Using effective homological algebra for factoring and decomposing linear functional systems

Thomas Cluzeau \& Alban Quadrat

\{Thomas.Cluzeau, Alban.Quadrat\}@inria.fr
INRIA Sophia Antipolis, CAFE Project, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis cedex, France. www-sop.inria.fr/cafe/Alban.Quadrat/index.html

Séminaire ALGO, INRIA Rocquencourt, 26/06/2006

Introduction: factorization and decomposition

- Let $L(\partial)$ be a scalar ordinary or partial differential operator.
- When is it possible to find $L_{1}(\partial)$ and $L_{2}(\partial)$ such that:

$$
L(\partial)=L_{2}(\partial) L_{1}(\partial) ?
$$

- We note that $L_{1}(\partial) y=0 \Rightarrow L(\partial) y=0$.
- $L(\partial) y=0$ is equivalent to the cascade integration:

$$
L_{1}(\partial) y=z \quad \& \quad L_{2}(\partial) z=0
$$

- When is the integration of $L(\partial) y=0$ equivalent to:

$$
\begin{gathered}
L_{2}(\partial) z=0 \quad \& \quad L_{1}(\partial) u=0 ? \\
\left(L_{1} X+Y L_{2}=1 \Rightarrow L_{1}(X z)=z \Rightarrow y=u+X z\right)
\end{gathered}
$$

Introduction: factorization and decomposition

- Let us consider the first order ordinary differential system:

$$
\partial y=E(t) y, \quad E(t) \in k(t)^{p \times p} . \quad(\star)
$$

- When does it exist an invertible change of variables

$$
y=P(t) z
$$

such that

$$
(\star) \quad \Leftrightarrow \quad \partial z=F(t) z
$$

where $F=-P^{-1}(\partial P-E P)$ is either of the form:

$$
F=\left(\begin{array}{cc}
F_{11} & F_{12} \\
0 & F_{22}
\end{array}\right) \quad \text { or } \quad F=\left(\begin{array}{cc}
F_{11} & 0 \\
0 & F_{22}
\end{array}\right) ?
$$

Factorization: known cases

Square differential systems:

- Beke's algorithm (Beke1894, Schwarz89, Bronstein94, Tsarëv94...)
- Eigenring (Singer96, Giesbrecht98, Barkatou-Pflügel98, Barkatou01 - ideas in Jacobson37...)

Square (q-)difference systems (generalizations):

- Barkatou01, Bomboy01...

Square D-finite partial differential systems (connections):

- Li-Schwarz-Tsarëv03, Wu05...

Same cases in positive characteristic and modular approaches:

- van der Put95, C.03, Giesbrecht-Zhang03, C.-van Hoeij04,06, Barkatou-C.-Weil05...

General Setting

What about general linear functional systems?

- Example (Saint Venant equations): linearized model around the Riemann invariants (Dubois-Petit-Rouchon, ECC99):

$$
\left\{\begin{array}{l}
y_{1}(t-2 h)+y_{2}(t)-2 \dot{y}_{3}(t-h)=0, \\
y_{1}(t)+y_{2}(t-2 h)-2 \dot{y}_{3}(t-h)=0 .
\end{array}\right.
$$

- Let $D=\mathbb{R}\left[\frac{d}{d t}, \delta\right]$ and consider the system matrix:

$$
R=\left(\begin{array}{ccc}
\delta^{2} & 1 & -2 \delta \frac{d}{d t} \\
1 & \delta^{2} & -2 \delta \frac{d}{d t}
\end{array}\right) \in D^{2 \times 3}
$$

Question: $\exists U \in \mathrm{GL}_{3}(D), V \in \mathrm{GL}_{2}(D)$ such that:

$$
V R U=\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
0 & \alpha_{2} & \alpha_{3}
\end{array}\right), \alpha_{1}, \alpha_{2}, \alpha_{3} \in D ?
$$

Outline

- Type of systems: Partial differential/discrete/differential time-delay... linear systems (LFSs).
- General topic: Algebraic study of linear functional systems (LFSs) coming from mathematical physics, engineering sciences...
- Techniques: Module theory and homological algebra.
- Applications: Equivalences of systems, Galois symmetries, quadratic first integrals/conservation laws, decoupling problem...
- Implementation: package morphisms based on OreModules:
http://wwwb.math.rwth-aachen.de/OreModules.

General methodology

(1) A linear system is defined by means of a matrix R with entries in a ring D of functional operators:

$$
R y=0 . \quad(\star)
$$

(2) We associate a finitely presented left D-module M with (\star).
(3) A dictionary exists between the properties of (\star) and M.
(9) Homological algebra allows us to check properties of M.
(6) Effective algebra (non-commutative Gröbner/Janet bases) leads to constructive algorithms.
(6 Implementation (Maple, Singular/Plural, Cocoa...).
I. Ore Module associated with a linear functional system

Ore algebras

Consider a ring A, an automorphism σ of A and a σ-derivation δ :

$$
\delta(a b)=\sigma(a) \delta(b)+\delta(a) b
$$

Definition: A non-commutative polynomial ring $D=A[\partial ; \sigma, \delta]$ in
∂ is called skew if $\forall a \in A, \quad \partial a=\sigma(a) \partial+\delta(a)$.
Definition: Let us consider $A=k, k\left[x_{1}, \ldots, x_{n}\right]$ or $k\left(x_{1}, \ldots, x_{n}\right)$. The skew polynomial ring $D=A\left[\partial_{1} ; \sigma_{1}, \delta_{1}\right] \ldots\left[\partial_{m} ; \sigma_{m}, \delta_{m}\right]$ is called an Ore algebra if we have:

$$
\left\{\begin{array}{l}
\sigma_{i} \delta_{j}=\delta_{j} \sigma_{i}, \quad 1 \leq i, j \leq m \\
\sigma_{i}\left(\partial_{j}\right)=\partial_{j}, \quad \delta_{i}\left(\partial_{j}\right)=0, \quad j<i
\end{array}\right.
$$

$\Rightarrow D$ is generally a non-commutative polynomial ring.

Examples of Ore algebras

- Partial differential operators: $A=k, k\left[x_{1}, \ldots, x_{n}\right], k\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{aligned}
& D=A\left[\partial_{1} ; \text { id }, \frac{\partial}{\partial x_{1}}\right] \ldots\left[\partial_{n} ; \mathrm{id}, \frac{\partial}{\partial x_{n}}\right] \\
& P=\sum_{0 \leq|\mu| \leq m} a_{\mu}(x) \partial^{\mu} \in D, \quad \partial^{\mu}=\partial_{1}^{\mu_{1}} \ldots \partial_{n}^{\mu_{n}} .
\end{aligned}
$$

- Shift operators:

$$
\begin{aligned}
& D=A[\partial ; \sigma, 0], \quad A=k, k[n], k(n) \\
& P=\sum_{i=0}^{m} a_{i}(n) \partial^{i} \in D, \quad \sigma(a)(n)=a(n+1)
\end{aligned}
$$

- Differential time-delay operators:

$$
\begin{aligned}
& D=A\left[\partial_{1} ; \mathrm{id}, \frac{d}{d t}\right]\left[\partial_{2} ; \sigma, 0\right], \quad A=k, k[t], k(t), \\
& P=\sum_{0 \leq i+j \leq m} a_{i j}(t) \partial_{1}^{i} \partial_{2}^{j} \in D .
\end{aligned}
$$

Exact sequences

- Definition: A sequence of D-morphisms $M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}$ is said to be exact at M if we have:

$$
\operatorname{ker} g=\operatorname{im} f
$$

- Example: If $f: M \longrightarrow M^{\prime}$ is a D-morphism, we then have the following exact sequences:
(1) $0 \longrightarrow \operatorname{ker} f \xrightarrow{i} M \xrightarrow{\rho} \operatorname{coim} f \triangleq M / \operatorname{ker} f \longrightarrow 0$.
(2) $0 \longrightarrow \operatorname{im} f \xrightarrow{j} M^{\prime} \xrightarrow{\kappa} \operatorname{coker} f \triangleq M^{\prime} / \operatorname{im} f \longrightarrow 0$.
(3) $0 \longrightarrow \operatorname{ker} f \xrightarrow{i} M \xrightarrow{f} M^{\prime} \xrightarrow{\kappa} \operatorname{coker} f \longrightarrow 0$.

