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1 Introduction

In 1784, Monge studied the integration of certaimderdeterminedonlinear systems
of ordinary differential equations, namely, systems containing mdteawn functions
than differentially independent equations ([29]). He showed how theisos of these
systems could be parametrized by means of a certain number of grifitreations
of the independent variable. This problem was cathesl Monge problenand it was
studied by famous mathematicians such as Hadamard, Hilbert, Carta@aamdat.
In particular, motivated by problems coming from linear elasticity theoggainard
considered the case of linear ordinary differential equations andsabunvestigated
underdetermined systems of partial differential equations. We redaretider to [29]
for a historical account on the Monge problem and for the main refesen
Within the algebraic analysisapproach ([2, 21, 28, 33]), the Monge problem was

recently studied for underdetermined systems of linear partial diffietezquations
in [21, 33, 42, 43, 44] and for linear functional systems in [5, 6] (edifferential
time-delay systems, discrete systems). Depending on the algebraierf@smf a



24 A. Fabiahska and A. Quadrat

certain moduleM/ defined over a ringD of functional operators and intrinsically as-
sociated with the linear functional system, we can prove or disprove tiseerge
of different kinds of parametrizations of the system (i. e., minimal pa&tazations,
non-minimal parametrizations, chains of successive parametrizati@mstructive
algorithms for checking these algebraic properties (i. e., torsion, existef torsion
elements, torsion-free, reflexive, projective, stably free, free) @mputing the dif-
ferent parametrizations were recently developed in [5, 42, 43, 4¢]eimented in the
package @EMODULES ([5, 6]) and illustrated on numerous examples coming from
mathematical physics and control theory ([5, 6]). Finally, we prove®,d?2, 43, 44]
how the Monge problem gave answers for the searchoténtialsin mathematical
physics andmage representationia control theory ([39, 40, 62, 63]).

The last results show that the Monge problem is constructively solvedeftain
classes of linear functional systems up to a last but important point: weleck
whether or not a linear functional system admits injective parametrizdbiagnse are
generally not able to compute one even if some heuristic methods wesenped in
[5, 42, 43]. Indeed, the existence of injective parametrizations foreatifunctional
system was proved to be equivalent to the freeness of the corrésganddule)/. In
the case of a linear functional system with constant coefficients, thespanding ring
D of functional operators is a commutative polynomial ring over a fiedd constants.
Using the famous Quillen-Suslin theorem ([52, 55]), also known aeSearonjecture
([23, 24]), we then know that fre®-modules are projective ones. UsingdBner or
Janet bases ([5, 10, 42]), we can check whether or not a modeteacxommutative
polynomial ring is projective. See [3, 10, 20] and the reference®itnéor introduc-
tions to Janet and @bner bases. Hence, we can constructively prove the existence of
an injective parametrization for a linear functional system. Howeveneesgl to use a
constructive version of the Quillen-Suslin theorem ([15, 19, 22, 2633758, 59]) to
get injective parametrizations of the corresponding system.

The main purpose of this paper is to recall a general algorithm for congpbases
of a free module over a commutative polynomial ring, give four nepliagtions of
the Quillen-Suslin theorem to mathematical systems theory and demonstratgpti-
mentation of the QILLEN SUSLIN package ([12]) developed in the computer algebra
system MAPLE. To our knowledge, theUQ LEN SUSLIN package is the first pack-
age available which performs bases computations of free modulea ceenmutative
polynomial ring with rational and integer coefficients and is dedicated teréifit ap-
plications coming from the mathematical systems theory.

More precisely, the plan of the paper is the following one. In the secaritbeewe
recall how the structural properties of linear functional systems carobstructively
studied within the algebraic analysis approach as well as different resiie Monge
problem. A constructive version of the Quillen-Suslin theorem, which isrtai tool
we use in the paper, is presented in the third section and the implementation-is illus
trated on many examples in the appendix of the paper. We also desanbkénsarristic
methods that highly simplify the computation of a basis of a free modulepmigno-
mial rings in certain special cases. The constructive version of the @8lislin the-
orem and, in particular the patching procedure, gives us the opportamtgke a new
observation concerning linear functional systems which admit injectivarmpetriza-
tions also calledlat multidimensional systenmis mathematical systems theory. In the
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fourth section, we prove that a flat multidimensional system is algebraegllivalent
to a 1-D flat linear system obtained by setting all but one functional opdrmagero in
the system matrix. This result gives an answer to a natural questiort amnuitzdimen-
sional systems. In particular, we prove that every flat differential-ielay system is
algebraically equivalent to the differential system without delays, nartiedysystem
obtained by setting to zero all the time-delay amplitudes. In the fifth sectioopwe
sider a generalization of Serre’s conjecture. We recall that Seroafecture, also
known as the Quillen-Suslin theorem, can be expressed in the languagatides
as follows: every matrix® over a commutative polynomial rin® = k[xy, ..., z,]
whose maximal minors generate(unimodular matri can be completed to a square
invertible matrix overD (i. e., its determinant is a non-zero element of the figldThe
generalization, stated by Lin and Bose in [25] and first proved by Paetnia[41]
by means of algebraic analysis, can be formulated as the possibility giletng a
matrix R whose maximal minors divided by their greatest common divisgener-
ate D to a square polynomial matrix whose determinant eqdalSerre’s conjecture
is then the special case whefe= 1. Using the Quillen-Suslin theorem, we give a
constructive algorithm for computing such a completion. Using the possibflitpm-
puting bases of a free module in our implementatianQEN SUSLIN, this algorithm
has been implemented in this package. In the sixth section, we study thenegiste
(weakly) left-/right-coprime factorizations of rational transfer matrigsisig recent re-
sults developed in [48]. We give algorithms for computing such facttoms using the
constructive versions of the Quillen-Suslin theorem. These resultsraotigely solve
open questions in the literature of multidimensional linear systems (se€1f@nd
the references therein). Finally, we show that the constructive Quillstirheorem
also plays an important role in the decomposition problem of linear fundtsyséems
studied in the literature of symbolic computation. See [8] and the refeseheeein
for more details. The main idea is to transform the system matrix into anagotv
block-triangular or a block-diagonal form ([8, 9]).

The different algorithms presented in the paper have been implemerttezipack-
age QUILLEN SUSLIN based on the libraryNvoLUTIVE ([3]) (an OREMODULES([6])
version will soon be available). The appendix illustrates the main proesdhirthe
QUILLEN SUSLIN package on different examples taken from the literature ([19, 22, 37,
58]). The package QLLENSUSLIN also contains a completion algorithm for uni-
modular matrices over Laurent polynomial rings described in [34, $8e also [1]
for a recent algorithm. In [37], Park explains the importance and theming of the
completion problem of unimodular matrices over Laurent polynomialsriagsignal
processing and gives an algorithm for translating this problem into a polahcase.
Park’s results can also be used for computing flat outputsfaft multidimensional
linear systems ([30, 31]). See [5] for another constructive algorahoh[6] for illus-
trations on different explicit examples.

Notation. In what follows, we shall denote bya field, D = k[z4, ..., z,] a commu-
tative polynomial ring with coefficients ik, D'*? the D-module formed by the row
vectors of lengthp with entries inD and D?*? the set of; x p-matrices with entries in
D. F will always denote a>-module. We denote bi”' the transpose of the matrik
and byI, thep x p identity matrix. Finally, the symbct means “by definition™.



26 A. Fabiahska and A. Quadrat

2 A module-theoretic approach to systems theory

LetD = k[zq,...,z,] be a commutative polynomial ring over a fidldindR € DI*P.
We recall that a matrix? is said to havéull row rankif the first syzygy modulef the
D-moduleD'*? R formed by theD-linear combinations of the rows @, namely,

kerp(.R) 2 {\ € D'*? | AR = 0},

is reduced to 0. In other words,R = 0 implies A = 0, i.e., the rows ofR are
D-linearly independent.
The following definitions oprimenessre classical in systems theory.

Definition 2.1 [32, 59, 63] LetD = R|xy,...,x,] be a commutative polynomial ring,
R € D?*P a full row rank matrix,J the ideal generated by thex ¢ minors of R and
V(J) the algebraic variety defined by

V(J)={¢eC" | P(6)=0,¥PecJ).

1. R is calledminor left-primeif dim¢ V(J) < n — 2, i.e., the greatest common
divisor of theq x ¢ minors of R is 1.

2. Ris calledweakly zero left-prim@ dim¢ V(J) < 0, i. e., theq x ¢ minors of R
may only vanish simultaneously in a finite number of point€of

3. Ris calledzero left-primaf dim¢ V(J) = —1, i. €., theg x ¢ minors of R do not
vanish simultaneously i@".

The previous classification plays an important role in multidimensional mgstiecory.
See [32, 59, 63] and the references therein for more details.

The purpose of this section is twofold. We first recall how we can géinertne
previous classification for general multidimensional linear systemssiygtems which
are not necessarily defined by full row rank matrices. We also explairdtiality
existing between thbehavioural approactio multidimensional systems ([32, 39, 62,
63]) and themodule-theoretic ong42, 43, 44]). See also [62] for a nice introduction.

In what follows, D will denote a commutative polynomial ring with coefficients
in a field k. In particular, we shall be interested in commutative polynomial rings
of functional operators such as partial differential operators, reifféal time-delay
operators or shift operators. Let us consider a mdtrik D?*? and aD-moduleF,
namely

Vfi,fo€F, Vai,axa€D: ayfi+asfs€eF.
If we define the followingD-morphism, namelyD-linear map,
R:D™e I pxp
A=(\1 ... A) — (RN =AR,
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where D'*? denotes theD-module of row vectors of length with entries inD, then
the cokernel of théd-morphism.R is defined by

M = D7 /(D' R).

The D-module M is said to be presented Iy or simplyfinitely presented[5, 53]).
Moreover, we can also define tegstenor behaviouras follows:

kerr(R.) = {n € F?| Rn=0}.

As it was noticed by Malgrange in [28], tHe-moduleM and the systerker #(R.) are
closely related. As this relation will play an important role in what follows, Walls
explain it in details. In order to do that, let us first introduce a few clasdiefhitions
of homological algebra. We refer the reader to [53] for more details.

Definition 2.2 1. A sequencéM;,d; : M; — M,_1);cz Of D-modulesM; and
D-morphismsi; : M; — M;_, is a complexf we have
VieZ, imd; Ckerd; 1.
We denote the previous complex by

diyo dit1 d; di—1
S M S M S M (2.1)

2. Thedefect of exactness of the complex (2.1)/4&ts defined by
H(Ml) = ker dt/lm d,‘+1 .

3. The complex (2.1) is said to lexact at); if we have
H(M,) =0 < ker d; = im di+1~

4. The complex (2.1) isxactif
Vi €Z, ker d; :imdi+1.

5. The complex (2.1) is aplit exact sequencié (2.1) is exact and if there exist
D-morphismss; : M; 1 — M, satisfying the following conditions:

_ Sit1058; =10
VieZ, ! ‘ ’ '
s;0d; +diq1 05141 = idyy,.

6. Afinite free resolutiorof a D-moduleM is an exact sequence of the form

Ry,
e

0 — DXPm L ples B plaee T L0, (2.2)

wherep; € Z, = {0,1,2,...}, R; € DPi*Pi-1 and theD-morphism.R; is
defined by
R;: D\*Pi — DIXpin
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The next classical result of homological algebra will play a crucialirolehat follows.

Theorem 2.3 [53] Let F be aD-module,M a D-module and (2.2) a finite free reso-
lution of M. Then, the defects of exactness of the following complex

oL e Joopo S ppe g (2.3)
where theD-morphismgR;. : FPi-1 — FPi is defined by
VneFPt, (Ri)(n) = Rin,

only depend on thé-modulesM and . Up to an isomorphism, we denote these
defects of exactness by

ext), (M, F) = kerz(Ry.),
extiD(M, f) = keff(R1+1)/(Rl fpi), ) Z 1.

Finally, we haveext?, (M, F) = homp(M,F), wherehomp (M, F) denotes theD-
module ofD-morphisms from\/ to F.

We refer the reader to Example 5.3 for explicit computationscof, (N, D), i > 0.

Coming back to theD-module M, we have the following beginning of a finite free
resolution ofM:

D1xa i DlxpLM_)O,
(2.4)
A — AR

where = denotes theD-morphism which sends elements Bf-*? to their residue
classes inV. If we “apply the left-exact contravariant functoliomp (-, ) to (2.4)
(see [53] for more details), by Theorem 2.3, we obtain the following&sequence:

Fi & FP o homp(M,F) — 0.

Rn «—
This implies the following important isomorphism ([28]):
kerz(R.) ={n € F?| Rn =0} = homp(M,F). (2.5)

For more details, see [5, 28, 32, 44, 62] and the references théngyarticular, (2.5)
gives an intrinsic characterization of tt/ésolutions of the systerker~(R.). It only
depends on two mathematical objects:

1. The finitely presented>-module M which algebraically represents the linear
functional system.

2. The D-module F which represents the “functional space” where we seek the
solutions of the system.
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If D is now a ring of functional operators (e.g., differential operatorseiialay
operators, difference operators), then the issue of understandiict) W is suitable
for a particular linear system has long been studied in functional analydissastill
nowadays a very active subject of research. It does not seercahstructive algebra
and symbolic computation can propose new methods to handle this fuetiaigsis
problem. However, they are very useful for classifylngnp (M, F) by means of the
algebraic properties of the-module)M . Indeed, a large classification of the properties
of modules is developed in module theory and homological algebra.53g&f more
information. Let us recall a few of them.

Definition 2.4 [53] Let D be a commutative polynomial ring with coefficients in a
field k and M a finitely presented-module. Then, we have

1. M is said to bdreeif it is isomorphic toD*" for a non-negative integet i. e.,

M=DY™  reZ,={012...}.

2. M is said to bestably freeif there exist two non-negative integerands such
that
M@ Dl)(s o D1><7‘.

3. M is said to beprojectiveif there exist aD-module P and non-negative integer
such that
M@ P = DY,

4. M is said to baeflexiveif the canonical map
er : M — homp (homp (M, D), D),
defined by
Vm e M,V f€homp(M,D): ex(m)(f) = f(m),

is an isomorphism, whefeom , (M, D) denotes théd-module of D-morphisms
from M to D.

5. M is said to baorsion-freeif the submodule of\/ defined by
t(M)={meM|30£A£PeD: Pm=0}

is reduced to the zero module()) is called thetorsion submodulef A7 and
the elements of( M) are thetorsion elementsf M.

6. M is said to betorsionif ¢(M) = M, i.e., every element oM is a torsion
element.

Let K = Q(D) = k(zx,...,x,) be thequotient fieldof D ([53]) and M a finitely
presented>-module. We call theank of M over D, denoted byrank (M), the di-
mension of thek'-vector spacél’ @ p M obtained by extending the scalarsidffrom
DtoK,i.e.,

rankp (M) = dimg (K ®p M).
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We can check that i/ is a torsionD-module, we then hav& ®p M = 0, a fact
implying rankp (M) = 0. See [53] for more details.
Let us recall a few results about the notions previously introduced imiefi 2.4.

Theorem 2.5 [53] Let D = kx4, ..., z,] be a commutative polynomial ring with co-
efficients in a field.. We have the following results:

1. We have the implications among the previous concepts:

free — stably free— projective = reflexive—> torsion-free

2. If D = k[z4], thenD is a principal ideal domain- namely, every ideal oD
is principal i.e., it can be generated by one elementof- and every finitely
generated torsion-fre®-module is free.

3. (Serre theorem [10Jtvery projective module oveD is stably free.
4. (Quillen-Suslin theorem [52, 55Bvery projective module ovébp is free.

The famous Quillen-Suslin theorem will play an important role in what folloWe
refer to [23, 24] for the best introductions nowadays available on thigeu

The next theorem gives some characterizations of the definitions giveefini-
tion 2.4.

Theorem 2.6 [5, 33, 44]Let D = klx4,...,x,] be a commutative polynomial ring
over afieldk, R € D?7*? and the finitely presenteB-modules

M:Dlxl)/(Dlqu), N:D1Xq/(D1XpRT).
We then have the equivalences between the first two columns of Figure 2.1

Combining the results of Theorem 2.6 and the Quillen-Suslin theorem (@E€hko-
rem 2.5), we then obtain a way to check whether or not a finitely presémnmddule

M has some torsion elements or is torsion-free, reflexive, projectiablysfree or
free. We point out that the explicit computation @ft, (IV, D) can always be done
using Gbbner or Janet bases. See [5, 42, 43] for more details and for Hueigle
tion of the corresponding algorithms. We also refer the reader to [4r@hé library
OREMoODULES in which the different algorithms were implemented as well as to the
large library of examples of REM oDuULES which illustrates them. Finally, see also
[3, 10, 20] and the references therein for an introduction t@bGer and Janet bases.

Remark 2.7 The D-module N = D**4/(D'*? RT) is called thetransposed module
of M = DY*?/(D'*4 R) even if N depends o/ only up to aprojective equivalence
([45]), namely, ifA = D'*"/(D'*¢ R’y andN' = D'*¢/(D'*" R'T), then there exist
two projectiveD-modulesP and P’ such thatV & P = N’ & P’ ([53]). However, for
every D-module F, we haveext’, (N @& P, F) = ext’, (N, F) @ ext’, (P, F) and, for

i > 1, ext’, (P, F) = 0 becauseP is a projectiveD-module ([53]). Hence, we then
getext’, (N, F) = ext’, (N’, F), fori > 1. Hence, the results of Theorem 2.6 do not
depend on the choice of a presentation\of i.e., onR. In what follows, we shall
sometimes denot® by T'(M).
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In order to explain why the definitions given in Definition 2.4 extend the eptof
primeness defined in Definition 2.1, we first need to introduce some dejitions

([2)).

Definition 2.8 1. If M is a non-zero finitely presented-module, then theyrade
Jjp(M) of M is defined by

jp(M) = min {i > 0 | ext’, (M, D) # 0}.

2. If M is a non-zero finitely presentdd-module, thedimensiondimp, (M) of M
is defined by

dimp (M) = Kdim(D/+/annp (M)),

whereKdim denotes th&rull dimension([53]) and
annp(M) ={a € D|aM = 0},
Vanmp(M)={a€D|31€Z, : o' M =0}.

We are now in position to state an important result.

Theorem 2.9 [2, 33]If M is a non-zero finitely presentdd = k[z4, ..., x,]-module,
wherek is a field containingQ, we then have

jp(M) + dimp (M) = n.

Let us suppose that has full row rank and let us consider the finitely presented
moduleM = D**?/(D'*4 R). Using the notations of Definition 2.1 and the fact that

dlmD(N) == dlm(cV(J),

whereN = T(M) = D**4/(D**? RT) is then a torsionD-module, i.e., it satisfies
ext% (M, D) = homp(M, D) = 0, by Theorem 2.9, we then obtain

jp(N)=n—dimcV (J) > 1.

Hence, by Theorems 2.6 and 2.9, we obtain & minor left-prime (resp., zero left-
prime) iff the D-module M is torsion-free (resp., projective, i. e., free by the Quillen-
Suslin theorem stated in 4 of Theorem 2.5). See [44] for more detailharextension
of these results to the case of non-commutative rings of differentiahtps.

We finally obtain the table given in Figure 2.1 which sums up the differenili®
previously obtained. We note that the last two columns of this table only hoshwh
the matrixR has full row rank.

To finish, we explain what the system interpretations of the definitions given
Definition 2.4 are. In particular, these interpretations solve the Mondagarostated
in the introduction of the paper. In order to do that, we also need to introaldiee
more definitions (see, e. g., [53]).
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Module M exts (N, D) dimp(N) Primeness
With torsion | ¢(M) = exth (N, D) n—1 0
Torsion-free extL(N,D) =0 n—2 Minor left-prime

Reflexive ext’, (N, D) = 0, n—3
i=1,2
ext’, (N, D) = 0, 0 Weakly zero
1<i<n-1 left-prime
Projective ext’, (N, D) = 0, -1 Zero left-prime

1<i<n

Figure 2.1 Classification of some module properties
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Definition 2.10 1. A D-module F is calledinjectiveif, for every D-module M,
and, for alli > 1, we haveext?, (M, F) = 0.

