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Abstract

A well-known result due to J.T. Stafford asserts that a stably free left module M over the Weyl algebras
D = An(k) or Bn(k) – where k is a field of characteristic 0 – with rankD(M) ≥ 2 is free. The purpose
of this paper is to present a new constructive proof of this result as well as an effective algorithm for the
computation of bases of M . This algorithm, based on the new constructive proofs [Hillebrand, A., Schmale,
W., 2001. Towards an effective version of a theorem of Stafford. J. Symbolic Comput. 32, 699–716; Leykin,
A., 2004. Algorithmic proofs of two theorems of Stafford. J. Symbolic Comput. 38, 1535–1550] of J.T.
Stafford’s result on the number of generators of left ideals of D, performs Gaussian elimination on the
formal adjoint of the presentation matrix of M . We show that J.T. Stafford’s result is a particular case of a
more general one asserting that a stably free left D-module M with rankD(M) ≥ sr(D) is free, where sr(D)
denotes the stable rank of a ring D. This result is constructive if the stability of unimodular vectors with
entries in D can be tested. Finally, an algorithm which computes the left projective dimension of a general
left D-module M defined by means of a finite free resolution is presented. It allows us to check whether or
not the left D-module M is stably free.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A famous result in non-commutative algebra, due to J.T. Stafford, states that any left ideal
of the Weyl algebras D = An(k) or Bn(k) of partial differential operators in ∂1 = ∂/∂x1, . . . ,
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∂n = ∂/∂xn with coefficients in k[x1, . . . , xn] or k(x1, . . . , xn), where k is a field of characteristic
0, is generated by two elements of D. See Stafford (1978) for more details. Two constructive
proofs of this result recently appeared in the literature of symbolic computation (Hillebrand and
Schmale, 2001; Leykin, 2004). A well-known consequence of J.T. Stafford’s result is that every
stably free left D-module M (cf. Definition 2) with rankD(M) ≥ 2 is free (Stafford, 1978).
As noticed in Gago-Vargas (2003), the recent results of Hillebrand and Schmale (2001), Leykin
(2004) now allow us to pay more attention to constructive versions of this last result, i.e., to the
computation of bases of stably free left D-modules which are not isomorphic to left ideals of
D. In particular, following the non-constructive proof given by J.T. Stafford, an algorithm has
been obtained in Gago-Vargas (2003). However, we feel that this algorithm is rather involved
and the purpose of this paper is to give a simple algorithm which is essentially nothing but the
Gaussian elimination performed on the formal adjoint of a minimal presentation matrix of the
stably free left D-module M . By minimal presentation matrix of a stably free left D-module M ,
we mean a matrix R ∈ Dq×p which admits a right-inverse S ∈ D p×q , i.e. R S = Iq , and satisfies
M ∼= D1×p/(D1×q R), where D1×p denotes the left D-module formed by the row vectors of
length p with entries in D. Simplifying a result of Gago-Vargas (2003), we give an algorithm
which computes such a minimal presentation matrix of a left D-module M defined by means
of a finite free resolution. In particular, this algorithm allows us to compute the left projective
dimension of any left D-module M defined by a finite free resolution. Implementations of all
these algorithms have recently been realized in the package STAFFORD (Quadrat and Robertz,
2005–2007) based on the OREMODULES library (Chyzak et al., 2007). See also Chyzak et al.
(2005) for more details and examples. Hence, using the fact that we can also constructively check
whether or not a stably free ideal is principal, i.e., free, this implementation allows us to compute
bases of free left D-modules.

More generally, it is known that a stably free left module M over a ring D with rankD(M) ≥
sr(D) is free, where sr(D) denotes the stable rank of D (see Definition 33). We present a
general algorithm which computes bases of free left D-modules. This algorithm was inspired by a
result of Lombardi (2005) obtained for commutative rings. If the stability of unimodular vectors
with entries in D (cf. Definition 33) can be effectively checked, then the algorithm becomes
constructive. We note that J.T. Stafford’s result on the number of generators of left ideals of the
Weyl algebras (Stafford, 1978) shows that sr(An(k)) = 2 and sr(Bn(k)) = 2, where k is a field
of characteristic 0.

We have recently given in Chyzak et al. (2005) some constructive algorithms which check
whether or not finitely presented left modules over some classes of Ore algebras have some
torsion elements or are torsion-free, reflexive or projective (cf. Definition 2). These algorithms
have been implemented in OREMODULES (Chyzak et al., 2007). In systems theory, this previous
classification of modules allows us to check whether or not an underdetermined linear system
over an Ore algebra of functional operators is parametrizable, admits a parametrization which
is also parametrizable or admits a chain of n successive parametrizations. These results have
some applications in mathematical physics where it is interesting to know whether some field
equations derive from some potentials, and in control theory where this problem is also called the
image representation problem of behaviours (Chyzak et al., 2005; Polderman and Willems, 1998;
Pommaret, 2001; Pommaret and Quadrat, 1998, 2004; Wood, 2000; Zerz, 2006). However, apart
from some special situations, we were not able to give in Chyzak et al. (2005) and Pommaret and
Quadrat (1998, 1999a) constructive algorithms which check whether or not a finitely presented
left module over an Ore algebra is stably free or free. Hence, the results obtained in this
paper allow us to extend the previous classification of linear systems over Ore algebras in
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terms of the algebraic properties of the associated module. In particular, we shall illustrate the
interpretation of freeness and stably freeness in the system-theoretic language. The concept of a
flat linear system over an Ore algebra developed in the literature (Fliess et al., 1995; Mounier,
1995; Pommaret, 2001; Pommaret and Quadrat, 1998) corresponds to the fact that the module
associated with the system is free (Chyzak et al., 2005). A basis of the module then corresponds
to a so-called flat output of the system. Hence, the algorithms presented in this paper allow us to
compute flat outputs of some classes of multidimensional linear systems over Ore algebras.

The problem of recognizing whether or not an underdetermined (linear) system of partial
differential equations (PDEs) can be (injectively) parametrized by means of arbitrary functions
constitutes the so-called Monge problem, which was particularly studied by J. Hadamard and
E. Goursat. We refer the reader to Hadamard (1901), Goursat (1930), Zervos (1932) and Janet
(1971) for more historical details and for the main contributions of G. Darboux, D. Hilbert and
E. Cartan in the case of nonlinear systems of ordinary differential equations. Hence, combining
the results developed in this paper with the ones given in Chyzak et al. (2005) and Pommaret
and Quadrat (1998, 1999a) gives constructive solutions to the Monge problem for the case of
linear systems of PDEs with polynomial or rational coefficients. To finish, we quote the last
paragraph of E. Goursat’s introduction of his paper (Goursat, 1930): “Ces résultats sont encore
bien particuliers. J’espère cependant qu’ils pourront contribuer à appeler l’attention de quelques
jeunes mathématiciens sur un sujet difficile et bien peu étudié” (“These results are still particular.
However I hope they can contribute to drawing some young mathematicians’ attention to a
difficult subject which has not been thoroughly studied so far”). We hope that this paper will
contribute to attracting more attention to this challenging problem.

The plan of the paper is the following. In Section 2, we recall some useful notations,
definitions and results on the duality between systems and modules. In particular, we give general
characterizations of stably free and free modules which will be useful in the rest of the paper,
and their system-theoretic interpretations. In Section 3, we give an algorithm which computes the
left projective dimension of a left D-module. This algorithm is then used to compute a minimal
presentation matrix of a stably free module. Finally, the problem of the constructive computation
of bases of free modules is studied in Section 4 and a general algorithm is presented. We show
how this algorithm can be made effective using the recent results of Hillebrand and Schmale
(2001) and Leykin (2004).

2. A module-theoretic classification of linear systems

Let us consider a non-commutative ring D, a left D-module F and a q × p matrix R with
entries in D, i.e., R ∈ Dq×p. Then, we can define the system or behaviour (Oberst, 1990;
Polderman and Willems, 1998; Pommaret and Quadrat, 2003; Wood, 2000)

kerF (R.) = {η ∈ F p
| R η = 0}

which is naturally associated with the finitely presented left D-module (Rotman, 1979):

M = D1×p/(D1×q R).

Indeed, we recall that if we apply the contravariant left exact functor homD(·,F) to the following
finite presentation of M

D1×q .R
−→ D1×p π

−→ M −→ 0,
λ = (λ1, . . . , λq) 7−→ λ R

(1)
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namely, (1) is an exact sequence and π denotes the canonical projection onto M sending elements
of D1×p to their residue classes in M , we then obtain the exact sequence

Fq R.
←− F p

←− homD(M,F)←− 0,
R η ←− [ η = (η1, . . . , ηp)

T

where homD(M,F) denotes the abelian group of left D-morphisms from M to F . For
more details, see, e.g., Lam (1999) and Rotman (1979). This implies the following important
isomorphism of abelian groups (Malgrange, 1962):

kerF (R.) = {η ∈ F p
| R η = 0} ∼= homD(M,F). (2)

See Chyzak et al. (2005), Oberst (1990), Pommaret and Quadrat (2003), Wood (2000) and the
references therein for more details. In particular, (2) gives an intrinsic characterization of the
F-solutions of a linear system over D. It only depends on two objects:

(1) The finitely presented left D-module M representing the equations of the system.
(2) The left D-module F which is the functional space in which we seek the solutions.

If D is now a ring of functional operators (e.g., differential operators, time-delay operators,
difference operators), then the issue of understanding which functional space F is suitable for
a particular linear system has been studied for a long time in functional analysis and still is a
very active subject. It does not seem that constructive algebra and symbolic computation can
propose new methods for handling this functional analysis problem. However, they are useful for
classifying homD(M,F) by means of the algebraic properties of M . Indeed, a large classification
of the properties of modules is developed in homological algebra. See, e.g., Lam (1999) and
Rotman (1979). Before recalling a part of the standard classification, let us introduce the concept
of an Ore ring.

Definition 1 (McConnell and Robson, 2000). A ring D is said to be a left Ore ring if, for all
a1, a2 ∈ D \ {0}, there exist b1, b2 ∈ D \ {0} such that b1 a1 = b2 a2.

We now recall a few definitions. See, e.g., Lam (1999), McConnell and Robson (2000) and
Rotman (1979).

Definition 2. Let D be a domain which is a left Ore ring and M a finitely generated left D-
module. Then, we have:

(1) M is free if it is isomorphic to D1×r for a certain r ∈ Z≥0 = {0, 1, 2, . . .}.
(2) M is stably free if there exist r, s ∈ Z≥0 such that we have M ⊕ D1×s ∼= D1×r .
(3) M is projective if there exist a left D-module N and r ∈ Z≥0 such that

M ⊕ N ∼= D1×r .

