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Purpose of the tutorial

• I do not know why you are locked up with me for a 4h
tutorial in control theory! I only have some hints.

• At least, I know how the story started. . .

• The purposes of the tutorial are to:

1. Give a short introduction to control theory.

2. Show that some connections exist between control theory
and commutative algebra (Lombardi, Coquand, Quitte. . . ):

Fractional ideals, lattices, projective/stably free/free modules,
Prüfer/Bézout domains, coherent rings, projective free rings,

stable range, minimal generating systems. . .



Plan of the tutorial

• The plan of the tutorial is:

1. Single-input single-ouput systems:

An introduction to the fractional ideal approach to
stabilization problems

2. Multi-input multi-ouput systems:

An introduction to the lattice approach to stabilization
problems



Control theory

• Control theory can be divided into 3 main steps:

1. Modeling problems: find a correct mathematical model for a
real system coming from mechanics, electrical engineering,
mathematical physics, biology. . .

2. Analysis problems: analysis of the properties of the system
(controllability, observability, stabilizability. . . ).
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3. Synthesis problems: construction of a feedback controller
which stabilizes and optimizes the performances of the
closed-loop system, study the robustness issues. . .

+

+

y_1

e_2

e_1u_1

y_2 u_2
!

!

P

C



History & assumptions

• History of control theory:

1. Prehistory: Watt (1769), Maxwell (1868), Lyapunov (1907),

2. Frequency-domain approach (Black, Nyquist, Bode, 1930-40),

3. Time-domain approach (Bellman, Pontryagin, Kalman,
1957-60): state-space systems, controllability, observability,
optimal control, Kalman filter. . .

4. Robust control (Zames, Desoer, Francis, Doyle, 1980-90),
µ-synthesis, Linear Matrix Inequalities (LMIs). . .

5. Future?

• We shall only study time-invariant linear systems defined by:

1. ordinary or partial differential equations,

2. differential time-delay equations.

• We shall focus on

synthesis problems within a frequency-domain approach.



An introduction to the fractional ideal approach to
stabilization problems

1. Linear control systems

2. Laplace transform

3. Transfer function

4. Signal spaces and algebras

5. Stability

6. Fractional representation approach

7. Analysis problems

8. Synthesis problems

9. Theory of fractional ideals

10. NSC for internal/strong/robust stabilizability

11. Parametrization of all stabilizing controllers



Linear control systems

1. Finite-dimensional linear systems:

ż(t) = z(t) + u(t), z(0) = 0, y(t) = z(t).

2. Infinite-dimensional linear systems:
2.1 Differential time-delay equations: h ∈ R+, i.e., h ≥ 0,

ż(t) = z(t) + u(t), z(0) = 0,

y(t) =

{
0, 0 ≤ t < h,

z(t − h), t ≥ h.

2.2 Partial differential equations:

∂2z

∂t2
(x , t)− a2 ∂2z

∂x2
(x , t) = 0, x ∈ [0, l ],

z(x , 0) = 0,
∂z

∂t
(x , 0) = 0,

z(0, t) = u(t), z(l , t) = 0,

y(t) = z(x , t), x ∈ [0, l ].



Laplace transform

L1(R+) = {f ∈ R+ → R | ‖ f ‖1=
∫ +∞
0 |f (t)| dt < +∞}.

• Definition: Let f ∈ R+ = [0,+∞[→ R be a function such that:

∃ α ∈ R : e−α t f ∈ L1(R+).

Then, the Laplace transform of f is defined by:

L(f )(s) =

∫ +∞

0
e−s t f (t) dt, ∀ s ∈ Cα = {s ∈ C | Re s > α}.

• Notation: We also denote L(f ) by f̂ .

• Example: Y =

{
1 t > 0,
0 t ≤ 0

, L(Y ) =
1

s
, L(δ) = 1,

L(tn Y ) =
(n + 1)!

sn+1
, L(tn e−λ t Y ) =

(n + 1)!

(s + λ)n+1
,

L(e−λ t cos(ω t) Y ) =
(s + λ)

(s + λ)2 + ω2
.



Properties

• Theorem: If f is Laplace transformable, then we have:

1. f̂ is analytic and bounded in Cα = {s ∈ C | Re s > α}.

2. If g is a Laplace transformable function such that
f̂ (s) = ĝ(s) in Cα, for some α ∈ R, then f = g .

3. If (f ? g)(t) =
∫ t
0 f (t − τ) g(τ) dτ , t ≥ 0, then:

f̂ ? g = f̂ ĝ .

4. If g(t) =

{
f (t − h), t ≥ h,

0, 0 < t < h,
, then ĝ(s) = e−h s f̂ (s).

5. If f is n times differentiable for t > 0 and f (1), . . . , f (n) are
Laplace transformable, then:

f̂ (n)(s) = sn f̂ (s)−
n−1∑
i=0

sn−i−1 f (i)(0+).



Transfer functions
• Ordinary differential equation:

ż(t) = z(t) + u(t), z(0) = 0 ⇒ ẑ(s) =
1

(s − 1)
û(s).

• Differential time-delay equation:
ż(t) = z(t) + u(t), x(0) = 0,

y(t) =

{
0, 0 ≤ t < h,
z(t − h), t ≥ h,

⇒ ŷ(s) =
e−h s

(s − 1)
û(s).

• Wave equation:

∂2z

∂t2
(x , t)− a2 ∂2z

∂x2
(x , t) = 0,

z(x , 0) = 0,
∂z

∂t
(x , 0) = 0,

z(0, t) = u(t), z(l , t) = 0,

y(t) = z(x , t),

⇒ ŷ(s) =

(
e−

x
a

s − e−
(2 l−x) s

a

)
(
1− e−

2 a
l

s
) û(s).



Explicit computations

∂2z

∂t2
(x , t)− a2 ∂2z

∂x2
(x , t) = 0,

z(x , 0) = 0,
∂z

∂t
(x , 0) = 0,

z(0, t) = u(t), z(l , t) = 0, y(t) = z(x , t),

∂2z

∂t2
(x , t)− a2 ∂2z

∂x2
(x , t) = 0 ⇒ d2bz(x,s)

dx2 − s2

a2 ẑ(x , s) = 0,

⇒ ẑ(x , s) = A(s) e−
s
a x + B(s) e

s
a x .