2. A D-moduleF is calledcogeneratoif, for every D-moduleM, we have
homp(M,F)=0 =— M =0.

Roughly speaking, an injective cogenerator is a space rich enougedésing solu-
tions of linear systems of the formn = 0, whereR € D?*? is any matrix and
n € FP. In particular, using (2.5), ifF is a cogeneratoD-module andM # 0, then
homp (M, F) # 0, meaning that the corresponding systiesm=(R.) is not trivial. Fi-
nally, if F is an injective cogeneratdp-module, then we can prove that any complex
of the form (2.3) is exact ak?:, i > 1, if and only if the corresponding complex (2.2)
is exact. See [32, 39, 62] and the references therein for more details.

The following result proves that there always exists an injective cogéare

Theorem 2.11 [53] An injective cogeneratob-moduleF exists for every ringD.

Let us give important examples of injective cogenerator modules.

Example 2.121f Q is an open convex subset Bf*, then the spac€>(Q) (resp.,
D'(2)) of smooth real functions (resp., real distributionsXdis an injective cogener-

ator module over the ring[0, . . ., 9,] of differential operators with coefficients i,
where we have denoted By = 0/9z; ([32, 28, 39]).

Example 2.13 Let k be a field,F = k%+ be the set of sequences with valueg:iand
D = kx4, ..., z,] be the ring ofshift operatorsnamely,

VieF, i=1,...,n, (z;f)(n)=fu+1;),

Where:u = (/’Lh s 7/’Ln> € Zi and/j/+1l = (,ula ey him1s it 1, Hit1s - a,u“n) Then1
F is an injectiveD-module ([32, 62]).

We have the following important corollary of Theorem 2.6 which solvesMioage
problem in the case of linear functional systems with constant coeffici&@s [64]
and the references therein and the introduction of the paper.

Corollary 2.14 [5, 42] Let F be an injective cogeneratdp = k[z1,...,z,]-module,
R € D?*P and M = D'*?/(D*4 R). Then, we have the following results:

1. There exist§); € D% <9, wherep = ¢, such that we have the exact sequence
Fa o Q1 F2
i.e. kerr(R.) = Q1 F%, iff the D-moduleM is torsion-free.

2. There exist); € D"*% and@, € D%*% such that we have the exact sequence

Fa B Fa (Ql' Fa2 €Q2' Fs

)

i.e.,kerg(R.) = Q1 F2 andker£(Q1.) = Qo F%, iff the D-modulel is reflex-
ive.
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3. There exists a chain of successive parametrizations, namely,fef 1,...,n,
there exist); € D% *%+1 such that we have the following exact sequence

R. Ql- Qn71< n Qn- -~
Fo L po B Sl g Kot pang

i.e,kerg(R.) = Q1 F= andkerz(Q;.) = Qiy1 F4+,i=1,...,n— 1, iff the
D-moduleM is projective.

4. There exis) € DP*™ andT € D™*? such thatl" Q = I,,, and the sequence

Fo L pp g, (2.6)

is exact, i. e.kerz(R.) = Q F™, and iff theD-module)/ is free.

We refer the reader to [5, 42, 43, 44, 49, 50] for the solutions of theddgroblem for
different classes of linear functional systems with variables coeffiE®uich as partial
differential, differential time-delay or difference equations.

The matricex); defined in Corollary 2.14 are callgzhrametrizationg[5, 42, 43,
44)). Indeed, from 1 of Corollary 2.14, it/ is torsion-free, then there exists a matrix
of operators),; € D7 *% which satisfiekerz(R.) = @, F%. This means that every
solutionn € FP satisfyingRn = 0 is of the formn = Q; £ for a certainé € F%. In
thebehaviour approacii40]), the parametrization is called anage representatioof
ker#(R.) ([39, 62, 63]). We point out that the parametrizatiohsare obtained by com-
puting ext’, (N, D) (see Theorem 2.6). Hence, checking whether or nbtmodule
is torsion-free, reflexive or projective gives the correspondirngeassive parametriza-
tions. We refer to [5, 42, 43, 44] for more details, the extension of theigus results
to non-commutative algebras of functional operators and the impletientaf the
corresponding algorithms in the libraryRBM oDULES. Finally, the matrix@Q defined
in 4 of Corollary 2.14 is called aimjective parametrizatiomf ker (R.) as everyr-
solution ofker ~(R.) has the form) = Q ¢ for a certaing € 7™ and we have

§E=(TQ)§="Tn,

i.e., & is uniquely defined by, € ker#(R.). At this stage, it is important to point out
that no general algorithm has been developed to get injective paraatietnz when
the D-module M is free. It is the main purpose of this paper to constructively study
this question and to apply the computation of injective parametrizations to cpeme
guestions appearing in mathematical systems theory.
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Finally, we point out that, if\/ is a freeD-module, then there always exist matrices
Q € DP*™ andT € D™*? such that, for everyD-module 7, we have the exact
sequence (2.6). Indeed, let us recall two standard argumentsradlbgical algebra

([53)).

Proposition 2.15 1. Let us consider the following short exact sequence:
M LmLm—o.

If M" is a projectiveD-module, then the previous exact sequence splits (see 5 of
Definition 2.2).

2. LetF be aD-module. The functdiomp(-, F) transforms split exact sequences
of D-modules into split exact sequencedBfmodules.

By 1 of Proposition 2.15, we obtain that' ¢ SR pixe 29 pixm L gisa splitting
exact sequence and applying the funéten (-, F) to it, by 2 of Proposition 2.15, we
obtain the splitting exact sequence (2.6). Hence, the assumptiof fkain injective
cogeneratoD-module is only important for the converse implication of 6 of Corol-
lary 2.14.

Explicit examples of computation of parametrizations can be found in, 52643,
44] as well in the @EMoDULES large library of examples ([4]). We refer the reader
to these references and to section 4 for the computation of injective parzations.
However, let us give a simple example in order to illustrate the previouises

Example 2.16 Let us consider the rin® = Q[0 02, 5] of differential operators with
rational coefficientsd; = 9/0x;), the matrixR = (9, J» 03) defining the so-called
divergent operatoin R? and the finitely presente®-moduleM = D'*3/(D R). Let

us check whether or not the-module)/ has some torsion elements or is torsion-free,
reflexive or projective, i. e., free by the Quillen-Suslin theorem. treoto do that, we
define theD-moduleN = D/(D'*? RT). A finite free resolution ofV can easily be
computed by means of Gbner or Janet bases. We obtain the following exact sequence

0— DB prxs Lo, pia Lo N g

whereo denotes the canonical projection omtoand

0 —03 0O
Py = 03 0 -0 |, Ps=R
-0y O 0

We note thatP, corresponds to the so-calledrl operatorwhereask” is thegradient
operator. Then, the defects of exactness of the following complex

T T
0D p3 2 pus g g (2.7)



36 A. Fabiahska and A. Quadrat

are defined by

1%

kerp(.R),
kerp(.Py) /(D R),
kerp(.P{) /(D' PY),
D/(D1><3 PT)

ext!

)

H(N,D
extL (N, D
2(N,D

Il

1

ext?

ext?, (N, D

)
)
, D)
) =
Using the fact thafz has full row rank, we obtain thatt%, (N, D) = kerp(.R) = 0,

which is equivalent to say tha¥ is a torsionD-module. Now computing the syzygy
modulesker p (. P]) andkerp (.PY) by means of Gibner or Janet bases, we obtain that

kerp(.P{) = DR, kerp(.P])=D"3P],

which shows thatxt} (N, D) = ext% (N, D) = 0. Finally, we can easily check that 1
does not belong to the idedl= D 9, + D 0, + D 05 of D, and thus, we have

exth (N, D) = D/I # 0.

Using Theorem 2.6, we obtain thaf is a reflexive but not a projective, i. e., not a free
D-module. This last fact can also be checkedvdsas full row rank and the dimension
dimp(N) is 0 as the corresponding system is defined by the gradient operatwiyna

d;y=0, i=123,

whose solution is a constant, i.e., the solution of the system only depentis on
function of zero independent variables”. Hence, by Theorem 2 oltain that
jp(N) = 3, meaning that the first non-zeset’, (N, D) has index 3. By Theorem 2.6,
we then get thad/ is a reflexiveD-module but not a projective one.

Finally, if we consider theD-module 7 = C*>(Q), where( is an open convex
subset ofR3, using Example 2.12, we obtain thatis an injective cogeneratap-
module. Hence, if we apply the functabmp (-, F) to the complex (2.7), we then
obtain the following exact sequence:

T T
FhLp o Ry L,

We find again the classical results in mathematical physics that the smdotiose

on an open convex subset Bf of the divergence operator are parametrized by the
curl operator and the solutions of the curl operator are parametrizéidebgradient
operator.

The only point left open is to constructively compute injective parameinias of
linear functional systems defining free modules over a commutativenpolial ring

D. Indeed, checking the vanishing of the’, (N, D), we generally obtain a successive
chain ofn parametrizations but not an injective one. In the case of linear systems o
partial differential equations with polynomial or rational coefficients haee recently
solved this problem in [49, 50, 51] using a constructive proof of a faesult in non-
commutative algebra due to Stafford. However, the same techniquetdaa used if
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we want an injective parametrizatiohof ker =(R.) to have only constant coefficients.
The main purpose of this paper is to solve this problem using a constrpotigéof the
Quillen-Suslin theorem and to show some applications of this result to maticama
systems theory.

3 The Quillen-Suslin theorem

Since Quillen and Suslin independently proved Serre’s conjecture stadihgribjec-
tive modules over commutative polynomial rings with coefficients in a fieddfiee,
some algorithmic versions of the proof have been proposed in the litetiatorder to
constructively compute bases of free modules ([15, 19, 26, 25&8%7, 58, 59]). We
refer the interested reader to Lam’s nice books [23, 24] concerrénmg’S conjecture.

3.1 Projective and stably free modules

In module theory, it is well known that a finitely presented= k[z, ..., x,]-module
M = D'*?/(D'*4 R), wherek is a field andr € D?*?, admits a finite free resolution.
This is a result is due to Hilbert ([10]). Moreover,kfis acomputable fieldwe can
even construct a finite free resolution&af using Gobner or Janet basis ([3, 10, 20]).
A classical result due to Serre proves that every projediv@odule is stably free

(a stably free module always being a projectivanodule). See [10, 23, 24] for more
details. In [49, 51], a constructive proof of this result was giventheccorresponding
algorithm was implemented inREM ODULES. Let us recall these useful results.

Proposition 3.1 [49, 51]Let M be aD-module defined by the finite free resolution

-Rm,
—_—

0 —s D¥Pm 2B prxn B pape T, (3.1)

1. If m > 3 and there exists$,, € DP~-1*Pm such thatR,, S,, = I, , then we
have the following finite free resolution df

T,

mo1 plx (Pr—24pm) Lm=2

R —3
—

0 — D'Pm—t D xpm=s =M —0,

3.2)
with the following notations:

Tpo1=(Rm-1 Sm)€ Dp7n,—1><(pm,—2+Pm,),

Tmfz _ ( Rm—2 ) c D(Pm—2+pm)><pm—3.

2. If m = 2 and there exists, € DP**P2 such thatR, S, = I,,, then we have the
following finite free resolution af/

0 — Dixp RN pix@otp2) T oAy 0, (3.3)
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with the notationg;, = (R; Sy) € DPr*(Potr2) and

r=r®0: DWXPotr2) . N
A=A A2) — T(\) =7(\).

Remark 3.2 We note that Proposition 3.1 holds for every rifg

Let R € D?*? and let us suppose that tie@module M = D'*?/(D'*4 R) is pro-
jective (using the results summed up in Figure 2.1, we can constructitelgk this
result). Using 1 of Proposition 2.15, we obtain that the exact sequ8ribesplits (see
5 of Definition 2.2), and thus, there exisis, € DP»—*P= such thatR,, S,, = I,,,.
Repeating inductively the same method with the new finite free resolutidd,ofie
can assume that we have the finite free resolutiol/of

! ’
0 — pixps Lo, pixpy o, pixp B pixpe T oap g

As M is a projectiveD-module, by 1 of Proposition 2.15, the previous exact sequence
splits and thus, there exists a matsiy € Dr2*?s satisfying R} S5 = I,,. By 1 of
Proposition 3.1, we then get the finite free resolutiodaf
0 pixps “Ba 59 pixitey) “BL DT pixpe w00
Let us denote by, = (R 07)T. Again, asM is a projectiveD-module, by 1 of
Proposition 2.15, the previous exact sequence splits and there gixist® (P1 +r5)xp2
suchthatR; S3) Sy = I,. Using 2 of Proposition 3.1, we obtain the following finite
free presentation of thB-moduleM’ = D'*(potp2) /(DX (P1+05) (T Sh))
/ .(Tl Sl) / ’
0 — DX(P1+ps) 2, ptxlpotrz) T, At 0,
wherer’ denotes the standard projection ot andr : M’ — M is defined by
7(m) = w(\1), forall A = (\; \p) € D'*(PotP2) satisfyingm = 7/()\). Moreover,
2 of Proposition 2.15 says thatis an isomorphism, i.eM’ = M, a fact that can be
also directly checked. We then obtain the following result.

Corollary 3.3 LetD = k[z4,...,z,] be a commutative polynomial ring over a fiéid
and R € D9*?. If the D-moduleM = D'*?/(D*4 R) is projective, then there exists
a full row rank matrix?’ € D7 *?" such that

M = D™ /(D'™4" R). (3.4)
We refer to Example 5.5 for an illustration of Corollary 3.3. See also$8951].

We note thatankp (M) = rankp(M') = p’ — ¢'. Finally, we have the following
short exact sequence BFmodules

’ 4 ’ /
0— D¢ L pbo’ T,
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and using the fact that/” =~ M and M is a projectiveD-module, by 1 of Proposi-
tion 2.15, we obtain that the previous exact sequence splits and we th@gh, §&S3])

M/@Dlxq/ o D1><p’7
which, by 2 of Definition 2.4, shows that’ = M’ is a stably freeD-module.

Corollary 3.4 (Serre) [10, 23, 24]Let M be a finitely generated projectiv® =
k[xy, ..., z,]-module. Then)M is stably free.

3.2 Stably free and free modules

Let M be a stably free module ovép = k[zq,...,xz,], wherek is a field. Using
Corollary 3.3, we can always suppose thidthas the formM = D'*?/(D'*4 R),
whereR € D?*? admits a right-invers& € DP*?. We note thatR has then full row
rank A\ R =0 = A= AR S = 0). Let us characterize wheW is a freeD-module.

In order to do that, we first need to introduce a definition.

Definition 3.5 Let D be aring. Theyeneral linear groupGL, (D) is defined by
GL,(D) ={U € DP*? |3V € DP*P . UV =V U = I,,}.
An element/ € GL, (D) is called aunimodular matrix

In the case wher® = k[z4,...,z,], we note thal/ € GL, (D) iff the determinant
det U of U is invertible inD, i.e., is a non-zero element &f The following result
holds for every ringD.

Lemma 3.6 Let R € D7*P be a matrix which admits a right-inverse over Then, the
D-moduleM = D'*?/(D'*4 R) is free if and only if there exist§ € GL,(D) such
thatRU = (I, 0).

Indeed, let us suppose that there exists GL,(D) such thatRU = (I, 0) and let
us denote by = (I, 0) € D7*?. We easily check thab'*?/(D'*7.J) = D *(P=a),

Moreover, using the fact tha®U = J andU € GL,(D), we obtain the following
commutative exact diagram

0 0
i) !

0_—- pixa B pixp 7, M —0
| Lw

0—- pixa . pixp A, pix(p—aq) —0,
! !
0 0

which proves that/ = D'*(»=9) j. e., M is a freeD-module of ranky — q.
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Conversely, let us suppose theat = D'* (=9, Then, combining the isomorphism
Y : M — D™ (r=9) and the short exact sequence

0 — D B, plxp T pr o,
we obtain the following exact sequence:
0 — D1><q _R> D1><p pom DlX([)—q) —0.

If we consider the matrix which corresponds to thenorphismy o 7 in the canonical
bases of)'*? and D' *(»—4) we then obtain a matrig ¢ D?*(~9) such that

YAeDYP . (Yom)(N\) =AQ.
By 1 of Proposition 2.15, the previous exact sequence splits, i. e.ave h

.R .Q

0— Dlxe I plxp =, Dlx(pfq) —>0,
L T

or, equivalently, there exists a matrix € D®~9)*? such that the following Bzout
identities hold (see [5, 42, 48, 53] for more details):

R 1, 0 R
(5o 0-(t ) o af2)s

In particular, we obtain that there exists a matiix= (S Q) € GL, (D) satisfying
RU = (I; 0).

Finally, the family{=(T;) }1<i<,—, forms a basis of the fre®-module M, whereT;
denotes the!" row of T € DP9 x»,
We are now in position to state the famous Quillen-Suslin theorem ([23, 24, 53

Theorem 3.7 (Quillen-Suslin theorem)[52, 55] Let A be a principal ideal domain
(e.qg., afieldt) andD = A[zq,...,x,] @ polynomial ring with coefficients id. More-
over, letR € D?*? be a matrix which admits a right-inversee D?*9,i.e.,R S = I,.
Then, there exists a unimodul&lre GL,, (D) satisfying

RU = (I, 0). (3.5)
Using Lemma 3.6 and Theorem 3.7, we obtain the following importantleoyo

Corollary 3.8 (Quillen-Suslin) [52, 55] Let A be a principal ideal domain (e.g., a
fieldk) and D = Alxy,...,xz,]. Then, every stably freB-module is free.

Moreover, the problem of finding a basis of a free finitely generatedoduleM can
be reformulated in terms of matrices as follows:
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Problem 1 Let R € D?*P be a matrix which admits a right-inverse ovBr. Find a
matrixU € GL,(D) such thatRU = (I, 0).

The previous problem is equivalent to completiRgo a square invertible matrix

vt = ( R ) e v
T

The Quillen-Suslin theorem states that Problem 1 has always a solutioa pegr-
nomial ringD = Alxy, ..., x,] with coefficients in a principal ringl and, in particular,
in a field k. In what follows, an algorithm which computes such a matfiwill be
called aQS-algorithm

Let us consider a matri® € D?*? which admits a right-inverse ovep and let
us denote byR; the ™ row of R. We note that the rowR, € D'*? admits a right-
inverse overD. Let us suppose that we can find a matiix € GL, (D) satisfying
RyU=(10...0). Then, we have

1
RU1:< 0 )7
* RQ

whereR, ¢ D~1x(-1) and« denotes a certain element pfe—Y*1. Hence, we
restrict our considerations to the new matkix, which can easily be shown to admit a
right-inverse oveD, and reduce Problem 1 to the following one:

Problem 2 Let R € D'*? be a row vector which admits a right-inverse over Find
amatrixU € GL,(D) suchthatRU = (10 ... 0).

The purpose of the next paragraphs is to recall a QS-algorithm solvirigeen 2 over
a commutative polynomial ringp = k[zq,...,x,] over a computable field (for in-
stancek = Q). This algorithm was implemented in the packagelQEN SUSLIN
([12]). See also the appendix. We also point out that a QS-algorithralbadeen im-
plemented in QILLEN SUSLIN for the caseD = Z[xy, ..., z,]. Even though there are
some differences in the constructive proofs of the Quillen-Suslin thedeveloped in
[15, 19, 23, 26, 35, 56, 57, 59], we note that our algorithm is basati@same main
idea, i. e., it proceeds by induction on the number of variables D = k[x4, ..., x,].
Each inductive step of the general QS-algorithm reduces the problera tase with
one variable less. A more global and interesting approach has receetiydeveloped
in [27, 58] which needs to be studied with care in the future.

3.3 Solution of Problem 2 in some special cases
Although the tedious inductive method, which will be explained in the nextsec

cannot generally be avoided, there are cases where simpler andhiastistic methods
can be used. We shall first consider such cases.
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3.3.1 Matrices over a principal ideal domainD

We first consider the special case of matrices over a principal ideahithaD (e. g.,
D = k[z4], wherek afield,Z). Let R € D7*P be a matrix which admits a right-inverse
overD. Then, computing th8mith canonical fornof R ([40]), we obtain two matrices
F € GL,(D) andG € GL, (D) satisfying

R=F(I, 0)G.