(4) M is reflexive if the canonical map defined by

εM : M −→ homD(homD(M, D), D), εM (m)( f ) = f (m),

for all m ∈ M and for all f ∈ homD(M, D), is an isomorphism, where homD(M, D) denotes
the right D-module of all D-morphisms from M to D.

(5) M is torsion-free if the left submodule of M defined by

t (M) = {m ∈ M | ∃ 0 6= P ∈ D : P m = 0}

is the zero module. t (M) is called the torsion submodule of M and the elements of t (M) are
the torsion elements of M .

(6) M is torsion if t (M) = M , i.e., every element of M is a torsion element.
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Constructive algorithms which check whether or not a finitely presented left module M
over certain classes of Ore algebras (see Definition 4) is respectively torsion-free, reflexive
or projective were given in Chyzak et al. (2005) and Pommaret and Quadrat (1999a). These
algorithms have been implemented in the library OREMODULES (Chyzak et al., 2007).

With a little abuse of language, we say that a behaviour B = kerF (R.) is torsion-free
(resp., reflexive, projective, stably free, free) if the finitely presented left D-module M =

D1×p/(D1×q R) is torsion-free (resp., reflexive, projective, stably free, free).
Let us recall some important results concerning the notions given in Definition 2.

Theorem 3. (1) (Rotman, 1979) Let D be a domain which is a left Ore ring and M a finitely
generated left D-module. Then, we have the following implications among the above
concepts:

free⇒ stably free⇒ projective⇒ reflexive⇒ torsion-free.

(2) (McConnell and Robson, 2000; Rotman, 1979) If D is a left hereditary ring – namely, every
left ideal of D is a projective left D-module – then every finitely generated torsion-free left
D-module is projective.

(3) If D is a left principal ideal domain – namely, every left ideal of D is principal – then every
finitely generated torsion-free left D-module is free.

(4) (Rotman, 1979, Theorem 4.59) (Quillen–Suslin theorem) Every projective module over a
commutative polynomial ring with coefficients in a field is free.

See also Lam (1999). We refer the reader to Fabiańska and Quadrat (2007) for an
implementation of the Quillen–Suslin theorem and its applications to systems theory.

We define the concept of an Ore algebra which will play an important role.

Definition 4. (1) (McConnell and Robson, 2000) Let A be a domain with a unit 1 which is also
a k-algebra, where k is a field. The skew polynomial ring A[∂; σ, δ] is the non-commutative
ring consisting of all polynomials in ∂ with coefficients in A obeying the commutation rule

∀a ∈ A, ∂ a = σ(a) ∂ + δ(a), (3)

where σ is a k-algebra endomorphism of A, namely, σ : A→ A satisfies

∀a, b ∈ A, σ (1) = 1, σ (a + b) = σ(a)+ σ(b), σ (a b) = σ(a) σ (b),

and δ is a σ -derivation of A, namely, δ : A→ A satisfies

∀a, b ∈ A, δ(a + b) = δ(a)+ δ(b), δ(a b) = σ(a) δ(b)+ δ(a) b.

(2) (Chyzak and Salvy, 1998; McConnell and Robson, 2000) Let A = k[x1, . . . , xn] be a
commutative polynomial ring over a field k (if n = 0 then A = k). Then, the iterated skew
polynomial ring D = A[∂1; σ1, δ1] . . . [∂m; σm, δm] is called an Ore algebra if the σi ’s and
δ j ’s commute for 1 ≤ i, j ≤ m and satisfy the following conditions:

∀ j < i, σi (∂ j ) = ∂ j , δi (∂ j ) = 0.

We note that A[∂; idA, 0] is the commutative polynomial ring in ∂ with coefficients in A. Let
us give some important examples of Ore algebras and related algebras.

Example 5. (1) The Weyl algebra An(k) is the Ore algebra defined by

An(k) = k[x1, . . . , xn][∂1; σ1, δ1] . . . [∂n; σn, δn], σi = idk[x1,...,xn ], δi =
∂

∂xi
,
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i = 1, . . . , n, where k denotes a field. Equivalently, An(k) can be defined as the non-
commutative polynomial ring in the 2 n variables xi and ∂ j , 1 ≤ i, j ≤ n, with coefficients
in k, satisfying the following commutation relations:

xi x j = x j xi , ∂i ∂ j = ∂ j ∂i , ∂i x j = x j ∂i + δi j , 1 ≤ i, j ≤ n,

where δi j is defined by δi j = 1 if i = j and 0 otherwise.

In what follows, we shall use the notation A1(k) = k[t]
[

d
dt ; idk[t],

d
dt

]
. If k is a field

of characteristic 0, then we can prove that A1(k) is a left hereditary ring (McConnell and
Robson, 2000, Proposition 7.5.8).

By extension, we can define the k-algebra

Bn(k) = k(x1, . . . , xn)[∂1; σ1, δ1] . . . [∂n; σn, δn]

of differential operators with rational coefficients, where σi and δi are defined as previously.
B1(k) is a left principal ideal domain (McConnell and Robson, 2000, Theorem 1.3.9 (ii)).

(2) The Ore algebra of differential time-delay operators with polynomial coefficients is defined

by A1(k)[∂2; σ2, δ2], where δ2 = 0 and σ2(a(t)) = a(t−1) for all a ∈ k[t] and σ2

(
d
dt

)
=

d
dt .

Similarly, we can define the k-algebra B1(k)[∂2; σ2, δ2] with the same σ2 and δ2.
(3) The Ore algebra of shift operators with polynomial coefficients is defined by

k[x1, . . . , xn][∂1; σ1, δ1] . . . [∂n; σn, δn], δi = 0, i = 1, . . . , n,

and, ∀a ∈ k[x1, . . . , xn], σi (a(x1, . . . , xn)) = a(x1, . . . , xi−1, xi + 1, xi+1, . . . , xn).
Similarly, we can define the k-algebra k(x1, . . . , xn)[∂1; σ1, δ1] . . . [∂n; σn, δn] with the

same σi and δi as were defined before.

See Chyzak and Salvy (1998), Levandovskyy (2005) and the references therein for other
algebras of functional operators.

Remark 6. Let k be a field, A = k[x1, . . . , xn] the commutative polynomial ring and D =
A[∂1; σ1, δ1] . . . [∂m; σm, δm] an Ore algebra. Then

B = {x i1
1 · · · x in

n ∂
j1

1 · · · ∂
jm

m | (i1, . . . , in) ∈ (Z≥0)
n, ( j1, . . . , jm) ∈ (Z≥0)

m
} (4)

is a k-vector space basis of D.

The next proposition allows us to effectively work in certain classes of Ore algebras.

Proposition 7 (Kredel, 1993; Chyzak and Salvy, 1998). Let k be a computable field (e.g., k =
Q, Fp), A = k[x1, . . . , xn] the polynomial ring with n indeterminates over the field k and
A[∂1; σ1, δ1] . . . [∂m; σm, δm] an Ore algebra satisfying the conditions

σi (x j ) = ai j x j + bi j , δi (x j ) = ci j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, (5)

for certain ai j ∈ k \ {0}, bi j ∈ k, ci j ∈ A. Let ≺ be an admissible term order, i.e., a total order
on the set B of terms given in (4) with 1 as least element and such that tu ≺ tv for all t ∈ B
whenever u ≺ v for u, v ∈ B. If the ≺-greatest term u in each non-zero ci j satisfies u ≺ x j∂i ,
then a non-commutative version of Buchberger’s algorithm terminates for this admissible term
order and its result is a Gröbner basis with respect to this order.
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See also Levandovskyy (2005) and the references therein for more results. For more historical
details concerning Buchberger’s algorithm, we refer the reader to Buchberger (2006). See also
Janet (1929) for the development of Janet bases in the study of PDEs.

Proposition 7 holds for the Ore algebras defined in Example 5. Moreover, we can prove that
the Ore algebras satisfying the hypotheses of Proposition 7 are left/right noetherian domains,
namely, rings over which every left/right ideal is finitely generated as a left/right module. In
particular, this condition implies that D is a left/right Ore domain and has invariant basis number
(IBN), namely, the property that two bases of a finitely generated free left/right D-module F have
the same cardinality (Lam, 1999; McConnell and Robson, 2000). We call this cardinality the rank
of the free left/right D-module F and denote it by rankD(F).

We recall the concept of an involution (see, e.g., Lam (1999)).

Definition 8. (1) An involution of D is a k-linear map θ : D −→ D satisfying:
(a) ∀P1, P2 ∈ D: θ(P1 P2) = θ(P2) θ(P1).
(b) θ ◦ θ = idD .

(2) If R ∈ Dq×p, then we define θ(R) = (θ(Ri j ))
T
∈ D p×q .

Let us give some involutions of the Ore algebras defined in Example 5.

Example 9. (1) If D is a commutative k-algebra, then θ = idD is an involution.
(2) If D = An(k) or Bn(k), then we can define the following involution:

θ(∂i ) = −∂i , θ(xi ) = xi , i = 1, . . . , n, ∀a ∈ k, θ(a) = a.

(3) If D is the Ore algebra of differential time-delay operators defined in (2) of Example 5, then
an involution θ of D is defined by

θ

(
d
dt

)
=

d
dt
, θ(∂2) = ∂2, θ(t) = −t, ∀a ∈ k, θ(a) = a.

(4) If D is the Ore algebra of shift operators defined in (3) of Example 5, then an involution θ of
D is defined by

θ(∂i ) = ∂i , θ(xi ) = −xi , i = 1, . . . , n, ∀a ∈ k, θ(a) = a.

See Chyzak et al. (2005), Levandovskyy (2005) for more details. If D = An(k) or Bn(k),
θ is the involution defined in (2) of Example 9 and R ∈ Dq×p, then θ(R) ∈ D p×q is usually
called the formal adjoint of R (see Pommaret and Quadrat (1998)). In what follows, when the
involution θ of D is clearly defined, we shall also denote θ(R) by R̃.

We are now in position to state some interesting results.

Theorem 10 (Chyzak et al., 2005; Pommaret and Quadrat, 1999a). Let D be an Ore algebra
which satisfies the hypotheses of Proposition 7 and admits an involution θ . Let us suppose that
the global dimension n = gld(D) of D is finite (see Section 3), M = D1×p/(D1×q R) the left D-
module finitely presented by R and Ñ = D1×q/(D1×p θ(R)) the left D-module finitely presented
by θ(R). Then, we have:

(1) t (M) ∼= ext1D(Ñ , D).
(2) M is torsion-free iff ext1D(Ñ , D) = 0.
(3) M is reflexive iff extiD(Ñ , D) = 0 for i = 1, 2.
(4) M is projective iff extiD(Ñ , D) = 0 for i = 1, . . . , n.
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We refer the reader to Rotman (1979) for the definition of the extension modules extiD(Ñ , D).
Algorithms for computing extiD(Ñ , D) are given in Chyzak et al. (2005) and they have been
implemented in OREMODULES (Chyzak et al., 2007). See also Levandovskyy (2005). Hence,
we can constructively check whether or not the left D-module M admits torsion elements or is
torsion-free, reflexive or projective. See Chyzak et al. (2005, 2007) for explicit examples coming
from mathematical physics and control theory.