{
ẑ(0, s) = û(s),

ẑ(l , s) = 0,
⇒


A(s) = 1“

1−e−
2 a
l

s
” û(s),

B(s) = − e−
2 a
l

s“
1−e−

2 a
l

s
” û(s),

⇒ ŷ(s) = ẑ(x , s) =

(
e−

x
a s − e−

(2 l−x) s
a

)
(
1− e−

2 a
l s
) û(s).



Transfer functions
• Heat equation:

∂z

∂t
(x , t)− λ2 ∂2z

∂x2
(x , t) = 0,

z(x , 0) = 0,

z(0, t) = u(t), z(l , t) = 0,

y(t) = z(x , t),

⇒ ŷ(s) =

(
eλ (l−x)

√
s − e−λ (l−x)

√
s
)

(
eλ l

√
s − e−λ l

√
s
) û(s).

• Telegraph equation:

∂2z

∂t2
(x , t)− a2 ∂2z

∂x2
(x , t)− k z(x , t) = 0,

z(x , 0) = 0,
∂z

∂t
(x , 0) = 0,

z(0, t) = u(t), limx→+∞ z(x , t) = 0,

y(t) = z(x , t),

⇒ ŷ(s) = e
−
√

s2−k
a

x û(s).



Transfer functions

• Electric transmission line:

∂V

∂x
(x , t) + L

∂I

∂t
(x , t) + R I (x , t) = 0,

∂I

∂x
(x , t) + C

∂V

∂t
(x , t) + G V (x , t) = 0,

V (x , 0) = 0, I (x , 0) = 0,

V (0, t) = u(t), limx→+∞ V (x , t) = 0,

V (x , t) = y1(t), I (x , t) = y2(t),

⇒

 ŷ1(s) = e−
√

(L s+R) (C s+G) x û(s),

ŷ2(s) =
√

C s+G
L s+R e−

√
(L s+R) (C s+G) x û(s).



Kernel representation (convolution)

• Inverse Laplace transform:

f (t) = L−1
(
f̂
)

(t) =
1

2 π i

∫ a+i∞

a−i∞
es t f̂ (s) ds = f (t), a > α, t > 0.

• Ordinary differential equation:

ŷ(s) =
1

(s − 1)
û(s) ⇒ y =

(
L−1

(
1

s − 1

))
? u,

⇒ y(t) =

∫ t

0
et−τ u(τ) dτ, t ≥ 0.

• Differential time-delay equation:

ŷ(s) =
e−h s

(s − 1)
û(s) ⇒ y =

(
L−1

(
e−h s

s − 1

))
? u,

⇒ y(t) =

∫ t−h

0
et−h−τ u(τ) dτ, t ≥ h, 0 else.



Kernel representation (convolution)

• Wave equation:

ŷ(s) =

(
e−

x
a

s − e−
(2 l−x) s

a

)
(
1− e−

2 a
l

s
) û(s)

⇒ ŷ(s) =
(
e−

s
a

x ∑+∞
n=0 e−

2 n s
a

l − e−
s
a

(2 l−x) ∑+∞
n=0 e−

2 n s
a

l
)

û(s),

⇒ y(x , t) =
∑+∞

n=0 u
(
t − 2 n l+x

a

)
−
∑+∞

n=1 u
(
t − 2 n l−x

a

)
.

• Telegraph equation: k = β2 > 0.

ŷ(s) = e
−
√

s2−β2

a
x û(s)

⇒ y(x , t) = u

(
t − x

a

)
+β

(
x

a

) ∫ t

x
a

u(t−τ)

I1

(
β

√
τ2 −

(
x
a

)2)
√

τ2 −
(

x
a

)2 dτ.



Signal spaces

• Let us define the right half plane C+ = {s ∈ C |Re s > 0}.

• The Hardy algebra H∞(C+) is defined by:

H∞(C+) = {analytic functions f in C+ | ‖ f ‖∞= sup
s∈C+

|f (s)| < +∞}.

H∞(C+) is a commutative Banach algebra.

• The Hardy vector-space H2(C+) is defined by:

H2(C+) = {analytic functions f in C+ |

‖ f ‖2= supx∈R+

(∫ +∞
−∞ |f (x + iy)|2dy

)1/2
< +∞}

H2(C+) is a Hilbert space and H2(C+) = L(L2(R+)), where:

L2(R+) = {g : R+ → R |
(∫ +∞

0
|g(t)|2 dt

)1/2

< +∞}.



L2(R+)− L2(R+)-stability

• Theorem:

1. ∀ a, b ∈ H∞(C+), ∀ f , g ∈ H2(C+) : a f + b g ∈ H2(C+).

2. The linear operator

Λ : H2(C+) −→ H2(C+),

u 7−→ h u,

is bounded, i.e.:

dom(Λ) = {u ∈ H2(C+) | Λ(u) ∈ H2(C+)} = H2(C+),

iff h ∈ H∞(C+). Then, we have:

‖ Λ ‖L (H2(C+),H2(C+)) = sup
0 6=u∈H2(C+)

‖ h u ‖2

‖ u ‖2
=‖ h ‖∞ .



Example

• p =
1

s − 1
/∈ H∞(C+) as p has a pole at 1 ∈ C+,

⇒ Λ : H2(C+) −→ H2(C+),

û 7−→ ŷ =
1

(s − 1)
û,

is unbounded,

⇒ λ : L2(R+) −→ L2(R+),

u 7−→ y = et Y ? u,
is unbounded,

dom Λ =
(

s−1
s+1

)
H2(C+), dom λ = (δ − 2 e−t Y ) ? L2(R+).

• u = e−t Y ∈ L2(R+): ‖ u ‖2=
1√
2
, û =

1

s + 1
∈ H2(C+),

⇒ ŷ =
1

s2 − 1
/∈ H2(C+),

1

s2 − 1
= L((sh t) Y ).

• y(t) =
∫ t
0 et−τ e−τ dτ = (sh t) Y /∈ L2(R+).



Example

• p =
e−h s

s − 1
/∈ H∞(C+) as p has a pole at 1 ∈ C+,

⇒ Λ : H2(C+) −→ H2(C+),

û 7−→ ŷ =
e−h s

(s − 1)
û,

is unbounded,

⇒ λ : L2(R+) −→ L2(R+),

u 7−→ y = et−h Y ? u,
is unbounded.

• u = e−t Y ∈ L2(R+): ‖ u ‖2=
1√
2
, û =

1

s + 1
∈ H2(C+),

⇒ ŷ =
e−h s

s2 − 1
/∈ H2(C+),

e−h s

s2 − 1
= L((sh (t − h))Y ).