If we denote byr = p—q, G = (G GJ)", whereG, € D7, G, € D™** and
G~' = (H, H,) € DP*? whereH, € DP*4, Hy € DP*", then we gefR = F G,
i.e.,G; = F~!' R, and thus, we get

N <R>(H1 H2)<F_1 0>:Ip
Go 0 I,

= <R ) (Hy F~' Hy) =1,
Go

which solves Problem 1 as we can tdke= (H; F~! H,) € GL,(D) andT = Gs.

3.3.2 (p—1) x p matrices over an arbitrary commutative ring D

Let us consider the case of a matfixe D®~1)*? which admits a right-inverse over a
commutative ringD. If we denote bymn; the(p — 1) x (p — 1) minor of R obtained by
removing thei™ column of R, then, using the fack admits right-inverse, we get that
the family {m; },<;<, satisfies a Bzout identity>_>_, n, m; = 1 for certainn; € D
and: = 1,...,p. Let us denote by

R
V= € DP*P,
( (=1)PHng ... (=1)%Pn, )

Expand the determinant &f along the last row, using the Laplace’s formula, we then
getdet V = 1. Hence, if we denote by € DP*? the inverse of the matrikx’, we then
obtainRU = (I,—1 0), which solves Problem 1.

3.3.3 1 x p rows over an arbitrary commutative ring D
We now consider Problem 2, i.e., the case of a row vegter (f; ... f,) € D*?
which admits a right-inverse over an arbitrary commutative fing

Remark 3.9 (Special form of the row) 1. We note that if one of the components of
f is an invertible element oD, we can then transform the royvinto (1 0 ... 0)
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by means of trivial elementary operations. For instancg, if € D, then the matrix

defined by
W fi
0 Iy

satisfiesdet W = f;* € DandfW = (1 fo ... f,). Then, simple elementary
operations transfornfi IV into the vector1 0 ... 0).

2. Another simple case is when two componentg generateD. Let us suppose that
there existh; andh, € D such that we have thedout identityf, by + fohe = 1 and
let us define the following matrix:

hi —f2 0
W=1 hy fi 0
0 0 I,

We easily check thatet W = 1andf W = (10 f5 ... f,). Then, we can reduceW
to (10 ... 0) by means of elementary operations.

3. If the ™ component off is 0 or the ideal generated by the elemefits. .., fi_1,
fix1,..., fp is alreadyD, then we can follow an idea analogous to the one developed
in [49, 51]. Let us suppose that= 1, i.e., f; is a redundant component in the sense
that(fo, ..., f,) = D. Then, there existo, ..., h, € D satisfying the Bzout equation

P _, fi h; = 1. Then, the matrix

1
(I—=f1)hy 1

(I—f1)hy 1

satisfiesf W = (1 f» ... fp) anddet W = 1. We can now reducg¢ W to (10 ... 0)
by means of elementary operations.

In particular, this strategy is always successful when the lemgftthe row f exceeds
the stable rangeof the ring D. We note that the stable range Bf= Rzy,...,z,] is
equal ton + 1. We refer the reader to [49, 51] for more details.

We note that all the conditions given in Remark 3.9 can be checked usttmér or
Janet bases.

The matrixU can also be easily computed in cases where a right-invecfehe
row f has a special form.

Remark 3.10 (Special form of the right-inverse) Let g € D?*! be a right-inverse of
the unimodular rowf € D'*?,i.e., fg = 1.
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1. Letus suppose that one of the entries of a right-invesfef, sayg;, is invertible
in D. Then, the following matrix

g1

9p 1

satisfiesdet W = gy andf W = (1 fo ... f,). Asg: is an invertible element
of D, thenW is a unimodular matrix angt W can easily be transformed into
(10 ... 0) by means of elementary operations.

2. Iftwo componentg, g» of g generate the whole ring, then there exist elements
hi,hs € D such thay; hy + g2 ho = 1. Then, the matrix defined by

g1 —he
92 hy
W=| g3 1
9p 1
satisfiesdet W = landfW = (1 ~ fs ... f,), wherex denotes a certain
element ofD. We can then reducéW to (1 0 ... 0) by means of elementary

operations.

Finally, we also note that iff € D'*? admits a right-inversg over D for which

any of the heuristic methods explained in Remark 3.9 may be usegfothen a
unimodular matrixV’ having g7 as a first row can be easily computed. Then, the
productf VT = (1 % ... %) can be reduced to the first standard basis vector by
elementary column operations.

For instance, let us illustrate 1 of Remark 3.10. In some of the illustratinghex
ples, we shall also use the notatibh= k[z1, ..., z,] as these examples come from
the control theory and signal processing literatures whgie commonly used. The
independent variables, i = 1,...,n, usually denote the variables appearing in the
discrete Laplace transform.

Example 3.11 Let us consideD = Q|z1, 22, 23] and the following row vector:
R= (212 +1 2iz34+1 2z 2223).

We can easily check thd admits the following right-invers§ = (—z7z3 1 23)7.
As the second component 6fis invertible overD, we can apply 1 of Remark 3.10
in order to find a unimodular matri% over D which satisfiesRU = (1 0 0). Let us
define the following elementary matrices:

0 1 0 1 0 0
U1: 1 0 O 5 U2: —Z%Zg 1 0
00 1 A0 1
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We then haveR (U; Uz) = (1 2723 +1 2 23 z3). Finally, if we denote by

2,2 2
1 —2z{z5—1 —z12523

0 0 1

we then haveR U = (1 0 0), where the unimoduldli = U, U, Us is defined by

2223 222+ +1 23 22 22

U= 1 —2222-1 —21 22 23 . (3.6)

23 23 (2241 22221

3.4 A QS-algorithm for commutative polynomial rings

Over an arbitrary commutative ring, not every row admitting a right-inverse can be
completed to a unimodular matrix over The module-theoretic interpretation of this
result is that, over certain rings, there exist stably free modules whicharfree. For
instance, using a classical topological theorem on vector fields on thesshiiR), we
can prove that the row vectdt = (z; x2 x3) € D'*? with entries in the commutative
rng D = Rz, xo, 73]/ (2? + 22 + 23 — 1), which admits the right-inversg”, cannot
be completed to a unimodular matrix ov@r For more details, see [24].

However, it is always possible over a polynomial ring with coefficienta dield
or a principal ideal domainl. See Quillen-Suslin theorem (Theorem 3.7). We shortly
describe a QS-algorithm which has recently been implemented in a packige
QUILLEN SUSLIN ([12]). See the appendix for more details. In what follows, we shall
only consider a commutative polynomial riig = k[z4,...,z,] over a fieldk even
if the extension of the algorithms exists wheris replaced by a principal ideal ring
A. For instance, the case df = Z has also been implemented inUQLEN SUSLIN.
Let f € D'*? be a row vector which admits a right-invergeover D. When no
method explained in section 3.3 can be applied, twe then need to consider a general
algorithm. However, we point out that most of the examples we knowodwoeaguire
the general algorithm as the previous heuristic methods are generaligtetmget the
result.

The QS-algorithm proceeds by induction on the numbef the independent vari-
ablesz; of the ring D = k[z4,...,2,]. Each inductive step, which simplifies the
problem to the case of a polynomial ring containing one variable lessist®ons$three
main parts:

1. Finding a normalized component in the last variable of the polynomigl rin

2. Computing finitely many local solutions of Problem 2 over certain locasrin
(local loop).

3. Patching/glueing the local solutions together in order to obtain a global one

3.4.1 Normalization step

The next lemma is essential for Horrocks’ theorem which is used in tla¢ loap.
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Lemma 3.12 [53, 57]Let us consider a polynomiale [y, ..., y,] and let us denote
by m = deg(a) + 1, wheredeg(a) denotes the total degree of Using the following
invertible transformation

Tn = Yn, o Yn Ty
zi=yi—yy , 1<i<n-—1, yi=xi+ap’, 1<i<n—1,

we obtaina(yi,...,yn) = rb(z1,...,z,), where0 # r € k andb is amonic poly-
nomialin z,, with coefficients in the ring? = k[x1,...,z,-1], namely, the leading
coefficient ob € E|xz,] is 1.

In the case wherg is an infinite field, we can achieve the same result by using only
a linear transformation whose coefficients are appropriately choS&n%p]). The
normalization step can also be generalized to the €aseA[z,...,z,], whereA is

a principal ideal domain. See [56] for more details.

3.4.2 Local loop

In the second step, we need to compute a finite numblecaf solutionsof Problem 2
over a local ringA, namely, a ringAd which has only one maximal ideal, i. e., a proper
ideal M of A which is not properly contained in any ideal fother thanA itself. In
order to do that, we use the so-called Horrocks’ theorem. Let us iecall

Theorem 3.13[53, 57] Let B be a local ring andf a row vector which admits a
right-inverse overBl[y]. If one of the componeng$ of f is monic, then there exists a
unimodular matrix\” over B[y| such thatf is the first row ofl” or, equivalently, such

thatfV-1=(10...0).

Horrocks’ theorem can easily be implemented using, for instance, fiveaghes de-
veloped in [26, 53, 59]. In particular, the implementation inIQ EN SUSLIN of this
theorem follows [53]. IfM is a maximal ideal oD, we then denote by, the local
ring, which is a standartbcalizationof D with respect to the multiplicative closed
subsetS = D\M of D, namely,D = {a/b | a € D, b ¢ M} ([53]).

We can now give the first main part of the general algorithm ([26,.59])

Algorithm 3.14  « Input: Let D = k[xy,...,2,] and f € D'*P a row vector
which admits a right-inverse ové? and a monic component in the last variable
T

« Output: Afinite number of maximal idealsM; };c; Of E = k[xy, ..., 2,_1] @and
unimodular matrice§ H; };c; over the ringFE v, [x,,] which satisfy the relation
fH; =(10 ... 0),and such that the ideal generated by the denominators of the
matricesH;, ¢ € I, generates the ring.

1. Let M; be an arbitrary maximal ideal of the rinff. Using Horrocks’ theo-
rem, compute a unimodular matri; over E ., [z,,] which satisfies the relation
fH =(10...0).
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2. Letd; € E be the denominator aff; and.J the ideal inE' generated byi;. Set
1= 1.

3. WhileJ # FE, do:

(i) Fori:=i+ 1, compute a maximal idealt; of £ such that/ ¢ M.

(ii) Using Horrocks’ theorem, compute a mattik over the ringF vy, [x,,] such
thatdet H; is invertible inExq, [z,,] andf H; = (10 ... 0).

(iii) Let d; be the denominator of the matrif; and consider the ideal =
(dl, ce 7dz)

4. Return{ M }icr, {H;}icr and{d;}icr.

The local loop stops when all the denominatérgenerater. As the ringFE is noethe-
rian ([53]), the number of the local solutions, i. e., the cardinal of #id ss finite.

3.4.3 Patching

To obtain a polynomial solution of Problem 1, we use the following lemma.

Lemma 3.15 [26] Let f € D'*? be a row vector which admits a right-inverse over
D = k[zy,...,z,] andU a unimodular matrix ovek|zq, ..., z,_1]m[zs], whereM

is a certain maximal ideal of = k[z1,...,2,_1], which satisfieg U = (10 ... 0).
Let us denote by € E the denominator of/. Then, the matrix defined by

Ay, 2) = Uz, ..., 20) U N 21, . 21, 20 + 2) € (Epq[n, 2])P7P
is such that
VzeD: f(x1,...,20) M@, 2) = f(T1,. .. Tp_1,Tn + 2), 8.7)
and its denominator ig* with 0 < a < p.

(3.7) is clear as the identity(z1,...,2,) U(z1,...,2,) = (1 0 ... 0) implies that
flxy,.. e +2)U(21,...,2,+2) = (10 ... 0) and we then have

flxy,...,xn+2) = f(x1,.. . 2n) Uz, ..., 20) U2y, ... 20 +2) 7L

Moreover, using the standard formula! = (det U)~! adj(U), whereadj(U) de-
notes the adjugate @f, we can also prove that the common denominatak @f,,, z)
isd®, where) < o < p.

Let {M;}icr, {H;}ier and{d;};cr be the output of Algorithm 3.14, whetkis a
finite set. Let us sef = {1,...,l}. The ideal ofE = k[z,...,x,_1] defined by
{d;}ier generate€. Hence, there exists € FE, i € I, such that the Bzout identity

holds:
l
Z C; df =1.
i=1
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Let us define the following matrices

Ai(zp,2) = Hi(zy, ..., x0) H, Y21, Tpe1, @ + 2), i=1,...,1,

(2

and, in order to simplify the notations, we denotefly,,) the functionf (z1, ..., z,).
Then, we have

f(
f(

xn) Al(xna (an - (En) C1 dlf) = f(xn + (an - iCn) Cc1 d117)7
L,

+(an —xp) 1 dY) Do(zy + (@, — xp) 1 dY, (an, — ) codb) =
f (xn + (an — ) (Z?:1 Ci df)) )
f (zn + (an — ) (Zé; Ci df))
Ay (xn + (an — zn) (Zi;} Ci d?) s(an —x0) d:f) = f(an)-
Finally, we can prove that we have;(z,,, d" z) € GL,(D),i=1,...,l, ([26]) and

U = Ay(xn, (an — 2p) 1 d5) Aog(zp + (an — zp) 1 dY, (ay, — ) c2 db)

-1
AN (xn + (an — 2p) <Z ci df) (an —xn) df) € GL,(D).
i=1

The previous computations then show tfiat;, ..., x,) U; = f(21,...,Zn_1,an).
We can now state the main result.

Theorem 3.16[26, 53, 57, 59]Let f € D'*? be a row vector which admits a right-
inverse over the rind = k[zq,...,z,]. Then, for every, € k, there exists a matrix
U € GL,(D) such that

f(xla"'axn) U(xlv"'7xn) - f(zla"'axn—laa)'

Let us now consider a row vectgkz, ..., z,) € D*? which admits a right-inverse
g(z1,...,2,) € DP*L. Applying inductively Theorem 3.16 t@(z1,...,x,) for the
valuesas, ..., a, € k, we obtainly, ..., U,_1 € GL,(D) such that

flxy,...,xn) U = f(x1, ... 1, ap),
f(x17 o Tn—i, an7i+17 LY aan) Ui+1 = f(CCl, ey Tp—i—1,Ap—gy - v - 7an)7
fori =1,...,n— 2. Hence, we gef(z1,...,z,) (Uy ... Up—1) = f(21,02,...,05)
and we have simplified Problem 2 to the case of a row vetter, as, . . ., a,) Over a

principal ideal domairk[x;] which admits a right-inversg(z1, as, . .., a,) overk[z].
Using the first result of section 3.3, we can find a matfixe GL, (D) such that

f((L‘l,GQ,...,an) > .

*

f(z1,az,...,a,)Up(z1) = (10 ...0) & U, (1) = (
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Hence, Problem 2 is then solved if we take= U, ...U,, € GL,(D). We also note
that it is generally simpler to take the particular valugs= ... = a,, = 0.

Now, let us find a matrixU’ satisfying f(z1,...,z,) U’ = f(a1,...,a,), Where
a1 € k. Letus define by/! (z1) = U,,(z1) U, *(a1) € GL,(D). Then, we have

*

f(x1,a9,...,a,) U} (x1) = (10...0) < fla, az, ..., an) ) = f(ay,a9,...,a,).

Hence, the matri¥/’ = U, ...U,_1 U}, € GL,(D) satisfies
flar,...,2n) U = flag,...,ay).

Let us illustrate the QS-algorithm on a simple example.

Example 3.17 Let us consider the commutative polynomial rilg= Q[z, z2] and
the row vectorR = (z12%2 +1 3x3/2+ 21 — 1 2x122) € D3, We can check
thatS = (1 0 —a;/2)7 is aright-inverse of?, a fact implying that theb-module
M = D'*3/(D R) is projective, and thus, free by the Quillen-Suslin theorem. Let us
compute a matritVU € GL3(D) such thatRU = (1 0 0). As the first component of
S is 1, we can easily find such a matiix using the heuristic methods explained in
section 3.3. However, let us illustrate the main algorithm previously desgtrib

We first note that? contains the normalized componeént, /2 + x; — 1 over the
ring D = E[xzs], whereE = Qx;]. The second step consists in computing certain
local solutions. Let us consider the maximal idgd| = (z,) of E. Using an effective
version of Horrocks’ theorem, we obtain that

4 72(311+2x272) 4z (3:13172)
Hl:dil 2x1 (3w — 222 — 2) 4(z1 23 +1) —4z (32220 — 22122 +2) |,
0 0 93 — 1222 + 42, + 4

whered; = 923 — 1222 + 421 +4 ¢ M;. We can check thatet H; = 4/d,, i.e.,
H, € GL3(Em, [z2]), andR H; = (1 0 0), showing thatH; is a local solution.

The idealJ = (d,) is strictly contained ine. Therefore, we consider another maxi-
mal ideal M, such that/ C M,. We can takeMy = (923 — 1222 + 42, +4). Using
an effective version of Horrocks’ theorem, we obtain the matrix

0 0 41 (321 —2)
811 —8 1 a9 —4z; (32320 —22172+2) |,
—4 23z +212—2) 928 — 1223 + 42 +4

1

Hy = —
2 &

whered; = 421 (3z1 — 2) ¢ Mo. We then havelet Hy = —1/(z1 (321 — 2)), i.e.,
H; € GL3(Em,[x2]) andR Hy = (1 0 0). We can check that the ide@l,, d;) = E as
we have the Bzout identitye d; +co de = 1, wheree; = 1/4 ande, = —(3 21 —2)/16.
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The matrixA; (z2, —c1 dy 2) is defined by

(9x1/4 — 323 + ) a3 + (321/2 —21) w2 + 1
—(18xf — 2423 + 8a) xy 5 /8 + (2725 — 5dat + 36 2% — 2023 4 8x1) 21 25 /8 — x1 X2

0
—XT2 —25513?2
z123 + (=321/24+x) w24+ 1 22725 — 27 (321 — 2) 20
0 1

We can check thaR(z,x2) A;(x9, —c1dy 22) = R(x1,29 — ¢1dy 22) as well as
A (1‘2, —c1dy Qfg) c GL3(D) Moreover, the matri)ﬁg(l‘g —c1dy o, —Co do 1‘2) is
defined by

1 0 0

0 (Ba2/2 —x1) a2 + 1 2?2 (321 — 2) 29

(922 =122 +4) 1 22/8 (=321 +2)22/4  (=323/2+x1) 22+ 1
We can also check th&t(ﬂ?l, To — c1d .132) AQ(JJQ —c1dy Zo, —C2 do xz) = R(l‘l, 0)
andAs(xo — ¢1 dy 29, —ca dy 22) € GL3(D). Defining the matrix
Up = Ay (2, —c1 dy x2) Ag(x2 — c1dy 22, —ca da x2) € GL3(D),
we then geTR(.ﬁl,l‘g) Ul(xl,xg) = R(Jﬁl,O) = (1 3371/2 —1 0)
Finally, if we denote by

1 —321/24+1 0
Uy=1| 0 1 0 | € GLy(D),
0 0 1

then, the matrixk(z1,0) is then equivalent t@1 0 0), i.e., R(x1,0)Us = (1 0 0).
Hence, if we define the matriX = U, U, € GL3(D), i.e.,

(322/2 —x1) 20 + 1 (—923/4+32% —21 — 1) a9 —321/2+ 1
(=3z3/2+a2) 23 —my20 (927/4—323+ 22+ 223+ (322/2 —21) w0+ 1
(922 — 1221 +4) 21 22/8  (—272F/16 +2723/8 — 922 /4 — 21 /4 +1/2) 29

—2,’E13’J2
223 13 )
(=32%/2+ 1) 22+ 1
we finally obtainRU = (1 0 0).

In the third point of section 3.3, we saw that the case of a méatrix D?*? admitting

a right-inverse oveb can be solved by applyingtimes Theorem 3.16 on certain row
vectors obtained during the process having smaller and smaller lengdrsce Hwe
obtain the following corollary.
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Corollary 3.18 [26, 53, 57, 59]Let R € D?*? be a matrix which admits a right-
inverse oveD. Then, for allay, ..., a, € k, there existd/ € GL, (D) such that

R(xy,....2n) U(x1,...,2n) = R(a1,...,an).