A left D-module M associated with $R \eta=0$

- Let D be an Ore algebra, $R \in D^{q \times p}$ and a left D-module \mathcal{F}.
- Let us consider $\operatorname{ker}_{\mathcal{F}}(R)=.\left\{\eta \in \mathcal{F}^{p} \mid R \eta=0\right\}$.
- As in number theory or algebraic geometry, we associate with the system $\operatorname{ker}_{\mathcal{F}}(R$.$) the finitely presented left D$-module:

$$
M=D^{1 \times p} /\left(D^{1 \times q} R\right)
$$

- Malgrange's remark: applying the functor $\operatorname{hom}_{D}(., \mathcal{F})$ to the finite free resolution (exact sequence)

$$
\lambda=\left(\begin{array}{lllll}
D^{1 \times q} & \xrightarrow{R} & D^{1 \times p} \quad \xrightarrow{\pi} & M & \longrightarrow
\end{array} 0,\right.
$$

we then obtain the exact sequence:

$$
\begin{array}{cccc}
\mathcal{F}^{q} & R . & \mathcal{F}^{p} & \longleftarrow \\
R \eta & \longleftarrow=\left(\eta_{1}, \ldots, \eta_{p}\right)^{\mathrm{T}}
\end{array} \stackrel{\pi^{\star}}{\longleftrightarrow} \operatorname{hom}_{D}(M, \mathcal{F}) \longleftarrow 0 .
$$

Example: Linearized Euler equations

- The linearized Euler equations for an incompressible fluid can be defined by the system matrix

$$
R=\left(\begin{array}{cccc}
\partial_{1} & \partial_{2} & \partial_{3} & 0 \\
\partial_{t} & 0 & 0 & \partial_{1} \\
0 & \partial_{t} & 0 & \partial_{2} \\
0 & 0 & \partial_{t} & \partial_{3}
\end{array}\right) \in D^{4 \times 4}
$$

where $D=\mathbb{R}\left[\partial_{1}, \mathrm{id}, \frac{\partial}{\partial x_{1}}\right]\left[\partial_{2}, \mathrm{id}, \frac{\partial}{\partial x_{2}}\right]\left[\partial_{3}, \mathrm{id}, \frac{\partial}{\partial x_{3}}\right]\left[\partial_{t}, \mathrm{id}, \frac{\partial}{\partial t}\right]$.

- Let us consider the left D-module $\mathcal{F}=\mathcal{C}^{\infty}(\Omega)$ (Ω open convex subset of \mathbb{R}^{4}) and the D-module:

$$
M=D^{1 \times 4} /\left(D^{1 \times 4} R\right)
$$

The solutions of $R y=0$ in \mathcal{F} are in $1-1$ correspondence with the morphisms from M to \mathcal{F}, i.e., with the elements of:

$$
\operatorname{hom}_{D}(M, \mathcal{F})
$$

II. Morphisms between Ore modules finitely presented by two matrices R and R^{\prime} of functional operators

Morphims of finitely presented modules

- Let D be an Ore algebra of functional operators.
- Let $R \in D^{q \times p}, R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ be two matrices.
- Let us consider the finitely presented left D-modules:

$$
M=D^{1 \times p} /\left(D^{1 \times q} R\right), \quad M^{\prime}=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)
$$

- We are interested in the abelian group $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$ of D-morphisms from M to M^{\prime} :

$$
\begin{array}{rlllll}
D^{1 \times q} & \xrightarrow{. R} & D^{1 \times p} & \xrightarrow{\pi} & M & \longrightarrow 0 \\
\downarrow f & \\
D^{1 \times q^{\prime}} & \xrightarrow{. R^{\prime}} & D^{1 \times p^{\prime}} & \xrightarrow{\pi^{\prime}} & M^{\prime} & \longrightarrow
\end{array}
$$

Morphims of finitely presented modules

- Let D be an Ore algebra of functional operators.
- Let $R \in D^{q \times p}, R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ be two matrices.
- We have the following commutative exact diagram:

$$
\begin{array}{rrrlll}
D^{1 \times q} & \xrightarrow{. R} & D^{1 \times p} & \xrightarrow{\pi} & M & \longrightarrow 0 \\
\downarrow \cdot Q & & \downarrow \cdot P & & \downarrow f & \\
D^{1 \times q^{\prime}} & \xrightarrow{. R^{\prime}} & D^{1 \times p^{\prime}} & \xrightarrow{\pi^{\prime}} & M^{\prime} & \longrightarrow 0 .
\end{array}
$$

$\exists f: M \rightarrow M^{\prime} \Longleftrightarrow \exists P \in D^{p \times p^{\prime}}, Q \in D^{q \times q^{\prime}}$ such that:

$$
R P=Q R^{\prime}
$$

Moreover, we have $f(\pi(\lambda))=\pi^{\prime}(\lambda P)$, for all $\lambda \in D^{1 \times p}$.

Eigenring: $\partial y=E$ y \& $\partial z=F z$

- $D=A[\partial ; \sigma, \delta], \quad E, F \in A^{p \times p}, R=\partial I_{p}-E, R^{\prime}=\partial I_{p}-F$.

$$
\begin{aligned}
& 0 \longrightarrow D^{1 \times p} \quad \xrightarrow{.\left(\partial I_{p}-F\right)} \quad D^{1 \times p} \quad \xrightarrow{\pi^{\prime}} \quad M^{\prime} \quad \longrightarrow 0 . \\
& \left(\partial I_{p}-E\right) P=Q\left(\partial I_{p}-F\right) \Longleftrightarrow\left\{\begin{array}{l}
\sigma(P)=Q \in A^{p \times p}, \\
\delta(P)=E P-\sigma(P) F .
\end{array}\right.
\end{aligned}
$$

If $P \in A^{p \times p}$ is invertible, we then have:

$$
F=-\sigma(P)^{-1}(\delta(P)-E P)
$$

Eigenring: $\partial y=E$ y \& $\partial z=F z$

- $D=A[\partial ; \sigma, \delta], \quad E, F \in A^{p \times p}, R=\partial I_{p}-E, R^{\prime}=\partial I_{p}-F$.

$$
\begin{aligned}
& 0 \longrightarrow D^{1 \times p} \quad \xrightarrow{.\left(\partial_{\rho} I-E\right)} \quad D^{1 \times p} \quad \xrightarrow{\pi} \quad M \quad \longrightarrow \\
& \downarrow \cdot Q \quad \downarrow \cdot P \quad \downarrow f \\
& 0 \longrightarrow D^{1 \times p} \quad \xrightarrow{.\left(\partial I_{p}-F\right)} \quad D^{1 \times p} \quad \xrightarrow{\pi^{\prime}} \quad M^{\prime} \quad \longrightarrow 0 . \\
& \left(\partial I_{p}-E\right) P=Q\left(\partial I_{p}-F\right) \Longleftrightarrow\left\{\begin{array}{l}
\sigma(P)=Q \in A^{p \times p}, \\
\delta(P)=E P-\sigma(P) F .
\end{array}\right.
\end{aligned}
$$

If $P \in A^{p \times p}$ is invertible, we then have:

$$
F=-\sigma(P)^{-1}(\delta(P)-E P)
$$

- Differential case: $\delta=\frac{d}{d t}, \sigma=\mathrm{id}$:

$$
\left\{\begin{array}{l}
\dot{P}=E P-P F \\
F=-P^{-1}(\dot{P}-E P)
\end{array}\right.
$$

Eigenring: $\partial y=E$ y \& $\partial z=F z$

- $D=A[\partial ; \sigma, \delta], \quad E, F \in A^{p \times p}, R=\partial I_{p}-E, R^{\prime}=\partial I_{p}-F$.

$$
\begin{aligned}
& 0 \longrightarrow D^{1 \times p} \quad \xrightarrow{.\left(\partial_{\rho} I-E\right)} D^{1 \times p} \quad \xrightarrow{\pi} \quad M \quad \longrightarrow \\
& \downarrow . Q \quad \downarrow . P \quad \downarrow f \\
& 0 \longrightarrow D^{1 \times p} \xrightarrow{.\left(\partial I_{p}-F\right)} D^{1 \times p} \quad \xrightarrow{\pi^{\prime}} \quad M^{\prime} \longrightarrow 0 . \\
& \left(\partial I_{p}-E\right) P=Q\left(\partial I_{p}-F\right) \Longleftrightarrow\left\{\begin{array}{l}
\sigma(P)=Q \in A^{p \times p}, \\
\delta(P)=E P-\sigma(P) F .
\end{array}\right.
\end{aligned}
$$