• y(t) =
∫ t−h
0 et−h−τ e−τ dτ = (sh (t − h))Y /∈ L2(R+).



Example

• The transfer function p = e−
x
a s−e−

(2 l−x)
a s

1−e−
2 a
l

s
is such that

‖ p ‖∞= +∞ as p has poles at sk = l
a π k i , k ∈ Z

⇒ p is not H2(C+)− H2(C+)-stable.

• The transfer function p =
1

s
/∈ H∞(C+) as ‖ p ‖∞= +∞.

⇒ Λ : H2(C+) −→ H2(C+),

û 7−→ ŷ =
1

s
û,

is unbounded,

⇒ λ : L2(R+) −→ L2(R+),

u 7−→ y(t) =
∫ t
0 u(τ) dτ,

is unbounded.

u(t) = Y /(t + 1) ∈ L2(R+), ‖ u ‖2= 1, y = ln(1 + t) /∈ L2(R+).



Signal spaces

• L1(R+) = {f : [0,+∞[→ R | ‖ f ‖1=
∫ +∞
0 |f (t)| dt < +∞},

l1(Z+) = {a : Z+ = {0, 1, . . .} → R | ‖ (ai )i∈Z+ ‖1=
+∞∑
i=0

|ai | < +∞}.

• Definition: The Wiener algebra A is defined by:

A = {f = g +
∑+∞

i=0 ai δ(t−hi ) | g ∈ L1(R+), (ai )i∈Z+ ∈ l1(Z+),

0 = h0 ≤ h1 ≤ h2 ≤ . . .}.

• A is a commutative Banach algebra w.r.t.:

‖ f ‖A=‖ g ‖1 + ‖ (ai )i∈Z+ ‖1 .

• Â = {L(f ) | f ∈ A}, ‖ f̂ ‖ bA=‖ f ‖A.



L∞(R+)− L∞(R+)-stability

• Theorem: Let p ∈ [1,+∞[.

1. ∀ a, b ∈ A, ∀ f , g ∈ Lp(R+) : a ? f + b ? g ∈ Lp(R+).

2. The linear operator

Λ : L∞(R+) −→ L∞(R+),

u 7−→ h ? u,

is bounded, i.e., dom Λ = L∞(R+), iff ĥ ∈ Â and:

‖ Λ ‖L(L∞(R+),L∞(R+))= sup
0 6=u∈L∞(R+)

‖ h ? u ‖∞
‖ u ‖∞

=‖ ĥ ‖ bA .

3. f̂ ∈ Â is analytic and bounded in C+ = {s ∈ C | Re s ≥ 0}
and continuous on i R:

‖ f̂ ‖∞ ≤ ‖ f̂ ‖ bA, Â ⊂ H∞(C+) (e−
1
s ∈ H∞(C+)\Â).

4. BIBO-stability ⇒ Lp(R+)− Lp(R+)-stability.



Examples

• 1
s−1 /∈ H∞(C+) ⇒ 1

s−1 /∈ Â (Â ⊂ H∞(C+)).

Let e−t Y ∈ L∞(R+), ‖ e−t Y ‖∞= 1. Then, we have:

y(t) =

∫ t

0
et−τ e−τ dτ = (sh t) Y /∈ L∞(R+).

• e−h s

s−1 /∈ H∞(C+) ⇒ e−h s

s−1 /∈ Â. Let us take e−t Y ∈ L∞(R+)

⇒ y(t) =

∫ t−h

0
et−h−τ e−τ dτ = (sh (t − h))Y /∈ L∞(R+).

• p = e−
x
a s−e−

(2 l−x)
a s

1−e−
2 a
l

s
/∈ H∞(C+) ⇒ p ∈ Ã, i.e.:

h =
+∞∑
n=0

δ(t− 2 n l+x
a ) −

+∞∑
n=1

δ(t− 2 n l−x
a ) /∈ A.

⇒ The 3 plants are not BIBO stable.



Control theory

• Let the open-loop û 7−→ ŷ = p û be unstable.

Control theory: stabilization by feedback.

• Is it possible to find a controller c such that the closed-loop is
stable ∀ û1, û2 ∈ H2(C+) (∀ u1, u1 ∈ L∞(R+))?

u1 + e1
C

P

+

y2

y1

+

e2 u2+

• Can we parametrize the set of stabilizing controllers of p?

• Is it possible to find robust/optimal controllers c of p?



The fractional representation of plants

• (Zames) The set of transfer functions has the structure of
an algebra (parallel +, serie ◦, proportional feedback . by R).

• (Vidyasagar) Let A be an algebra of stable transfer functions
with a structure of an integral domain (a b = 0, a 6= 0 ⇒ b = 0)
and its the field of fractions:

K = Q(A) = {p = n/d | 0 6= d , n ∈ A} .

K represents the class of systems

p ∈ A ⇒ p is stable, p ∈ (K\A) ⇒ p is unstable.

• (Zames) The algebra A of stable transfer functions has to
be a normed algebra so that we can consider the errors in the
modelization & approximation of the real plant by a model

(e.g., A is a Banach algebra:

‖ a b ‖A ≤ ‖ a ‖A ‖ b ‖A, ‖ 1 ‖A= 1).



Quotation

“. . . As soon as I read this, my immediate reaction was ‘What is so
difficult about handling that case? All one has to do is to write the
unstable part as a ratio of two stable rational functions!’ Without
exaggeration, I can say that the idea occurred to me within
no more than 10 min. So there it is the best idea I have had
in my entire research career, and it took less than 10 min.

All the thousands of hours I have spent thinking about
problems in control theory since have not resulted in any
ideas as good as this one. I don’t think I know what the

‘moral of this story’ really is !’’,

“. . . It turns out that this seemingly simple stratagem leads to
conceptually simple and computationally tractable solutions to

many important and interesting problems.”

M. Vidyasagar, “A brief history of the graph topology”, European
J. of Control, 2 (1996), 80-87.



Examples

• Let RH∞ = R(s) ∩ H∞(C+) be the algebra of
exponentially-stable finite-dimensional plants, i.e.:

RH∞ = {n/d ∈ R(s) | deg n ≤ deg d , d(s) = 0 ⇒ Re s < 0} .

p =
1

s − 1
=

(
1

s+1

)
(

s−1
s+1

) ,
1

s + 1
,

s − 1

s + 1
∈ RH∞ ⇒ p ∈ Q(RH∞).