We note that as the matriX(a4, . .., a,) has full row rank over a field, there always
exists a right-invers& € kP*? such thatR(a1,...,a,)V = I,. Hence, we obtain
thatR (UV) = (I, 0), which also solves Problem 1. Another possibility is to first
obtain a matriXV € GL, (D) such thaiR(z1,...,z,) W = R(z1,as,...,a,)and then
compute a Smith canonical form &f{x1, as, . . ., a,,) as we did for the row vector case.

Remark 3.19 In [37], it was shown how a certain transformation maps a makrix
with entries in a Laurent polynomial rin® = k[zy,...,z,, 27", ...,z ], where

k is a field, and which admits a right-inverse ov@rto a matrix R with entries in
D = k[z4,...,z,]) and which admits a right-inverse ovBr. Hence, we can use a QS-
algorithm to solve Problems 2 and 1 over See [37] for more details. See also [9] for
explicit examples. Finally, a new algorithm has recently been developdd.in [

3.4.4 Computation of bases of free modules

If R € D7%? is a matrix which admits a right-inverse ovex, then, in section 3.2,
we showed that a basis of the fréemodule M = D'*?/(D'*9 R) is defined by
{m(T;)}1<i<(p—q), Wherer : D*P — M denotes the canonical projection ontb

and7; is thei™ row of the matrixl” € D(*~9*» defined by

Ul= ( ? ) € GL,(D).

Example 3.20 Let us consider again Example 3.17. If we consifler 0/0z; instead
ofz;,i.e,D =Q[dy,ds), R=(d1d3+1 3dy/2+dy —1 2d;ds) € D3, denote
by z = (21,72, 23) and chooseF = C*°(R?), we then obtain that the underdetermined
linear system of PDEker+(R.) = {y = (y1 y2 y3)T € F3 | Ry = 0}, namely,

3
dy d3y1 () + yi(a) + 5 da ya () + d1 ya(x) — y2(v) + 2d1 d2 y3(x) = 0,

admits the parametrizatiq; (z) y2(z) y3(z))T = Q (21(x) 22(x))T, whereqQ is the
matrix of differential operators formed by the last two columns of the iméatrdefined
in Example 3.17 and = (z; 2»)7 is any arbitrary element of?, i. e.,

9 3
y1:(—Zd?+3d%—d1—1)d221—§d121+21—2d1d2227

9 3

Yo = (Zd‘{3d§+d§+d1) d 2, + <§d§d1) doz1 + 21 +2d3 d3 2,
27 27 9 1 1 3

Y3 = (—Ed%—kgdi—zd%—zdlﬁ-i) d221+<—§d%+d1> do 29 + z9.
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Finally, if we denote byi" € D?*3 the matrix formed by the last two rows of the matrix
U~1, namely,

dy do 1 0

i(?;df —2d1)d; + % (=9d} 4+12d7 — 4dy) do %(3(11 —2)d, %(3d§ —2d)dy |

we then havd” Q = I, i. e., the parametrizatiof of ker = (R.) is injective.

Now, if M = D'*?/(D'*4 R) is a projectiveD which is defined by a non full row
rank matrixk € D?**', then, using Proposition 3.1, we first compute a full row rank
matrix R’ € D% *?" satisfying

M = M/ _ DlXpl/(DIXp’ R,),

and we then apply the previous QS-algorithmifoc D9 *?’ to obtainU € GL,, (D)
such thatR' U = (I, 0). LetS’ € DP'*¢', Q' e DF'*W'=4) T ¢ p'=d)xr" pe
the matrices defined by

_ i / -1 __ R/
v o (1)

Then, we have the following split exact sequence:

0 — Dixd RN Dixp’ QL pix'=d) .
‘S/ .T/ (38)
— —

We now need to precisely describe the isomorphism betwéesmd M’ in order
to get a basis of/ from one ofM’. In order to do that, we take the same notations
as the ones used at the end of section 3.1, namglyrs R, T} = (RT 01)T, R =
(T SY),po=p,p1 =¢ q =p1+05 0 = po+ ph. We first easily check that we
have the following commutative exact diagram

Dlxp A pixpe T M — .0
T.x T .Ip, T ida
D% (p1+p5) AN D1xpo SN M — 0,

whereX = (I 07)T. Moreover, we also have the commutative exact diagram

Dixmi+ry) T, plxpo . M —=0

1.z Ty To

! ’
Dixitry) AL pixotey) T, opp

wherey = (I 0")", Z = (1L 07)" and the isomorphism is defined by

VTTL/ = ’/TI()\), A= ()\1 )\2) S D1><(p0+p/2)7 O'(ml) = 7T(>\1).
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Combining the two commutative exact diagrams, we then obtain the followiag o

D1><p1 i} D1><Po L} M -0
T.(zx) Ty To
DL1x(p1+p5) i D% (Po+p) L') M 0.

Hence, if we denote byf;},<i<(,_,) the standard basis @' **'~¢), using (3.8),

we then obtain thafo (7'(f; 7")) = 7(fi (T"Y)) h<i<(—q) IS @ basis ofM, i.e., a

basis ofM is defined by taking the residue classes of the rowg'6¥) € D®' ~4)xpo,
We can check that thB-morphismo—! : M — M’ is defined by

Vm=mn()\), XeDVP o lm)=a\YT).

Then, using (3.8), we obtain the following split exact sequence

pixa B pup 0 pike-g) —0,
.S (T'Y)
Vhiac —

whereS € DP*? is ageneralized inversef R, i.e., S satisfiesRS R = R ([42]).
If we denote byl” = (T} Tjy), whereT] ¢ D@ ~4)xr andT} e D@ ~4)xr> and
Q' = Q)T (QyY)TT, whereQ) € DP*P' =) andQ, € DP>*(P'~4) 'we then get

YIQ =@, TY=T1,
i. e., we need to select the figstolumns of7” and the firsip rows of Q.

Remark 3.21 If the free D-moduleM = D'*?/(D*4 R) is defined by the finite free
resolution (3.1), wher&®; = R, py = p andp; = ¢, we point out that we only apply
once the QS-algorithm to the matr¥ in order to obtain a basis @ff contrary to the

algorithm developed in [26] where the QS-algorithm is appliedimes. Hence, our
algorithm is generally more efficient than the one developed in [26].

If 7 is a D-module, then applying the functabmp (-, F) to the previous split exact
sequence, by 2 of Proposition 2.15, we then obtain the following split eeagience:

Fa B G po-a) .
S. Ty.
= —

The systenker +(R.) admits the injective parametrizatidyi, namely
kerr(R.) = Q) F® =) TIQ)=1I,_,.

Remark 3.22 Let us now explain how we can compute a basis of ffeenodules
imp(.R), kerp(.R) andcoimp (.R) = D'/ kerp(.R), whereR € D7*P.
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1. A basis ofimp(.R) = D'*9 R can be obtained as follows: we first compute the
first syzygyD-module ofimp(.R) and we obtain a matrik, € D"*¢ satisfying
kerp(.R) = D' " R,. Let us denote by\y, = D'*9/(D'*" Ry) = DX R.
Using the method previously described, we can compute a basis of th®fre
moduleM,. We getQ, ¢ D?*! andT, € D' such that we have the exact split

sequence
Dlxr -Ro D1><q Q2 D1><l _ O,
.SQ ~T2
— —

whereS, € D?*" denotes a generalized inverseryf. A basis ofD'*? R is then
given by theD-linearly independent rows of the matfix R € D'*? and we have
D4R = D! (T3 R).

2. Using the same notations as before, we Have (.R) = D'*" R, and a basis
of the free D-moduleker(.R) can then be obtained by computing a basis of
D" R, as it was shown in the previous point.

3. Using again the same notations as in the first point, we get
coimp(.R) = D'/ kerp(.R) = D'*9/(D**" Ry),

and a basis ofoimp(.R) can be computed using the general method previously
described in this section.

To finish, all the algorithms presented in this section were implemented in thaga
QUILLENSUSLIN ([12]). See the appendix for more details and examples.

4  Flat multidimensional linear systems

4.1 Computation of flat outputs of flat multidimensional sysems

Our first motivation to study and implement constructive versions of th#ep-Suslin
theorem was the computation ftdit outputsand injective parametrizations it mul-
tidimensional linear systemand, particularly, differential time-delay systems. The
study of flat linear ordinary differential time-delay systems has recéetiy initiated
in [18, 30]. As for nonlinear ordinary differential systems ([17])stblass of systems
has interesting mathematical properties which can be used to do motiorngjama
tracking as shown in [30] and the references therein on explicit example
However, the theory of flat linear ordinary differential time-delay systés still in
its infancy and some concepts developed for nonlinear ordinary efiffied systems
seem to have no counterparts for this second class of systems. Irulgaytior flat
linear differential time-delay systems, we can wonder which kind of lirsyatems
could play a similar role as the one played by the Brungssistems for flat nonlinear
systems ([17]). To answer this question, we first need to understaiahWwind of
equivalence plays a similar role for differential time-delay linear systagthe one
played by thelie-Backlund equivalencéor nonlinear differential systems ([17]). To
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our knowledge, these important questions have not been studied in tlatulieetill
now. This section aims at constructively answering these two questions.

As the differential time-delay systems is a particular class of multidimenissysa
tems, we can define the concept of a flat multidimensional linear systemmia tf the
existence of an injective parametrization of the trajectories of the system2a] 62]).

Definition 4.1 Let D = k[xy,...,2,], R € D?? andF a D-module. Then, the
systemker~(R.) is calledflatif there existQ) € DP*™ andT € D™*? satisfying

kerz(R.)=QF™, TQ=Iy,.

In terms of the module-theoretic/behaviour approach recently dewklimpenultidi-
mensional linear systems ([5, 39, 32, 62, 63]), it means that the lmadintrinsically
associated with the multidimensional linear system is free over the comneupatiy-
nomial ring D of functional operators ([5, 16, 17, 30, 42]).

Proposition 4.2 [5] Let D = k[zy,...,x,], R € D?P, M = D*?/(D'*4 R) and
F be an injective cogeneratdD-module. Thenker(R.) is a flat system iff the-
module) is free. Moreover, the bases of tiiemoduleM are then in a one-to-one
correspondence with flat outputslefr - (R.).

Remark 4.3 Using the end of the section 2, we obtain that the condition iias a
free D-module is a sufficient condition fdter ~(R.) to be a flat system.

Using Proposition 4.2 and the Quillen-Suslin theorem (see 4 of Theo®m& then
get the following important corollary.

Corollary 4.4 LetD = k[z1,...,x,], R € D?*?, M = D**?/(D'*4 R) and F be an
injective cogeneratoD-module. Thenker#(R.) is a flat system iff thé>-moduleM/
is projective.

WhenR has a full row rank, then, using Theorem 2.6, a constructive tefiefoess of
multidimensional linear systems with constant coefficients consists in ittgeitkhe

q x g minors of R do not simultaneously vanish on complex common zeros ([23, 59]).
This last result can algorithmically be checked by computing @8er or Janet basis

of the ideall of D generated by the x ¢ minors of R and check whether or note 1.

We can also check whether or n@tadmits a right-inverse ovep ([4, 5, 42]).

In the general case, using Theorem 2.6, the projectiveneks adn constructively
be obtained by verifying the vanishing eft?, (N, D), fori = 1,...,n, whereN is the
transposed>-module N = D*¢/(D'*r RT). Other possibilities are to compute the
so-calledglobal dimensiorof M ([53]) by means of Proposition 3.1 and Corollary 3.3
as it was shown in [49], check whether or dtadmits a generalized inverseover
D, i.e., check for the existence of a mat$xe DP*? satisfyingRS R = R ([42])
or check some straightforward conditions on the so-cdfigtthg idealsof M as it is
explained in [10].

However, we point out that, till now, there has been no easy way foirobtathe
flat outputs of the system, i. e., the bases of the fpemodule)/. Hence, we are led
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to use constructive versions of the Quillen-Suslin theorem developed Bythbolic
algebra community ([19, 26, 27, 35, 58]) for computing a basis of tbe®-module
M. It was our first main purpose for developing the packageLQeN SUSLIN ([12]).
See the appendix for more details and examples.

Example 4.5 Let us consider the differential time-delay linear system (see [30])

{ () —y1(t —h) 4+ 2y (t) + 2y2(t) — 2u(t — h) = 0,

. . . (4.2)
J1(t) + 92(t) —a(t — h) —u(t) = 0.

Let us denote byp = Q [%, §| the commutative ring of differential time-delay opera-
tors with rational contant coefficients, wherg dt) y(t) = y(t) and(d y)(t) = y(t—h),

h € R,. Let us also denote the matrix of functional operators defining (4.1) by

£—5+2 2 —26
R—| d c D2%3.
4 4 _dy
dt dt dt

Using the algorithms developed in [5, 42] and implemented in the packag®1OD-
ULES ([4]), we obtain thatR admits a right-inverse ovep defined by

0 0
1 d
_ = — 2 -2
5_2 dt5+ )
d
- -2
dt

a fact proving that\/ = D'*3/(D'*2 R) is a projective, and thus, a frée-module by
the Quillen-Suslin theorem (see 4 of Theorem 2.5).

Using a constructive version of the Quillen-Suslin theorem (see also tréstie
methods developed in [5, 42]), we obtain the following split exact sexpi@h D-
modules

0 — D1><2 i D1><3 i D—>O,
5 T 4.2)
— —
whereT' = (1 0 0)and
2
1| Bl 45
Q:§ dt? dt dt
d d?
@’

Using the split exact sequence (4.2), we can check that we have

M = D1><3/(D1><2 R) ~ (Dl><3 Q) _ D,
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i. e., we find again that/ is a freeD-module of rank 1.

Now, if F is aD-module (e.g.,F = C*>°(R)), by applying the functohomp (-, F)
to the split exact sequence (4.2), we then obtain the following split ergctesnce of
D-modules (see 2 of Proposition 2.15):

Q

0— 72 & m 2 r o
2, EAN

Hence, for anyD-module 7, we get that the systerkerz(R.) defined by (4.1) is
parametrized by the following injective parametrization:

yi(t) = w1 (t),
Var e F, 4 lt) = 5 (<t =) (= 2h) — (D) + ma(t— ) — 20, (0))

u(t) = = (@1 (t — h) = &1(0)).

1

2
(4.3)

We refer the reader to [49, 51] for a constructive algorithm for the maation of

bases, and thus, of flat outputs of a class of linear systems definexditial differential

equations with polynomial or rational coefficients. See [50, 49] for grlémentation

of this algorithm in the packagetr&FFORD of the library OREMODULES.

Finally, we say that thé® = k[z,...,x,]-moduleM = D'*?/(D'*4 R) is n-free
wherer € D, if the D.-moduleD, ®p M is free, whereD,. denotes the localization
D, ={a/b|lac D, b=r' ic Z,} of the ringD with respect to the multiplicatively
closed subse$, = {1, «, =2, ...} of D ([53]). By extension, we can define the
concept of ar-flat system. See [5, 30, 31] for more details. Given a finitely pregente
D = k[x1,...,x,]-moduleM = D*?/(D1*4 R), constructive algorithms computing
the corresponding polynomiatsand basis of the freB,.-moduleD,.® p M were given
in [5] and implemented in the REMODULES package ([4, 6]). However, we can also
use Remark 3.19 to compute the corresponding basis in the case wherg. We
refer the reader to [14] for more details and examples.

4.2 Equivalences of flat multidimensional systems

Using a QS-algorithm, the purpose of this section is to prove that a flat mudtidim
sional linear system with constant coefficients is algebraically equivideatlinear
controllable 1-D system obtained by setting all but one functional opet@t®in the
system matrix. In particular, the algebraic equivalence we use is theahatyuiva-
lence developed in module theory, namely, two multidimensional linearragsaee
said to be algebraically equivalent if their canonical associated modrdeisamor-
phic over the underlying commutative polynomial ring of functional epaisD. This
equivalence is nothing else than the natural substitute to the &éédBnd equivalence
for multidimensional linear systems. In the case of ordinary differeltiaar systems,
we already know that Lie-Bcklund transformations correspond to isomorphisms of the
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underlying modules (see e. g. [17] and the references therein)lyi-ima prove that a
flat differential time-delay linear system is algebraically equivalent to timgrollable
ordinary differential system without delays, namely, the system obtdinesetting all
the delay amplitudes to 0. This last system plays a similar role as the one phattesl
Brunovsk canoncial form in the nonlinear case.

We have the following corollary of Theorem 3.16.

Corollary 4.6 LetD = k[xy,...,z,], R € D be a full row rank andF an injective
cogeneratorD-module. The flat multidimensional systeemx(R(z1, ..., x,).) is then
D-isomorphic to a controllable 1-D linear system obtained by setting any furadtion
operator to0. For instance, the systeRerx(R(z1,...,2,).) IS D-isomorphic to the
systenkerz(R(x1,0,...,0).) and the elements &brx(R(z1,...,z,).) are in a one-
to-one correspondence with the onekafr(R(x1,0,...,0).).

Proof. Using Proposition 4.2, we obtain that = D'*?/(D'*9R) is a free D-
module. Using the fact thak has full row rank, by Theorem 3.16, there exists a
matrix U € GL,(D) such thatRU = R, whereR = R(z1,0,...,0). Therefore, we
have the following commutative exact diagram

0 0 0
! ! !

0— Dxa B pux» T A g
[ Ls

0 —s D1><q i) Dlxp AN M’ —>O,
! ! !
0 0 0

wherer : D'*P — M denotes the canonical projection ortb and theD-isomor-
phismf : M — M’ is defined by

Vm=mn()\), X&€DYP  f(m)=r(\U).
Applying the functorhomp (-, ) to the previous commutative exact diagram and

using the fact that horizontal exact sequences split becalse M’ is a free D-
module, we then obtain the following commutative exact diagram:

0 0 0
7 7 7

0e— F1 B Fp I kerg(R) 0
[— 1o Tr

0e— Fo A pp L kerg(R.) «— 0.
T T T
0 0 0
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The D-isomorphismf* : kerz(R.) — kerz(R.) is defined by

Vn€kery(R.), f(n)=Un.

Hence,f* induces a one-to-one correspondence between the eleménts-0R.) and
those ofker =(R.) and(f*) ! is defined by

V(ekers(R), (f)7HO=U"C
g

Using Corollary 3.3 and the end of the section 3.4, we can always edtieccase of
a non full row rank matrixR to the case of a full row rank matri®’ and then apply
Corollary 4.6 toR'.

Despite the fact that Corollary 4.6 is a straightforward consequenite @uillen-
Suslin theorem, its applications to flat multidimensional systems seem to bhedgno
In particular, it shows that the Lied&klund equivalence in the nonlinear case needs to
be replaced by the isomorphism equivalence in the multidimensional Bkseover,
the right substitute of the Brunovgkinear system in the nonlinear case becomes the
controllable 1-D linear linear system with constant coefficients obtaineetbing all
but one functional operator to 0.

Let us illustrate Corollary 4.6 on an example.

Example 4.7 Let us consider again the differential time-delay linear system defined
by (4.1). In Example 4.5, we proved that the correspondinmodule M is free. It

is well known that7 = C°°(R) is not an injectiveD-module but, by Remark 4.3, the
systemker~(R.) is flat as theD-module) is free. Hence, according to Corollary 4.6,
the flat system (4.1) is algebraically equivalent to the following controllabdénary
differential linear system

{ 21(t) +221(t) +222(t) = 0, (4.4)
21(t) + 2a(t) —w(t) =0,

i. e., the system obtained by settifigo O in the matrixk. Using the constructive QS-
algorithm toR, after a few computations, we obtain an invertible transformation which
bijectively maps the trajectories of (4.1) to the ones of (4.4) is defined by

n(t) = z(1),

(4.5)
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Applying again Corollary 4.6 to (4.4), we get that the ordinary diff¢éisdsystem (4.4)
is equivalent to the purely algebraic system

{ 221 (t) + 2x2(t) = 0,

4.6

i. e., the system obtained by settingstandd/dt to 0 in R. Applying a QS-algorithm
to R,we obtain that a transformation which bijectively maps the trajectories ¥ {d
the ones of (4.6) is defined by

21(t) = w1 (), 21 (t) = 21(b),
zo(t) = w2(t) — % i1(t), e ao(t) = 2(t) + %zl(t), 4.7)
v(t) = w(t) — % Z1(t) + @1 (t) + 22(t) w(t) = v(t) + 21(t) + 22(1).