If $P \in A^{p \times p}$ is invertible, we then have:

$$
F=-\sigma(P)^{-1}(\delta(P)-E P)
$$

- Discrete case: $\delta=0, \sigma(k)=k-1$:

$$
\left\{\begin{array}{l}
E(k) P(k)-P(k-1) F(k)=0, \\
B=\sigma(P)^{-1} E P .
\end{array}\right.
$$

Computation of $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$

- Problem: Given $R \in D^{q \times p}$ and $R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$, find $P \in D^{p \times p^{\prime}}$ and $Q \in D^{q \times q^{\prime}}$ satisfying the commutation relation $R P=Q R^{\prime}$.
- If D is a commutative ring, then $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$ is a D-module.
- The Kronecker product of $E \in D^{q \times p}$ and $F \in D^{r \times s}$ is:

$$
E \otimes F=\left(\begin{array}{ccc}
E_{11} F & \ldots & E_{1 p} F \\
\vdots & \vdots & \vdots \\
E_{q 1} F & \ldots & E_{q p} F
\end{array}\right) \in D^{(q r) \times(p s)}
$$

Lemma: If $U \in D^{a \times b}, V \in D^{b \times c}$ and $W \in D^{c \times d}$, then we have:

$$
U V W=\left(V_{1} \ldots V_{b}\right)\left(U^{T} \otimes W\right)
$$

$$
R P I_{p^{\prime}}=\left(P_{1} \ldots P_{p}\right)\left(R^{T} \otimes I_{p^{\prime}}\right), \quad I_{q} Q R^{\prime}=\left(Q_{1} \ldots Q_{q}\right)\left(I_{q} \otimes R^{\prime}\right)
$$

We are reduced to compute $\operatorname{ker}_{D}\left(\cdot\binom{R^{T} \otimes I_{p^{\prime}}}{-I_{q} \otimes R^{\prime}}\right)$.

Computation of $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$

- Problem: Given $R \in D^{q \times p}$ and $R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$, find $P \in D^{p \times p^{\prime}}$ and $Q \in D^{q \times q^{\prime}}$ satisfying the commutation relation $R P=Q R^{\prime}$.
- If D is a non-commutative ring, then $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$ is an abelian group and generally an infinite-dimensional k-vector space.
\Rightarrow find a k-basis of morphisms with given degrees in x_{i} and in ∂_{j} :
(1) Take an ansatz for P with chosen degrees.
(2) Compute $R P$ and a Gröbner basis G of the rows of R^{\prime}.
(3) Reduce the rows of $R P$ w.r.t. G.
(9) Solve the system on the coefficients of the ansatz so that all the normal forms vanish.
(6) Substitute the solutions in P and compute Q by means of a factorization.

Example: Bipendulum

- We consider the Ore algebra $D=\mathbb{R}(g, I)\left[\frac{d}{d t}\right]$.
- We consider the matrix of the bipendulum with $I=I_{1}=I_{2}$:

$$
R=\left(\begin{array}{ccc}
\frac{d^{2}}{d t^{2}}+\frac{g}{T} & 0 & -\frac{g}{T} \\
0 & \frac{d^{2}}{d t^{2}}+\frac{g}{T} & -\frac{g}{T}
\end{array}\right) \in D^{2 \times 3} .
$$

- Let us consider the D-module $M=D^{1 \times 3} /\left(D^{1 \times 2} R\right)$.
- We obtain that $\operatorname{end}_{D}(M)$ is defined by the matrices:

$$
\begin{aligned}
P & =\left(\begin{array}{ccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} g \\
\alpha_{4} & \alpha_{1}+\alpha_{2}-\alpha_{4} & \alpha_{3} g \\
0 & 0 & \alpha_{3} \mathrm{D}^{2} I+\alpha_{1}+\alpha_{2}+\alpha_{3} g
\end{array}\right), \\
Q & =\left(\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
\alpha_{4} & \alpha_{1}+\alpha_{2}-\alpha_{4}
\end{array}\right), \quad \forall \alpha_{1}, \ldots, \alpha_{4} \in D .
\end{aligned}
$$

Example: Bomboy's PhD, p. 80

q-dilatation case: $D=\mathbb{R}(q)(x)[H]$ where $H(f(x))=f(q x)$ and:

$$
R=\left(\begin{array}{cc}
H & -1 \\
-\frac{1-q^{3} x^{2}}{1-q x^{2}} & \frac{x\left(1-q^{2}\right)}{1-q x^{2}}+H
\end{array}\right) \in D^{2 \times 2}
$$

- Searching for endomorphisms with degree 0 in H and 2 in x (both in numerator and denominator), we obtain

$$
P=\left(\begin{array}{cc}
\frac{-a+b x q-b x+a q x^{2}}{c\left(-1+q x^{2}\right)} & \frac{b\left(-1+x^{2}\right)}{c\left(-1+q x^{2}\right)} \\
\frac{b\left(-1+q^{2} x^{2}\right)}{c\left(-1+q x^{2}\right)} & -\frac{a+b x q-b x-a q x^{2}}{c\left(-1+q x^{2}\right)}
\end{array}\right)
$$

where, a, b, c are constants or $P=I_{2}$ (and corresponding Q).

Saint-Venant equations

- Let $D=\mathbb{Q}\left[\partial_{1} ; \mathrm{id}, \frac{d}{d t}\right]\left[\partial_{2} ; \sigma, 0\right]$ be the ring of differential time-delay operators and consider the matrix of the tank model:

$$
R=\left(\begin{array}{ccc}
\partial_{2}^{2} & 1 & -2 \partial_{1} \partial_{2} \\
1 & \partial_{2}^{2} & -2 \partial_{1} \partial_{2}
\end{array}\right) \in D^{2 \times 3}
$$

- The endomorphisms of $M=D^{1 \times 3} /\left(D^{1 \times 2} R\right)$ are defined by:

$$
\left.\begin{array}{c}
P_{\alpha}=\left(\begin{array}{cc}
\alpha_{1} \\
\alpha_{2}+2 \alpha_{4} \partial_{1}+2 \alpha_{5} \partial_{1} \partial_{2} \\
\alpha_{4} \partial_{2}+\alpha_{5} & 2 \alpha_{3} \partial_{1} \partial_{2} \\
\alpha_{2} & 2 \alpha_{3} \partial_{1} \partial_{2} \\
\alpha_{1}-2 \alpha_{4} \partial_{1}-2 \alpha_{5} \partial_{1} \partial_{2} & \alpha_{1}+\alpha_{2}+\alpha_{3}\left(\partial_{2}^{2}+1\right)
\end{array}\right), \\
-\alpha_{4} \partial_{2}-\alpha_{5}
\end{array}\right), \quad \forall \alpha_{1}, \ldots, \alpha_{5} \in D . \quad .
$$

Euler-Tricomi equation

- Let us consider the Euler-Tricomi equation (transonic flow):

$$
\partial_{1}^{2} u\left(x_{1}, x_{2}\right)-x_{1} \partial_{2}^{2} u\left(x_{1}, x_{2}\right)=0 .
$$

- Let $D=A_{2}(\mathbb{Q}), R=\left(\partial_{1}^{2}-x_{1} \partial_{2}^{2}\right) \in D$ and $M=D /(D R)$.
- $\operatorname{end}_{D}(M)_{1,1}$ is defined by:

$$
\left\{\begin{array}{l}
P=a_{1}+a_{2} \partial_{2}+\frac{3}{2} a_{3} x_{2} \partial_{2}+a_{3} x_{1} \partial_{1} \\
Q=\left(a_{1}+2 a_{3}\right)+a_{2} \partial_{2}+\frac{3}{2} a_{3} x_{2} \partial_{2}+a_{3} x_{1} \partial_{1}
\end{array}\right.
$$

- $\operatorname{end}_{D}(M)_{2,0}$ is defined by $P=Q=a_{1}+a_{2} \partial_{2}+a_{3} \partial_{2}^{2}$.
- $\operatorname{end}_{D}(M)_{2,1}$ is defined by:

$$
\left\{\begin{aligned}
P= & a_{1}+a_{2} \partial_{2}+\frac{3}{2} a_{3} x_{2} \partial_{2}+a_{3} x_{1} \partial_{1} \\
& +a_{4} \partial_{2}^{2}+\frac{3}{2} a_{5} x_{2} \partial_{2}^{2}+a_{5} x_{1} \partial_{1} \partial_{2} \\
Q= & \left(a_{1}+2 a_{3}\right)+a_{2} \partial_{2}+\frac{3}{2} a_{3} x_{2} \partial_{2}+a_{3} x_{1} \partial_{1} \\
& +a_{4} \partial_{2}^{2}+a_{5} x_{1} \partial_{1} \partial_{2}+2 a_{5} \partial_{2}+\frac{3}{2} a_{5} x_{2} \partial_{2}^{2}
\end{aligned}\right.
$$