Let us introduce a few more definitions (see, e.g., Lam (1999), Rotman (1979)).

Definition 11. (1) A left D-module F is called injective if the left exact contravariant functor
homD(· ,F) transforms exact sequences of left D-modules into exact sequences of abelian
groups.

(2) A left D-module F is called cogenerator if homD(M,F) = 0 implies that M = 0.

We can prove that an injective cogenerator left D-module F exists for every ring D (Rotman,
1979). The reader only needs to keep in mind the following explicit examples.

Example 12. (1) If Ω is an open convex subset of Rn , then the space C∞(Ω) (resp., D′(Ω))
of smooth functions (resp., distributions) on Ω is an injective cogenerator module over the
ring k[∂1; σ1, δ1] . . . [∂n; σn, δn] of differential operators with coefficients in k = R or C
(Malgrange, 1962; Oberst, 1990).

(2) (Zerz, 2006) If F denotes the set of all functions that are smooth on R except for a finite
number of points, then F is an injective cogenerator left B1(R)-module.

We have the following interpretation of the classification of modules given in Definition 2 in
terms of parametrizability of the behaviour kerF (R.) = {η ∈ F p

| R η = 0}.

Theorem 13 (Chyzak et al., 2005; Pommaret and Quadrat, 1999a). Let D be an Ore algebra
which satisfies the hypotheses of Theorem 10 and F an injective cogenerator left D-module.
Let us set q1 = p. Then, we have the following results:

(1) There exists Q1 ∈ Dq1×q2 such that we have the exact sequence

Fq R.
←− Fq1

Q1.
←−− Fq2 ,

iff the left D-module M = D1×p/(D1×q R) is torsion-free.
(2) There exist Q1 ∈ Dq1×q2 and Q2 ∈ Dq2×q3 such that we have the exact sequence

Fq R.
←− Fq1

Q1.
←−− Fq2

Q2.
←−− Fq3 ,

iff the left D-module M = D1×p/(D1×q R) is reflexive.
(3) There exists a chain of n successive parametrizations of kerF (R.), i.e., there exist Qi ∈

Dqi×qi+1 , for i = 1, . . . , n, such that we have the exact sequence

Fq R.
←− Fq1

Q1.
←−− Fq2

Q2.
←−− Fq3

Q3.
←−− · · ·

Qn−1.
←−−− Fqn

Qn .
←−− Fqn+1 , (6)

iff the left D-module M = D1×p/(D1×q R) is projective.

We note that the constructive verification of the vanishing of the extiD(Ñ , D) allows us to
explicitly compute the matrices Qi as shown in Chyzak et al. (2005), Pommaret and Quadrat
(1999a). Therefore, over a large class of algebras of functional operators, which are useful in
engineering sciences, the previous results give us a constructive way to compute parametrizations
of underdetermined linear systems (Chyzak et al., 2005; Pommaret and Quadrat, 1998).
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See Chyzak et al. (2007, 2005), Pommaret and Quadrat (1998, 1999b,a, 2003) and Quadrat and
Robertz (2005) for applications of these results in control theory and mathematical physics.

We point out that if F is any left D-module, then the exact sequences given in Theorem 13
will generally only be complexes, whereas they are exact if F is an injective left D-module
and M is respectively a torsion-free, reflexive or projective left D-module. For instance, if
F is not an injective left D-module but M is a torsion-free left D-module, then we have that
Q1 Fq2 ⊆ kerF (R.), i.e., we can generate a family of F-solutions of the system R η = 0, which
is sometimes enough for the applications in engineering sciences.

Finally, if M = D1×p/(D1×q R) is a projective left D-module, where D satisfies the
hypotheses of Theorem 13, then (6) is always an exact sequence without any assumption about
the left D-module F . This result follows from the fact that the left exact contravariant functor
homD(· ,F) transforms long split exact sequences of left D-modules into long split exact
sequences of abelian groups (see, e.g., Rotman (1979)).

The papers Chyzak et al. (2005) and Pommaret and Quadrat (1998, 1999a) have mainly left
open the question of recognizing whether a finitely presented left module M over an Ore algebra
is stably free or free. The purpose of this paper is to give some general answers to these questions.
In particular, an algorithm for the computation of bases of free modules over some algebras will
be presented in Section 4.

Let us state a useful result concerning the relationship between projective and stably free
modules first due to J.-P. Serre for commutative rings.

Proposition 14 (McConnell and Robson, 2000, Proposition 11.1.6). Let D be a non-commuta-
tive ring having invariant basis number. Then, a finitely generated projective left D-module M is
stably free iff M admits a finite free resolution.

We also have the following interesting proposition.

Proposition 15 (McConnell and Robson, 2000, Corollary 12.3.3). If

D = A[∂1; σ1, δ1] . . . [∂m; σm, δm]

is an Ore algebra where σi is an automorphism for i = 1, . . . ,m, then every finitely generated
projective left D-module is stably free.

In particular, Proposition 15 holds for the class of Ore algebras defined in Proposition 7.
Hence, the verification of the vanishing of extiD(Ñ , D), for i = 1, . . . , n, checks whether or not
a finitely presented left D-module M is stably free when D satisfies the hypotheses given in
Proposition 7.

We have the following straightforward lemma characterizing stably free modules.

Lemma 16 (McConnell and Robson, 2000, Proposition 11.1.7). A left D-module M is stably
free iff there exists a matrix R ∈ Dq×p which admits a right-inverse S ∈ D p×q , i.e., R S = Iq ,
and satisfies M ∼= D1×p/(D1×q R).

Let us now give a characterization of free modules in terms of matrices.

Lemma 17. Let D be a left noetherian domain and M = D1×p/(D1×q R) a finitely presented
left D-module. Then, M is a free left D-module iff there exist Q ∈ D p×m and T ∈ Dm×p

satisfying M ∼= D1×p Q and T Q = Im .
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Proof. ⇒ The fact that D is a left noetherian domain implies that the concept of rank of a free
left D-module is well defined. Hence, using the fact that M is a finitely generated module over a
left noetherian domain, there exists an isomorphism φ : M −→ D1×m , where rankD(M) = m.
Therefore, we get the exact sequence

D1×q .R
−→ D1×p .Q

−→ D1×m
−→ 0, (7)

where Q is the matrix which represents the D-morphism φ ◦ π with respect to the canonical
bases of D1×p and D1×m , and π : D1×p

−→ M denotes the canonical projection onto M (see
(1)). Finally, the exact sequence (7) ends with the free left D-module D1×m , and thus, it splits
(Rotman, 1979). Therefore, there exists T ∈ Dm×p such that T Q = Im .
⇐ If Q satisfies M ∼= D1×p Q and T Q = Im , then we obtain M ∼= D1×p Q = D1×m

as D1×p Q ⊆ D1×m and, for all λ ∈ D1×m , we have λ = (λ T ) Q ∈ D1×p Q, which shows
D1×m

⊆ D1×p Q. �

Let us give a system-theoretic interpretation of free modules. If M is a free left module over
a left noetherian domain D, then, by Lemma 17, we get the split exact sequence (7). If F is
any left D-module, then, by applying the left exact contravariant functor homD(· ,F) to (7) and
using the fact that homD(· ,F) transforms split exact sequences of left D-modules into split exact
sequences of abelian groups (Rotman, 1979), we obtain the split exact sequence

Fq R.
←− F p Q.

←− Fm
←− 0.

Therefore, for every η ∈ F p satisfying R η = 0, there exists a unique ξ ∈ Fm such that η = Q ξ .
In particular, ξ is then given by ξ = T η where T ∈ Dm×p is a left-inverse of Q, i.e., T Q = Im .
Hence, the system kerF (R.) admits the injective parametrization Q. : Fm

−→ F p. Such a
behaviour kerF (R.) is said to be flat in the control theory literature (Fliess et al., 1995) and ξ
is called a flat output of kerF (R.). The class of flat systems has been shown to have important
applications in control theory and, in particular, for the motion planning, tracking and optimal
control problems. We refer the reader to Chyzak et al. (2005), Fliess et al. (1995), Pommaret
and Quadrat (2004) and the references therein for more details and illustrations. An important
issue in the theory of flat systems is being able to recognize whether a system is flat and, if so,
computing a flat output. In a module-theoretic language, it means being able to check whether or
not a finitely presented left D-module M is free and, if so, computing a basis of M . The results
that we shall present in the following sections will give some constructive answers for some Ore
algebras.

Let us consider a stably free left D-module M and the corresponding stably free behaviour
homD(M,F). Using Lemma 16, we can always suppose that M is defined by a matrix R ∈ Dq×p

which admits a right-inverse S ∈ D p×q , i.e., M = D1×p/(D1×q R) and R S = Iq . The next
result gives a system-theoretic interpretation of stably free modules.

Proposition 18 (Quadrat and Robertz, 2005). Let R ∈ Dq×p be a matrix which admits a right-
inverse S ∈ D p×q , i.e., R S = Iq , the stably free left D-module M = D1×p/(D1×q R) and
π : D1×p

−→ M the canonical projection.

(1) If we define R′ = (R 0) ∈ Dq×(p+q), then we have the split exact sequence

0 // D1×q
.R′ //

D1×(p+q)
.S′

oo
.Q′ //

D1×p
.T ′

oo // 0 (8)
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with the following definitions for S′ ∈ D(p+q)×q , T ′ ∈ D p×(p+q), Q′ ∈ D(p+q)×p:

S′ =

(
S
−Iq

)
, T ′ = (Ip S), Q′ =

(
Ip − S R

R

)
. (9)

Equivalently, we have the following Bézout identities:(
R′

T ′

)
(S′ Q′) = Ip+q , (S′ Q′)

(
R′

T ′

)
= Ip+q .

(2) Let us consider the D-morphism κ : D1×(p+q)
−→ D1×(p+q)/(D1×q R′) defined by

κ((λ1, . . . , λp+q)) = (π(λ1, . . . , λp), λp+1, . . . , λp+q).

(a) We have M⊕D1×q ∼= D1×p, i.e., M⊕D1×q is a free left D-module with a basis defined
by {κ(T ′i )}1≤i≤p, where T ′i denotes the i th row of T ′.

(b) If F is a left D-module, then we have the following equality:

B′ =
{
(ηT ζ T )T ∈ F p+q

| R η = 0
}
= Q′ F p.