Combining (4.5) and (4.7), we finally obtain a one-to-one correspoce between the
solutions of (4.1) and (4.6).

We note that the solutions of (4.1) (resp., (4.4)) are parametrizeddans of (4.5)
(resp., (4.7)), wherey, 25 andwv (resp.,z1, 2 andw) are not arbitrary functions as
they must satisfy (4.4) (resp., (4.6)). However, solving the aljetsystem (4.6), we
obtain thatro = —zy andw = 0. Substituting these values in (4.7) and the result into
(4.5), we find that an injective parametrization of (4.1) is defined k8)(4

Finally, we can check that an injective parametrization of (4.4) is obtdigeetting
§ = 0 in the matrix of operators defining (4.3), i.e.,

Ve F )= 5 @0 +200),
o(t) = ~3 (1)

Similarly, if we sets andd/dt to 0 in the matrix of operators defining (4.3), we obtain
the following injective parametrization of (4.6):

1(t) = (1),
Vo€ F, za(t) = —¢(1),
w(t) =0.

These last results can be obtained by applying the fundiof D)) ®p - (resp.,
(D/(D§+D %)) ®p -) to the split exact sequence (4.2) to get the corresponding
split exact sequence @f/(D §)-modules (resp.)/ (D é + D < )-modules) ([53]).

See [13, 14] for more examples.

Using Corollary 3.18, we can also set the different functional opesaigpearing in the
system matrix of a flat multidimensional linear system to any particular valomging
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to k. Applying this result to the class of flat differential time-delay linear systene
show that a flat differential time-delay linear system is equivalent to thé&r@table
ordinary differential linear system obtained by setting all the time-delayiardps to
0, i.e., to the corresponding ordinary differential system without delay

Corollary 4.8 LetD = k[4. 5,,...,5,-1] be the ring of differential incommensu-
rable time-delay operators, namely, the amplitutles R, of the time-delay operator
(6;y)(t) = y(t — h;), i = 1,...,n — 1, are such that th&)-vector space generated
by h1,...,h,_1 is n-dimensional. Let us considdt € D?*? which admits a right-
inverse overD and F an injective cogeneratoD-module. Then, the time-invariant
flat differential time-delay linear systeker-(R (4,6, ...,d,-1) .) is D-isomorphic
to the controllable ordinary differential linear systéeer (R (%, 1,...,1).) obtained
by setting the amplitudes of all the delay9ta. e., it is equivalent to the linear system
without delays. In particular, the elements of the sysker-(R (%, 01yt 5n_1) 2

are in a one-to-one correspondence with the onde:nf (R (%,1,...,1).).

Let us illustrate Corollary 4.8 on an example.

Example 4.9 Let us consider again the flat differential time-delay linear system de-
fined by (4.1). Applying Corollary 4.8 on (4.1), we obtain that (4.1¢dmivalent to

the ordinary differential linear system obtained by substituting 0 into (4.1), i.e.,

by settingd = 1 in the matrixR defined in Example 4.5, namely

{ 211 + z1(t) + 2 29(t) — 20(t) = 0, “.8)

Z21(t) + 22(t) — 0(t) —v(t) = 0.

Using a QS-algorithm, we then obtain that the following transformation

z(t) = 3 (1(t) =91t = h) +y1(t) —y1(t = h)) + y2(t) +ult) —ult —h), (4.9)

1

v(t) = 5 (01(8) = 9u(t = h)) +u(t),

whose inverse is defined by
yi(t) = z1(1),

ya(t) = f% (a(t — B) — 21(t — 2h) + 21(t — h) — 21 (£)) + 22(¢)
Fo(t— h) — o(b),

u(t) = 3 (16— B) — 21(0)) + (),

bijectively maps the trajectories of (4.1) to the ones of (4.8). An injegtarametriza-
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tion of (4.8) can then be obtained by takihg= 0 in (4.3), i.e.,

Ve F, { wl)=—5 @0+ ),

(= (1) +4(2)).

N | =

See [13, 14] for more examples.

In the previous example, we note that the invertible transformations sély ba com-
puted by hand but it is generally not the case for more complicated d&antgence,
we need to use an implementation of constructive versions of the Quillgim$ioeo-
rem for computing the invertible transformations and the injective paréagtms of
flat multidimensional linear systems. Such an implementation has receetlydome
in the package QILLEN SUSLIN ([12]) which, with the library GREMODULES ([4]),
allows us to effectively handle these difficult computations.

As for the flat nonlinear ordinary differential systems, using the feat tiere is a
one-to-one correspondence between the trajectories of the flaediffdrtime-delay
systems with those of the ordinary differential system without delaysaweise stabi-
lizing controllers of the latter in order to stabilize the former. This approabbes the
Smith predictor method. We refer the reader to [13, 14] for more detadggamples.

5 Pommaret’s theorem of Lin-Bose’s conjectures

The purpose of this section is to show how to use a QS-algorithm to cong#lyciolve

Pommaret’s theorem of Lin-Bose’s conjectures ([41]). Let ustfgrsall this conjecture
recently developed in the multidimensional systems theory which gener&8izee’s

conjecture ([25]). Let us state a new problem.

Problem 3 Let D = k[x4,...,x,] be a commutative polynomial ring with coefficients
in afieldk, R € D?*? a full row rank matrix and\/ = D'*? /(D% R) the D-module
finitely presented byz. We suppose thalt//¢(M) is a freeD-module. Does exist a full
row rank matrixk’ € D?*? satisfying

M/t(M) = D*? /(D" R')?
If so, compute such a matri’.
If we can solve Problem 3, we then have
t(M) = (D" R")/(D'*1R),
and using the fact thad'*4 R C D'*¢' R’, there existsR” € D7*? such that

R=R'R. (5.1)
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Let us denote by = p!/((p — ¢)!¢!). The fact that\//t(M) is a projectiveD-module
implies that there is no common zero in the& ¢ minors{m;}1<;<, of k', i.e., there
exists a family{p; }1<;<, of elements oD satisfying the following Bzout identity:

Zpi m;, = 1. (5.2)
i=1

Now, using the fact that we have; = (det R")m/, fori = 1,...,r, where them;
denote the; x g-minors of R, we obtain that the following inclusion of ideals b

> Dm; C (D (det R")) (me;> = D (det R").
=1 =1
Multiplying (5.2) by det R”, we obtain
det R = Zpi (det R")ym), = Zpi mi,
i=1 i=1

which shows thab (det R”) C Y./_, Dm; and)_;_, Dm; = D (det R"). Hence,
the greatest common divisor of the< ¢ minors{m,},<;<, is then equal talet R".
Solving Problem 3 gives us a way to factorizeunder the formk = R” R’, where
R' € D?*P admits a right-inverse oved anddet R” is the greatest common divisor
of the ¢ x ¢ minors of R. The question of the possibility to achieve this factorization
was first asked by Lin and Bose in [25] and solved by Pommaret in [&Ee also
[36, 54, 60]. It was proved in [41] that this factorization problem isiegjent to Prob-
lem 3. The purpose of this paragraph is to give a general constradgjgathm which
solves Problem 3, and thus, performs the corresponding factorizattee algorithm
has recently been implemented in the packageLQEN SUSLIN.

Based on the Quillen-Suslin theorem, we first prove that a m&trisatisfying Prob-
lem 3 always exists. We then show how to effectively compute it.
The fact thatk has full row rank implies that we have the following exact sequence:

0 — DY & plxp T, pr . (5.3)

Let N = D'*4/(D'*? RT) be the transposef-module of M (see Remark 2.7), ac-
cording to Theorem 2.6, there exiglse D *? such that

M/t(M) = DV /(D7 Q).

In particular, using the fact thaiD'>¢ R) C (D'*¢ @), there then exists a matrix
P e D4 satisfyingR = P Q. We refer the reader to [4] for the implementation of
the corresponding algorithms in the libranREM ODULES as well as the large library
of examples which demonstrates these results.
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Then, we have the following commutative exact diagram:

0
1
0 £(M)
1 Li
0_—- pixa B pixp 7T, M —0
L.p | Lr
pixd 2L pLe T AyM) — 0.
! 1
0 0

As, by hypothesis, th&-moduleM /t(M) is projective, using 1 of Proposition 2.15,
we obtain that the following exact sequence

0 — (D9 Q) — DYP ™ M/H (M) — 0 (5.4)

splits and we obtain
DV? = M/H(M) & (DY Q)
which shows thaD' %%’ Q is a projectiveD-module. By the Quillen-Suslin theorem,
we obtain thatD!*?' ( is then a freeD-module.
Let us compute the rank of the fréemoduleD!*¢" Q. Applying the exact functor
K ®p - to the short exact sequence (5.4), wh&re- Q(D) denotes the quotient field
of D ([53]), we obtain that

rankp (D' Q) = p — rankp (M /t(M)).
See [53] for more detailsHuler characteristiy. Similarly with the two short exact
sequences (5.3) and

0 — t(M) - M 25 M/t(M) — 0,

and, using the fact th&t” ®p t(M) = 0 because(M) is a torsionD-module ([53]),
we then get
rankp (M /t(M)) = rankp(M) =p — q.

Therefore, we obtainank, (D'*9 Q) = p — (p — q) = q, which shows thaD!*¢' Q
is a freeD-module of rankg, i.e., (D'*9 Q) = D**9. Computing a basis of this free
D-module, we obtain a full row rank matri?’ € D?*? satisfying

D7 Q=D R (5.5)

which implies thatV//t(M) = D'*? /(D**4 R’) and we have the following finite free
short resolution of\ /¢(M):

0 — D 2 pixe T vy 0. (5.6)
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We note that ifQ has full row rank, we then can takk& = Q andq’ = g.

In order to compute the matrii®’ € D7*? which satisfies (5.5), we need to compute
abasis of the fre®-moduleD!*4 Q. Hence, we can use the first point of Remark 3.22
to compute a basis of the-moduleD'*7' Q.

Algorithm 5.1 « Input: A commutative polynomial rin@ = k[zy,...,x,] over
a computable field, a full row rank matrixk € D?*? and the finitely presented
D-moduleM = D'*?/(D'*4 R) such thatV//t(M) is a freeD-module.

« Output: A full row rank matrix R’ € D?*? such that
M/t(M) = D'*? /(D4 R).
1. Transpose the matri? and define the finitely presentéztmodule
N = D'¥4/(D*» RT),
2. Compute theD-moduleext}, (N, D). We obtain a matrix) € D¢ *? such that
M/t(M) = D¥? /(D7 Q).

3. Compute the first syzygy moduiter(.Q) of D'*4" Q.

4. If kerp(.Q) = 0, then@ has full row rank and exit the algorithm with’ = Q.
Else, denote by), € D%*4" a matrix satisfyingcerp(.Q) = D'*% Q5.

5. Compute a basis of the fré&module
L= DY /(D% Q,).
In particular, we obtain a full row rank matri® € D7*¢" such that
L = my(D' 1 B),

wherer, : D7 — [, denotes the canonical projection otito
6. Return the full row rank matri®’ = BQ € D?*?,

Remark 5.2 The computation of a basis df gives two matrices®, € D?*4¢ and
B € D7*7 such that we have the following split exact sequence:

0
T
Dlxq; &) D1><q/ 2, L -0
| Te
Dlxq’ i) Dixa 0,
.B
£y
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where¢ : D'*¢ — [ denotes the corresponding isomorphism. We can now check
that the matrix®’ = B Q has full row rank. Let\ € D'*¢ be such that R’ = 0.
Then, we ge{AB)Q = 0,i.e.,AB € kerp(.Q) = D14 Q2, and thus, there exists

p € DY*% such that\ B = 1 Q. Using the identityB P, = I,, we then obtain

We illustrate Algorithm 5.1 on a simple example.

Example 5.3 Let us consider the differential time-delay model of a flexible rod with a
force applied on one end developed in [30]:

{ §1(t) — g2t — 1) —u(t) =0,

(5.7)
291 (t — 1) — 2 (t) — g2t —2) = 0.

Let us define the rind = Q [%,5] of differential time-delay operators with rational
constant coefficients. The system matrix of (5.7) is defined by

d d

= b
dt dt

d d ., d
dt(s _ﬁé dt

Let M = D'*3/(D'*2 R) be theD-module associated with (5.7) and its transposed
D-moduleN = D'*2 /(D3 RT). N admits the following finite free resolution

R = c D2><3.

T - .RT
O%NLD1X2LD1X5<—2D<;O,

whereR} = (=62 -1 —26 42— 4) The defects of exactness of the complex

O_>Dl><2iDl><3£>D_)0
are then defined by
exth (N, D) = kerp(.R) = 0,

extL (N, D) = kerp(.Rs)/(D'*2 R),
ext?, (N, D) = D/(DY*3 Ry).

Computing the first syzygy moduleerp(.R,) of D'*2 R, we obtainkerp(.Rs) =
D3, where the matrix) is defined by

—25 6°4+1 0
d d

Q=| % ECS L | e D33, (5.8)
4,

dt dt
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We gett(M) = (D™*3Q)/(D'*2R) and reducing the rows of) with respect to
D'*2 R, we obtain that the only non-trivial torsion elementidfis defined by

m= =28y, + (6% + 1) ya,
—m =0,
wherey;, y» andys denote the residue classes of the standard bagid’6f in M.

Following Algorithm 5.1, we compute the first syzygy modise, (.Q) and obtain
kerp(.Q) = D Q2, Where

d

Qs = (E —5 1) € D3, (5.9)

We now have to compute a basis of the fileemodule L = D'*3/(D Q,). Using a
constructive version of the Quillen-Suslin theorem, we obtain the split eeguence

Q2
—

0— D px2 . p
.Sa .B
— —
with the following notations:
-1 0
-1 0 0
So=0 0 )T, = 0 1 [ B= .

d 0 10
— 9
dt

ComputingR’ = B @, we obtain that the following full row rank matrix

26 —62—-1 0
Rl — d d c D2><3
e —d 1
dt dt
satisfiesD!'*3 Q = D'*2 R’. Finally, we have the factorizatioR = R"” R/, where the
R is defined by
0 -1
"o
R'=| 4 e
dt
and satisfieslet R = d/dt, whered/dt is the greatest common divisor of tBex 2
minors of R and is the functional operator which annihilates the torsion element

Using the fact that\//¢(M) is a free D-module of rankp — ¢, i.e., there exists an
isomorphism
W M/t(M) — DP9
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and the exact sequence (5.6), we then obtain the following exactrssgjue

0 pixa B pixp P pixe—a

(5.10)

)

whereP ¢ DP*(P~9) s the matrix defining the morphisat o ¢ in the standard bases
of D'*? and D'*(»—9) As the exact sequence (5.10) ends with a flemodule, by
1 of Proposition 2.15, it splits, i. e., there existe DP*? andT € D»~9*? such that
we have the following Bzout identities:

R I, ©
(Vo m-(t ) en

(s P) ( 1;' > _ 1, (5.12)

R B R/l R/ B R// 0 R/
T ) T I I T
and using (5.11), we obtain thatt((R'7 77)T) =1and

7 /
det R = det R 0 det R =det R”.
T 0 I, T

Finally, using the fact that we have proved that R" is the greatest common divisor
of theq x ¢ minors of the matrixk, we then have solved the following problem.

Now, we have

Problem 4 Let R € D?*? be a full row rank matrix such that the ideﬁ[f:1 D m; of
D generated by the x ¢ minors{m, }1<;<, of the matrixR satisfies

iDmide,
i=1

whered denotes the greatest common divisor ofgheq minors of the matribx®. Find
amatrixT € D»—~9*r such that we have

det<R>d.
T

To our knowledge, such a problem was first stated by Bose and Lin Jnl[2bus give
a constructive algorithm solving Problem 4.

Algorithm 5.4 « Input: A commutative polynomial rind = k[z1,...,x,] over
a computable field;, a full row rank matrix® € D?*? such that the ideal ob
generated by the x ¢ minors{m; },<;<, of R satisfiesy_;_, Dm; = D d, where
d denotes the greatest common divisor of ghe ¢ minors of R.
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« Output: A matrix 7 € DP~9>P such thatlet ( ? ) =d.

1. Transpose the matri® and define the finitely presentéztmodule
N = Dqu/(Dlxp RT)
2. Compute the>-moduleexth (N, D). We obtain a matrix) € D4 <P such that
M/t(M) = D"? /(D9 Q).

3. Compute a basis of the frée-module M /t(M) = D'*?/(D'*4 Q). In par-
ticular, we obtain a full row rank matrif’ € D®=9*? such thatM/t(M) =
7/ (DY (=9 T), wherer’ : D*? — M /t(M) denotes the canonical projection
onM/t(M).

4. Returnthe matrit/ = (RT T7)T which satisfieslet U = d.

We illustrate Algorithm 5.4 on an example.

Example 5.5 We consider again the model of a flexible rod defined in (5.7). In Ex-
ample 5.3, we have proved that/t(M) = D'*3/(D'*3 Q), where the matrixQ is
defined by (5.8). Let us compute a basis of the flemoduleM /t(M). The D-module
M /t(M) admits the following free resolution

0— D -2, pix3 2 pixs T vy o,
whereQ)s is defined by (5.9). Using the fact th@t admits the right-inversg, defined
by (5.3), we obtain the following minimal free resolutionf/¢(M)

0 — D3 2, prxd T80 pp gy s,

where the full row rank matrig) is defined byQ = (Q* 53)".
Applying a constructive version of the Quillen-Suslin theoren®)towe then find
that a basis of\/ /(M) is given by(r’ & 0)(T'), whereT denotes the matrix

= 1
T=(1 = .
(i 150 0)

If we denote byI" the matrix defined by the first three entriesiofwe then obtain a
square matrix/ = (RT TT)T satisfyingdet U = d/dt.

The explicit computation ofxt}, (N, D) gives a matrix?_; € DP*™ which satisfies
kerp(.R_1) = D'*4" (), i.e., such that we have the following exact sequence:

N R_
D1><q Q D1><p 1 D1><7n.

A direct way to solve Problem 4 exists when the matRix; admits a left-inverse
S_1 € D™ P, Then, we have/t(M) = D'*? R_; = D'*™ and using the fact that
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rankp (M/t(M)) = p — ¢, we getm = p — ¢. The fact thatD'*¢' Q is a free D-
module of rank; implies that there exists a full row rank mati¥ € D7*? satisfying
D*d @ = D' R, Combining this result with the previous exact sequence, we
obtain the split exact sequence

0 — pixa B pixp B pixp-q) 0,

which shows thal’ = R_; andT = S_; solve Problem 4.
Let us illustrate this last remark on an example.

Example 5.6 Let us consider again the model of a flexible rod defined in (5.7) and
let us computd” € D'*3 such that the determinant of the mat(i®” 77)” equals
d/dt. In Example 5.3, we proved that we have the exact sequence

pix3 -@ pixs B2

)

whereR, = (-6 -1 —26 42— %)T. R, admits a left-invers@ defined by

1
T = (1 -3 ) 0) ,
which proves thaf\//t(M) is a freeD-module of rank 1 as we have the isomorphisms

M/t(M) = D"? /(D" Q) = (D'** Ry) = D.
We finally obtain that the matrix defined by

d d
£ _e -1
u dt di
U _ d d ., d
2%y L2
<T> a’ “a’ a
1 —1s 0

satisfieslet U = d/dt, which solves Problem 4.

To finish, let us show how to handle an example given in [61] by meanslgd-
rithms 5.1 and 5.4.

Example 5.7 Let us consider the commutative polynomial rilg= Q[z1, 22, 23] and
the following matrix defined in [61]:

R 21 23 23 0 —2222-1 c D273,
z% z§ +2z23 —=z23 —zi)’ 23 — 21
Let us define thé>-modulesM = D'*3/(D'*2 R) andN = D'*2/(D'*3 RT). Com-
putingexth (N, D), we then get
t(M) = (D™ Q)/(D'** R),
M/t(M) = DV /(DY Q),
M/t(M) = (D' P),
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with the notations

2 2 2
—Z5 %3 25 %3 21 Ry — 2173 9 9
5 o a3 zizy +1
—RZ3 — 21 %3 z3 z1 21 %3
Q= P=| 22z+1 |. (5.13)
2 2.2 ’ L<3
—2723—1 2725+1 0 )
9 9 21 %9 %3
0 212523  —zyz3—1

Reducing the rows af with respect to the rows dt, we obtain that the only torsion
element ofM is defined by

{ m=—(ztzs+ 1)y + (2323 + 1)y,

zzm =0,

wherey, y» andys denote the residue classes of the standard bagi$’6fin A7. We
refer the reader to [4] for more details concerning the explicit compuistio

We can easily check thdt admits the left-invers@ = (—2223 1 z3), a fact
showing that\//t(M) is a freeD-module of rank 2. Then, the matrix = (RT  77)7
defined by

21 23 23 0 —2222-1

U=| 2222+23 —23 —2323— =
2 3
—27 23 1 2

satisfieslet U = z3, which solves Problem 4.

