of the previous results to the motion planning
and tracking problems [26]. See also [8] for more details and examples.

8 Conclusion

We hope to have convinced the reader of the main interest of the package Ore-

Modules for the study of the structural properties of multidimensional linear
systems over Ore algebras. To our knowledge, OreModules is the first imple-
mentation of homological methods with regard to applications in control theory.
We hope that OreModules will become in the future a platform for the imple-
mentation of different algorithms obtained in the literature of multidimensional
linear systems (see e.g., [1, 4, 13, 16, 18, 19, 20, 31, 32, 33, 34, 35, 37, 40, 43, 47,
49] and the references therein).

References

1. Assan J. (1999) Analyse et synthèse de l’approche géométrique pour les systèmes
linéaires sur un anneau. PhD thesis. Ecole Centrale de Nantes, France

2. Becker T., Weispfenning V. (1993) Gröbner Bases. A Computational Approach to
Commutative Algebra. Springer, Berlin Heidelberg New York

3. Bender C. M., Dunne G. V., Mead L. R. (2000) Underdetermined systems of partial
differential equations. J. Mathematical Physics 41:6388–6398

4. Bose N. K. (1985) Multidimensional Systems Theory: Progress, Directions, and
Open Problems. D. Reidel Publishing Company, Dordrecht

OreModules: A Symbolic Package 263

5. Chyzak F. (1998) Fonctions holonomes en calcul formel. PhD thesis, Ecole Poly-
technique, France

6. Chyzak F., Mgfun Project. http://algo.inria.fr/chyzak/mgfun.html
7. Chyzak F., Salvy B. (1998) Non-commutative elimination in Ore algebras proves

multivariate identities. J. Symbolic Computation 26:187–227
8. Chyza F., Quadrat, A., Robertz D. (2002) OreModules project.

http://wwwb.math.rwth-aachen.de/OreModules
9. Chyzak F., Quadrat A., Robertz D. (2003) Linear control systems over Ore alge-

bras: Effective algorithms for the computation of parametrizations. In Proc. IFAC
Workshop on Time-Delay Systems TDS03, INRIA Rocquencourt, France

10. Chyzak F., Quadrat A., Robertz D. (2004) OreModules: A symbolic package for the
study of multidimensional linear systems. In Proc. Symposium MTNS04, Leuven,
Belgium

11. Chyzak F., Quadrat A., Robertz D. (2005) Effective algorithms for parametriz-
ing linear control systems over Ore algebras. Applicable Algebra in Engineering,
Communication and Computing (AAECC) 16:319–376

12. Conte G., Perdon A. M. (2000) Systems over rings: geometric theory and applica-
tions. Annual Reviews in Control 24:113–124

13. Cotroneo T. (2001) Algorithms in Behavioral Systems Theory. PhD thesis. Uni-
versity of Groningen, The Netherlands

14. Fliess M. (1991) Controllability revisited. In A. C. Antoulas ed., Mathematical
System Theory. The influence of R. E. Kalman, Springer, Berlin Heidelberg New
York

15. Fliess M., Mounier H. (1998) Controllability and observability of linear delay sys-
tems: an algebraic approach. ESAIM COCV 3:301–314.

16. Galkowski K., Wood J. eds. (2001) Multidimensional Signals, Circuits and Systems,
Taylor and Francis, London

17. Greuel G.-M., Pfister G. (2002) A Singular Introduction to Commutative Algebra.
Springer, Berlin Heidelberg New York

18. Habets L. (1994) Algebraic and computational aspects of time-delay systems. PhD
thesis, University of Eindhoven, The Netherlands

19. Habets L. (1996) Computational aspects of systems over rings − reactability and
stabilizability. CWI Quarterly 9:85–95.