III. A few applications:

Galois symmetries, quadratic first integrals of motion and conservation laws

Galois Symmetries

We have the following commutative exact diagram:

If \mathcal{F} is a left D-module, by applying the functor $\operatorname{hom}_{D}(\cdot, \mathcal{F})$ to (\star), we then obtain the following commutative exact diagram:

$$
\begin{array}{ccccl}
0=Q\left(R^{\prime} y\right)=R(P y) & \longleftarrow & P y & & \\
\mathcal{F}^{q} & \longleftarrow . & \mathcal{F}^{p} & \longleftarrow & \operatorname{ker}_{\mathcal{F}}(R .) \\
\uparrow Q . & & \uparrow P . & \uparrow f^{\star} \\
\mathcal{F}^{q^{\prime}} & \longleftarrow & R^{\prime} . & \mathcal{F}^{p^{\prime}} & \longleftarrow
\end{array}
$$

$\Rightarrow f^{\star}$ sends $\operatorname{ker}_{\mathcal{F}}\left(R . .^{\prime}\right)$ to $\operatorname{ker}_{\mathcal{F}}(R).\left(R^{\prime}=R:\right.$ Galois symmetries $)$.

Example: Linear elasticity

- Consider the Killing operator for the euclidian metric defined by:

$$
R=\left(\begin{array}{cc}
\partial_{1} & 0 \\
\partial_{2} / 2 & \partial_{1} / 2 \\
0 & \partial_{2}
\end{array}\right)
$$

- The system $R y=0$ admits the following general solution:

$$
y=\binom{c_{1} x_{2}+c_{2}}{-c_{1} x_{1}+c_{3}}, \quad c_{1}, c_{2}, c_{3} \in \mathbb{R} . \quad(\star)
$$

- We find that $\operatorname{end}_{D}\left(D^{1 \times 2} /\left(D^{1 \times 3} R\right)\right)$ is defined by:

$$
P=\left(\begin{array}{cc}
\alpha_{1} & \alpha_{2} \partial_{1} \\
0 & 2 \alpha_{3} \partial_{1}+\alpha_{1}
\end{array}\right), \quad \alpha_{1}, \alpha_{2}, \alpha_{3} \in D .
$$

- Applying P to (\star), we then get the new solution:

$$
\bar{y}=P y=\binom{\alpha_{1} c_{1} x_{2}+\alpha_{1} c_{2}-\alpha_{2} c_{1}}{-\alpha_{1} c_{1} x_{1}+\alpha_{1} c_{3}-2 \alpha_{3} c_{1}}, \text { i.e., } R \bar{y}=0
$$

Quadratic first integrals of motion

Let us consider a morphism f from \widetilde{N} to M defined by:

$$
\begin{aligned}
& 0 \longrightarrow \underset{\downarrow . P}{D^{1 \times p}} \xrightarrow{\stackrel{.\left(\partial I_{p}+E^{\top}\right)}{\longrightarrow}} \underset{\downarrow . P}{D^{1 \times p}} \xrightarrow{\substack{\pi}} \underset{\downarrow f}{\widetilde{N}} \longrightarrow 0 \\
& 0 \longrightarrow D^{1 \times p} \xrightarrow{.\left(\partial l_{p}-E\right)} \quad D^{1 \times p} \quad \xrightarrow{\pi^{\prime}} \quad M \quad \longrightarrow 0 .
\end{aligned}
$$

We then have:

$$
\dot{P}+E^{\top} P+P E=0 .
$$

If $V(x)=x^{\top} P x$, then $\dot{V}(x)=x^{T}\left(\dot{P}+E^{\top} P+P E\right) x$ so that:

$$
\dot{P}+E^{\top} P+P E=0 \Longleftrightarrow V(x)=x^{\top} P x \text { first integral. }
$$

\Rightarrow Morphisms from \widetilde{N} to M give quadratic first integrals.
If E is a skew-symmetric matrix, i.e., $E=-E^{\top}$, then we have:
$\left(\partial I_{p}+E^{T}\right)=\left(\partial I_{p}-E\right), \quad \widetilde{N}=M, \quad \operatorname{hom}_{D}(\widetilde{N}, M)=\operatorname{end}_{D}(M)$.

Example: Landau \& Lifchitz (p. 117)

- Consider $R=\partial I_{4}-E$, where $E=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -\omega^{2} & 0 & \alpha & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -\omega^{2} & \alpha\end{array}\right)$.
- We find that the morphisms from \widetilde{N} to M are defined by
$P=\left(\begin{array}{cccc}c_{1} \omega^{4} & c_{2} \omega^{2} & -\omega^{2}\left(c_{1} \alpha+c_{2}\right) & c_{1} \omega^{2} \\ -c_{2} \omega^{2} & c_{1} \omega^{2} & -c_{1} \omega^{2}+c_{2} \alpha & -c_{2} \\ -\omega^{2}\left(c_{1} \alpha-c_{2}\right) & -c_{1} \omega^{2}-c_{2} \alpha & c_{1}\left(\alpha^{2}+\omega^{2}\right) & -c_{1} \alpha+c_{2} \\ c_{1} \omega^{2} & c_{2} & -c_{1} \alpha-c_{2} & c_{1}\end{array}\right)$,
which leads to the quadratic first integral $V(x)=x^{\top} P x$:

$$
\begin{aligned}
V(x)= & c_{1} \omega^{4} x_{1}(t)^{2}-2 x_{1}(t) \omega^{2} x_{3}(t) c_{1} \alpha+2 x_{1}(t) c_{1} \omega^{2} x_{4}(t) \\
& +x_{2}(t)^{2} c_{1} \omega^{2}-2 x_{2}(t) c_{1} x_{3}(t) \omega^{2}+c_{1} x_{3}(t)^{2} \alpha^{2} \\
& +c_{1} x_{3}(t)^{2} \omega^{2}-2 x_{3}(t) x_{4}(t) c_{1} \alpha+c_{1} x_{4}(t)^{2} .
\end{aligned}
$$

Formal adjoint

- Let $D=A\left[\partial_{1} ; \mathrm{id}, \frac{\partial}{\partial x_{1}}\right] \ldots\left[\partial_{n} ; \mathrm{id}, \frac{\partial}{\partial x_{n}}\right]$ be the ring of differential operators with coefficients in A (e.g., $k\left[x_{1}, \ldots, x_{n}\right], k\left(x_{1}, \ldots, x_{n}\right)$).
- The formal adjoint $\widetilde{R} \in D^{p \times q}$ of $R \in D^{q \times p}$ is defined by:

$$
<\lambda, R \eta>=<\widetilde{R} \lambda, \eta>+\sum_{i=1}^{n} \partial_{i} \Phi_{i}(\lambda, \eta) .
$$

- The formal adjoint \widetilde{R} can be defined by $\widetilde{R}=\left(\theta\left(R_{i j}\right)\right)^{T} \in D^{p \times q}$, where $\theta: D \rightarrow D$ is the involution defined by:
(1) $\forall a \in A, \quad \theta(a)=a$.
(2) $\theta\left(\partial_{i}\right)=-\partial_{i}, \quad i=1, \ldots, n$.

Involution: $\theta^{2}=\operatorname{id}_{D}, \quad \forall P_{1}, P_{2} \in D: \quad \theta\left(P_{1} P_{2}\right)=\theta\left(P_{2}\right) \theta\left(P_{1}\right)$.

Conservation laws

- Let us consider the left D-modules:

$$
M=D^{1 \times p} /\left(D^{1 \times q} R\right), \quad \widetilde{N}=D^{1 \times q} /\left(D^{1 \times p} \widetilde{R}\right)
$$

- Let $f: \widetilde{N} \rightarrow M$ be a morphism defined by the matrices P and Q.
- Let \mathcal{F} be a left D-module and the commutative exact diagram:

\mathcal{F}^{p}	$\stackrel{\widetilde{R} .}{ }$	\mathcal{F}^{q}	\longleftarrow	$\operatorname{ker}_{\mathcal{F}}(\widetilde{R})$.	$\longleftarrow 0$
$\uparrow Q$.		$\uparrow P$.		$\uparrow f^{\star}$	
\mathcal{F}^{q}	$\stackrel{R}{ }$.	\mathcal{F}^{p}	\longleftarrow	$\operatorname{ker}_{\mathcal{F}}(R)$.	$\longleftarrow 0$.