Moreover, for all ζ ∈ Fq and η ∈ F p such that R η = 0, there exists a unique ξ ∈ F p,
defined by ξ = η + S ζ , satisfying:{

η = (Ip − S R) ξ,
ζ = R ξ.

The free behaviour B′ ∼= B ⊕ Fq projects onto the stably free behaviour B under the
projection F p+q

−→ F p defined by (ηT ζ T )T 7−→ ηT .

We refer the reader to Quadrat and Robertz (2005) for different examples, applications of
Proposition 18 in control theory and relations with the blowing up of singularities.

3. Shortest free resolutions and projective dimensions

The purpose of this section is to give a constructive algorithm which computes the left
projective dimension lpdD(M) of a left D-module M defined by means of a finite free resolution.
In particular, this algorithm can be used for the Ore algebras D defined in Proposition 15, and
thus, for the class of Ore algebras defined in Proposition 7. This result simplifies one obtained
in Gago-Vargas (2003). Finally, we shall use this algorithm in order to test whether or not M is
stably free and to compute a shortest free resolution of M which will be of crucial importance in
Section 4 for the computation of bases of free left D-modules.

Let us start by recalling the concept of a projective and a free resolution.

Definition 19 (Rotman, 1979). A projective resolution of a left D-module M is an exact
sequence of the form

. . .
δm+1
−−→ Pm

δm
−→ Pm−1

δm−1
−−→ Pm−2

δm−2
−−→ · · ·

δ2
−→ P1

δ1
−→ P0

δ0
−→ M −→ 0, (10)

where the left D-modules Pi are projective. Moreover, if the Pi ’s are free, then (10) is called a
free resolution of M . Finally, if the Pi ’s are finitely generated free left D-modules and Pm+1 = 0
for a certain m ∈ Z≥0, then (10) is called a finite free resolution of M .

As a free left D-module is projective (see Theorem 3), we obtain that a free resolution is also
a projective one. The next proposition will play an important role in what follows.
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Proposition 20. Let us consider a projective resolution of a left D-module M:

0 −→ Pm
δm
−→ Pm−1

δm−1
−−→ Pm−2

δm−2
−−→ Pm−3

δm−3
−−→ · · ·

δ2
−→ P1

δ1
−→ P0

δ0
−→ M −→ 0. (11)

If m ≥ 2 and there exists a D-morphism σm : Pm−1 −→ Pm such that σm ◦ δm = idPm , then we
have the following projective resolution of M:

0→ Pm−1
τm−1
−−→ Pm−2 ⊕ Pm

τm−2
−−→ Pm−3

δm−3
−−→ Pm−4

δm−4
−−→ · · ·

δ1
−→ P0

δ0
−→ M → 0, (12)

with the notation

τm−1 =

(
δm−1
σm

)
, τm−2 = (δm−2 0).

Proof. Using the fact that (11) is a complex at Pm−2, i.e., δm−2 ◦ δm−1 = 0, we obtain
τm−2 ◦ τm−1 = δm−2 ◦ δm−1 = 0, which proves that im τm−1 ⊆ ker τm−2.

Let us now prove ker τm−2 ⊆ im τm−1. We consider (a b)T ∈ ker τm−2. Then, we have
a ∈ Pm−2, b ∈ Pm and τm−2((a b)T ) = δm−2(a) = 0. Since (11) is exact at Pm−2, there exists
c ∈ Pm−1 such that a = δm−1(c). Now, let us define

d = (idPm−1 − δm ◦ σm δm) (c b)T = c − (δm ◦ σm)(c)+ δm(b) ∈ Pm−1.

Then, the image of d under τm−1 is(
δm−1(c)− δm−1(δm(σm(c)))+ δm−1(δm(b))
σm(c)− ((σm ◦ δm) ◦ σm)(c)+ (σm ◦ δm)(b)

)
=

(
δm−1(c)

σm(c)− σm(c)+ b

)
=

(
a
b

)
,

which shows that (a b)T ∈ im τm−1, and thus, we have ker τm−2 ⊆ im τm−1, which proves the
exactness of (12) at Pm−2 ⊕ Pm .

Let us compute ker τm−1. If d ∈ ker τm−1, then we have τm−1(d) = 0, i.e., δm−1(d) = 0 and
σm(d) = 0. Now, let us consider the short exact sequence

0 −→ Pm
δm
−→ Pm−1

δm−1
−−→ im δm−1 −→ 0. (13)

Using the existence of σm : Pm−1 −→ Pm satisfying σm ◦ δm = idPm , we obtain that
(13) splits, i.e., there exists a D-morphism κm−1 : im δm−1 −→ Pm−1 such that the identity
idPm−1 = δm ◦ σm + κm−1 ◦ δm−1 holds. Hence, we have

d = δm(σm(d))+ κm−1(δm−1(d)) = 0,

which proves that τm−1 is an injective D-morphism.
Finally, we have im τm−2 = τm−2(Pm−2 ⊕ Pm) = δm−2(Pm−2) = im δm−2 = ker δm−3 as

(11) is exact at Pm−3. Hence, we obtain that (12) is exact at Pm−3, and thus, (12) is an exact
sequence. �

We note that Proposition 20 simplifies a result obtained in Gago-Vargas (2003) by, on the one
hand, explicating the morphisms in (11) and, on the other hand, giving a simple and direct proof.
We have the following straightforward corollary of Proposition 20.

Corollary 21. Let us consider a finite free resolution of a left D-module M:

0 −→ D1×pm
.Rm
−−→ D1×pm−1

.Rm−1
−−−→ · · ·

.R2
−−→ D1×p1

.R1
−−→ D1×p0

δ0
−→ M −→ 0. (14)
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(1) If m ≥ 3 and there exists Sm ∈ D pm−1×pm such that Rm Sm = Ipm , then we have the
following finite free resolution of M:

0→ D1×pm−1
.Tm−1
−−−→ D1×(pm−2+pm )

.Tm−2
−−−→ D1×pm−3

.Rm−3
−−−→ · · ·

.R1
−−→ D1×p0

δ0
−→ M → 0, (15)

where Tm−1 ∈ D pm−1×(pm−2+pm ), Tm−2 ∈ D(pm−2+pm )×pm−3 are defined by

Tm−1 = (Rm−1 Sm), Tm−2 =

(
Rm−2

0

)
.

(2) If m = 2 and there exists S2 ∈ D p1×p2 such that R2 S2 = Ip2 , then we have the following
finite presentation of M:

0 −→ D1×p1
.T1
−→ D1×(p0+p2)

τ0
−→ M −→ 0, (16)

with the notation

T1 = (R1 S2) ∈ D p1×(p0+p2), τ0 =

(
δ0
0

)
.

Remark 22. In case 2 of Corollary 21, we obtain the following isomorphism:

M = D1×p0/(D1×p1 R1) ∼= cokerD (.T1) = D1×(p0+p2)/(D1×p1 T1).

In terms of equations, the left D-module M is defined by R1 z = 0, whereas cokerD (.T1)

is defined by R1 y1 + S2 y2 = 0. Applying R2 on the left of the last system, we then have
(R2 R1) y1 + (R2 S2) y2 = 0 and using the facts that R2 R1 = 0 and R2 S2 = Ip2 , we finally
obtain y2 = 0, and thus, R1 y1 = 0. Hence, the D-morphisms φ and ψ defined by

φ : M −→ cokerD (.T1) ψ : cokerD (.T1) −→ M
zi 7−→ y1i , i = 1, . . . , p0, y1i 7−→ zi , i = 1, . . . , p0,

y2 j 7−→ 0, j = 1, . . . , p2,

satisfy φ ◦ ψ = id and ψ ◦ φ = id, i.e., φ is an isomorphism and φ−1
= ψ .

Let us illustrate Corollary 21.

Example 23. Let us consider the Weyl algebra D = A3(Q) and the matrix

R1 =

 1
2 x2 ∂1 x2 ∂2 + 1 x2 ∂3 +

1
2 ∂1

−
1
2 x2 ∂2 −

3
2 0 1

2 ∂2

−∂1 −
1
2 x2 ∂3 −∂2 −

1
2 ∂3

 ∈ D3×3,

which defines the system R1 ξ = 0 of the infinitesimal transformations of the Lie pseudogroup
defined by the contact transformations (see Example V.1.84 in Pommaret (2001)). Using
OREMODULES (Chyzak et al., 2007), we obtain the following free resolution of the left D-
module M = D1×3/(D1×3 R1):

0 −→ D
.R2
−−→ D1×3 .R1

−−→ D1×3 δ0
−→ M −→ 0,

where R2 = (∂2 − (∂1 + x2 ∂3) x2 ∂2 + 2) ∈ D1×3. We easily check that the matrix
S2 = (−x2 0 1)T is a right-inverse of R2, and thus, by Corollary 21, we obtain the following
finite free resolution of M :

0 −→ D1×3 .T1
−→ D1×4 τ0

−→ M −→ 0, (17)
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where the matrix T1 is defined by

T1 =

 1
2 x2 ∂1 x2 ∂2 + 1 x2 ∂3 +

1
2 ∂1 −x2

−
1
2 x2 ∂2 −

3
2 0 1

2 ∂2 0
−∂1 −

1
2 x2 ∂3 −∂2 −

1
2 ∂3 1

 .
We recall the definitions of the left projective dimension of a left D-module M and the left

global dimension of a ring D (McConnell and Robson, 2000; Rotman, 1979).

Definition 24. (1) Let M be a left D-module. Then, we call the left projective dimension of M ,
denoted by lpdD(M), the smallest n ∈ Z≥0 such that there exists a projective resolution of
M of the form

0 −→ Pn
δn
−→ Pn−1

δn−1
−−→ · · ·

δ2
−→ P1

δ1
−→ P0

δ0
−→ M −→ 0. (18)

If no such finite projective resolution exists, then we set lpdD(M) = +∞.
(2) The left global dimension of D, denoted by lgld(D), is the supremum of lpdD(M) over all

the left D-modules M .

The right projective dimension of a right D-module M and the right global dimension
rgld(D) of D are defined similarly. If D is a left and right noetherian ring, then we have
lgld(D) = rgld(D) (see, e.g., 7.1.11 of McConnell and Robson (2000)). Then, lgld(D) is called
global dimension of D and is denoted by gld(D).

Example 25. (1) (McConnell and Robson, 2000, Theorem 7.5.8 (iii)) If k is a field of
characteristic 0, then lgld(An(k)) = rgld(An(k)) = n.

(2) (McConnell and Robson, 2000, Theorem 7.4.4) If k is a field of characteristic 0, then we
have lgld(Bn(k)) = rgld(Bn(k)) = n.