20. Kailath T. (1980) Linear Systems. Prentice-Hall, Upper Saddle River
21. Kalman R. E., Falb P. L., Arbib M. A. (1969) Topics in Mathematical Systems

Theory, McGraw-Hill, New York
22. Kučera V. (1979) Discrete Linear Control: The Polynomial Equation Approach,

Wiley, London
23. Li H. (2002) Non-commutative Gröbner Bases and Filtered-Graded Transfer. Lec-

ture Notes in Mathematics 1795, Springer, Berlin Heidelberg New York
24. Malgrange B. (1963) Systèmes à coefficients constants. Séminaire Bourbaki

1962/63, 246:1–11
25. McConnell J. C., Robson J. C. (2000) Noncommutative Noetherian Rings. Amer-

ican Mathematical Society, Providence
26. Mounier H. (1995) Propriétés structurelles des systèmes linéaires à retards: aspects

théoriques et pratiques. PhD Thesis, University of Orsay, France
27. Mounier H., Rudolph J., Fliess M., Rouchon P. (1998) Tracking control of a vibrat-

ing string with an interior mass viewed as delay system. ESAIM COCV 3:315–321
28. Oberst U. (1990) Multidimensional constant linear systems. Acta Appl. Math.

20:1–175

264 F. Chyzak, A. Quadrat, and D. Robertz

29. Pillai H. K., Shankar S. (1998) A behavioral approach to control of distributed
systems. SIAM J. Control and Optimization 37:388–408

30. Polderman J. W., Willems J. C. (1998) Introduction to Mathematical Systems
Theory. A Behavioral Approach. TAM 26, Springer, Berlin Heidelberg New York

31. Pommaret J.-F. (2001) Partial Differential Control Theory. Kluwer, Dordrecht
32. Pommaret J.-F., Quadrat A. (1998) Generalized Bezout Identity. Applicable Al-

gebra in Engineering, Communication and Computing 9:91–116
33. Pommaret, J.-F., Quadrat, A. (1999) Localization and parametrization of linear

multidimensional control systems. Systems & Control Letters 37:247–260
34. Pommaret J.-F., Quadrat A. (1999) Algebraic analysis of linear multidimensional

control systems. IMA J. Control and Optimization 16:275–297
35. Pommaret J.-F., Quadrat A. (2000) Equivalences of linear control systems. In Proc.

Symposium MTNS 2000, Perpignan, France
36. Pommaret J.-F., Quadrat A. (2003) A functorial approach to the behaviour of

multidimensional control systems. Applied Mathematics and Computer Science
13:7–13

37. Pommaret J.-F., Quadrat A. (2004) A differential operator approach to multidi-
mensional optimal control. International J. Control 77:821–836

38. Quadrat A. (1999) Analyse algébrique des systèmes de contrôle linéaires multidi-
mensionnels. PhD thesis, Ecole Nationale des Ponts et Chaussées, France

39. Quadrat A. (2005) An introduction to the algebraic theory of linear systems of
partial differential equations, in preparation.

40. Quadrat A., Robertz D. (2005) Parametrizing all solutions of uncontrollable mul-
tidimensional linear systems. In Proc. 16th IFAC World Congress, Prague, Czech
Republic

41. Quadrat A., Robertz D. (2005) On the blowing-up of stably-free behaviours. In
Proc. CDC-ECC05, Sevilla, Spain

42. Quadrat A., Robertz D. (2005) Constructive computation of bases of free modules
over the Weyl algebras. INRIA report 5181 (www.inria.fr/rrrt/rr-5181.html),
submitted for publication.

43. Sontag E. (1976) Linear systems over commutative rings: a survey. Ricerche di
Automatica 7:1–34

44. Rosenbrock H. H. (1970) State Space and Multivariable Theory. Wiley, London
45. Rotman J. J. (1979) An Introduction to Homological Algebra. Academic Press,

New York
46. Wonham M. (1985) Linear Multivariable Control: a Geometric Approach. Springer,

Berlin Heidelberg New York
47. Wood J. (2000) Modules and behaviours in nD systems theory. Multidimensional

Systems and Signal Processing 11:11–48
48. Youla D. C., Gnavi G. (1979) Notes on n-dimensional system theory. IEEE Trans-

actions on Circuits & Systems 26:259–294
49. Zerz E. (2000) Topics in Multidimensional Linear Systems Theory. Lecture Notes

in Control and Information Sciences 256, Springer, Berlin Heidelberg New York

	Introduction
	Multidimensional Linear Systems over Ore Algebras
	A Module-Theoretical Approach to Linear Systems
	Homological Algebra
	Computation of extDi(N"0365N, D)
	The Package OreModules
	Worked Examples Using OreModules
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