- $\eta \in \mathcal{F}^{p}$ solution of $R \eta=0 \Rightarrow \lambda=P \eta$ is a solution of $\widetilde{R} \lambda=0$.

$$
\Rightarrow<P \eta, R \eta>-<\widetilde{R}(P \eta), \eta>=\sum_{i=1}^{n} \partial_{i} \Phi_{i}(P \eta, \eta)=0
$$

i.e., $\Phi=\left(\Phi_{1}(P \eta, \eta), \ldots, \Phi_{n}(P \eta, \eta)\right)^{T}$ satisfies $\operatorname{div} \Phi=0$.

Example: Laplacian operator

- Let us consider the Laplacian operator $\Delta y\left(x_{1}, x_{2}\right)=0$, where:

$$
\Delta=\partial_{1}^{2}+\partial_{2}^{2} \in D=\mathbb{Q}\left[\partial_{1} ; \text { id, } \frac{\partial}{\partial x_{1}}\right]\left[\partial_{2} ; \text { id, } \frac{\partial}{\partial x_{2}}\right] .
$$

- The formal adjoint \widetilde{R} of R is then defined by:

$$
\lambda(\Delta \eta)-(\Delta \lambda) \eta=\partial_{1}\left(\lambda\left(\partial_{1} \eta\right)-\left(\partial_{1} \lambda\right) \eta\right)+\partial_{2}\left(\lambda\left(\partial_{2} \eta\right)-\left(\partial_{2} \lambda\right) \eta\right)
$$

- $R=\Delta=\widetilde{R} \in D \Rightarrow \operatorname{hom}_{D}(\widetilde{N}, M)=\operatorname{end}_{D}(M)=D$.
- if \mathcal{F} is a D-module (e.g., $C^{\infty}(\Omega)$), then we have:

$$
\forall \alpha \in D, \forall \eta \in \operatorname{ker}_{\mathcal{F}}(\Delta .), \quad \lambda=\alpha y \in \operatorname{ker}_{\mathcal{F}}(\Delta .)
$$

$\Rightarrow \operatorname{div} \Phi=\partial_{1} \Phi_{1}+\partial_{2} \Phi_{2}=0, \quad \Phi=\binom{(\alpha y)\left(\partial_{1} y\right)-y\left(\partial_{1} \alpha y\right)}{(\alpha y)\left(\partial_{2} y\right)-y\left(\partial_{2} \alpha y\right)}$.

IV. Factorization of linear functional systems

Kernel and factorization

$$
\begin{array}{cccccl}
& & \lambda & \longmapsto & y \\
D^{1 \times q} & \xrightarrow{\longrightarrow} & D^{1 \times p} & \xrightarrow{m} & M & \longrightarrow 0 \\
\downarrow \cdot Q & & \downarrow \cdot P & & \downarrow f & \\
D^{1 \times q^{\prime}} & \xrightarrow{R^{\prime}} & D^{1 \times p^{\prime}} & \xrightarrow{\pi^{\prime}} & M^{\prime} & \longrightarrow 0 \\
\exists \mu & \longmapsto & \longmapsto R^{\prime}=\lambda P & \longmapsto & 0
\end{array}
$$

- $\operatorname{ker}_{D}\left(.\binom{P}{R^{\prime}}\right)=D^{1 \times r}\left(\begin{array}{ll}S & -T\end{array}\right)$

$$
\begin{gathered}
\Rightarrow\left\{\lambda \in D^{1 \times p} \mid \lambda P \in D^{1 \times q} R\right\}=D^{1 \times r} S \\
\Rightarrow \operatorname{ker} f=\left(D^{1 \times r} S\right) /\left(D^{1 \times q} R\right) .
\end{gathered}
$$

- $\left(D^{1 \times q}(R \quad-Q)\right) \in \operatorname{ker}_{D}\left(.\binom{P}{R^{\prime}}\right) \Rightarrow\left(D^{1 \times q} R\right) \subseteq\left(D^{1 \times r} S\right)$.

$$
\exists V \in D^{q \times r}: \quad R=V S .
$$

Kernel and factorization

We have the following commutative exact diagram:

Example: Linearized Euler equations

- Let $R=\left(\begin{array}{cccc}\partial_{1} & \partial_{2} & \partial_{3} & 0 \\ \partial_{t} & 0 & 0 & \partial_{1} \\ 0 & \partial_{t} & 0 & \partial_{2} \\ 0 & 0 & \partial_{t} & \partial_{3}\end{array}\right)$ over $D=\mathbb{R}\left[\partial_{1}, \partial_{2}, \partial_{3}, \partial_{t}\right]$.
- Let us consider $f \in \operatorname{end}_{D}(M)$ defined by:

$$
P=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \partial_{3}^{2} & -\partial_{2} \partial_{3} & 0 \\
0 & -\partial_{2} \partial_{3} & \partial_{2}^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

- Computing $\operatorname{ker}_{D}\left(.\binom{P}{R}\right)$ and factorizing R by S, we obtain:

$$
S=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \partial_{2} & \partial_{3} & 0 \\
0 & -\partial_{t} & 0 & 0 \\
0 & 0 & \partial_{t} & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad V=\left(\begin{array}{ccccc}
\partial_{1} & 1 & 0 & 0 & 0 \\
\partial_{t} & 0 & 0 & 0 & \partial_{1} \\
0 & 0 & -1 & 0 & \partial_{2} \\
0 & 0 & 0 & 1 & \partial_{3}
\end{array}\right) .
$$

Example: Linearized Euler equations

- We have $R=V S$ where:
$\left(\begin{array}{cccc}\partial_{1} & \partial_{2} & \partial_{3} & 0 \\ \partial_{t} & 0 & 0 & \partial_{1} \\ 0 & \partial_{t} & 0 & \partial_{2} \\ 0 & 0 & \partial_{t} & \partial_{3}\end{array}\right)=\left(\begin{array}{ccccc}\partial_{1} & 1 & 0 & 0 & 0 \\ \partial_{t} & 0 & 0 & 0 & \partial_{1} \\ 0 & 0 & -1 & 0 & \partial_{2} \\ 0 & 0 & 0 & 1 & \partial_{3}\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \partial_{2} & \partial_{3} & 0 \\ 0 & -\partial_{t} & 0 & 0 \\ 0 & 0 & \partial_{t} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
- The solutions of $S y=0$ are particular solutions of $R y=0$.
\Rightarrow Integrating S, we obtain the following solutions of $R y=0$:

$$
y\left(x_{1}, x_{2}, x_{3}, t\right)=\left(\begin{array}{c}
0 \\
-\frac{\partial}{\partial x_{3}} \xi\left(x_{1}, x_{2}, x_{3}\right) \\
\frac{\partial}{\partial x_{2}} \xi\left(x_{1}, x_{2}, x_{3}\right) \\
0
\end{array}\right), \quad \forall \xi \in C^{\infty}(\Omega) .
$$

Free modules \& similarity transformations

- Definition: A left D-module M is free if there exists $I \in \mathbb{Z}_{+}$s.t.:

$$
M \cong D^{1 \times I}
$$

- Proposition: Let $P \in D^{p \times p}$. We have the equivalences:
(1) $\operatorname{ker}_{D}(. P)$ and $\operatorname{coim}_{D}(. P)$ are free left D-modules of rank p and $p-m$.
(2) There exists a unimodular matrix $U \in D^{p \times p}$, i.e., $U \in \mathrm{GL}_{p}(D)$, such that:

$$
\begin{gathered}
J \triangleq U P U^{-1}=\binom{0}{J_{2}}, \quad J_{2} \in D^{(p-m) \times p} . \\
\Rightarrow U=\left(\begin{array}{ll}
U_{1}^{T} & U_{2}^{T}
\end{array}\right)^{T}, \quad\left\{\begin{array}{l}
\operatorname{ker}_{D}(. P)=D^{1 \times m} U_{1} \\
\operatorname{coim}_{D}(. P)=\pi^{\prime}\left(D^{1 \times(p-m)} U_{2}\right) .
\end{array}\right.
\end{gathered}
$$

A useful proposition

- Proposition: Let $R \in D^{q \times p}$ and $P \in D^{p \times p}, Q \in D^{q \times q}$ be two matrices satisfying:

$$
R P=Q R
$$

Let $U \in \operatorname{GL}_{p}(D)$ and $V \in \operatorname{GL}_{q}(D)$ such that

$$
\left\{\begin{array}{l}
P=U^{-1} J_{P} U \\
Q=V^{-1} J_{Q} V
\end{array}\right.
$$

for certain $J_{P} \in D^{p \times p}$ and $J_{Q} \in D^{q \times q}$.
Then, the matrix $\bar{R}=V R U^{-1}$ satisfies:

$$
\bar{R} J_{P}=J_{Q} \bar{R}
$$

A commutative diagram

The following commutative diagram

implies $\left(V R U^{-1}\right) J_{p}=J_{Q}\left(V R U^{-1}\right)$.