(3) If k is a field of characteristic 0 and D denotes the Ore algebra of differential time-delay
operators defined in (2) of Example 5, then lgld(D) = rgld(D) = 2.

(4) If k is a field of characteristic 0 and D denotes the first (resp., second) Ore algebra of shift
operators defined in (3) of Example 5, then lgld(D) = rgld(D) = 2 n (resp., lgld(D) =
rgld(D) = n).

The following proposition will allow us to develop an algorithm which computes the
projective dimension of modules defined by means of finite free resolutions.

Proposition 26 (Lam, 1999, Proposition 5.11). Let M be a left D-module. If n ≥ 1, then we
have lpdD(M) = n iff there exists a finite projective resolution of M as (18) where δn is non-
split, namely, there exists no D-morphism τn : Pn−1 −→ Pn such that τn ◦ δn = idPn .

Following Gago-Vargas (2003), we obtain Algorithm 1 for the computation of the left
projective dimension of a left D-module M = D1×p0/(D1×p1 R1).

Algorithm 1. • Input: A left D-module M defined by a finite free resolution (14).
• Output: The left projective dimension lpdD(M) of M .

(1) Set j = m and T j = Rm .
(2) Check whether or not T j admits a right-inverse S j over D.

(a) If no right-inverse of T j exists, then lpdD(M) = j and stop the algorithm.
(b) If there exists a right-inverse S j of T j and
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(i) if j = 1, then we have lpdD(M) = 0 and stop the algorithm;
(ii) if j = 2, then compute (16);

(iii) if j ≥ 3, then compute (15).

(3) Return to step (2) with j ← j − 1.

Proof of correctness. Let (14) be the last projective resolution constructed using Algorithm 1.
We have m ≥ 1. If Rm does not admit a right-inverse, then Algorithm 1 returns m, which is
correct by Proposition 26. If Rm admits a right-inverse when the algorithm stops, then we have
m = 1 and the result is lpdD(M) = 0, which is correct because M is then presented by the
split short exact sequence (16) showing that M is a direct summand of a free left D-module, and
hence projective. �

Remark 27. We refer the reader to Chyzak et al. (2005) for the description of a constructive
algorithm which checks whether or not a matrix over certain classes of Ore algebras admits a
right-inverse and to Chyzak et al. (2007) for an implementation in OREMODULES. Algorithm 1
has recently been implemented in OREMODULES and it can be applied by means of the
command PROJECTIVEDIMENSION(RAT).

Example 28. We consider again Example 23. We check that the matrix T1 defined in (17) does
not admit a right-inverse. Hence, we obtain that lpdD(M) = 1.

We are now in position to define the concept of a shortest free resolution.

Definition 29. We call a shortest free resolution of M the last free resolution obtained using
Algorithm 1, namely, a finite free resolution of M of the form (14) which satisfies that either
m = 1 and R1 admits a right-inverse or the last matrix Rm of the free resolution does not admit
a right-inverse.

We recall an interesting result.

Proposition 30 (Chyzak et al., 2005, Proposition 8). If we denote by

D = A[∂1; σ1, δ1] . . . [∂m; σm, δm]

an Ore algebra where σi is an automorphism for i = 1, . . . ,m, then every finitely generated left
D-module admits a finite free resolution of length less than or equal to lgld(D)+ 1.

Proposition 30 shows that every finitely generated left module over the Ore algebra D defined
previously admits a finite free resolution. In particular, if we can compute Gröbner bases over D,
then we can obtain finite free resolutions (Chyzak et al., 2005). We then arrive at the following
important remark.

Remark 31. If D satisfies the hypothesis of Proposition 7, then, using the fact that any finite free
resolution (14) of a stably free left D-module M = D1×p0/(D1×p1 R1) splits (Rotman, 1979),
Algorithm 1 gives us a constructive way to compute R ∈ Dq×p which admits a right-inverse
S ∈ D p×q and satisfies M ∼= D1×p/(D1×q R) (see Lemma 16). Such a matrix R, which will
be called minimal presentation matrix of M , can be obtained in OREMODULES by using the
command SHORTESTFREERESOLUTION for certain classes of Ore algebras. See Chyzak et al.
(2007) for more details and examples.
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Let us illustrate Remark 31 by means of an explicit example.

Example 32. Let us consider D = A1(Q) and the left D-module M = D1×2/(D1×2 R1), where
the matrix R1 is defined by

R1 =

(
−t2 t d

dt − 1

−t d
dt − 2 d2

dt2

)
∈ D2×2.

We can check that M has the following free resolution:

0 −→ D
.R2
−−→ D1×2 .R1

−−→ D1×2 δ0
−→ M −→ 0, R2 =

(
d
dt

− t

)
∈ D1×2.

Moreover, the matrix S2 =

(
t d

dt

)T
is a right-inverse of R2. Hence, if we denote by T1 =

(R1 S2), then, by Corollary 21, we obtain the finite free resolution of M :

0 −→ D1×2 .T1
−→ D1×3 τ0

−→ M −→ 0. (19)

We finally check that T1 admits the following right-inverse S1 defined by

S1 =

(
0 −1 d

dt
−1 0 −t

)T

∈ D3×2.

Therefore, the exact sequence (19) splits, and thus, M is a stably free left D-module of rank 1,
(19) is a shortest free resolution of M and T1 is a minimal presentation matrix.

4. Computation of bases of free modules

In what follows, we shall consider a left noetherian domain D. In particular, this condition
implies that D is a left Ore domain and has invariant basis number. The rank of a free left D-
module F is then well defined (see Section 2). By extension, the rank of a finitely generated
stably free left D-module M satisfying M ⊕ D1×s ∼= D1×r is r − s.

4.1. The general case

The purpose of this section is to give a general algorithm which computes bases of free left
D-modules based on the concept of stable rank (McConnell and Robson, 2000).

Definition 33. (1) A column vector v ∈ Dm is called unimodular if v admits a left-inverse
w = (w1 . . . wm) ∈ D1×m , i.e., if we have w v =

∑n
i=1wi vi = 1. We denote by Uc(m, D)

the set of all unimodular columns of length m over D.
(2) A unimodular column v = (v1 . . . vm)

T
∈ Uc(m, D) is called stable (reducible) if there

exist a1, . . . , am−1 ∈ D such that v′ = (v1 + a1 vm . . . vm−1 + am−1 vm)
T is unimodular,

i.e., we have v′ ∈ Uc(m − 1, D).
(3) We say that l is in the stable range of D D (i.e., D as a left D-module), if, for every m > l,

every unimodular column v ∈ Uc(m, D) is stable.
(4) The least positive integer l in the stable range of D D is called the stable rank of D D. It is

denoted by sr(D D). If no such integer exists, then we set sr(D D) = +∞.

We note that the stable rank is sometimes also called the stable range in algebra.
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Similar definitions hold for unimodular rows. If we denote by Ur (m, D) the set of unimodular
rows of length m with entries in D, then we can similarly define the stable rank sr(DD) of DD
(i.e., D as a right D-module).

Proposition 34 (McConnell and Robson, 2000, Proposition 11.3.4). sr(D D) = sr(DD).

Hence, in what follows, we shall only write sr(D) instead of sr(D D) or sr(DD).

Example 35. We have the following results as regards the stable rank:

(1) If D is a principal ideal domain, then sr(D) ≤ 2 (e.g., sr(Z) = 2; if k is a field, then
sr(k[x]) = 2). If K is a differential field (e.g., K = Q(t)) (Pommaret, 2001), then
sr(K [ d

dt ; id,
d
dt ]) ≤ 2.

(2) (McConnell and Robson, 2000, Corollary 5.10 (i)) sr(R[x1, . . . , xn]) = n + 1.
(3) (Stafford, 1978) If k is a field containingQ, then we have sr(An(k)) = 2.
(4) (Stafford, 1978) Under the same hypothesis as in (3), we have sr(Bn(k)) = 2.

Definition 36. The elementary group E(m, D) is the subgroup of

GL(m, D) = {U ∈ Dm×m
| ∃ V ∈ Dm×m

: U V = V U = Im}

which is generated by matrices of the form Im + r Ei j , where r ∈ D, i 6= j and Ei j denotes the
matrix defined by 1 in the (i, j)-position and 0 elsewhere.

Example 37 (McConnell and Robson, 2000, 11.3.5). Upper and lower triangular matrices with
1 on the diagonal belong to the elementary group.

We can now state the following useful proposition.

Proposition 38. If v is a stable element of Uc(m, D), then there exists E ∈ E(m, D) such that

E v = (1 0 . . . 0)T .

Proof. Let v = (v1 . . . vm)
T be a stable element of Uc(m, D). Then there exist elements

a1, . . . , am−1 ∈ D such that

v′ = (v1+a1 vm v2+a2 vm v3+a3 vm . . . vm−1+am−1 vm)
T
∈ Uc(m−1, D). (20)

Now, let us denote by v′i = vi + ai vm , for i = 1, . . . ,m − 1, and

E1 =


1 0 0 . . . 0 a1
0 1 0 . . . 0 a2
...

...
...

...
...

...

0 0 0 . . . 1 am−1
0 0 0 . . . 0 1

 ∈ E(m, D). (21)

Then, we easily check that we have E1 v = (v
′

1 v′2 . . . v
′

m−1 vm)
T .

Using the fact that v′ ∈ Uc(m − 1, D), then there exist b1, . . . , bm−1 ∈ D such that

m−1∑
i=1

bi v
′

i = 1.
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Hence, multiplying both sides of the previous expression by v′1 − 1− vm , then we get

m−1∑
i=1

(v′1 − 1− vm) (bi v
′

i ) = v
′

1 − 1− vm . (22)

If we now define v′′i = (v
′

1 − 1− vm) bi , for i = 1, . . . ,m − 1, and

E2 =


1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 1 0
v′′1 v′′2 v′′3 . . . v′′m−1 1

 ∈ E(m, D), (23)

then we have E2 (v
′

1 . . . v
′

m−1 vm)
T
= (v′1 . . . v

′

m−1 v
′

1 − 1)T . Moreover, if we define

E3 =


1 0 0 . . . 0 −1
0 1 0 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

 ∈ E(m, D), (24)

then we easily check that we have E3 (v
′

1 . . . v
′

m−1 v
′

1 − 1)T = (1 v′2 . . . v
′

m−1 v
′

1 − 1)T .
Finally, if we define

E4 =


1 0 0 . . . 0 0
−v′2 1 0 . . . 0 0
...

...
...

...
...

...

−v′m−1 0 0 . . . 1 0
−v′1 + 1 0 0 . . . 0 1

 ∈ E(m, D), (25)

then we obtain E4 (1 v′2 . . . v′m−1 v
′

1 − 1)T = (1 0 . . . 0)T . Hence, the matrix defined by
E = E4 E3 E2 E1 ∈ E(m, D) satisfies E (v1 . . . vm)

T
= (1 0 . . . 0)T . �

We sum up the constructive proof of Proposition 38 in the next algorithm.