• Â: algebra of BIBO-stable ∞-dimensional plants:

p =
e−h s

s − 1
=

(
e−h s

s+1

)
(

s−1
s+1

) ,
e−h s

s + 1
,

s − 1

s + 1
∈ Â ⇒ p ∈ Q(Â).

• H∞(C+): algebra of L2(R+)-stable ∞-dimensional plants:

p =
(1 + e−2 s)

(1− e−2 s)
∈ Q(H∞(C+)) : 1+ e−2 s , 1− e−2 s ∈ H∞(C+).



(Weakly) coprime factorization

• Let A be an algebra of stable transfer functions and:

K = Q(A) = {n/d , 0 6= d , n ∈ A}.

• Definition: A transfer function p ∈ K is said to admit a weakly
coprime factorization if:

∃ 0 6= d , n ∈ A : p = n/d , ∀ k ∈ K : k n, k d ∈ A ⇒ k ∈ A.

• Definition: A transfer function p ∈ K is said to admit a
coprime factorization over A if:

∃ 0 6= d , n, x , y ∈ A : p = n/d , d x − n y = 1.

• A coprime factorization is a weakly coprime factorization:

k ∈ K : k n, k d ∈ A ⇒ k = (k d) x − (k n) y ∈ A.



Examples

• Example: Let A = RH∞ and p = 1
(s−1) ∈ R(s). Then,

p = n
d , n = 1

(s+1) (s+2) , d = (s−1)
(s+1) (s+2) ∈ A,

is not a weakly coprime facorization as:

(s+2) ∈ Q(A) = R(s), (s+2) /∈ A,

 (s + 2) n = 1
(s+1) ∈ A,

(s + 2) d = (s−1)
(s+1) ∈ A.

• Example: Let A = RH∞ and p = 1
(s−1) ∈ R(s). Then,

p =
n

d
, n =

1

(s + 1)
, d =

(s − 1)

(s + 1)
∈ A,

is a coprime factorization of p as we have:

(s − 1)

(s + 1)
− (−2)

1

(s + 1)
= 1, x = 1, y = −2.



Internal stabilizability

• Let A be an algebra of stable transfer functions, K = Q(A).

• Let p ∈ K be a plant and c ∈ K a controler.

• The closed-loop system is defined by:(
u1

u2

)
=

(
1 −p

−c 1

)(
e1

e2

)
,

{
y1 = e2 − u2,

y2 = e1 − u1.

• Definition: c internally stabilizes p if we have:

H(p, c) =

(
1 −p

−c 1

)−1

=

( 1
1−p c

p
1−p c

c
1−p c

1
1−p c

)
∈ A2×2.

⇒ c is then called a stabilizing controler of p.



Example

• Example: A = RH∞, K = Q(A) = R(s). p = s
(s−1) ,

c = − (s−1)
(s+1) ,

⇒

 e1 = (s+1)
(2s+1) u1 + s(s+1)

(2s+1)(s−1) u2,

e2 = (−s+1)
(2s+1) u1 + (s+1)

(2s+1) u2.

⇒ c does not internally stabilize p because:

s(s + 1)

(2s + 1)(s − 1)
/∈ RH∞ (pole in 1 ∈ C+).

• Example: A = RH∞, K = Q(A) = R(s).{
p = s

(s−1) ,

c = 2,
⇒

 e1 = − (s−1)
(s+1) u1 − s

(s+1) u2,

e2 = −2 (s−1)
(s+1) u1 − (s−1)

(s+1) u2.

⇒ c internally stabilizes the plant p.



Strong and simultaneous stabilizations

• Let A be an algebra of stable transfer functions, K = Q(A).

• Definition: p ∈ K is strongly stabilizable if there exists a
stable controller c , i.e., c ∈ A, which internally stabilizes p.

• Definition: The plants p1, . . . , pn ∈ K are simultaneously
stabilizable if ∃ c ∈ K which internally stabilizes p1, . . . , pn.

• Interests of the strong stabilization:

Safety, good ability to track reference inputs.

• Interests of the simultaneous stabilization:

The controller is designed to stabilize a family of plants, e.g.:

operating conditions, failed modes, loss of sensors/actuators,
changes of operating points.



Examples

• Example: Let A = RH∞. The plant p = 1
(s−1) is strongly

stabilized by c = −2 ∈ A as we have:

1

1− p c
=

(s − 1)

(s + 1)
,

p

1− p c
=

1

(s + 1)
,

c

1− p c
= −2 (s − 1)

(s + 1)
.

• Example: Let A = H∞(C+). The plant p = (1+e−2 s)
(1−e−2 s)

∈ K is

strongly stabilized by c = −1 as we have:

1

1− p c
=

1− e−2 s

2
,

p

1− p c
=

1 + e−2 s

2
,

c

1− p c
= −1− e−2 s

2
.

• Example: Let A = RH∞. The plants defined by

p1 =
1

(s + 1)
, p2 =

2 s

(s − 1) (s + 1)
,

are simultaneously stabilized by c = −2 (s+1)
(s−1) .



Robust stabilizability

• Let A be a Banach algebra of stable transfer functions

(e.g., A = H∞(C+), Â, A(D), W+).

• Definition: Let c ∈ K = Q(A) be a stabilizing controller of
p ∈ K . Then, c robustly stabilizes p if there exits ε > 0 such
that c internally stabilizes one of the family of plants:

1. Additive perturbations:

B1(p, δ) = {p + δ | ∀ δ ∈ A, ‖ δ ‖A < ε}.

2. Multiplicative perturbations:

B2(p, δ) = {p/(1 + δ p) | ∀ δ ∈ A, ‖ δ ‖A < ε}.

3. Relative additive perturbations:

B3(p, δ) = {p (1 + δ) | ∀ δ ∈ A, ‖ δ ‖A < ε}.

4. Relative multiplicative perturbations:

B4(p, δ) = {p/(1 + δ) | ∀ δ ∈ A, ‖ δ ‖A < ε}.



Theory of fractional ideals

• Let A be an integral domain and K = {n/d | 0 6= d , n ∈ A}.

• Definition: A fractional ideal J of A is an A-submodule of K

(∀ a1, a2 ∈ A, ∀ m1, m2 ∈ J : a1 m1 + a2 m2 ∈ J),

such that ∃ 0 6= d ∈ A satisfying:

(d) J , {a d | a ∈ J} ⊆ A.

• Example: Let A be an algebra of stable transfer functions and
p ∈ K = Q(A) a transfer function. Then,

J = (1, p) , A + Ap

is a fractional ideal of A as:

∃ 0 6= d , n ∈ A : p = n/d ⇒ (d) J = Ad + An ⊆ A.