Block triangular decomposition

- Theorem: Let $R \in D^{q \times p}, M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ and $f \in \operatorname{end}_{D}(M)$ defined by P and Q satisfying $R P=Q R$.
If the left D-modules

$$
\operatorname{ker}_{D}(. P), \quad \operatorname{coim}_{D}(. P), \quad \operatorname{ker}_{D}(. Q), \quad \operatorname{coim}_{D}(. Q)
$$

are free of rank $m, p-m, I, q-I$, then there exist two matrices $U=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{p}(D)$ and $V=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{q}(D)$
such that

$$
\bar{R}=V R U^{-1}=\left(\begin{array}{cc}
V_{1} R W_{1} & 0 \\
V_{2} R W_{1} & V_{2} R W_{2}
\end{array}\right) \in D^{q \times p}
$$

where $U^{-1}=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right), W_{1} \in D^{p \times m}, W_{2} \in D^{p \times(p-m)}$ and:

$$
U_{1} \in D^{m \times p}, \quad U_{2} \in D^{(p-m) \times p}, \quad V_{1} \in D^{l \times q}, \quad V_{2} \in D^{(q-l) \times q} .
$$

Example: OD system

- Let $D=k[t]\left[\partial ; \mathrm{id}, \frac{d}{d t}\right]$ and $M=D^{1 \times 4} /\left(D^{1 \times 4} R\right)$, where:

$$
R=\left(\begin{array}{cccc}
\partial & -t & t & \partial \\
\partial & t \partial-t & \partial & -1 \\
\partial & -t & \partial+t & \partial-1 \\
\partial & \partial-t & t & \partial
\end{array}\right) \in D^{4 \times 4}
$$

- An endomorphism f of M is defined by:

$$
P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad Q=\left(\begin{array}{cccc}
t+1 & 1 & -1 & -t \\
1 & 1 & -1 & 0 \\
t+1 & 1 & -1 & -t \\
t & 1 & -1 & -t+1
\end{array}\right)
$$

- We can prove that the left D-modules $\operatorname{ker}_{D}(. P), \operatorname{coim}_{D}(. P)$, $\operatorname{ker}_{D}(. Q)$ and $\operatorname{coim}_{D}(. Q)$ are free of rank 2.

Example: OD system

- We obtain:

$$
\begin{aligned}
& \begin{cases}U_{1}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), & U_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \\
V_{1}=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & t-1 & -t
\end{array}\right), & V_{2}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right) .\end{cases} \\
& \Rightarrow U=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad V=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & t-1 & -t \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right),
\end{aligned}
$$

we then obtain that R is equivalent to:

$$
\bar{R}=V R U^{-1}=\left(\begin{array}{cccc}
-\partial & 1 & 0 & 0 \\
t \partial-t & -\partial-t & 0 & 0 \\
\partial+t & \partial-1 & \partial & -t \\
-\partial & 1 & 0 & \partial
\end{array}\right)
$$

Example: Saint-Venant equations

- We consider $D=\mathbb{Q}\left[\partial_{1} ;\right.$ id, $\left.\frac{d}{d t}\right]\left[\partial_{2} ; \sigma, 0\right]$ and:

$$
R=\left(\begin{array}{ccc}
\partial_{2}^{2} & 1 & -2 \partial_{1} \partial_{2} \\
1 & \partial_{2}^{2} & -2 \partial_{1} \partial_{2}
\end{array}\right)
$$

- A endomorphism f of M is defined by:

$$
P=\left(\begin{array}{ccc}
0 & 0 & 0 \\
2 \partial_{1} \partial_{2} & -2 \partial_{1} \partial_{2} & 0 \\
1 & -1 & 0
\end{array}\right), \quad Q=\left(\begin{array}{cc}
0 & 0 \\
2 \partial_{1} \partial_{2} & -2 \partial_{1} \partial_{2}
\end{array}\right) .
$$

- We can check that $\operatorname{ker}_{D}(. P), \operatorname{coim}_{D}(. P), \operatorname{ker}_{D}(. Q)$ and $\left.\operatorname{coim}_{D}(. Q)\right)$ are free D-modules of rank respectively $2,1,1,1$.

$$
\Rightarrow \begin{cases}U_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 2 \partial_{1} \partial_{2}
\end{array}\right), & U_{2}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \\
V_{1}=\left(\begin{array}{ll}
1 & 0
\end{array}\right), & V_{2}=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\end{cases}
$$

Example: Saint-Venant equations

- If we denote by

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 2 \partial_{1} \partial_{2} \\
0 & 0 & 1
\end{array}\right), \quad V=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

we then obtain

$$
U^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 2 \partial_{1} \partial_{2} \\
0 & 0 & 1
\end{array}\right) \in \operatorname{GL}_{3}(D)
$$

and the matrix R is equivalent to:

$$
\bar{R}=V R U^{-1}=\left(\begin{array}{ccc}
\partial_{1}^{2} & -1 & 0 \\
1 & -\partial_{1}^{2} & 2 \partial_{1} \partial_{2}\left(\partial_{1}^{2}-1\right)
\end{array}\right)
$$

Ker $f, \operatorname{im} f, \operatorname{coim} f$ and coker f

- Proposition: Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right), M^{\prime}=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)$ and $f: M \longrightarrow M^{\prime}$ be a morphism defined by $R P=Q R^{\prime}$.

Let us consider the matrices $S \in D^{r \times p}, T \in D^{r \times q^{\prime}}, U \in D^{s \times r}$ and $V \in D^{q \times r}$ satisfying $R=V S, \quad \operatorname{ker}_{D}(. S)=D^{1 \times s} U$ and:

$$
\operatorname{ker}_{D}\left(\cdot\binom{P}{R^{\prime}}\right)=D^{1 \times r}\left(\begin{array}{ll}
S & -T
\end{array}\right)
$$

Then, we have:

- $\operatorname{ker} f=\left(D^{1 \times r} S\right) /\left(D^{1 \times q} R\right) \cong D^{1 \times \prime} /\left(D^{1 \times(q+s)}\binom{U}{V}\right)$,
- $\operatorname{coim} f \triangleq M / \operatorname{ker} f=D^{1 \times p} /\left(D^{1 \times r} S\right)$,
- $\operatorname{im} f=D^{1 \times\left(p+q^{\prime}\right)}\binom{P}{R^{\prime}} /\left(D^{1 \times q} R\right) \cong D^{1 \times p} /\left(D^{1 \times r} S\right)$,
- coker $f \triangleq M^{\prime} / \operatorname{im} f=D^{1 \times p} /\left(D^{1 \times\left(p+q^{\prime}\right)}\binom{P}{R^{\prime}}\right)$.

Equivalence of systems

- Corollary: Let us consider $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$. Then, we have:
(1) f is injective iff one of the assertions holds:
- There exists $L \in D^{r \times q}$ such that $S=L R$.
- $\binom{U}{V}$ admits a left-inverse.
(2) f is surjective iff $\binom{P}{R^{\prime}}$ admits a left-inverse.
(3) f is an isomorphism, i.e., $M \cong M^{\prime}$, iff 1 and 2 are satisfied.