Algorithm 2. • Input: A stable element v = (v1 . . . vm)
T of Uc(m, D).

• Output: An elementary matrix E ∈ Dm×m such that E v = (1 0 . . . 0)T .

(1) Compute a1, . . . , am−1 ∈ D satisfying condition (20).
(2) Compute the matrix E1 given in (21).
(3) Compute b1, . . . , bm−1 ∈ D satisfying

∑m−1
i=1 bi v

′

i = 1, where v′i denotes the i th
component of the vector E1 v, i = 1, . . . ,m − 1, and define v′′i = (v

′

1 − 1− vm) bi ∈ D,
i = 1, . . . ,m − 1.

(4) Define the matrices E2, E3, E4 given by (23)–(25).
(5) Return the product E = E4 E3 E2 E1.

Let us illustrate Proposition 38 on an example.
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Example 39. Let us consider the Weyl algebra D = A3(Q) and the column vector v =
(∂1 + x3 ∂2 ∂3)

T . We can easily check that w = (∂3 0 − (∂1 + x3)) is a left-inverse
of v, i.e., v ∈ Uc(3, D). Moreover, the vector v′ = (∂1 + x3 ∂2 + ∂3)

T admits a left-inverse
w′ = (∂2+∂3 − (∂1+ x3)), which shows that v′ is unimodular, and thus, v is stable. Hence, by
Proposition 38, there exists a matrix E ∈ E(3, D) such that E v = (1 0 0)T . Let us compute
such a matrix E following Algorithm 2.

The unimodular vector v′ shows that we can take a1 = 0 and a2 = 1. If we define

E1 =

1 0 0
0 1 1
0 0 1

 ,
we then obtain E1 v = (∂1 + x3 ∂2 + ∂3 ∂3)

T . We check that we have the Bézout identity:

(∂2 + ∂3) (∂1 + x3)− (∂1 + x3) (∂2 + ∂3) = 1.

If we define v′′1 = (∂1 + x3 − 1− ∂3) (∂2 + ∂3), v′′2 = −(∂1 + x3 − 1− ∂3) (∂1 + x3) and

E2 =

 1 0 0
0 1 0
v′′1 v′′2 1

 ∈ E(3, D),

we then get E2 (∂1 + x3 ∂2 + ∂3 ∂3)
T
= (∂1 + x3 ∂2 + ∂3 ∂1 + x3 − 1)T . Finally, if we

define

E3 =

1 0 −1
0 1 0
0 0 1

 ∈ E(3, D), E4 =

 1 0 0
−(∂2 + ∂3) 1 0
−(∂1 + x3 − 1) 0 1

 ∈ E(3, D),

and E = E4 E3 E2 E1 ∈ E(3, D), then we have E v = (1 0 0)T .

We are now in position to state the main result of this paper (we recall that, in this section, D
denotes a left noetherian domain).

Theorem 40. Let k be a field and D a non-commutative k-algebra with an involution θ . Then,
any stably free left D-module M defined by a finite free resolution of the form

0 −→ D1×q .R
−→ D1×p π

−→ M −→ 0, (26)

with p − q ≥ sr(D) is free.

Proof. Using the fact that M is stably free, the exact sequence (26) splits (Rotman, 1979), and
thus, R admits a right-inverse S ∈ D p×q . Let us define R̃ = θ(R) ∈ D p×q (see Definition 8)
and S̃ = θ(S) ∈ Dq×p. As we have S̃ R̃ = θ(S) θ(R) = θ(R S) = θ(Iq) = Iq , the following
exact sequence splits:

0←− D1×q .R̃
←− D1×p

←− kerD(.R̃)←− 0.

Since we have p > p − q ≥ sr(D), the first column R̃1 ∈ D p of R̃ is then stable. Therefore,
applying Proposition 38 to R̃1, we obtain a matrix G1 ∈ E(p, D) which satisfies

G1 R̃1 = (1 0 . . . 0)T .
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If q = 1, then we have R = R1 and we set G = G1. Otherwise, we obtain

G1 R̃ =


1 ?

0
... R̃2
0

 , R̃2 ∈ D(p−1)×(q−1),

where ? denotes an appropriate number of elements in D.
The matrix G1 R̃ admits a left-inverse (e.g., S̃ G−1

1 ∈ Dq×p). We then easily check that every
left-inverse L of G1 R̃ has the form

L =

(
1 ?

0 L2

)
, L2 ∈ D(q−1)×(p−1),

which shows that L2 R̃2 = Iq−1, and thus, the first column of the matrix R̃2 is unimodular. Since
q − 1 ≥ 1, we have p− 1 > p− q ≥ sr(D) and we can apply Proposition 38 to the first column
of R̃2 obtaining F2 ∈ E(p − 1, D) such that

F2 R̃2 =


1 ?

0
... R̃3
0

 , R̃3 ∈ D(p−2)×(q−2).

Hence, if we define G2 =

(
1 0
0 F2

)
, then we have (G2 G1) R̃ =


1 ? ?

0 1 ?
... 0
...

... R̃3
0 0

.

By induction on the number of columns and using the fact that p − q ≥ sr(D), we finally
obtain an elementary matrix G ∈ E(p, D) which satisfies

G R̃ = (Iq 0)T .

We now easily check that we have kerD(.(G R̃)) = D1×(p−q) (0 Ip−q). Hence, if we define
the matrix P = (0 Ip−q) ∈ D(p−q)×p and use the fact that G is invertible over D, then

λ ∈ kerD(.R̃)⇔ λR̃ = 0⇔ (λG−1)G R̃ = 0⇔ λG−1
∈ kerD(.(G R̃)) = D1×(p−q)P,

i.e., there exists µ ∈ D1×(p−q) such that λG−1
= µ P , i.e., λ = µ P G ∈ D1×(p−q) (P G).

Conversely, any element of the form λ = µ P G ∈ D1×(p−q) (P G), where µ ∈ D1×(p−q),
belongs to kerD(.R̃) and we get kerD(.R̃) = D1×(p−q) (P G). Moreover, ν ∈ kerD(.(P G))
satisfies that ν P G = 0 and, using the fact that G is invertible over D, we then have ν P = 0,
i.e., ν = 0. Hence, we obtain kerD(.R̃) = D1×(p−q) (P G) ∼= D1×(p−q). If we define Q̃ = P G,
then we have the following split exact sequence:

0←− D1×q .R̃
←− D1×p .Q̃

←− D1×(p−q)
←− 0.
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Using the fact that the adjoint of a split exact sequence is also a split exact sequence (Chyzak
et al., 2005; Rotman, 1979), we finally obtain the split exact sequence

0 −→ D1×q .R
−→ D1×p .Q

−→ D1×(p−q)
−→ 0, (27)

with the notation Q = θ(Q̃) ∈ D p×(p−q). Therefore, we have

M = D1×p/(D1×q R) ∼= D1×p Q = D1×(p−q),

which shows that M is a free left D-module of rank p − q and Q admits a left-inverse. If we
denote by T ∈ D(p−q)×p a left-inverse of Q, i.e., T Q = Ip−q , then {π(Ti )}1≤i≤p−q is a basis
of M , where Ti denotes the i th row of T and π : D1×p

−→ M is the D-morphism which maps
any vector in D1×p to its residue class in M . �

The proof of Theorem 40 was inspired by Corollaire 2.14 in Lombardi (2005) for commutative
rings. Hence, Theorem 40 extends this corollary to non-commutative rings.

Remark 41. Theorem 40 has been stated under the hypothesis that D admits an involution
θ . However, using a dual version of Proposition 38, namely, for every v ∈ Ur (m, D), there
exists E ∈ E(m, D) such that v E = (1 0 . . . 0), we can follow the proof of Theorem 40
using, however, right multiplication of R by elementary matrices instead of left multiplication
of R̃. Hence, Theorem 40 is true without this restrictive hypothesis. However, as we are mainly
interested in an effective implementation of Theorem 40 in OREMODULES (Chyzak et al., 2007),
where only Gröbner bases of left D-modules are computed, we need to impose this condition.
Finally, finitely presented right D-modules have no system-theoretic interpretation contrary to
left D-modules (see Section 2).

Remark 42. We note that the number p − q only depends on the left D-module M . Indeed, if
we have another finite presentation of M of the form

0 −→ D1×q ′ .R
′

−→ D1×r π ′

−→ M −→ 0,

then, by Schanuel’s lemma (Rotman, 1979), we obtain that D1×q ′
⊕ D1×p ∼= D1×q

⊕ D1×p′ .
As D has invariant basis number, we obtain q ′ + p = q + p′, i.e., p′ − q ′ = p − q.

Let us sum up the constructive proof of Theorem 40 in the next algorithm.

Algorithm 3. • Input: A k-algebra D with an involution θ , a matrix R ∈ Dq×p which admits
a right-inverse S ∈ D p×q and satisfies that p − q ≥ sr(D).
• Output: Two matrices Q ∈ D p×(p−q) and T ∈ D(p−q)×p such that T Q = Ip−q

and {π(Ti )}1≤i≤p−q is a basis of the free left D-module M = D1×p/(D1×q R), where
π : D1×p

−→ M denotes the canonical projection and Ti is the i th row of T .

(1) Compute R̃ = θ(R) ∈ D p×q and set i = 1, V = R̃, U = Ip.
(2) Denote by Vi ∈ D p−i+1 the column vector formed by taking the last p − i + 1 elements

of the i th column of V .
(3) Applying Algorithm 2 to Vi , compute the matrix Fi ∈ E(p − i + 1, D) such that

Fi Vi = (1 0 . . . 0)T .

(4) Define the matrix Gi =

(
Ii−1 0

0 Fi

)
∈ E(p, D) with G1 = F1.

(5) If i < q then return to step (2) with V ← Gi V , U ← Gi U and i ← i + 1.
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(6) Define G = Gq U and the matrix Q̃ formed by selecting the last p − q rows of G.
(7) Define Q = θ(Q̃) ∈ D p×(p−q) and compute a left-inverse T ∈ D(p−q)×p of Q.

Let us illustrate Algorithm 3 on an example.

Example 43. Let us define D = A1(Q), the matrices

R =

(
0 d

dt 0 −1
d
dt 0 −t 0

)
∈ D2×4, S =

(
0 0 0 −1
t 0 d

dt 0

)T

∈ D4×2,

and the left D-module M = D1×4/(D1×2 R). We can easily check that S is a right-inverse of R,
i.e., R S = I2. Therefore, M is stably free with rankD(M) = 2. Using Theorem 40 and (3) of
Example 35, i.e., sr(D) = 2, we then obtain that M is free.