• y = p u ⇒ (1, −p) (y u)T = 0 ⇒ J = (1, −p) = (1, p).



Theory of fractional ideals

• Definition: A fractional ideal J of A is integral if J ⊆ A.

• Example: If p ∈ A, then J = (1, p) = A. Conversely,

J = (1, p) = (1) ⇒ ∃ n ∈ A : p = n 1 = n ∈ A.

⇒ the transfer function p is stable iff J = (1, p) = A.

• Definition: A fractional ideal J of A is principal if ∃ k ∈ K :

J = (k) , Ak = {a k | a ∈ A}.

• Example: J = (1, p) is principal iff there exists 0 6= k ∈ K such
that J = (k), i.e., iff there exist 0 6= d , n, x , y ∈ A s.t.:

1 = d k ,
p = n k ,
k = x − y p

⇔


k = 1/d ,
p = n/d ,
1/d = x − y (n/d),

⇔
{

p = n/d ,
d x − n y = 1.

⇒ the transfer function p admits a coprime factorization
p = n/d iff J = (1/d), i.e., J is principal.



Example

• Let A = H∞(C+) and p = e−s

(s−1) ∈ K = Q(A).

• Let J = (1, p) be the fractional ideal of A defined by 1 and p.

• We have J =
(

s+1
s−1

)
as we have:

1 =
(

s−1
s+1

) (
s+1
s−1

)
,

e−s

(s−1) =
(

e−s

s+1

) (
s+1
s−1

)
,

(s+1)
(s−1) =

(
1 + 2

(
1−e−(s−1)

s−1

))
+ 2 e e−s

(s−1) (?).

p = n
d , n = e−s

(s+1) , d = (s−1)
(s+1) , is a coprime factorization of p:

(?) ⇔
(

s − 1

s + 1

) (
1 + 2

(
1− e−(s−1)

s − 1

))
−
(

e−s

s + 1

)
(−2 e) = 1.



Theory of fractional ideals

• Proposition: Let F(A) be the set of non-zero fractional
ideals of A and I , J ∈ F(A). Then, we have:{

I J = {
∑

finite ai bi | ai ∈ I , bi ∈ J} ∈ F(A),

I : J = {k ∈ K | (k) J ⊆ I} ∈ F(A).

• Example: Let p ∈ K and J = (1, p). Then, we have

A : J = {k ∈ K | k, k p ∈ A} = {d ∈ A | d p ∈ A}

is called the ideal of the denominators of p.

p admits a weakly coprime factorization p = n/d iff:

∃ 0 6= d , n ∈ A : A : (d , n) = {k ∈ K | k d , k n ∈ A} = A,

⇔ A : ((d) (1, p)) = A ⇔ (A : J) : (d) = A

⇔ (d−1) (A : J) = A ⇔ A : J = (d).



Example

• Let A be the Banach algebra of analytic functions in the unit
disc D whose Taylor series converge absolutely, i.e.:

W+ =

{
f (z) =

+∞∑
i=0

ai z
i |

+∞∑
i=0

|ai | < +∞

}
.

• A is the algebra of the BIBO-stable causal filters.

• Let us consider the transfer function p = e−( 1+z
1−z ):{

n = (1− z)3 e−( 1+z
1−z ) ∈ A,

d = (1− z)3 ∈ A,
⇒ p = n/d ∈ Q(A).

• Let us consider the fractional ideal J = (1, p) of A.

• The ideal A : J = {d ∈ A | d p ∈ A} is not finitely generated.

See R. Mortini & M. Von Renteln, “Ideals in Wiener algebra”,

J. Austral. Math. Soc., 46 (1989), 220-228.

⇒ p does not admit a (weakly) coprime factorization.



Example

• The disc algebra A(D) is the Banach algebra of holomophic
functions in the open unit disc D = {z ∈ C | |z | < 1} which are
continuous on the unit circle T = {z ∈ C | |z | = 1}.

• We have n = (1− z) e−( 1+z
1−z ) ∈ A, d = (1− z) ∈ A,

⇒ p = n/d = e−( 1+z
1−z ) ∈ Q(A), J = (1, p).

• A : J = {d ∈ A | d p ∈ A} = {d ∈ A | d(1) = 0} is a maximal
ideal of A which is not finitely generated.

See R. Mortini, “Finitely generated prime ideals in H∞ and A(D)”,

Math. Z., 191 (1986), 297-302.

⇒ p does not admit a (weakly) coprime factorization and
p is not internally stabilizable.



Theory of fractional ideals

• Definition: J ∈ F(A) is invertible if ∃ I ∈ F(A):

I J = A.

• Proposition: If J is an invertible fractional ideal of A, then:

I = A : J = {k ∈ K | (k) J ⊆ A}.

• If J is an invertible fractional ideal of A, we then denote by:

I = J−1.

• Proposition: If J is invertible, then we have:

(J−1)−1 = J.



Theory of fractional ideals

• Let p ∈ K and J = (1, p). If J is invertible, then we have:

1 ∈ J (A : J) = (1, p) ({d ∈ A | d p ∈ A}) = {α+β p | α, β ∈ A : J}

⇔ ∃ a, b ∈ A :

{
a− b p = 1,
a p ∈ A, b p ∈ A.

If a 6= 0, then c = b/a ∈ K satisfies:

H(p, c) =

( 1
1−p c

p
1−p c

c
1−p c

1
1−p c

)
=

(
a a p
b a

)
∈ A2×2,

⇒ c = b/a internally stabilizes p (a = 0 ⇒ c = 1− b IS p).

• If p is internally stabilizable, then there exists c ∈ K s.t.:

a =
1

1− p c
∈ A, a p =

p

1− p c
∈ A, b =

c

1− p c
∈ A.

Let I = (a, b). Then, a− b p = 1 ∈ I J ⇒ I J = A ⇒ I = J−1.



Example

• Let A = H∞(C+), p = e−s

(s−1) ∈ Q(A), J = (1, p):

gcd
(

e−s

s+1 , s−1
s+1

)
= 1 ⇒ A : J = {d ∈ A | d p ∈ A} =

(
s−1
s+1

)
.