Pommaret's example

- Equivalence of the systems defined by the following R and R^{\prime} ?

$$
R=\left(\begin{array}{cc}
\partial_{1}^{2} \partial_{2}^{2}-1 & -\partial_{1} \partial_{2}^{3}-\partial_{2}^{2} \\
\partial_{1}^{3} \partial_{2}-\partial_{1}^{2} & -\partial_{1}^{2} \partial_{2}^{2}
\end{array}\right), \quad R^{\prime}=\left(\begin{array}{ll}
\partial_{1} \partial_{2}-1 & -\partial_{2}^{2}
\end{array}\right) .
$$

- We find a morphism given by $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), Q=\binom{1+\partial_{1} \partial_{2}}{\partial_{1}^{2}}$.
- $\binom{U}{V}=\binom{1+\partial_{1} \partial_{2}}{\partial_{1}^{2}}$ admits the left-inverse $\left(\begin{array}{ll}1-\partial_{1} \partial_{2} & \partial_{2}^{2}\end{array}\right)$.
- $\binom{P}{R^{\prime}}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ \partial_{1} \partial_{2}-1 & -\partial_{2}^{2}\end{array}\right)$ admits the left-inverse $\left(\begin{array}{ll}I_{2} & 0\end{array}\right)$.

$$
\Rightarrow M=D^{1 \times 2} /\left(D^{1 \times 2} R\right) \cong M^{\prime}=D^{1 \times 2} /\left(D R^{\prime}\right)
$$

V. Decomposition of linear functional systems

Projectors of $\operatorname{end}_{D}(M)$

- Lemma: An endomorphism f of $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$, defined by the matrices P and Q, is a projector, i.e., $f^{2}=f$, iff there exist $Z \in D^{p \times q}$ and $Z^{\prime} \in D^{q \times t}$ such that

$$
\left\{\begin{array}{l}
P^{2}=P+Z R \\
Q^{2}=Q+R Z+Z^{\prime} R_{2}
\end{array}\right.
$$

where $R_{2} \in D^{t \times q}$ satisfies $\operatorname{ker}_{D}(. R)=D^{1 \times t} R_{2}$.

- Some projectors of $\operatorname{end}_{D}(M)$ can be computed when a family of endomorphisms of M is known.
- Example: $D=A_{1}(\mathbb{Q}), R=\left(\partial^{2} \quad-t \partial-1\right), M=D^{1 \times 2} /(D R)$.

$$
P=\left(\begin{array}{cc}
-(t+a) \partial+1 & t^{2}+a t \\
0 & 1
\end{array}\right), \quad P^{2}=P+\binom{(t+a)^{2}}{0} R
$$

Projectors of $\operatorname{end}_{D}(M)$ \& Idempotents

- Particular case: $\left(R_{2}=0\right.$ and $\left.P^{2}=P\right) \Longrightarrow Q^{2}=Q$.
- Lemma: Let us suppose that $R_{2}=0$ and $P^{2}=P+Z R$. If there exists a solution $\Lambda \in D^{p \times q}$ of the Riccatti equation

$$
\wedge R \wedge+\left(P-I_{p}\right) \wedge+\wedge Q+Z=0, \quad(\star)
$$

then the matrices $\bar{P}=P+\Lambda R$ and $\bar{Q}=Q+R \wedge$ satisfy:

$$
R \bar{P}=\bar{Q} R, \quad \bar{P}^{2}=\bar{P}, \quad \bar{Q}^{2}=\bar{Q} .
$$

- Example: $\Lambda=\left(\begin{array}{ll}\text { at } & a \partial-1\end{array}\right)^{T}$ is a solution of (\star)
$\Rightarrow \bar{P}=\left(\begin{array}{cc}a t \partial^{2}-(t+a) \partial+1 & t^{2}(1-a \partial) \\ (a \partial-1) \partial^{2} & -a t \partial^{2}+(t-2 a) \partial+2\end{array}\right), \bar{Q}=0$,
then satisfy $\bar{P}^{2}=\bar{P}$ and $\bar{Q}^{2}=\bar{Q}$.

Projectors of $\operatorname{end}_{D}(M)$

- Proposition: f is a projector of $\operatorname{end}_{D}(M)$, i.e., $f^{2}=f$, iff there exists a matrix $X \in D^{p \times s}$ such that $P=I_{p}-X S$ and we have the following commutative exact diagram:

$$
\Rightarrow M \cong \operatorname{ker} f \oplus \operatorname{im} f \quad \& \quad S-S X S=T R . \quad(\star)
$$

- Corollary: If $\operatorname{ker}_{D}(. S)=0$, then $R=V S$ satisfies:

$$
S X-T V=I_{r} .
$$

Decomposition of solutions

- Corollary: Let us suppose that \mathcal{F} is an injective left D-module. Then, we have the following commutative exact diagram:

$$
\begin{aligned}
& V z=0=R y \longleftrightarrow y \\
& \mathcal{F}^{q} \quad \stackrel{R}{\longleftarrow} \quad \mathcal{F}^{p} \longleftarrow \operatorname{ker}_{\mathcal{F}}(R .) \longleftarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& 0=U z \longleftrightarrow z=S y \quad y
\end{aligned}
$$

Moreover, we have: $\quad R y=0 \quad \Leftrightarrow \quad\binom{U}{V} z=0, \quad S y=z$.
General solution: $y=u+X z$ where $S u=0$ and $\binom{U}{V} z=0$.

Example: OD system

- Let $D=k[t]\left[\partial ; \mathrm{id}, \frac{d}{d t}\right]$ and $M=D^{1 \times 4} /\left(D^{1 \times 4} R\right)$, where:

$$
R=\left(\begin{array}{cccc}
\partial & -t & t & \partial \\
\partial & t \partial-t & \partial & -1 \\
\partial & -t & \partial+t & \partial-1 \\
\partial & \partial-t & t & \partial
\end{array}\right) \in D^{4 \times 4} .
$$

- We obtain the following idempotent:

$$
P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \in k^{4 \times 4}: \quad P^{2}=P
$$

- We obtain the factorization $R=V S$, where:

$$
S=\left(\begin{array}{cccc}
\partial & -t & 0 & 0 \\
0 & \partial & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad V=\left(\begin{array}{cccc}
1 & 0 & t & \partial \\
1 & t & \partial & -1 \\
1 & 0 & \partial+t & \partial-1 \\
1 & 1 & t & \partial
\end{array}\right)
$$

Example

- Using the fact that we must have $I_{p}-P=X S$, we then obtain:

$$
\begin{gathered}
X=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) . \\
R y=0 \Leftrightarrow y=u+X z: \quad V z=0, \quad S u=0 .
\end{gathered}
$$

- The solution of $S u=0$ is defined by:

$$
u_{1}=\frac{1}{2} C_{1} t^{2}+C_{2}, \quad u_{2}=C_{1}, \quad u_{3}=0, \quad u_{4}=0
$$

- The solution of $V z=0$ is defined by: $z_{1}=0, z_{2}=0$ and

$$
z_{3}(t)=C_{3} \operatorname{Ai}(t)+C_{4} \operatorname{Bi}(t), \quad z_{4}(t)=C_{3} \partial \operatorname{Ai}(t)+C_{4} \partial \operatorname{Bi}(t) .
$$

- The general solution of $R y=0$ is then given by:

$$
y=u+X z=\left(\begin{array}{llll}
\frac{1}{2} & C_{1} t^{2}+C_{2} & C_{1} & z_{3}(t) \\
z_{4}(t)
\end{array}\right)^{T}
$$

Idempotents \& Projective modules

- Definition: A left D-module M is projective if there exists a left D-module N and $I \in \mathbb{Z}_{+}$such that $M \oplus N \cong D^{1 \times I}$.
- Lemma: If $P \in D^{p \times p}$ is an idempotent, then:
- $\operatorname{ker}_{D}(. P)$ and $\operatorname{im}_{D}(. P)$ are projective left D-modules of rank m and $p-m$.
- $\operatorname{im}_{D}(. P)=\operatorname{ker}_{D}\left(.\left(I_{p}-P\right)\right)$.
- Proposition: Let $P \in D^{p \times p}$ be an idempotent. $1 \Leftrightarrow 2$:
(1) $\operatorname{ker}_{D}(. P)$ and $\operatorname{im}_{D}(. P)$ are free modules of rank m and $p-m$.
(2) $\exists U \in \operatorname{GL}_{p}(D)$ satisfying $U P U^{-1}=\left(\begin{array}{cc}0 & 0 \\ 0 & I_{p-m}\end{array}\right)$

$$
\Rightarrow U=\left(\begin{array}{ll}
U_{1}^{T} & U_{2}^{T}
\end{array}\right)^{T}, \quad\left\{\begin{array}{l}
\operatorname{ker}_{D}(. P)=D^{1 \times m} U_{1} \\
\operatorname{im}_{D}(. P)=D^{1 \times(p-m)} U_{2}
\end{array}\right.
$$