Let us solve Problem 3. From the previous result, we knowithai(. P) = D*** Q
is a freeD-module of rank 2. In order to be able to apply a constructive versioheof
Quillen-Suslin theorem, we first need to compute the first syzygy modul# 6* .
We obtain thakerp (.Q) = D'*2 Q,, where the matrix), € D?** is defined by

223+l z3—25 —22 0
Q2 = -

0 1 —Z3 21

Hence, we havéd'** Q = [ = D'*4/(D'*2 (0,). Applying a constructive version of
the Quillen-Suslin theorem 1Q-, we then obtail, = m»(D*2 B), where the full row
rank matrixB is defined by

24 0 —222a4+1 0
B— 1 , 1~3 ’
0 Zf z3 (Z% - 23) 0 1

andr, : D'*2 — [ denotes the canonical projection oritoHence, we get that the
full row rank matrix defined by

/

/ R/ /

11 12 13
R/:BQ:< ) ) )€D2><37

21 21 23
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where
W=z a1,

2.2 .2
Ry = 2725 — 27 23 + 1,

R/13 = Z% (Z% - 23)7

I .3.2(,2 2
o1 = —21 23 (2 — 23) (21 23 + 1),

I _.3.3 4 .32 2

91 = 21 25 21 25 + 2123 23,

I A2 6,2 4,2 6,2,2 .2

03 = —Z1 25 — 2] 25 + 21 25 23 + 2] 25 25 — 27 23 — 1,

satisfiesD'** Q = D'*2 R’ and the two independent rows & define a basis of
D4 Q. Finally, we obtain thafz = R” R’, where the matrixz” is defined by

—2222 — 23 21

R ( —2 2823 — 232222 42323 2822 — 241 )
anddet R” = z3, which solves Problem 3.

We note that we can use the fact tlfahas a full column rank in order to also solve
Problem 3. Indeed, we can use a constructive version of the QuillslinSleorem to
compute a basis dferp(.P). Indeed, if we transpose the column veciyrwe then
obtain the row vector defined in Example 3.11. Hence, if we take the lagtoms of
UT, whereU is the unimodular matrix defined in (3.6), we obtain that the full row rank
R/, defined by

(5.14)

3.2 .2

4,2 2 2.2 3(,2.2

R 14272523+ 2723 —2i25—1 —z7(2725+1)

2 — )
2] 23 23 —21 22 23 2222341

satisfiesD!*4 @ = D'*2 R/, and we obtain the factorizatioR = R} R}, where:

2 2,2
R ( z125 %23 —ziz25—1
2 =

z3 —Z1

), det Ry = z3.

6 Computation of (weakly) doubly coprime factoriza-
tions of rational transfer matrices

We now turn to another application of the constructive proofs of the Qulesiin
theorem in multidimensional systems theory, namely, the problem of fir{diagkly)
left-/right-/doubly coprime factorizations of rational transfer matricesr thre commu-
tative polynomial ringk[z1, . . ., z,,] with coefficients in a fieldk. The general problem
of the existence of (weakly) left-/right-/doubly coprime factorizationgeneral linear
systems was recently studied and solved in [48].

Let us recall a few definitions.
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Definition 6.1 [48] Let D be a commutative integral domain, its quotient field
K ={n/d|0#d,ne D},

andP € K9%" a transfer matrix.

1. Afractional representationf P is a representation d? of the form

P =DpNp' = Np D3,

where
R=(Dp — Np)e Di*latr)
N 6.1
fo V7 ) e pnxr, ©D
Dp

i. e., the entries of the matricésand & belong to the ringD.

2. A fractional representatio® = D' Np of P is called aweakly left-coprime
factorizationof P if we have

VAe K. \Re DYt — )\ ¢ pixa,

3. Afractional representatioR = Np D ! is called aveakly right-coprime factor-
izationof P if we have

YACK": RNc DUtnxl o \ ¢ prxt

4. A fractional representatioR = D' Np = Np D! is called aweakly doubly
coprime factorizationf P if P = D' Np is a weakly left-coprime factorization

of PandP = Np D}! is a weakly right-coprime factorization &f.

5. A fractional representatio® = D;l Np of P is called aleft-coprime factor-
ization of P if the matrix R admits a right-inverse ovep, i. e., if there exists a
matrix S = (X7 Y7T)T ¢ Dla+7) x4 satisfying

RS=DpX—NpY =1,

6. A fractional representatioR = Np f),;1 of P is called aright-coprime factor-
izationof P if the matrix R admits a left-inverse ove, namely, if there exists a
matrix S = (-Y X) € D"*(@+7) satisfying

SR=-YNp+XDp=1I,.

7. A fractional representatioR = D' Np = Np f);l is called adoubly coprime
factorizationof P if P = D,;1 Np is a left-coprime factorization o and P =

Np Dy is a right-coprime factorization df.
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In the case of a polynomial rin® = kx4, ..., z,], a weakly coprime factorization of
a rational transfer matrix is also calledranor left-coprime factorization
The next definition will play an important role in what follows.

Definition 6.2 [48] Let the matrixkR € D?*? have a full row rank. We calD-closure
D1xa R of the D-submoduleD*? R of D'*? the D-module defined by

DIXaR={\eD"?|30#de D: d\ € D" R}.
We have the following characterizations of the closure 8f-aubmodule ofD!*?.

Proposition 6.3 [48] Let R € D?*? be a full row rank matrix and the finitely presented
D-moduleM = D'*?/(D'*4 R). We then have

1. D'x¢ R = (K'4 R) N D'*?, whereK denotes the quotient field &f.
2. The following equalities hold:

t(M) = (K™ R) N DV?)/(D'*1 R),

M/t(M) = DY?/((K'*9 R) n D'*P).

The next theorem gives necessary and sufficient conditions foxisteece of a (weak-
ly) left-/right-/doubly coprime factorization of a transfer matrix.

Theorem 6.4 [48] Let P € K" andP = D' Np = Np D3 be a fractional repre-
sentation ofP, where the matrice® and R are defined by (6.1). Then, we have

1. P admits a weakly left-coprime factorization iff thiemoduleD!'*¢ R is free of
rank q.

2. P admits a weakly right-coprime factorization iff ti&moduleD'x" RT is free
of rankr.

3. P admits a left-coprime factorization iff' ¢ R is a freeD-module of ranlg and
D'(a+7) /(DIx4q R) is a stably freeD-module of rank:.

4. P admits a right-coprime factorization ifp <" RT is a freeD-module of rank:
and D'*(a+7) /(D1xr RT) s a stably freeD-module of rank.

5. P admits a left-coprime factorization ifp* *(¢+7) /(D1x" RT) is a freeD-module
of rankg.

6. P admits a right-coprime factorization ifp!*(¢+7) /(D1x4 R) is a freeD-module
of rankr.

Testing the freeness of modules is a very difficult issue in algebra. éjeising The-
orem 6.4, we deduce that it is generally difficult to check whether orantansfer
matrix P € K7*" admits a (weakly) left-/right-/doubly coprime factorization and if so,
to compute them. See [48] for results Or= H.,(C..) or the ring of structural stable
multidimensional systems.
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However, if we consider the commutative polynomial ring= k[x,...,z,] over
afieldk and K = k(z,...,x,) its quotient field, then we can use constructive ver-
sions of the Quillen-Suslin theorem in order to effectively compute (weddty/right-
/doubly coprime factorizations of a rational transfer matrix. We first nioé¢ using
Proposition 6.3 and a computation of an extension module, we can expliitipute
the closureD!'*9 R and then test whether the necessary and sufficient conditions given
in Theorem 6.4 are fulfilled. The next algorithm gives a constructivg twacompute
the corresponding factorizations.

Algorithm 6.5 « Input: A commutative polynomial rin@> = k[z4,...,x,] over
a computable field, a fractional representatidn = D' Np of a transfer matrix
P e K7*" which admits a weakly left-coprime factorization over

« Output: A weakly left-coprime factorization of.

1. Define the matribx® = (Dp — Np) € D?*(@+7) and the followingD-module:
M = DY (et j(D1xa Ry,

2. Transpose the matri® and define the finitely presentéztmodule
N = Dqu/(Dlx((I-'rT) RT)

3. Compute theD-moduleexth (N, D). We obtain a matrixQ ¢ D9 *(@+") such

that
M/t(M) = D@7 /(D7 Q).

4. Compute a basis of the fréemoduleD=¢ R = D**7' ). We obtain a full row
rank matrixR’ € D?*(a+7) such thatD'*¢ Q = D' 9 R/,

5. WriteR' = (D% — Np), whereD, € D?*% andNp € D", If det D # 0,
thenP = (D})~! N}, is a weakly left-coprime factorization df.

Up to a transposition, weakly right-coprime factorizations can similarly haioéd.
Let us illustrate Algorithm 6.5 on an example.

Example 6.6 Let us consider the commutative polynomial ridg = Q]z1, 22, 23],
K = Q(z1, 22, 23) the quotient field ofo and the following rational transfer matrix:

222241
2122 2
P= 12T g (6.2)
2223+ 1
212%2:3

Let us check whether or n@t admits a weakly left-coprime factorization and if so, let
us compute one. We consider the fractional represent&tienD ' Ny of P obtained
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by cleaning the denominators &% i.e., Dp andNp € D?*! are defined by

2
Z1 25 23 0
DP — c D2X2,
0 21 z% 23

Np = ( Al ) € D?*1,
22+1
We denote by? = (Dp — Np) € D?*? and define the finitely presentétmodules
M =D"3/(D'**R), N =D"?/(D"**R").
Computingext}, (N, D), we then obtain
t(M) = (D™*Q)/(D'** R),
{ M/t(M) = D3 /(D1 Q),

where the matrixQ is defined by (5.14) in Example 5.7. Using the results obtained
in Example 5.7, we get that the full row rank mati¥% < D?*3 defined by (5.14)
satisfiesD'*4 Q = D'*2? R),. Therefore, if we denote by

4.2 2 2.2
, 14272528 +2723 —2725—1
Dy = )

3,2 .2 2
27 23 25 —21 25 23

o[ AEAD
P 4.2 ’

212523 — 1

(6.3)

P = (D)~ N}, is then a weakly left-coprime factorization &t
Finally, by construction, th&-module

M/t(M) _ D1><3/(D1><4 Q) _ D1><3/(D1><2 R/2)

is torsion-free, and thus, by Theorem 2.6, we haug,(N’, D) = 0 with the notation
N’ = D¥2/(D'*3(R,)T). Moreover, we can easily check thatt%(N’, D) = 0

andext?, (N’, D) = 0, which shows thafi//¢(M) is a projective, and thus, a frde-

module by the Quillen-Suslin theorem. Hence, by 3 of Theorem 6.4, warothat
P = (D)~ N}, is aleft-coprime factorization aP. We find that the matrix, admits
the following right-inverse oveb:

1 0
2225 —23
0 1

Therefore, we have the@out identityD, X — N, Y = I,, where

1 0
X = .|, Y=(0 1.
2225 —23
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The next algorithm gives us a way to compute left-coprime factorizatibagransfer
matrix. Up to a transposition, right-coprime factorizations can similarly laioed.

Algorithm 6.7 « Input: A commutative polynomial rin@ = k[x,...,z,] overa
computable field:, a fractional representatidn = Np D' of a rational transfer
matrix P € K7*" which admits a left-coprime factorization over.

« Output: A left-coprime factorization of°.
1. Define the matris®k = (N5 DZ%)” e Dlat7)x" and define theD-module
M _ D1><(q+r)/(D1><r ET)
2. Define the finitely presented-module
]'\7 — Dlxr/(Dlx(q+r) E)
3. Computexth (N, D). We obtain a matrix)” € D" *(@+7) such that
M/t(ﬁ) _ Dl><(q+r)/(D1><T’ @T)

4. Compute a basis of the frd}moduleﬁ/t(ﬁ). We obtain a full column rank
matrix
LT = (D) —Np)T e Dlatrxa

whereD’, € D9*? andN}, € D?*", such that we have the following split exact
sequence:

0 Dixa LT plxlatr) QT pixr’

5. Transpose the matrix” to obtainL = (D), —N},) € D<@ |f det D), # 0,
thenP = (D)~ N}, is a left-coprime factorization aP.

Let us illustrate Algorithm 6.7 on an example.

Example 6.8 We consider again Example 6.6 and the rational transfer matie-
fined by (6.2). We have the fractional representaios Np D' of P, where

~ 222241
NP — 1=2 c D2X2,
2223+ 1
BP 22%2323 eD.
Let us define the matrig = (N%.  DZ)T and theD-modules

M:Dlx(q+r)/(D1XT§T), N:D1XT/(D1X(q+T) ﬁ)

The row vecto” is exactly the one defined in Example 3.11. Hence, using the results

obtained in Example 3.11, we obtain that the unimodular méfridefined by (3.6)
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satisfieskR” U = (1 0 0). Hence, selecting the last two columnsioand transposing
the corresponding matrix, we then find again the ma@jxdefined by (5.14). Hence,
using Example 6.6, we obtain th&t= (D’)~! N}, is a left-coprime factorization of
P, where the matrice®’, and N}, are defined by (6.3).

7 Decomposition of multidimensional linear systems

It was recently shown in [8] that the computation of bases of free medulkeys a
central role in thedecomposition problerof multidimensional linear systems. We
shall recall this problem as well as the main important results obtained.inf]us
first recall a few definitions and notations.

We shall denote bynd p (M) the non-commutative ring dP-endomorphisms of the
D-modulelM, i. e., the ring formed by th®-morphisms (namely, th®-linear maps)
from M to M. Moreover, we recall that if is a D-morphism from aD-module M
to aD-moduleN, thencoimf is the D-module defined byoim f = M/ ker f, where
ker f = {m € M| f(m) = 0} is the kernel off.

Let M be a finitely presente)-module, i. e. M is of the form

M = D"?/(D'*R),

whereR € D?*?, and let us denote by : D'*? — M the canonical projection. We
can easily prove that B-endomorphisny of M is defined byf(m) = =(A P), where
P € DP*? is a matrix such that there exisise D?*? satisfyingR P = Q R, and\ is
any element oD *? satisfyingm = 7()\). See [8] for more details and for constructive
algorithms which compute the pairs of matrigés Q) satisfyingR P = Q R. These
algorithms have been implemented in the packagerRFHISMS ([9]) of the library
OREMODULES ([4]).

We have following results.

Theorem 7.1[8] Let R € D?*P, M = D'*?/(D'*4 R) and f € endp (M) defined by
P e DP*P and@ € D74, i.e.,RP = Q R. If the D-modules

kerp(.P), coimp(.P), kerp(.Q), coimp(.Q),

are free of rankn, p—m, [, g—1, then there exist matricés, € D> U, € DP—m)*p,
Vi € D*? andV, € D@~U*4 such that

U=(U{ U3)TeGLy(D), V=" Vi) eGLy(D),

and

R=vryt=( M 0 e DI,
Vo RWy Vo RW

whereU~! = (W, Ws), W) € DP*™ andW, € Dp*(p—m),
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In particular, the full row rank matrixJ; (resp.,Us, V1, V) defines a basis of the
free D-moduleker (. P) (resp.,coimp(.P), kerp(.Q), coimp(.Q)), i. €., we have

kerp(.P) = D™ Uy,

coimp (.P) = k(D> P=m) 1J,),
kerp(.Q) = D'V,

coimp (.Q) = p(D**(a=D V3),

wherex : DY*P — coimp(.P) (resp.,p : D'*? — coimp(.Q)) denotes the canonical
projection ontacoimp (. P) (resp.,coimp(.Q)). An important point in Theorem 7.1 is
the computation of bases of the fréemodulesker(.P), coimp(.P), kerp(.Q) and
coimp(.Q), which can be solved by means of constructive versions of the Quillen-
Suslin theorem and their implementations in computer algebra systemsleintordo
that, we use the packageJQLEN SUSLIN described in the appendix.

Let us illustrate Theorem 7.1 by means of an explicit example.

Example 7.2 Let us consider the system of partial differential equations defined by
O -
aatA+;V/\VA—oVV=0, (7.2)

whereos andy are two constants. The previous system corresponds to the equations
satisfied by the electromagnetic quadri-potentié] ) when it is assumed that the
term 9, D can be neglected in the Maxwell equations. See [7] for more details. It
seems that Maxwell was led to introduce the teind in his famous equations for
purely mathematical reasons. See [7] for more details.

Let us consider the rin® = QI[0, 01, 02, 05] of differential operators i, = 9/0t
andd; = 9/0x; with rational constant coefficients, the system matrix of (7.1) defined

by

Uat*l(8§+8§) l61(()\'2 28183 —o 01
1% H H
1 1, .9 9 1
R= — 0109 oﬁtf—(81+83) — 09 03 —0 Oy
H H H
1 1 1,9 9
— 01 03 — 0y 03 O'at*—(al +62) —0 03
H H 12

and the finitely presentef-moduleM = D*4/(D1*3 R).
The matrices” and(Q defined by

0 0 0 0
p_ 0 opod 0 —0 11Dy c D4,
0 0 O'/Lat —O'Mag
0 0,0, 0,05 —(D2+02)
0 0 0
Q = —81 (92 U/Lat — 8% —82 (93 S D3><37

—81 83 —82 83 [V’ at — 6§
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satisfy the relatiork P = @ R, and thus, define B-endomorphisnf of A7. Moreover,
we can check thdter p (.P), coimp(.P), kerp(.Q)) andcoimp (.Q) are freeD-modules
of rank 2, 2, 1 and 2. Hence, computing bases of theselfre@dules by means of a
constructive version of the Quillen-Suslin theorem, we obtain

1 0 0 0
U, = , vi=(10 0),
! (0 0y 0y —au) ! ( )

gL (0100 V2:<(O)(1)(1)>.
*“op\o0o 01 0)

DefiningU = (Uf UI)T € GL4(D) andV = (VI ViI)T € GL3(D), we get that
R =V RU™!is the block-triangular matrix defined by

oo — L@@ Lo 0 0
m u
1 1
ﬁaﬂ?? ;62 o (opd — (07 + 05 + 03)) 0
1 1 2 2 2
;6183 ;83 0 U(Uuat—(al -‘rag +8;))

Now, we recall that aimdempotentf € endp (M) is a D-endomorphisny of M satis-
fying f2 = f. We can now state another important result of [8] on the decomposition
of D-modules for which the Quillen-Suslin theorem plays a central role.

Theorem 7.3[8] Let R € D9*?, M = D'*?/(D'*9R) and f € endp(M) be an
idempotent defined by two idempoteRts DP*? and@ € D?*%, namely, they satisfy
RP = QR, P? = PandQ? = (. Then, there exist four matricds, ¢ D™*»,
Uy € DP=m)xp 'V, ¢ D'*4 gandV, € D@~D*4a sych that

U= Ui Uy)" eGLy(D), V=" V)T eGLy(D),

and

R—vry-'— | M 0 € DI<P,
0 Vo RWs

whereU—! = (W, Ws), W, € DP*™ andW, € Dp*(P—m),

In particular, the full row rank matrixt/; (resp.,Us, V1, V3) defines a basis of the
free D-modulekerp (.P), (resp.,imp(.P) = kerp(.(I, — P)), kerp(.Q), imp(.Q) =
kerp(.(I; — @))) of rank respectivelyn, p — m, [, ¢ — l. In other words, we have

kerp(.P) = D™ Uy,
imp(.P) = DY>*@=m) 1,
kerp(.Q) = DYy,
imp(.Q) = D@DV,

Let us illustrate Theorem 7.3 by means of an example coming from ddnéaory.
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Example 7.4 Let us consider the differential time-delay system describing the move-
ment of a vibrating string with an interior mass studied in [31], namely,

¢1(t) + ¥1(t) — d2(t) — ¥2(t) =0,

G1(t) + 1 (t) + M1 d1(t) — mu1(E) — 2 G2 (t) + M2 2 (t) = 0,
d1(t —2hy) +1(t) —u(t — hy) =0,

Do (t) + ot —2ho) —v(t — hg) =0,

(7.2)

whereh; andhs € R, are such tha@ h, + Q ks is a two-dimensional)-vector space
(i. e., there exists no relation of the fommh; + n he = 0, wherem,n € Z), n; andns
are two non-zero constant parameters of the system.