Let us compute a basis of M following Algorithm 3. The formal adjoint R̃ of R is

R̃ =

(
0 −

d
dt 0 −1

−
d
dt 0 −t 0

)T

∈ D4×2.

Now, following Algorithm 2 for the first column v1 =

(
0 −

d
dt 0 − 1

)T
of R̃, we obtain

that the vector v′1 =
(

1 −
d
dt 0

)T
is trivially unimodular, which shows that we can choose

a1 = −1 and a2 = 0 and define the elementary matrix

E1 =


1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 .
We then have E1 v1 =

(
1 −

d
dt 0 − 1

)T
. Now, using thatw′ = (1 0 0) is a left-inverse

of v′1, we can take b1 = 1, b2 = 0 and define the following unimodular matrices:

E2 =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

 , E3 =


1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 , E4 =


1 0 0 0
d
dt 1 0 0
0 0 1 0
0 0 0 1

 .
We can easily check that we have

G1 = E4 E3 E2 E1 =


0 0 0 −1
0 1 0 −

d
dt

0 0 1 0
1 0 0 0

 ∈ E(4, D), G1 R̃ =


1 0
0 0
0 −t
0 −

d
dt

 .
Let us now consider the sub-column v2 =

(
0 − t −

d
dt

)T
of the matrix G1 R̃. We apply

Algorithm 2 to v2 and we can easily check that v′2 =
(
−

d
dt − t

)T
has a left-inverse defined

by w′2 =
(

t −
d
dt

)
. Therefore, we can take a1 = 1 and a2 = 0 and define the following
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unimodular matrices:

E ′1 =

1 0 1
0 1 0
0 0 1

 , E ′2 =

 1 0 0
0 1 0
−t d

dt 1

 , E ′3 =

1 0 −1
0 1 0
0 0 1

 ,
E ′4 =

 1 0 0
t 1 0

d
dt + 1 0 1

 .
We then have

F2 = E ′4 E ′3 E ′2 E ′1 =

 1+ t −
d
dt t

t (t + 1) −t d
dt + 1 t2

t d
dt +

d
dt + 2 −

d2

dt2 t d
dt + 2

 ∈ E(4, D),

F2 v2 =

1
0
0

 .
Let us define the following matrices:

G2 =

(
1 0
0 F2

)
,

G = G2 G1 =


0 0 0 −1
t t + 1 −

d
dt −(t + 1) d

dt
t2 t (t + 1) −t d

dt + 1 −t (t + 1) d
dt

t d
dt + 2 t d

dt +
d
dt + 2 −

d2

dt2 −

(
t d

dt +
d
dt + 2

)
d
dt

 .
Then, we have G R̃ = (I2 0)T . Finally, if we consider the following two matrices:

Q =


t2

−t d
dt + 1

t2
+ t −(t + 1) d

dt + 1

t d
dt + 2 −

d2

dt2

t (t + 1) d
dt + 2 t + 1 −(t + 1) d2

dt2

 ,
T =

(
0 0 t + 1 −1

t + 1 −t 0 0

)
,

(28)

where Q is formed by taking the last two columns of the formal adjoint of G and T is a left-
inverse of Q, then a basis of M is defined by {π((0, 0, t + 1, −1)), π((t + 1, −t, 0, 0))},
where π : D1×4

−→ M denotes the canonical projection onto M .

Let us consider a left D-module F (e.g., F = C∞(R)) and the behaviour kerF (R.). Using
the matrix Q defined by (28), we obtain the injective parametrization of kerF (R.)

{
ẋ2(t) = u2(t),
ẋ1(t) = t u1(t),

⇔


x1(t) = t2 y1(t)− t ẏ2(t)+ y2(t),
x2(t) = (t2

+ t) y1(t)− (t + 1) ẏ2(t)+ y2(t),
u1(t) = t ẏ1(t)+ 2 y1(t)− ÿ2(t),
u2(t) = t (t + 1) ẏ1(t)+ (2 t + 1) y1(t)− (1+ t) ÿ2(t),

(29)
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which proves that kerF (R.) is flat. A flat output (y1 y2)
T of kerF (R.) is defined by

(y1 y2)
T
= T (x1 x2 u1 u2)

T
⇔

{
y1(t) = (t + 1) u1(t)− u2(t),
y2(t) = (t + 1) x1(t)− t x2(t).

The next corollary is a well-known result in the literature of non-commutative algebra. See for
instance McConnell and Robson (2000). However, we give here a simple and constructive proof
based on Algorithm 1 and the kind of Gaussian elimination used in the proof of Theorem 40 (see
Algorithm 3).

Corollary 44. Let k be a field and D a non-commutative k-algebra with an involution θ , M a
stably free left D-module with rankD(M) ≥ sr(D) and (14) a finite free resolution of M. Then,
M is a free left D-module.

Proof. Let us consider a stably free left D-module M = D1×p0/(D1×p1 R1), where R1 ∈

D p1×p0 . Using Algorithm 1, we can always suppose that M is defined by the presentation
M ∼= D1×p/(D1×q R), where the matrix R ∈ Dq×p admits a right-inverse S ∈ D p×q . See
Remark 31 for more details. Hence, we have the following finite free resolution of M :

0 −→ D1×q .R
−→ D1×p π

−→ M −→ 0.

In particular, we have rankD(M) = p − q , and thus, the hypothesis rankD(M) ≥ sr(D) implies
p ≥ q + sr(D). Hence, by Theorem 40, M is a free left D-module. �

Algorithm 4. • Input: A k-algebra with an involution θ , a matrix R1 ∈ D p1×p0 such that the
left D-module M = D1×p0/(D1×p1 R1) is stably free with rankD(M) ≥ sr(D) and a finite
free resolution (14) of M .
• Output: R ∈ Dq×p, Q ∈ D p×(p−q) and T ∈ D(p−q)×p satisfying M ∼= D1×p/(D1×q R),

T Q = Ip−q and {π(Ti )}1≤i≤p−q is a basis of the free left D-module D1×p/(D1×q R), where
Ti denotes the i th row of T and π : D1×p

−→ D1×p/(D1×q R) the canonical projection.

(1) Applying Algorithm 1, we obtain a finite free resolution of M of the form

0 −→ D1×q .R
−→ D1×p π

−→ M −→ 0. (30)

(2) Applying Algorithm 3 to R ∈ Dq×p, we finally obtain the matrices Q ∈ D p×(p−q) and
T ∈ D(p−q)×p satisfying T Q = Ip−q and such that {π(Ti )}1≤i≤p−q is a basis of the free
left D-module D1×p/(D1×q R) ∼= M (see Remark 22).

4.2. The Weyl algebra case

We shall now focus on the two particular cases D = An(k) and D = Bn(k).
We state another nice result due to J.T. Stafford which will allow us to compute the elements

ai ∈ D satisfying (20), i.e., to effectively handle step (1) of Algorithm 2.

Theorem 45 (Stafford, 1978). Let k be a field containing Q and D = An(k) or Bn(k). If
v1, v2, v3 ∈ D, then there exist a1, a2 ∈ D such that the left ideal I = D v1 + D v2 + D v3 of
D satisfies

I = D (v1 + a1 v3)+ D (v2 + a2 v3).

We illustrate Theorem 45 on a simple example.
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Example 46. Let us consider D = A3(Q) and the left ideal I = D (∂1 + x3)+ D ∂2 + D ∂3 of
D (see Example 39); then we have I = D (∂1 + x3)+ D (∂2 + ∂3) as{

∂2 = (∂2 (∂2 + ∂3)) (∂1 + x3)− (∂2 (∂1 + x3)) (∂2 + ∂3),

∂3 = (∂3 (∂2 + ∂3)) (∂1 + x3)− (∂3 (∂1 + x3)) (∂2 + ∂3).

Two constructive algorithms of Theorem 45 have recently been presented by A. Hillebrand
and W. Schmale on the one hand and by A. Leykin on the other hand. We refer the reader to
Hillebrand and Schmale (2001) and Leykin (2004) for more details. Both strategies have been
implemented in the package STAFFORD (Quadrat and Robertz, 2005–2007). However, we point
out that, due to the large number of Gröbner basis computations used in Hillebrand and Schmale
(2001) and Leykin (2004), Theorem 45 only works constructively on relatively small examples.

Let us now consider a unimodular column vector v = (v1 . . . vm)
T where m ≥ 3. Using

the fact that sr(D) = 2, v is then stable. Therefore, there exist a1, . . . , am−1 ∈ D such that the
column vector v′ = (v1 + a1 vm . . . vm−1 + am−1 vm)

T is unimodular. A constructive way to
compute the ai is, for instance, to apply a constructive version of Theorem 45 to the left ideal
I = D v1 + D v2 + D vm . Then, we find a1, a2 ∈ D such that

I = D (v1 + a1 vm)+ D (v2 + a2 vm).

Using the fact that v is unimodular, i.e.,
∑m

i=1 D vi = D, we obtain

D (v1 + a1 vm)+ D (v2 + a2 vm)+

m−1∑
i=3

D vi = D,

showing that the vector (v1 + a1 vm v2 + a2 vm v3 . . . vm−1)
T is unimodular. Hence,

using STAFFORD, we then have a constructive way to perform step (1) of Algorithm 2, and thus,
the complete Algorithm 2, as step (3) can be performed using the command LEFTINVERSE of
OREMODULES.

Combining Theorem 40 with (3) and (4) of Example 35, we obtain the following result.

Corollary 47 (Stafford, 1978). If k is a field containing Q and D = An(k) or Bn(k), then any
stably free left D-module M satisfying rankD(M) ≥ 2 is free.

With the aid of the functions INVOLUTION, MULT and LEFTINVERSE of OREMODULES,
Algorithms 2 and 3 become constructive. Moreover, using the command SHORTESTFREERES-
OLUTION (see Remark 31), we have a way to compute a finite free resolution of M of the form
(30) and to check whether or not M is a stably free left D-module with rankD(M) ≥ 2 (see 4 of
Theorem 10 and Chyzak et al. (2005) for another algorithm checking stably freeness using the
computation of certain extension modules extiD(Ñ , D), where Ñ = D1×q/(D1×p θ(R)) and θ is
the involution defined in (2) of Example 9). We conclude that Algorithm 4 can be constructively
performed.

Another algorithm for computing bases of free modules over An(k) has also been developed
in Gago-Vargas (2003) following the proof given by J.T. Stafford (1978). However, despite the
interest of Gago-Vargas (2003), Algorithm 4 seems to be easier to understand and to implement.
Indeed, it is conceptually nothing but Gaussian elimination as soon as a constructive version of
Theorem 45 is available.