Block diagonal decomposition

- Theorem: Let $R \in D^{q \times p}, M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ and $f \in \operatorname{end}_{D}(M)$ defined by P and Q satisfying:

$$
P^{2}=P, \quad Q^{2}=Q
$$

If the left D-modules

$$
\operatorname{ker}_{D}(. P), \quad \operatorname{im}_{D}(. P), \quad \operatorname{ker}_{D}(. Q), \quad \operatorname{im}_{D}(. Q)
$$

are free of rank $m, p-m, I, q-I$, then there exist two matrices $U=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{p}(D)$ and $V=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{q}(D)$ such that

$$
\bar{R}=V R U^{-1}=\left(\begin{array}{cc}
V_{1} R W_{1} & 0 \\
0 & V_{2} R W_{2}
\end{array}\right) \in D^{q \times p},
$$

where $U^{-1}=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right), W_{1} \in D^{p \times m}, W_{2} \in D^{p \times(p-m)}$ and:

$$
U_{1} \in D^{m \times p}, \quad U_{2} \in D^{(p-m) \times p}, \quad V_{1} \in D^{l \times q}, \quad V_{2} \in D^{(q-l) \times q} .
$$

Example: OD system

- Let us consider the matrix again:

$$
R=\left(\begin{array}{cccc}
\partial & -t & t & \partial \\
\partial & t \partial-t & \partial & -1 \\
\partial & -t & \partial+t & \partial-1 \\
\partial & \partial-t & t & \partial
\end{array}\right)
$$

- A projector $f \in \operatorname{end}_{D}(M)$ is defined by the idempotents

$$
P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad Q=\left(\begin{array}{cccc}
t+1 & 1 & -1 & -t \\
1 & 1 & -1 & 0 \\
t+1 & 1 & -1 & -t \\
t & 1 & -1 & -t+1
\end{array}\right) .
$$

i.e., P and Q satisfy:

$$
R P=Q R, \quad P^{2}=P, \quad Q^{2}=Q .
$$

- Computing bases of the left D-modules

$$
\operatorname{ker}_{D}(. P), \quad \operatorname{im}_{D}(. P), \quad \operatorname{ker}_{D}(. P), \quad \operatorname{im}_{D}(. Q)
$$

we obtain the unimodular matrices:

$$
U=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad V=\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
-t & -1 & 1 & t \\
t+1 & 1 & -1 & -t \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

- R is then equivalent to the following block diagonal matrix:

$$
\bar{R}=V R U^{-1}=\left(\begin{array}{cccc}
\partial & -1 & 0 & 0 \\
t & \partial & 0 & 0 \\
0 & 0 & \partial & -t \\
0 & 0 & 0 & \partial
\end{array}\right)
$$

Example: Saint-Venant equations

- We consider $D=\mathbb{Q}\left[\partial_{1} ; \mathrm{id}, \frac{d}{d t}\right]\left[\partial_{2} ; \sigma, 0\right]$ and:

$$
R=\left(\begin{array}{ccc}
\partial_{2}^{2} & 1 & -2 \partial_{1} \partial_{2} \\
1 & \partial_{2}^{2} & -2 \partial_{1} \partial_{2}
\end{array}\right)
$$

- A projector $f \in \operatorname{end}_{D}(M)$ is defined by the idempotents

$$
P=\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right), \quad Q=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

i.e., P and Q satisfy:

$$
R P=Q R, \quad P^{2}=P, \quad Q^{2}=Q
$$

Example: Saint-Venant equations

$$
\left\{\begin{array}{l}
U_{1}=\operatorname{ker}_{D}(\cdot P)=\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right), \\
U_{2}=\operatorname{im}_{D}(\cdot P)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
V_{1}=\operatorname{ker}_{D}(\cdot Q)=\left(\begin{array}{ll}
1 & -1
\end{array}\right), \\
V_{2}=\operatorname{im}_{D}(\cdot Q)=\left(\begin{array}{ll}
1 & 1
\end{array}\right),
\end{array}\right.
$$

and we obtain the following two unimodular matrices:

$$
U=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad V=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) .
$$

- We easily check that we have the following block diagonal matrix:

$$
\bar{R}=V R U^{-1}=\left(\begin{array}{ccc}
\partial_{2}^{2}-1 & 0 & 0 \\
0 & 1+\partial_{2}^{2} & -4 \partial_{1} \partial_{2}
\end{array}\right) .
$$

Corollary

- Corollary: Let $R \in D^{q \times p}, M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ and $f \in \operatorname{end}_{D}(M)$ be defined by P and Q and satisfying $P^{2}=P$ and $Q^{2}=Q$. Let us suppose that one of the conditions holds:
(1) $D=A[\partial ; \sigma, \delta]$, where A is a field and σ is injective,
(2) $D=k\left[\partial_{1} ; \sigma_{1}, \delta_{1}\right] \ldots\left[\partial_{n} ; \sigma_{n}, \delta_{n}\right]$ is a commutative Ore algebra,
(3) $D=A\left[\partial_{1} ; \mathrm{id}, \delta_{1}\right] \ldots\left[\partial_{n} ; \mathrm{id}, \delta_{n}\right]$, where $A=k\left[x_{1}, \ldots, x_{n}\right]$ or $k\left(x_{1}, \ldots, x_{n}\right)$ and k is a field of characteristic 0 , and:
$\operatorname{rank}_{D}\left(\operatorname{ker}_{D}(. P)\right) \geq 2, \quad \operatorname{rank}_{D}\left(\operatorname{im}_{D}(. P)\right) \geq 2$,
$\operatorname{rank}_{D}\left(\operatorname{ker}_{D}(. Q)\right) \geq 2, \quad \operatorname{rank}_{D}\left(\operatorname{im}_{D}(. Q)\right) \geq 2$.

Then, there exist $U \in \mathrm{GL}_{p}(D)$ and $V \in \mathrm{GL}_{q}(D)$ such that $\bar{R}=V R U^{-1}$ is a block diagonal matrix.

Example: Flexible rod

- Let us consider the flexible rod (Mounier 95):

$$
\begin{gathered}
R=\left(\begin{array}{ccc}
\partial_{1} & -\partial_{1} \partial_{2} & -1 \\
2 \partial_{1} \partial_{2} & -\partial_{1} \partial_{2}^{2}-\partial_{1} & 0
\end{array}\right) \\
P=\left(\begin{array}{ccc}
1+\partial_{2}^{2} & -\frac{1}{2} \partial_{2}^{2}\left(1+\partial_{2}\right) & 0 \\
2 \partial_{2} & -\partial_{2}^{2} & 0 \\
0 & 0 & 1
\end{array}\right), \quad Q=\left(\begin{array}{cc}
1 & -\frac{1}{2} \partial_{2} \\
0 & 0
\end{array}\right) \\
\Rightarrow U=\left(\begin{array}{ccc}
-2 \partial_{2} & \partial_{2}^{2}+1 & 0 \\
-2 & \partial_{2} & 0 \\
0 & 0 & 1
\end{array}\right), \quad V=\left(\begin{array}{cc}
0 & -1 \\
2 & -\partial_{2}
\end{array}\right) \\
\Rightarrow \bar{R}=V R U^{-1}=\left(\begin{array}{ccc}
\partial_{1} & 0 & 0 \\
0 & \partial_{1}\left(\partial_{2}^{2}-1\right) & -2
\end{array}\right)
\end{gathered}
$$

V. Implementation: the Maple MORPHISMS package

The MORPHISMS package

- The algorithms have been implemented in a Maple package called morphisms based on the library OreModules developed by Chyzak, Q. and Robertz:
http://wwwb.math.rwth-aachen.de/OreModules
- List of functions:
- Morphisms, MorphismsConst, MorphismsRat, MorphimsRat1.
- Projectors, ProjectorsConst, ProjectorsRat, Idempotents.
- KerMorphism, ImMorphism, CokerMorphism, CoimMorphism.
- TestSurj, TestInj, TestBij.
- QuadraticFirstIntegralConst...
- It will be soon available with a library of examples

Conclusion

- Contributions:
- We use constructive homological algebra to provide algorithms for studying general LFSs (e.g., factoring or decomposing).
- We apply the obtained results in control theory.
- Work in progress:

Using morphism computations for factoring and decomposing general linear functional systems, in the proceedings of the Mathematical Theory of Networks and Systems (MTNS), Kyoto (Japan), 2006, rapport INRIA.

- Open questions:
- Bounds in the general case.
- Criteria for choosing the right P.
- Existence of a solution to the Riccati equation.
- Formulas for connections...