• p is internally stabilizable iff ∃ a, b ∈ A : J s.t. a− b p = 1:

⇔ ∃ x , y ∈ A :


a =

(
s−1
s+1

)
x ,

b =
(

s−1
s+1

)
y ,

a− b p = 1.

a− b p = 1 ⇔
(

s−1
s+1

)
(x − p y) = 1 ⇔ x = s+1

s−1 + p y

⇔ x = (s+1)+e−s y
s−1

⇒ ((s + 1) + e−s y(s))(1) = 0 ⇒ y(1) = −2 e.

y(s) = −2 e ⇒ x(s) = 1 + 2

(
1− e−(s−1)

s − 1

)
∈ A.



Example continued

• Therefore, we have:
a =

(
s−1
s+1

) (
1 + 2

(
1−e−(s−1)

s−1

))
∈ A : J,

b = −2 e
(

s−1
s+1

)
∈ A : J,

a− b p = 1.

⇒ a stabilizing controller c of p is defined by:

c =
b

a
= − 2 e (s − 1)

(s − 1) + 2 (1− e−(s−1))
= − 2 e (s − 1)

s + 1− 2 e−(s−1)
.

• J = (1, p) is invertible, J−1 = A : J =
(

s−1
s+1

)
⇒ J = (J−1)−1 =

(
s+1
s−1

)
is principal ⇒ p admits the coprime

factorization:

p =
n

d
, n =

e−s

(s + 1)
, d =

(s − 1)

(s + 1)
, d x − n y = 1.



SC for internal stabilizability

• Let A be an algebra of stable transfer functions and K = Q(A).

• Let p ∈ K and J = (1, p) a fractional ideal of A.

• p admits a coprime factorization iff J is principal.

• p is internally stabilizable iff J is a invertible fractional ideal.

• If J = (k), 0 6= k ∈ K , then J−1 = (1/k)

⇒ the existence of a coprime factorization is a sufficient
condition for internal stabilizability.

• p = n/d is a coprime factorization, d x − n y = 1, x ∈ A, y ∈ A,

⇒

{
a = d x ,

b = d y ,
⇒ c = b/a = y/x is a stabilizing controller of p.

(a− b p = d x − (d y) p = d x − n y = 1,

a, b ∈ A, a p = n x ∈ A, b p = n y ∈ A)



Strong stabilizability

• p is strongly stabilizable iff there exists c ∈ A such that:

a =
1

1− p c
∈ A, a p =

p

1− p c
∈ A, b =

c

1− p c
= c a ∈ A.

Using the fact that c ∈ A, we obtain:

J−1 = (a, b) = (a) = ((1− p c)−1) ⇒ J = (J−1)−1 = (1− p c).

• We suppose that there exists c ∈ A such that (1, p) = (1− p c)

⇒ ∃ 0 6= d , n ∈ A :

{
1 = d (1− p c),

p = n (1− p c),
⇒

{
p = n/d ,

d − n c = 1,

⇒

(
1 −p

−c 1

)−1

=

(
d n

d c d

)
∈ A2×2,

i.e., c ∈ A internally stabilizes p, i.e., p is strongly stabilizable.



Example

• Let A = H∞(C+), K = Q(A), p = (1+e−2 s)
(1−e−2 s)

∈ K .

• We have J = (1, p) =
(

1
1−e−2 s

)
because:

1 = (1− e−2 s) 1
(1−e−2 s)

,

p =
(1 + e−2 s)

(1− e−2 s)
= (1 + e−2 s)

1

(1− e−2 s)
,

1

(1− e−2 s)
=

1

2
+

1

2

(1 + e−2 s)

(1− e−2 s)
.

⇒ coprime factorization

 p =
(1 + e−2 s)

(1− e−2 s)
,

1
2 (1− e−2 s) + 1

2 (1 + e−2 s) = 1.

⇒ c = −1 is a stable stabilizing controller of p.

• We check that 1− p c = 1 + p = 2
(1−e−2 s)

⇒ J = (1, p) = (1/(1− e−2 s)) = (1− p c).



Robust stabilization
• c ∈ K = Q(A) internally stabilizes p ∈ K iff:

(1, p) (1, c) = (1− p c).

• Let δ ∈ A. c internally stabilizes p and p + δ iff we have: (1, p) (1, c) = (1− p c),

(1, p + δ) (1, c) = (1− (p + δ) c),
⇔

 (1, p) (1, c) = (1− p c),

(1, p) (1, c) = (1− (p + δ) c),

⇔


(1, p) (1, c) = (1− p c),(

1− (p + δ) c

1− p c

)
=

(
1− δ c

1− p c

)
= A,

⇔


c IS p,

1− (δ c)

(1− p c)
∈ U(A).

• If A is a Banach algebra, then (small gain theorem):

‖ 1− a ‖A < 1 ⇒ a ∈ U(A) = {a ∈ A | ∃ b ∈ A : a b = b a = 1}.

⇒ a sufficient condition for robust stabilization (c/(1− p c) ∈ A) is:

‖ δ ‖A < (‖ c/(1− p c) ‖A)−1.



Robust stabilization
• Let δ ∈ A. c internally stabilizes p and p/(1 + δ p) iff we have: (1, p) (1, c) = (1− p c),(

1, p
(1+δ p)

)
(1, c) =

(
1− p c

(1+δ p)

)
,

⇔

{
(1, p) (1, c) = (1− p c),

(1 + δ p, p) (1, c) = (1− p c + δ p),

⇔


(1, p) (1, c) = (1− p c),(

1− p c + δ p

1− p c

)
=

(
1− δ p

1− p c

)
= A,

⇔


c IS p,

1− (δ p)

(1− p c)
∈ U(A).

⇒ a sufficient condition for robust stabilization (p/(1− p c) ∈ A) is:

‖ δ ‖A < (‖ p/(1− p c) ‖A)−1.



A few more results
• “IS” stands for “internally stabilized/-zable”.

• “CF” stands for “coprime factorization”.

• Proposition: Let δ ∈ A, p, c ∈ Q(A).

1. If p is IS by c , then p admits a CF ⇔ c admits a CF.

2. p is IS and p admits a weakly CF ⇔ p admits a CF.

3. p is IS by c ⇔ p + δ is IS by c/(1 + δ c).

4. p is IS by c ⇔ p/(1 + δ p) is IS by c + δ.

5. p is IS by c ⇔ 1/p is IS by 1/c .

6. p is externally stabilized by c , i.e., p c/(1− p c) ∈ A, iff:

(1, p c) = (1− pc).

7. p = n/d CF, c = s/r CF. p is IS by c ⇔ d r − n s ∈ U(A).



Summary

• Let A be a ring of stable transfer functions and K = Q(A).