Let us consider the rin@ = Q(71,12) [%, 01, 02] of differential time-delay opera-
tors where(dy/dt)(t) = y(t) and(o; y)(t) = y(t — h;), fori = 1,2. The condition on
h1 andhs implies that the two time-delay operatars ando, areincommensurable
i. e., define two independent variables. Henbeis a commutative polynomial ring.
Let us denote by the system matrix of (7.2), namely,

1 1 -1 -1 0 0
d d
— = — 0 0
Re| @™ G TR € D4*6,
U% 1 0 0 —01 0
0 0 1 O’% 0 —09

and the finitely presenteB-moduleM = D'*6/(D1*4 R).
Computing idempotents afndp (M), we obtain an idempotent defined by the
following two idempotent matrices:

10 0 O 0 0
9 1 0 -1 1
-0 000 0 o4 O d
— o2 0 1 ——
p_ 0 0 0 o5 0 oo 0= i +m N2
0 0 0 1 0 0 0 0 0 0
0 0 0 O 1 0 0 0 0 0
0 0 0 O 0 1

Moreover, we can check thatrp(.P), imp(.P), kerp(.P) andimp(.P) are freeD-
modules of rank 2, 4, 2 and 2. Computing bases by means of a cahg&nersion of



82 A. Fabiahska and A. Quadrat

the QuillenSuslin theorem, we then get:

210 0 - 0
kerD(.P):D1X2U17 U‘1:<O-1 9 o1 >,

0 0 1 o3 0 —09

10 00 00
()= Dy, Ty=| 000100

000 001

VY
o O
o O
[l
]
~_

kerD(.Q):DMQ Vl, ‘/12

1 0 —1 1
iInD(.Q) = D1X2 VQ, V2 = d .

0 -1 —— —
dt Uit T2

Forming the matrice&’ = (U] UJ)" € GLg(D) andV = (V/" V)T € GL4(D),
we obtain that? is then equivalent to the block-diagonal matfix=V RU~*:

10 0 0 0 0
0 1 0 0 0 0
0 0 1—o? o5 —1 o1 —02

d d d
0 0 of (E_m)_ (E +’71> —np (03 +1) —oy (E +771> N2 02
Now, considering the second diagonal block, namely,

1—o? o2 —1 o1 —09

S P (AN Ry (1) o (L ’
01 dt m di m N2 (03 o1 i m N2 02

and theD-module L = D'*4/(D'*25). Using an algorithm developed in [8], we

obtain that an idempotepte end (L) is defined by the two idempotent matrices

1
Q’l( o +1 n—2(05—1)>
) 2 )

—no (03 4+ 1) —o2+1

o O 2
o O O O
S = o O
_= o O O

with the notations
1 5 (d d
a= 21 <U1 (dt (m +772)) a + (12 ?71)) )

_ o (d
b= 2 (dt (771+772))-



Applications of the Quillen-Suslin theorem 83

We can check that th®-modulesker, (.P’), imp(.P’), kerp(.Q") andimp(.Q’) are
free and, using a constructive version of the Quillen-Suslin theorengbiain that
kerp(.P') = DU], imp(.P") = D3 U}, kerp(.Q") = DV{ andimp(.Q") = D V4,
where
U{:2n2( a —1 b 0 )

1 0 0 0
Uy = —01 0 1 0

otoa(d—m —m)—oa(d+m—m2) 0 —oro2(d—m—m) —2mn
and
Vi=(m 1), Vy=(p(o3+1) o3-1).
DefiningU’ = (U;T  UST)T € GLy(D) andV’ = (V{1 V31T € GLy(D), we get
1 0 0 0

S=V'svu~t= d d
0O —+m+n o1 (dtJrnzm) lop!

dt
If we denote bydiag(A, B) the diagonal matrix formed by the matricdsand B and
defineU” = diag(I>,U’) € GLg(D) andV” = diag(I2, V') € GL4(D), then we get

R=(V"V)R{U"U)™! = diag(l», S).

The last result proves that the system defined by (7.2) with 6 unknamehd equations
is in fact equivalent to the following simple equation:

Zl(t) + (771 + 772) Zl(t) + 22(15 — hl) + (772 - 771) Zg(t — hl) — Zg(t — hg) =0. (73)
Using the results summed up in Figure 2.1, irenodule defined by

d d
M' = D3/ <D <E+m+n2 o1 (£+772—771> 02))

is reflexive but not projective, i. e., not free, as we have

1%

M

d
J = annD(extBD(T(M’)7D)) = (01,02, 7 +m —|—772) ,

anddimcV (J) = 0. Asoi,02 € J, we obtain that the@(n;, no) [4, 01, 09,07 "]
moduleQ(n1,m2) [, 01,02,07 | @p M’ is free, i.e., (7.3) s -free ([6, 30]). Com-

puting an injective parametrization of (7.3), we obtain
d
Z1 = 0102Y1 + 01 E+772—771 Y2,

d
Zp = —02Y1 — (dt +m+ 7]2) Y2, (7.4)

23 = —2n1 Y1,
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and a basis of)(r;,72) [%,01,02,0;1]—m0duleQ(m,n2) [%,01,02,0;1] ®p M'is
then defined by

I —1
Y1 =—5—07 23, Yo=—-—I(01 21+ 22)
2m 2771( ! )

Using (7.4) and the transformati®ny , 11, o, V2, u,v)T = (U" U) 71 (21, 22, 23)T, we
get an injective parametrization of (7.2) if we also use the advancatmper .

Fina”y, the@(ﬂl, 7]2) [d(—it, 01,02, 0271} 'mOdUIe@(nl, 772) [%, 01,09, J;l] XRp M'is
free and, from (7.3), we obtain that

23(t) = 21(t+ h2) + (1 +m2) 21(t+ ha) + Z2(t — h1 + ha) + (12 —n1) 22(t — ha + ha),

showing that th&(n;, 72) [%, o1, 02,051}-m0dule<@(n1,772) [%, 01,02,051} ®p M’
admits the basi$z, z,}. Using the transformation defined %" U)~!, we get an
injective parametrization of (7.2) if we also use the advance operator

Generalizations of Theorems 7.1 and 7.3 hold for some classes afamomutative
polynomial rings of functional operators. See [8] for more detailsweler, we need
to be able to compute bases of free modules over the correspondisg Argeneral
algorithm has recently been developed in [49, 51] for the ring of diffimeéoperators
with polynomial or rational coefficients (the so-calldéyl algebray See [50] for an
implementation of this algorithm and a library of examples which illustrates it.
Finally, we refer the reader to [8, 9] for numerous examples of decsition of

classical systems of partial differential equations and of differentia-tiwlay equa-
tions appearing in mathematical physics and control theory and forcaijolésn of the
package MRPHISMS([9]) as well as a library of examples.

8 Conclusion

In this paper, we have shown new applications of constructive versidhe Quillen-
Suslin theorem to mathematical systems theory. In particular, we expldinethe
construction of bases of a free module over a commutative polynoiméalr gives us
a way to obtain flat outputs of a flat multidimensional linear system as wellj@s-in
tive parametrizations of its solutions ove’amodule 7. We have also shown that a
flat multidimensional system was algebraically equivalent to the 1-D dtatite lin-
ear systems obtained by setting all but one functional operator to parti@iiges in
the system matrix. This last result gives an answer to a natural quesiorgan the
study of flat multidimensional linear systems and particularly in the studyiffer¢d
ential time-delay systems. Moreover, we gave constructive algoritbmisvd well-
known problems stated by Lin and Bose in the literature of multidimensiosés)s.
These problems are generalizations of Serre’s conjecture. We alsedlthat the
computation of (weakly) left-/right-coprime factorizations of rational &f@nmatrices
could constructively be solved by means of the Quillen-Suslin theorem.n€kd for
the computation of bases of fréemodules recently appeared as an important issue in
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the study of the decomposition problems of multidimensional linear systeimally,
we have demonstrated the different algorithms by means of the recglenintation
of the Quillen-Suslin theorem in the packageIQ.EN SUSLIN. To our knowledge, this
is the first implementation of the Quillen-Suslin theorem in a computer alggbtars
which is nowadays freely available and dedicated to applications of the Q®illslin
theorem and, in particular, to mathematical systems theory and contooythe

New applications of the Quillen-Suslin theorem and of the packagel@N Sus-
LIN will be studied in the future (e.g., algebraic geometry, signal procgssiiore-
over, an interesting but difficult problem is to constructively recognihema finitely
presentedD = A[z]-module M = D'*?/(D'*4R), whereR € D% and A is
a commutative ring, iextended namely, when there exist$ € A9 **" such that
M = D@4 P, whereP = A" /(A1*4" §), See [53] for more details. Itis well known
that the Quillen-Suslin theorem is a particular case of this problem whéena projec-
tive D-module ([23, 24, 52, 53]). If we can effectively solve this problemgdarticular
classes ofD-modules, then, for ever®-module 7, we obtainker =(R.) = ker#(S.),
which shows that the integration of the systkanz(R.) is algebraically equivalent
to the integration of the systeker~(.S.) which contains one functional operator less.
Such a result may simplify the explicit integration of these classes of furadti&ys-
tems. Finally, another interesting problem is the computation of a minimalfset o
generators of a finitely presentdd = A[z]-module M = D'*?/(D'*4 R), where
R € D7*P, The results recently obtained in [8, 9] were able to explicitly answer these
last two questions on particular examples coming from mathematical grassitcon-
trol theory. However, the general case seems to be far from belivedso

Finally, more heuristic methods need to be developed and implementediin Q
LENSUSLIN in order to avoid as much as we can the use of a general algorithm for
solving Problem 2. Different QS-algorithms need also to be implementedlin-Q
LENQUILLEN and particularly the one recently developed in [27, 58].

9 Appendix: The packageQUILLEN SUSLIN

9.1 Description of QUILLEN SUSLIN: a package for computing bases
of free modules over commutative polynomial rings

The package QuillenSuslin is an implementation of a constructive versiive @uil-
len-Suslin theorem. The main idea of the algorithm was inspired by the artictmar
and Sturmfels [26]. Nevertheless, many important changes weregited. We have
roughly described the implemented algorithm in section 3.4.

The general algorithm proceeds by induction on the numbeir the independent
variablesz; in the polynomial ringD = kx4, ...,z,] and each inductive step, that
reduces the problem by one independent variable, consists of theifajlthvee main
parts:

1. Finding a normalized component in a polynomial vector by means lodage of
coordinates (NormalizationStep).
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2. Computing a finite number of local solutions (local loop) using Horsottkeo-
rem (Horrocks).

3. Patching local solutions of Problem 2 together to get a global one {Patch

This general method is generally quite involved. The package consiptecgdures
completing a unimodular polynomial row which admits a right-inverse to arsqu
invertible matrix over a given commutative polynomial ring with coefficiant& or
Z. The implementation was improved by many heuristic methods which atkasse
soon as it is possible. It allows us to avoid the inductive step and leads téesimp
outputs (smaller coefficients and lower degrees).

QUILLEN SUSLIN uses the libraryNvoLuTIVE ([3]) for computing Janet bases
over commutative polynomial rings.

> with(Involutive):

> with(QuillenSuslin);

[BasisOfCokernelModule, Cofactors, CompleteMatriz, DenomOf, Heuristic,
Horrocks, InjectiveParametrization, Invertibleln, IsInS, IsMonic,
IsParkNormalized, IsReqular, IsUnimod, LC, LCFactorization, LM,
Laurent2Pol, LaurentNormalization, LinBosel, LinBose2, LowestDegree,
MaxMinors, MaximalF'F'; MazimalQQ, MaximalZZ, NormalizationStep,
OneLocalSol, OneStepEY , OneStepQS, ParkAlgorithm,
ParkMatrixNormalization, Patch, QSAlgorithm, ReduceBasisDegree,
ReduceDeg, Rightinverse, RightInverseFast, SHeuristic, SetLastVariableA,
SuslinLemma, WLCFactorization, WRCFactorization)

9.1.1 The main functions of the packag&UILLEN SUSLIN

QSAlgorithm Compute a unimodular matrix which trans-
forms a row vector admitting a right-inverse
into a matrix of the form(I  0)

CompleteMatrix Complete a matrix admitting a right-inverse
to a unimodular matrix

HEURISTIC Test whether or not a heuristic method can be
applied for the given row vector

BasisOfCokernelModule Compute a basis of a free module finitely pre-

sented by the given matrix
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9.1.2 Important functions of the packageQUILLEN SUSLIN

Horrock s Implementation of Horrock’s theorem
which computes a solution of Problem 1
over a given local ring

IsMonic Test whether or not a polynomial row vec-
tor has a monic component

IsRegular Test whether or not a polynomial row vec-
tor forms a regular sequence

IsUnimod Test whether or not a matrix admits a
right-inverse

MaximalFF Find a maximal ideal over a given onein a
polynomial ring with coefficient in a finite
field

MaximalQQ Find a maximal ideal over a given one
in a polynomial ring with rational coeffi-
cients

MaximalzZzZ Find a maximal ideal over a given

one in a polynomial ring with integer co-
efficients

NormalizationStep

Compute an invertible transformation and
a change of variables such that the last
component of the transformed row be-
comes monic in the last new variable

OnelocalSol

Compute a matrix which is unimodular
over some localization of the polynomial
ring and transforms the given matrix to
I 0

OneStepEY
OneStepQS

One inductive step of the general algo-
rithm: return a unimodular matrix which

transforms the given matrix into a matrix
where the last variable equals 0

Patch

Patching procedure: patch local solutions
together

SuslinLemma

Implementation of Suslin’s lemma which
computes a polynomial in the ideal gen-
erated by polynomialg and ¢ such that
deg(h) = deg(p) — 1 and its leading co-
efficient is a coefficient of the polynomial
q
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9.1.3 Low level functions of the packag@®UILLEN SUSLIN

Cofactors Compute cofactors of @ — 1) x p-matrix

DenomOf Compute the common denominator of entries of a ra-
tional matrix

LM Return the leading monomial of a polynomial with
respect to the given variable

LC Return the leading coefficient of a polynomial with
respect to the given variable

MaxMinors Return the maximal minors of a given matrix

ReduceDeg Reduce degrees of the components of a polynomial

row vector with respect to given variable

Rightlnverse
RightlnverseFast

Compute a right-inverse of a row vector

ReduceBasisDegree

Reduce degrees of the elements of basis of a free
module over a commutative polynomial ring

9.1.4 Functions ofQUILLEN SusLIN for mathematical systems theory

InjectiveParametrization

Compute an injective parametrization of a
flat multidimensional linear system

LCFactorization

Compute a left-coprime factorization of a
rational transfer matrix when it exists

LinBosel

Compute a solution of Problem 3 when it
exists

LinBose2

Compute a solution of Problem 4 when it
exists

RCFactorization

Compute a right-coprime factorization of a
rational transfer matrix when it exists

SetLastVariableA

Compute a unimodular matrix which
transforms the given matrix into a matrix
where the last variable is set to a given con-
stantA

WLCFactorization

Compute a weakly left-coprime factoriza-
tion of a rational transfer matrix when it
exists

WRCFactorization

Compute a weakly right-coprime factor-
ization of a rational transfer matrix when
it exists
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9.1.5 Functions ofQUILLEN SusLIN for Laurent polynomial rings

IsParkNormalized Test whether or not a Laurent polynomial is
normalized, i. e., whether or not all its coeffi-
cients are Laurent monomials

Laurent2Pol Compute a transformation which maps a row
vector over a Laurent polynomial ring into a
row vector over a polynomial ring

LaurentNormalization Return a change of variables which normal-
izes a Laurent polynomial

LowestDegree Return the lowest degree of a Laurent poly-
nomial with respect to the given variable

ParkAlgorithm Return a unimodular matrix over the Laurent

polynomial ring which transforms the given
matrix into a matrix of the forn{/  0)

9.1.6 Functions ofQUILLEN SUSLIN for localizations

Invertibleln Find an element in the intersection of an ideal and a
multiplicative closed subset of the polynomial ring

IsInS Test whether or not a polynomial belongs to a given
multiplicative subset of the polynomial ring

SHeuristic Test whether or not a heuristic method can be used over
a localization of the polynomial ring

To our knowledge, the QILLENSUSLIN package is the only package dedicated to
the implementation of the Quillen-Suslin theorem (see [11] for a partial ane)its
applications to mathematical physics, control theory and signal priogesdn ORE-
MoDULES version of QJILLEN SUSLIN will soon be available on the REMODULES
web site [4] which will extend [11]. Applications of the Quillen-Suslin theoream
algebraic geometry will be studied in the future.

9.2 Examples

9.2.1 Example taken from [19]

We consider the row vectd® over the polynomial ring> = Z[z] given in [19].
In the QUILLEN SUSLIN package, all the computations are performed for a commu-
tative polynomial ring with rational coefficients if the last parameter is seuwand



90 A. Fabiahska and A. Quadrat

with integer coefficients if the last parameter is sefalse
We first declare the independent variablesf the polynomial ring by setting

> var:=[x];
var = [x]
and then the row vectak:

> R:=[13, x'2-1, 2*x-5];
R:=[13, 2% — 1,22 — 5]
Let us check whether or ndt admits a right-inverse over the rirg.
> Rightinverse(R, var, false);
[55 — 36z + 622, —6, 144 — 36 x|
Applying theQSAlgorithm  procedure to the row vectdt, we then obtain
> U:=QSAlgorithm(R, var, false);

U:=[55—36x+ 622, 6481 — 85322 + 417522 — 900 2% + 72 2%,
—(55 — 36z + 622) (22 — 5)][—6, —707 + 468z — 7222, —30 + 12 2]
[144 — 362, —72(x — 4) (59 — 392 + 6 22), 721 — 468 x + T2 2?]

The matrixU is unimodular ovelD andRU = (1 0 0) as we have

> Determinant(U);

> simplify(Matrix(R).U);

[10 0]

We note that th&)SAlgorithm  procedure uses a heuristic method as the first two
components of the right-inverse Bfgenerate the ringp. Hence, the general algorithm
can be avoided in this example:

> Heuristic(R, var, false);

[55 — 36z + 622, 6481 — 8532z + 4175 2% — 9002 + 7224,
—(55 — 362+ 622) (22 — 5)]

[~6, —707 + 468 2 — 7222, —30 + 12 2]

[144 — 36z, —72(z —4) (59 — 39z + 6 22) , 721 — 468 x + 72 2?]

We can check thaR is the first row of the invers& —! of U:
> U_inv:=CompleteMatrix(R,var, false);

13 2 —1 2x—5H
U_inv := 6 55 — 362 + 62 0
—144+ 362 11882 — 36022 + 362> — 1296 1
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The residue classes of the last two rows of the mdtrix define a basis of thé®-
moduleM = D**3/(D R).

> BasisOfCokernelModule(R, var, false);

6 55 — 36z + 627 0
—144+ 362 1188z — 36022 + 3623 — 1296 1

We can reduce the degree of the components of the rows defining tike bas

> BasisOfCokernelModule(R, var, false, reduced);

0 24—6x 1
72 83 —24+4+12x

The injective parametrization of the system definedig then defined by

> InjectiveParametrization(Matrix(R), var, false);
6481 — 85322 + 417522 — 90023 + 722* —(55 — 362 + 62%) (22 — 5)
—707 + 468 x — 72 22 30+ 122
~72(z —4) (59 — 397 + 62?) 721 — 468 x + T2 22

9.2.2 Example taken from [22]
We consider the vector vect@ with entries in the ringD = Q|x, y] defined by

> var:=[xyl;
var := [z, y]
> R = [X2%y+1, X+y-2, 2*x*yl;
R:=[2%y+1,2+y—2, 22y
We can check that ideal generated by the entrieR génerate® as we have

> IsUnimod(R, var);
true

Therefore, the row vecta® admits a right-inverse oveép and then defines a projective
D-moduleM = D'*2/(D R), i. e., free by the Quillen-Suslin theorem.