Example 48. Let us consider D = A3(Q), R = (−∂1 + x3 − ∂2 − ∂3) and the left
D-module M = D1×3/(D R). We easily check that S = (−∂3 0 ∂1 − x3)

T is a right-inverse
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of R, a fact showing that M is a stably free left D-module of rank 2. Hence, by Corollary 47,
we obtain that M is a free left D-module. Let us compute a basis of M following Algorithm 3.
We first compute the formal adjoint R̃ = (∂1+ x3 ∂2 ∂3)

T of R. We then need to compute an
elementary matrix G such that G R̃ = (1 0 0)T . However, such an elementary matrix G has
already been computed in Example 39 and was denoted by E . Therefore, if we form the matrix
Q by selecting the last two columns of the formal adjoint of Ẽ and F denotes any left D-module
(e.g., F = C∞(R3)), then we obtain that the following underdetermined linear system of PDEs
(a priori similar to the divergence operator inR3):

B = {(y1 y2 y3)
T
∈ F3

| (∂1 − x3) y1(x)+ ∂2 y2(x)+ ∂3 y3(x) = 0}

admits the following injective parametrization:y1(x) = ((1− θ(v′′1 )) (∂2 + ∂3)) z1(x)+ ((1− θ(v′′1 )) (∂1 − x3)+ 1) z2(x),
y2(x) = (−θ(v′′2 ) (∂2 + ∂3)+ 1) z1(x)− θ(v′′2 ) (∂1 − x3) z2(x),
y3(x) = (−(1+ θ(v′′2 )) (∂2 + ∂3)+ 1) z1(x)− (1+ θ(v′′2 )) (∂1 − x3) z2(x),

(31)

where z1 and z2 are arbitrary functions of F , θ denotes the involution of A3(Q) and

v′′1 = (∂1 − ∂3 + x3 − 1) (∂2 + ∂3), v′′2 = −(∂1 − ∂3 + x3 − 1) (∂1 + x3).

If we develop the expressions in (31), we can check that we have
z1(x) = (−∂2

1 + ∂1 ∂3 − x3 ∂3 + (2 x3 − 1) ∂1 + x3 − x2
3 + 1) y2(x)

+(∂2
1 − ∂1 ∂3 + x3 ∂3 − (2 x3 − 1) ∂1 + x2

3 − x3) y3(x),
z2(x) = y1(x)+ (−∂2

3 + ∂1 ∂2 − ∂2 ∂3 + ∂1 ∂3 + ∂2 − (x3 − 1) ∂3 − x2 ∂2 − 2) y2(x)
+(∂2

3 − ∂1 ∂2 + ∂2 ∂3 − ∂1 ∂3 + (x3 − 1) ∂3 + (x3 − 1) ∂2 + 2) y3(x),

i.e., {z1, z2} is a flat output/basis of the flat system kerF (R.)/free left D-module M .

Remark 49. If we denote by C{t} the ring of convergent power series, it is known that every
left ideal of the ring D = C{t}[ d

dt ; idC{t},
d
dt ] can be generated by two elements (Galligo (1985);

Maisonobe and Sabbah (1993)). Two such generators can be found by means of a computation
of a standard basis as is explained in Galligo (1985); Maisonobe and Sabbah (1993). However,
we do not know whether D is strongly simple, namely, whether, for every v1, v2 and v3 ∈ D,
there exist a1 and a2 ∈ D, satisfying

D v1 + D v2 + D v3 = D (v1 + a1 v3)+ D (v2 + a2 v3).

If so, Corollary 47 also holds for the particular ring D = C{t}[ d
dt ; idC{t},

d
dt ]. A system-theoretic

interpretation of this last result would be that every controllable ordinary differential linear sys-
tem with convergent power series coefficients and at least two inputs is flat (Corollary 47 already
shows that this result is true for polynomial coefficients (see Quadrat and Robertz (2005) for more
details)). This question will be studied in the future as well as the case of real analytic coefficients.

Corollary 47 shows that we now need to investigate when a stably free module of rank 1
over the algebras D = An(k) or Bn(k) is free. As was shown in Quadrat and Robertz (2005),
the question of whether or not a given stably free module of rank 1 over the Weyl algebras D =
An(k) or Bn(k) is free can be answered by using the concept of minimal parametrization (Chyzak
et al., 2005; Pommaret and Quadrat, 1999b) and then by deciding whether the corresponding left
ideal I of D is principal as D is a domain. M. Barakat and V. Levandovskyy (RWTH-Aachen,
Germany) have recently pointed out to us that this last problem can be solved by computing a
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reduced Gröbner or minimal Janet basis of I . Indeed, since such a basis is unique (see, e.g.,
Kandri-Rody and Weispfenning (1990) and Levandovskyy (2005)), this basis consists of one
element if and only if I is principal. Finally, if Q ∈ D p×1 is a minimal parametrization of the
stably free left D-module M of rank 1 and M ∼= D1×p Q is a principal left ideal of D generated
by the element P ∈ D \ {0}, then Q P−1

∈ D p×1 defines an injective parametrization of the free
left D-module M = D1×p/(D1×q R) of rank 1.

We illustrate this remark on a relevant example in control theory (Sontag, 1998).

Example 50. Let us consider the system ẋ(t) = tk u(t), where k ∈ Z≥0, and define D =

A1(Q), Rk =

(
d
dt − tk

)
and the left D-module Mk = D1×2/(D Rk). As Rk has full row

rank, we know that Mk is stably free iff the left D-module Ñ = D1×q/(D1×p R̃k), where

R̃k =

(
−

d
dt − tk

)T
is the formal adjoint of Rk , is the zero module (Chyzak et al., 2005;

Pommaret and Quadrat, 1998). Using the definition of Ñ , we then obtain{
−λ̇ = 0,
−tk λ = 0,

⇒ tk λ̇+ k tk−1 λ = 0 ⇒ tk−1 λ = 0 ⇒ · · · ⇒ λ = 0 ⇒ Ñ = 0.

Hence, the left D-module Mk is stably free for all k ∈ Z≥0. Now, we can prove that we have the
following exact sequence:

0 −→ D
.Rk
−−→ D1×2 .Qk

−−→ D −→ D/(D1×2 Qk) −→ 0, Qk =

(
tk+1

t d
dt + k + 1

)
.

Since Pk = D/(D1×2 Qk) is a non-trivial torsion left D-module, the matrix Qk is a minimal
parametrization of Mk . See Chyzak et al. (2005) and Pommaret and Quadrat (1999b) for more
details and algorithms. Hence, we obtain that

Mk = D1×2/(D Rk) ∼= D1×2 Qk = D tk+1
+ D

(
t

d
dt
+ k + 1

)
,

showing that Mk is isomorphic to the left ideal Ik of D generated by tk+1 and t d
dt + k+1. Using

the fact that D is a domain, we obtain that Mk is a free left D-module iff Ik is a principal left ideal
of D. However, we can prove that tk+1 and t d

dt + k + 1 form a reduced Gröbner basis (minimal
Janet basis) of Ik iff k ≥ 1, and thus, Mk is a stably free but not free left D-module when k ≥ 1.

When k = 0, we check that I0 = D t + D
(

t d
dt + 1

)
= D t as we have d

dt t = t d
dt + 1. Hence,

I0 is a principal left ideal of D, and thus, M0 is free.

Finally, we point out that we can also use the concept of Krull dimension of a non-
commutative ring D to give an upper bound on the rank of stably free left D-modules for which
they are free (see, e.g., McConnell and Robson (2000, Theorems 11.1.14 and 11.1.17)). For
instance, any stably free left module M over the ring of differential time-delay operators D
defined in (2) of Example 5 satisfying rankD(M) ≥ 3 is free.

5. Conclusion

In this paper, we have shown how to use the concept of stable rank of a ring D in order to
reduce the computation of bases of free left D-modules to Gaussian elimination. In the case of
the Weyl algebras D = An(k) or Bn(k) over a field k of characteristic 0, using the recently
developed constructive versions of the result of J.T. Stafford on the number of generators of left
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D-ideals (Leykin, 2004; Hillebrand and Schmale, 2001; Stafford, 1978), Algorithm 4 gives an
effective way of computing bases of stably free left D-modules of rank at least 2. This algorithm
has been implemented in the package STAFFORD (Quadrat and Robertz, 2005–2007) developed
under OREMODULES (Chyzak et al., 2007). Finally, it seems to us that Algorithm 4 is simpler
and more tractable than the algorithm developed in Gago-Vargas (2003).

As noticed in Rouchon (2005), different injective parametrizations of a flat system can be
obtained. This result is easily explained by the fact that there are different ways to obtain the
elements ai ∈ D satisfying (20). In the Weyl algebra case, we have chosen to apply Stafford’s
result, i.e., Theorem 45, to the vector formed by the first two and the last component of the vector
Vi defined in Algorithm 3. See Section 4.2 for more details. This is indeed a particular choice
and Algorithm 3 can be optimized by firstly inspecting the components of Vi in order to get
simpler a1, a2 ∈ D satisfying (20). In particular, this means that some heuristics must be added
in the implementation of Algorithm 3 in order to simplify and speed up the computation of the
bases. Some of them have been implemented in STAFFORD (Quadrat and Robertz, 2005–2007),
but much work in this direction still needs to be done in the future.

Another aspect which can be used in order to optimize Algorithm 4 is that it allows the use
of more general transformations than the elementary ones. Indeed, an inspection of the proof of
Theorem 40 shows that we only need that G is an invertible matrix over D, i.e., G ∈ GL(p, D).
Algorithm 2 gives a general way to compute E ∈ E(m, D) satisfying E v = (1 0 . . . 0)T for
any stable vector v ∈ Uc(m, D). But, in some particular cases, it is possible to find a simpler
E ∈ GL(m, D) satisfying E v = (1 0 . . . 0)T which can avoid the multiplication by the factor
v′1−1−vm in (22), and thus, lower the order of the final basis. Much work must be done in order
to optimize the time-consuming algorithms of J.T. Stafford’s result developed in Leykin (2004)
and Hillebrand and Schmale (2001).

All these questions will be studied in the future as well as their extension to different
classes of Ore algebras (e.g., differential time-delay systems, multidimensional discrete systems).
Applications of the different algorithms developed in this paper to control theory and, in
particular, to the effective computation of flat outputs of flat linear systems over Ore algebras
will be developed in forthcoming publications. Finally, it was recently shown in Cluzeau and
Quadrat (2007) that the computation of bases of free modules (e.g., over the Weyl algebras or
a commutative polynomial ring) played a central role in the decomposition problem of linear
functional systems, i.e., in the computation of unimodular matrices transforming a given matrix
of functional operators to a block-triangular or a block-diagonal one. Hence, the computation of
bases of free modules should attract more attention in the symbolic computation community.
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