• Let p ∈ K be a transfer function.

• Let J = (1, p) be a fractional ideal of A and:

A : J = {d ∈ A | d p ∈ A}.

• Theorem: 1. p is stable iff J = A iff A : J = A.

2. p admits a weakly coprime factorization iff:

∃ 0 6= d ∈ A : A : J = (d).

Then, p = n/d , (n = d p ∈ A), is a weakly coprime factorization.

3. p is internally stabilizable iff J is invertible, i.e., iff:

∃ a, b ∈ A, a− b p = 1, a p ∈ A.

If a 6= 0, then c = b/a is a stabilizing controller of p and:

J−1 = (a, b), a = 1/(1− p c), b = c/(1− p c).



Summary

4. c ∈ K internally stabilizes p ∈ K if we have:

(1, p) (1, c) = (1− p c).

5. c ∈ K externally stabilizes p ∈ K (p c/(1− p c) ∈ A) iff:

(1, p c) = (1− p c).

6. p is strongly stabilizable iff there exists c ∈ A such that:

(1, p) = (1− p c).

7. p admits a coprime factorization iff (1, p) is principal. Then,
there exists 0 6= d ∈ A such that

(1, p) = (1/d)

and p = n/d is a coprime factorization of p (n = d p ∈ A).



Classification of the rings A

• Theorem: Let A be a integral domain of stable transfer
functions and K = Q(A).

1. Every transfer function p ∈ K admits a weakly coprime
factorization iff A is a GCDD, i.e., any two elements of A admits
a greatest common divisor.

2. Every transfer function p ∈ K is internally stabilizable iff A is
a Prüfer domain, i.e., any f.g. ideal of A is invertible.

3. Every transfer function p ∈ K admits a coprime factorization
iff A is a Bézout domain, i.e., any f.g. ideal of A is principal.

• RH∞ is a PID ⇒ GCD, Prüfer and Bézout domains.

• H∞(C+) is a GCDD but is not a Prüfer and a Bézout domain.

(∃ x , y ∈ H∞(C+) : d x − n y = 1 ⇔ infs∈C+(|d(s)|+ |n(s)|) > 0

gcd(e−s , 1/(s + 1)) = 1, infs∈C+(|e−s |+ |1/(s + 1)|) = 0.)

• Â ???



Pre-Bézout rings

• Definition: An integral domain A is a pre-Bézout ring if, for
every d , n ∈ A such that there exists a greatest common divisor
[d , n] of d and n, then there exist x , y ∈ A satsifying:

d x − n y = [d , n].

• Example: The disc algebra A(D) is the Banach algebra of
holomophic functions in the open unit disc D = {z ∈ C | |z | < 1}
which are continuous on the unit circle T = {z ∈ C | |z | = 1}.
Then, A(D) is a pre-Bézout ring.

• Proposition: Let A be a pre-Bézout ring. Then, we have:

1. p ∈ Q(A) admits a weakly coprime factorization.

⇐⇒

2. p ∈ Q(A) admits a coprime factorization.



Stable range

• Definition: A ring A has a stable range of A equals 1 if, for
every (d , n) ∈ A1×2 admitting a right-inverse (x , −y)T ∈ A2,

i.e., d x − n y = 1,

there exists c ∈ A such that:

d − n c ∈ U(A) = {a ∈ A | ∃ b ∈ A : a b = b a = 1}.

• Theorem: Let A be a integral domain of transfer functions and
K = Q(A). Then, every transfer function p ∈ K which admits a
coprime factorization is strongly stabilizable iff sr(A) = 1.

• Example: The following Banach algebras

H∞(D), H∞(C+), A(D), W+, L∞(i R),

have a stable range equals to 1 (sr(RH∞) = 2!)

(Treil 92, Jones/Marshall/Wolff 86, Rupp 90).



RH∞ ⊂ Â ⊂ H∞(C+)

“ . . . The foregoing results about rational functions are so elegant
that one can hardly resist the temptation to try to generalize them

to non-rational functions. But to what class of functions?
Much attention has been devoted in the engineering

literature to the identification of a class that is wide enough
to encompass all the functions of physical interest and yet
enjoys the structural properties that allow analysis of the

robust stabilisation problem”,

N. Young, “Some function-theoretic issues in feedback
stabilization”, in Holomorphy Spaces, MSRI Publications 33, 1998,

337-349.



Parametrizations of all stabilizing controllers

• Theorem: Let c be a stabilizing controller of p ∈ Q(A),
a = 1/(1− p c), b = c/(1− p c) and J = (1, p). Then, all
stabilizing controllers of p are

c(q1, q2) =
b + a2 q1 + b2 q2

a + a2 p q1 + b2 p q2
, (?)

where q1 and q2 any element of A: a + a2 p q1 + b2 p q2 6= 0.

1. (?) depends on only one free parameter

⇔ p2 admits a coprime factorization p2 = s/r .

2. If p2 admits a coprime factorization p2 = s/r ,

(?) ⇔ c(q) =
b + r q

a + r p q
, ∀ q ∈ A : a + r p q 6= 0.

3. If p admits a coprime factorization p = n/d , d x − n y = 1:

(?) ⇔ c(q) =
y + d q

x + n q
, ∀ q ∈ A : x + n q 6= 0.



K. Mori, CDC 1999, 973-975

• Let A = R[x2, x3] be the ring of discrete time delay systems
without the unit delay.

• A is used for high-speed circuits, computer memory devices.

• p = (1− x3)/(1− x2) ∈ Q(A), J = (1, p).

• Using (1− x3) (1 + x3) = (1− x2) (1 + x2 + x4), we get

p =
(1− x3)

(1− x2)
=

(1 + x2 + x4)

(1 + x3)
.

A : J = (1− x2, 1 + x3) is not principal because (x + 1) /∈ A.

⇒ p does not admit a (weakly) coprime factorization.



• As A : J = (1− x2, 1 + x3), we then get:

J (A : J) = (1− x2, 1 + x3, 1− x3, 1 + x2 + x4).

• We have (1 + x3)/2 + (1− x3)/2 = 1 ∈ J (A : J)

⇒


a = (1 + x3)/2 ∈ A : J,

b = −(1− x2)/2 ∈ A : J,

a− b p = 1,

⇒ c = b/a = −(1− x2)/(1 + x3) internally stabilizes p.

• J−1 = (1− x2, 1 + x3) ⇒ J−2 = ((1− x2)2, (1 + x3)2).