As the first and the last components®fjenerate the ring, we know that we can
use a heuristic method for computing a basis offhenoduleM . This last result can
be checked as follows once we note that we are working over thefialid then need
to set the last parametertime in the procedures:

> U:=Heuristic(R, var, true);

1 2—y—=x —2zy
U .— 0 1 0
z z(x+y—2)

2
- —= 1
2 5 oy +
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We can check that the entries of the invetgg, of the matrixU belong toD, i.e.,
U € GL3(D), and its first row isk:

> U_inv:=CompleteMatrix(R, var, true);

?y+1 v+y—2 22y

U_inv = 0 1 0
x
— 0 1
2

The residue classes of the last two rowdgf, in M form a basis ofd/. This result
can directly be obtained as follows:

> BasisOfCokernelModule(Matrix(R), var, true);

010]
X
Z 0 1
2

The injective parametrization of the system definediys given by the last two
columns ofU, a fact that can directly be obtained by

> InjectiveParametrization(Matrix(R), var, true);

2—y—=x —2xy
1 0
-2
73:(1‘#—23/ ) ?y+1

9.2.3 Example given by A. van den Essen

The following example was given to us by A. van den Essen (Radbouiwktdity
Nijmegen). We are grateful to him for letting us using it for illustrating the paek
QUILLEN SUSLIN. We consider the polynomial ring = Q[¢, x, y, 2]

> var:=[t,x,y,z];
var :=[t, x, y, 2|
and we consider the row vect&rdefined by
> Rim[2%t*x*z+try 2+1, 2*t*xry+t72, t*X72];
R:=[2txz+ty*>+ 1, 2tzy+t2, ta?]
We check that the ideal dp generated by the entries &fdefines the whole ring:

> IsUnimod(R, var, true);
true

Hence, the row vectaR admits a right-inverse ovep, and thus, the finitely presented
D-moduleM = D'*3/(D R) is projective, i.e., free by the Quillen-Suslin theorem.
Let us solve Problem 2 and compute a basis of Fhenodule M. In order to do
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that, we can first check that none of the heuristic methods describectiors8.3 and
implemented in @ILLEN SUSLIN can be used to solve the problem:

> infolevel[QSAlgorithm]:=3;
infolevel oga1gorithm = 3
> U:=QSAlgorithm(R,var, true);

QuillenSuslin/RowQS: RowQS [2*t*x*z+tRy 2+1, 2*t*x*y+t "2,
™x"2], [t, X, Y, Z]

QuillenSuslin/RowQS: Compute Rightinverse
A right-inverse of the row vectaRr is defined by

QuillenSuslin/RowQS: Rightinverse

[2*72%y 2% x*Z-2*t* X * 2 +1"2* Y " 4-t*y"2+1,

8*X"3*Z"2*y " 3+8*X 2*7*y"5-4*X"2* 2" 2*t*y " 2-A*t*y " 4*X *Z2+4*X"2*7"2
+2¥yTEX-tY 6 +2%y 2% Xz, -16%Yy 4*X"2*2"2-16%y 6*X*Z -8*y*x*z"2
-4*y"8-4*y"3*7]

QuillenSuslin/RowQS: RowQS  Test heuristic methods. For mo re
information set infolevel[Heuristic]:=3

QuillenSuslin/RowQS: Not easy - no heuristic methods work

We obtain that none of the heuristic methods implementedin.(EN SUSLIN can be
applied toR. Hence, we need to use the general algorithm presented in section 3.4.
The first step of this algorithm is to compute a transformation which ni&josa row
vector with a monic component in the last variabléWe obtain that the permutation

of variablest — 2,z — ¢,y — x, z — y normalizesk:

normalization over QQ

QuillenSuslin/RowQS: The row after normalization
[2*z_*t_*y +z *x "2+1, 2*z_*t_*x_+z_"2, z_*_ 2]

Let us call the new row Xectoﬁ. We can now test whether or not any of heuristic
methods can be applied R

QuillenSuslin/RowQS:  Test heuristic methods for the
normalized row [2*z_*t *y +z *x _"2+1, 2*z_* *x_+z_"2, z_*t 2]

QuillenSuslin/RowQS: No heuristic methods work for the
normalized row

No heuristic method can be a@liedTﬁD We can then check if it is possible to reduce
the degree of the components®ising its monic component + 2 z ¢ x:

QuillenSuslin/RowQS: No reduction - the rows is already
reduced [2*z_*t *y +z *x "2+1, 2*z *t *x_+z "2, z_* " 2]

No simplification can be done. Now, we enter the general algorithm:

QuillenSuslin/RowQsS: OneStep - Enter the inductive proced ure
and reduce one variable:
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QuillenSuslin/RowQS: OneStep - Compute local solutions an d
patch them together!

QuillenSuslin/RowQS: OneStep - For more information set
infolevel[OneStepMore]:=3

After one inductive step, we obtain a matfixe GL3(D) such thatR(t,z,y,2) U =
R(t,z,y,0) = (1 00), which directly solves Problem 2:

QuillenSuslin/RowQS: After one step: [1, O, O]

QuillenSuslin/RowQS: Now repeat the computation for fm
[1, 0, O]

QuillenSuslin/RowQS: RowQS [1, 0, O], [t, x, v ]
QuillenSuslin/RowQS: Compute Rightinverse
QuillenSuslin/RowQS: Rightinverse [1, O, O]

QuillenSuslin/RowQS: RowQS Test heuristic methods. For mo re
information set infolevel[Heuristic]:=3

Hence, we obtain that the solution of Problem 2 is given by mairdefined by

U :=
M—ty? +4222282 -2tz + 2yt + 422 w2 + 2y T 2 t2 + 823 22 3 12
+8x% 2y t?,

4954222 4+ 823 22y — 2ty — 2 +4dyzat?,
221223 + 1292 2% —ta? + 42 2% 292 + 29012 27
823 tad —tyS —6tytarr— 122222 ty? — 1623 2t ty® — 249° 22 23 ¢
Y Y

—12y" 2%zt — 2ty x,
14+ty? —4ty®a? —16ta* 22 y* —16t23 290 +2tx 2z —4ty3 22 — 823 22yt
—4220ht —2yT a3t — 82220ty — 8zatySt — Aty zad — yta?t]
[B2ta3 23yt + 48t 222290 + 1622 23ty +24tyP 20 + 16t y> 22w+ 49° 2t
+ 4ty
—4tyS + 162222ty +329° 2223t + 32y 2% 2t —4tyz+ 8ty x,
1+4ty82? +16ta* 22yt + 16t 23 290 + 4ty 2 2% + 823 22 y
> infolevel[QSAlgorithm]:=0;

Z'nfc’levelQ,S'Algor'éthm =0

We can show that the matriX is a unimodular matrix satisfying U = (1 0 0):

> LinearAlgebra[Determinant](U);
1

> simplify(Matrix(R).U);
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(10 0]

Hence, the first row of the inverse of is the row R, a fact which can directly be
checked using the commabmpleteMatrix

> B:=LinearAlgebra[MatrixInverse](V);
B =
Rtrz+ty?+1,2txy+12, ta?]
6tytaz+tys +2ty%x+24y5 223t + 12y 2% 2t + 1623 2ty + 1222 22 t 42
+ 823 tad,
14+ 16tx* 22y +16ta3 290 + 823 22yt +4tyd za? + 429y w2 +t2y* — 2tz 2
+AtyBa? 4222212 4+ 2y T at? + 823 222 12 + 822 20 12 — ty?,
8225ty +aty?zad + 42224t + 2y a3t + 8z at Yo t + yt 22
[—4tyl® — 162222ty —32ta3 22 y* — 48t 222290 — 24ty 22 — 16t y3 2% 2
— 4P 2t
—16t2y* 2222 —16y0 22 x + 4t yS —4yP 212 —Syx 222 +4tyz
—8ty?x —4t29y8 —329° 2223t — 32y 2?2t — 1622 2% ty?,
1—16ta* 22 y* —16ta3 2y8 —8a® 22yt — 4ty 22? — 4ty8 22

The residue classes of the last two rows of the maftin M form a basis of the
D-modulel.

> BasisOfCokernelModule(Matrix(R), var, true);

normalization over QQ

btytaz+tys +2ty%x +24y° 2223t + 1297 2?2 2t + 1622 2 ty® + 1222 22t 92
+823ta3, 14+ 16t2* 22 y* + 16123 290 + 822 22yt + 4ty za® + 412y x 2
+t2yt —2txz+4tyta? + 422222 + 2y T w2 £ 823 229312 + 822 20 12 — 92,
82220 tyd +4ty?za® + 4222t + 2y 23t + 8zt P t + ¢yt 22t
[—4ty'® —1622 23ty —32ta3 23yt — 48t 222290 — 24ty 22 — 16t y3 2% 2
— 4P 2t 1612yt 2222 — 1690 212 o+ 4tyS — 4y 2t —S8yx 2212 +4tyz
—8tyx —4t2y® —329° 2223t — 32y 2% 2t — 1622 22 ty?,
1—16ta22y* —16ta3 20 —8a® 22yt —4ty® 2z — 4t y8 22
We can try to reduce the degree of the basis elements using the cgaticce

> BasisOfCokernelModule(Matrix(R), var,true, reduce);
normalization over QQ

[-8a2 22y —8a22y° — 2y 2w —y* —4y?rz— 42222,

—2tySx—Atydza? —ty? —2tzz+1, 0

16y 2222 +169y5 w2+ 498 +4y3 2+ 8yw2?, 4ty’ + 8ty 2z +4ty2, 1]
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We refer the reader to [14] for an explicit description of the corredpanlocal com-
putations. See also [14] for more examples and, particularly, examygdeshe Laurent
polynomial ringQ[z1, 27, . .., x,,z;, '] using Park's transformation ([34, 37]).

n

9.3 Equivalences of flat multidimensional linear systems

Examples 4.5, 4.7 and 4.9

We consider the differential time-delay linear system defined by (430])[ The ma-
trix R associated with (4.1) is defined by

> R:=Matrix([[d-delta+2, 2,-2*delta],
> [d,d,-d*delta-1]]);

d—6+2 2 —296
d d —déo—-1

R :=

whered denotes the time-derivative operator ahthe time-delay operator. Hence,
we need to consider the commutative polynomial ring= QI[d, §] and theD-module
defined byM = D'*3/(D1*2 R).

> var:=[d, delta];
var := [d, §]
Let us check whether or not the mat#ixadmits a right-inverse ovep:

> IsUnimod(R, var);
true

As the matrixR admits a right-inverse ovep, we then obtain that th®-module)/ is
projective, i. e., free by the Quillen-Suslin theorem. Let us solve Pnolile

> U:=QSAlgorithm(R, var);

0 0 -2
dé 1 ) 5
— 4= - — — 542
v=| 3 T3 § d*°o+d—dé® -0+
d -1 d>—dé
2
We can check thdl’ gives a solution of Problem 1 as we ha®é/ = (I, 0):
> simplify(R.U);
1 0 0
0 1 0

andU is a unimodular matrix oveb, i.e.,U € GL3(D):

> LinearAlgebra[MatrixInverse](U);
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d—6+2 2 -2
d d —dé—1
-1/2 0 0
The residue class of the last row of the matrix! in M defines a basis af/. More-
over, the system defined iy admits the following injective parametrization

> Q:=InjectiveParametrization(R, var, true);

-2
Q:==| d&®?56+d—ds?>—-5+2
d>—dé

i.e., for anyD-moduleF (e.g..,C>*(R)), everyF-solutionn of the systenker(R.)
has the formy = Q¢ for a certainé € F. As the systenker#(R.) is flat, by Corol-
lary 4.8, we know thaker~(R(d,d).) is algebraically equivalent to the controllable
ordinary differential system without time-delay, i. e. k& »(R(d,1).). We can com-
pute an invertible transformation which maps elementseof(R(d, 1).) to elements
of kerz(R(d, 9).):
> U[1]:=SetLastVariableA(R, var, 1, true);
1 0 0
1., 1 1.1
U, = 5ch —§d5+§5—5 1 6-1
d—1)
2
We can check thaR(d, ¢) Uy = R(d, 1):

> R[1]:=simplify(R.U[1]);

0 1

R1 =

d+1 2 -2
d d —-1-d

Then, the inverse transformation, i.e., the transformation sendingeatenof
ker=(R(d, d).) to elements oker(R(d, 1).), is defined by the matrik/; *:

> LinearAlgebra[MatrixInverse](U[1]);
1 0 0
1

1.1 1
——d§—=6+-4-d 1 —5+1
A= 50+ +5d 5+

d(s—1)
2

AstheE = Q[d]-moduleN = E**3/(E'*2 Ry) is also free, we can fintl, € GL3(E)
such thatk, U, = (I, 0). For instance, we get

0 1
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> U[2]:=QSAlgorithm(R[1], var);

0 0 —2
1 d
S |
Us = 2+2 +
d
— -1 d2-d
2

As the ordinary differential linear system without delay ~(R(d, 1).) is flat, it also
admits an injective parametrization which can be computed by

> Ql:=InjectiveParametrization(R1,var, true);
-2
Q1 :=| d*>+1
d*> —d
Similarly, we can prove that the systdaar~(R(d,¢).) is algebraically equivalent to
the systenker»(R(d,0).) by means of the following invertible transformation:
> V[1]:=SetLastVariableA(R, var, 0, true);
1 0 0
1o, 1
— -5 1
V, = Qdé + 26 5
dé
2

Then, the inverse transformation, i.e., the transformation sendingeatsnof
ker=(R(d,d).) to elements oker=(R(d, 0).), is defined by the matrix,*:

0 1

> LinearAlgebra[MatrixInverse](V[1]);

1 0 0
B
2
ds
_— 1
5 0

As theE = Q[d]-moduleP = E'*3/(E**2 Ry) is also free, we can finth, € GL3(E)
such thatRy Vo = (I 0). In particular, we have

> V[2]:=QSAlgorithm(R[0], var);

0 0 -2

L 0 d+2
Vgiz 2

d

- -1

2

See [14] for more examples.
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9.4 Pommaret’s theorem of the Lin-Bose conjecture

Examples 5.3, 5.5 and 5.6

Let us consider the differential time-delay model of a flexible rod withrad@pplied
on one end defined in Example 5.3 ([30]). The system marixith entries in the
commutative polynomial rin@ = Q[d, 6], whered denotes the time-derivative opera-
tor and¢ the time-delay operator, is defined by

> var:=[d, delta];
var :=[d, 9]
> R:=Matrix([[d,-d*delta,-1],
> [2*delta*d,-d*delta"2-d,0]]);
| d —-ds -1
"] 2ds —d&?2—d 0

Let us check whether or not the-module M/ = D'*3/(D'*2 R) is projective, i.e.,
free by the Quillen-Suslin theorem:

> IsUnimod(R, var);
false
We obtain thatR does not admit a right-inverse ovér and theD-module M is not
free. In particular, there does not exist a matfix GL3(D) suchthatRU = (I, 0)

or, equivalently,R cannot be completed to a unimodular matrix oizerl_et us compute
the set of all maximal minors ag:

>  m:=MaxMinors(R);
m = [d*§? — d?, 2d6, —ds? — d]
The ideall of D defined by the maximal minors is generated by

> Involutive[lnvolutiveBasis](m, var);
[d]
i.e.,I = (d), and thusd is a greatest common divisor of the maximal minorsiof
In particular, using Figure 2.1, we obtain that the torsigrsubmodulet(M) of M

is not reduced to 0. A solution of Problem 3 can directly be obtained by cahiag
QUILLEN SUSLIN procedureLinBosel as follows:

> F:=LinBosel(R, var);
-1 0 —d dé 1 ]
0 —d | | =26 641 0
The second matrix of the previous output corresponds to the mitrsolving Prob-

lem 3, whereas the first one corresponds to the mafixsatisfyingR = R” R’ and
det R” = d, whered denotes the greatest common divisor of the maximal minofs of

F:=]|
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> simplify(F[1].F[2));
d —dé -1
2d6 —dé?—d 0

> LinearAlgebra[Determinant](F[1]);
d

> IsUnimod(F[2], var);
true

Let us now solve Problem 4. We can obtain a solution of Problem 4 by useg th
procedurd.inBose2 :

> C:=LinBose2(R, var);

d —ds -1

Co— | 2d6 —ds>—d 0
1 0
2

The determinant of the matrix equals to

> LinearAlgebra[Determinant](C);
d

which solves the problem. See [14] for more examples.

9.5 (Weakly) coprime factorizations of rational transfer matrices

Let us consider the commutative polynomial rifg= Q|z1, 22, z3]:

> var:=[z[1],z[2],z[3]];
var :=[zg, 22, 23]
We consider the rational transfer matrix defined in Example 6.6, nhamely
> P:=Matrix(<(z[1]"2*z[2]"2+1)/(z[1]*z[2] 2*z[3]),
> (z[1] 2*z[3])+1)/(z[1]*z[2] 2*2[3]) )
Z] zg +1
Z1 222 z3
Z1 2 z3 + 1

z1 292 23

P =

Cleaning the denominators &f, we obtain the fractional representatifn= D' Np
of P, where the matrice®p € D?*? andNp € D?>*! are defined by

> D_P:=LinearAlgebra[ScalarMatrix](DenomOf(P),2,2);
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DP.— 21 222 z3 0
0 Z1 222 z3
> N_P:=simplify(D_P.P);
2 2
1
NP | T
Z17 %3 + 1

Let us define the matrig = (Dp — Np) € D?*3, namely
> Q:=Matrix([D_P, -N_P]);

Q L Z1 22223 0 —212222—1
0 Z1 22223 —21223 -1

| S

The set of the maximal minors ¢f is defined by
> ml:=MaxMinors(Q);
mil = (212 20 232, 21 202 23 (=212 25 — 1), —(—212 222 — 1) 21 252 23]
The greatest common divisor of the maximal minorg)ds

> d:= {gcd(m1[1],m1[2]),gcd(m1[1],m1[3]),
> ged(ml[2],m1[3]) IS

d:= {Z] 222 23}
Hence,P = D;l Np is not a weakly left-coprime factorization @f. Let us check

whether or not the rational transfer matidadmits a weakly left-coprime factorization
and, if so, compute one:

>  WLCF:=WLCFactorization(P,var);

WLCF:[ —21223—1 ZZ2Z22+21423222+1

—Z1 ZQQZ:; 21322423 Z14Z3 Zg2—1

l 21% 29 + 213 ]}

We obtain that? admits the weakly left-coprime factorization defined by
P = (Dp)"' Ny,

whereD’, € D?*? is the first matrix given in the previous output aig € D?*! is
the second one. In particular, we can check tizt)~! N}, is equal toP:
> LinearAlgebra[MatrixInverse](WLCF[1]).WLCF[2]);
212202 + 1
1 20%73
21229 +1
21 222 23

Moreover, if we define the matrik = (D),  — Nj) € D?*3, namely
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> R:=Matrix([WLCF[1],~-WLCF[2]]);
Ro— —z1%23—1 zi% 22+t zg e+ 11—z 25 — 243
T =z 2?2 213 294 29 —z21t 25 29% + 1
then, the set of the maximal minors Bfis defined by
> m2:=MaxMinors(R);
m2 = (21 202 23, —21% 23 — 1, 212 202 + 1]
and the greatest common divisor of the maximal minor® @ then equal to 1 as

> {gcd(m2[1],m2[2]),gcd(m2[1],m2[3]),
> gecd(m2[2],m2[3]) 4

{1}

and thus,P = (D})~! N}, is a weakly left-coprime factorization df. Let us check
whether or not the transfer matrix admits a left-coprime factorization:

: [ Z13(212Z3—1) ]]

—214 z3 222 —1

> LCF:=LCFactorization(P,var);

21223—1 —Z1433222+212222+1

4

LCF ::[ B 9 3
21 Z2" 23 21" %2 %3

P = (D))~! N} is a left-coprime factorization of andR = (D), — N},) admits
the following right-inverse oveb:

> Involutive[PolRightinverse](R,var);

Z12Z22 213
1 0
0 1

A weakly right-coprime factorization aP can be obtained in a similar way. See [14]
for more details.
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