• (x + 1) /∈ A ⇒ J−2 is not principal ideal of A.

⇒ all stabilizing controllers of p have the form:

c(q1, q2) =
−(1− x2) + (1− x2)2 q1 + (1 + x3)2 q2

(1 + x3) + (1− x2) (1− x3) q1 + (1 + x3) (1 + x2 + x4) q2
,

for all q1, q2 ∈ A such that the denominator exists.



V. Anantharam, IEEE TAC 30 (1985), 1030-1031

• A = Z[i
√

5], p = (1 + i
√

5)/2 ∈ K = Q(i
√

5), J = (1, p).

• Using 2× 3 = (1 + i
√

5) (1− i
√

5) = 6, we get

p = (1 + i
√

5)/2 = 3/(1− i
√

5),

and A : J = (2, 1− i
√

5) is not a principal ideal of A.

⇒ p does not admit a (weakly) coprime factorization.

• J (A : J) = (2, 1 + i
√

5, 1− i
√

5, 3) = A as we have

−2 + 3 = (−2)− (−1 + i
√

5) p = 1,

⇒ c = (1− i
√

5)/2 internally stabilizes p.

• J−2 = (2, 1− i
√

5)2 = (2)

⇒ c(q) =
(1− i

√
5)− 2 q

2− (1 + i
√

5) q
, ∀ q ∈ A.



Example

• It is well-known that the unstable plant p = e−s/(s − 1) is
internally stabilized by the distributed delay controller:

c = −2 e (s − 1)/
(
s + 1− 2 e−(s−1)

)
.

a = 1
(1−p c) = (s+1−2 e−(s−1))

(s+1) ∈ H∞(C+),

b = c
1−p c = −2 e (s−1)

(s+1) ∈ H∞(C+),

a p = p
(1−p c) = e−s

(s+1)
(s+1−2 e−(s−1))

(s−1) ∈ H∞(C+).

• We obtain that all stabilizing controllers of p have the form:

c(l) =
−2 e+l (s−1)

(s+1)

1+2

„
1−e−(s−1)

s−1

«
+l e−s

(s+1)

, l =
(
1 + 2

(
1−e−(s−1)

s−1

))2
q1 + 4 e2 q2.

• This is the Youla-Kučera parametrization obtained from the
following coprime factorization p = n/d :

n = e−s

(s+1) , d = (s−1)
(s+1) , (−2 e) n −

(
1 + 2

(
1−e−(s−1)

s−1

))
d = 1.



Example: Smith predictor

• Let us consider the transfer function:

p = p0 e−τ s , p0 ∈ RH∞, τ ∈ R+.

• p ∈ A = H∞(C+) ⇒ p = n/d , where d = 1 and n = p.

⇒ the parametrization of all stabilizing controllers of p is:

c(q) =
q

1 + q p0 e−τ s
, ∀ q ∈ A.

⇒ Let c0 ∈ R(s) be a certain stabilizing controller of p0.

⇒ q? =
c0

1− p0 c0
∈ RH∞ ⊂ A.

⇒ c(q?) =
c0

1 + p0 c0 (e−τ s − 1)
=

c0

1− c0 (p0 − p)

internally stabilizes p and is called Smith predictor. We have:

p c(q?)

1− p c(q?)
=

(
p0 c0

1− p0 c0

)
e−τ s .



Convexity of H(p, c)

• Let c be a stabilizing controller of p ∈ Q(A).

• All stabilizing controllers of p are given by

c(q1, q2) =
(1− p c∗) c∗ + q1 + q2 c∗

2

(1− p c∗) + q1 p + q2 p c∗2

∀ q1, q2 ∈ A : (1− p c∗) + q1 p + q2 p c∗
2 6= 0.

• The closed-loop system(
e1

e2

)
=

( 1
1−p c

p
1−p c

c
1−p c

1
1−p c

)(
u1

u2

)
becomes :

(
1

1−p c∗
+ q1

p
(1−p c∗)2

+ q2
p c∗

2

(1−p c∗)2
c∗

1−p c∗
+ q1

1
(1−p c∗)2

+ q2
c∗

2

(1−p c∗)2

p
1−p c∗

+ q1
p2

(1−p c∗)2
+ q2

(p c∗)2

(1−p c∗)2
1

1−p c∗
+ q1

p
(1−p c∗)2

+ q2
p c∗

2

(1−p c∗)2

)
.

⇒ ∀ λ ∈ A : H(p, c(λ q1 + (1− λ) q′1, λ q2 + (1− λ) q′2))

= λ H(p, c(q1, q2)) + (1− λ) H(p, c(q′1, q′2)).



Sensitivity minimization

• Let A be a Banach algebra (H∞(C+), Â, W+. . . ).

• Let c be a stabilizing controller of p ∈ Q(A) and:

a = 1/(1− p c), b = c/(1− p c) ∈ A.

• Let w ∈ A be a weighted function. Then, we have:

inf
c∈Stab(p)

‖ w/(1−p c) ‖A= inf
q1, q2∈A

‖ w (a+a2 p q1+b2 p q2) ‖A (?)

⇒ (?) is now a convex problem.

• If p = n/d is a coprime factorization of p, d x − n y = 1,

⇒ a + a2 p q1 + b2 p q2 = d (x + q n).

∀ ∈ A, ∃ q1, q2 ∈ A : q = x2 q1 + y2 q2, where:

q1 = d2 (1− 2 n y) q, q2 = n2 (1 + 2 d x) q.

(?) ⇔ inf
q∈A

‖ w d (x + n q) ‖A .



Open questions

• What are the algebraic properties of Â ?

• Let I(A) be the group of invertible fractional ideals of A and
P(A) the group of principal fractional ideals of A.

⇒ C(A) = I(A)/P(A)

is sometimes called the Picard group of A. Question: C(Â) ?

• Is it possible to develop a theory of divisors over H∞(C+)?

• Let p1, p2 ∈ K = Q(A). When do we have:

(1, p2) ∼= (1, p1) ⇔ ∃ 0 6= k ∈ K : (1, p2) = (k) (1, p1) ?

• The simultaneous stabilization problem is open when
pi ∈ Q(A), i = 1, . . . , n, do not admit coprime factorizations:

∃ c ∈ Q(A) : (1, pi ) (1, c) = (1− pi c), 1 ≤ i ≤ n ?

• A = {f ∈ H∞(C+) | f (s) = f (s), ∀ s ∈ C+}.
Question: sr(A) = 2 ?
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