
TALK: DERIVED CATEGORIES AND SYSTEM THEORY?

MOHAMED BARAKAT

Abstract. Buchsbaum and Grothendieck invented Abelian categories as the correct categorical gener-
alization of module categories, i.e., as the most abstract way to do linear algebra. Derived categories are
certain “completions” of Abelian categories which were later invented by Grothendieck and Verdier to
prove the existence of certain operations and dualities (two of Grothendieck’s six operations in algebraic
geometry and the Verdier duality) which do not exist in the smaller Abelian category (of quasi-coherent
sheaves). Nowadays derived categories popup everywhere in mathematics and one of their remarkable
features is their ability to connect apparently remote fields of mathematics. The reason for this is that
derived categories of very, very di↵erent Abelian categories might be equivalent. In the talk I will present
several examples of these “tunnel e↵ects”. I will end with considering system theory where it would be
nice to see the world on the other side of the tunnel.

1. From vectors to coordinate vectors

The abstract notion of a vector space over a field k is a “coordinate-free” generalization of the “stan-
dard vector space” kn. Some (engineering) students might find this a nightmare. But the story has
a happy end. Once you introduce the notion of a basis you see that this generalization only helped
you to get rid of “coordinates” which are the duals of a basis. Let us be more precise. Choose a basis
B = (B1, . . . , Bn) of the abstract n-dimensional vector space V . If the vector space has an elaborated
internal structure, e.g., being a space of functions on some complicated space, then the basis B will
capture at least part of this internal complexity. Now take the dual basis x = (x1, . . . , xn) of B, i.e., the
coordinate system with B as “axes” (remember, xi : V ! k and xi(Bj) = �i,j). We define two maps,
the coordinate map

� : V ! kn

V 7! (x1(V ), . . . , xn(V )) = x(V )

and the linear combination map

V  kn : ⌫

a · B =
nX

i=1

ai ·Bi  [ (a1, . . . , an) = a.

We learned that � : V � kn : ⌫ are mutually inverse linear maps (this is in fact equivalent to x being
the dual basis of B).

Example. Let V be the R-vector space spanned by the basis B = (sin2 x, sin x cos x, cos2 x).

� : V $ R3 : ⌫
� : sin 2x $ (0, 2, 0) : ⌫
� : cos 2x $ (�1, 0, 1) : ⌫

So, the coordinate map � = x(�) is able to send an internally complex vector space V to the
standard one kn, while the internal structure of V is concentrated in the inverse map ⌫; namely in
the basis vectors Bi 2 V which enter the definition of the linear combination map ⌫ = � · B.

This sound like an elegant principle, and if an elegant principle appears once in mathematics it is
certain that it will appear infinitely many times :-)
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2. A tunnel effect: From sheaves on varieties to modules over rings

Here is another one which, at least at first sight, looks scary

RHom(T,�) : Db(X) � Db(End(T )op) : �⌦L T

and reads even scarier: The bounded derived category Db(X) = Db(CohX) of coherent sheaves on a
Noetherian scheme X admitting a tilting sheaf T =

L
i Ti is adjoint equivalent to the bounded derived

category Db(End(T )op) = Db(End(T )op�mod) of f.g. right modules over the endomorphism ring of the
tilting object T . Wow!

What happened here?
Instead of ... we are talking about

a single abstract vector space V Db(X), a whole (derived) category of coherent sheaves
the standard vector space kn Db(End(T op)), the whole (derived) category of f.g. modules

a basis B = (B1, . . . , Bn) T =
L

i Ti, a tilting sheaf
the coordinate map � = x(�) RHom(T,�), the derived Hom-functor

the linear combination map ⌫ = � · B �⌦L T , the derived tensor product functor

And in analogy with the above vector space situation, the functor RHom(T,�) does the Fourier
analysis, while the (quasi-)inverse functor �⌦LT does the Fourier synthesis, i.e., the complex internal
structure of CohX is now fully encoded in the derived tensor product functor �⌦L T defined in terms
of a tilting sheaf T =

L
i Ti 2 CohX.

I will not formally define what an Abelian category A is: Roughly speaking, it is a category in which
one can do linear algebra in the sense that we can add and subtract morphisms, perform direct sums of
objects, define kernels and cokernels of morphisms, and where the fundamental homomorphism theorem
is valid. We already know some examples: categories of vector spaces, categories of modules over unitial
rings (like End(T )op �mod), categories of coherent sheaves over Noetherian schemes (like CohX).

I also will not give a formal definition of the bounded derived category Db(A) of an Abelian category
A, but I will tell you how it may serve us. It is enough to know that it is a larger category containing
not only objects of A, but equivalence classes of complexes of objects in A.

It often happens, that two very di↵erent Abelian categories A,B become equivalent when we pass to
their derived categoriesDb(A) ' Db(B). Draw picture. We already saw a general form of a nice example.
The Abelian category CohPn of coherent sheaves on the projective space X = Pn is not equivalent to
any module category for n > 0. But when we pass to the derived category Db(Pn) = Db(CohPn) we get
an equivalence to a derived category of modules, namely Db(End(T )op) = Db(End(T )op �mod), where
T =

Ln
i=0 Ti and Ti = ⌦i

Pn(i), the ith exterior power of the twisted cotangent sheaf on Pn. In fact,
Db(Pn) is generated by {⌦i

Pn(i) | i = 0, . . . , n} as a triangulated category [Bon89].

3. A simpler tunnel effect between two very different rings

I will show you a simpler example, which is in fact the crucial step in proving the above equivalence.
This time it is about two graded module categories of two very di↵erent rings. Let V be an n + 1
dimensional k vector space with basis (e0, . . . , en) and dual basis (x0, . . . , xn). Consider the two graded
rings

S = SymV ⇤ = k[x0, . . . , xn] and E =
^

V = khe0, . . . , eni.
The two rings S and E are quite di↵erent and so their categories A = S�grmod and B = E�grmod of
f.g. graded modules. For example, B = E � grmod is a Frobenius category, i.e., the class of injectives
and projectives coincide, while A = S � grmod does not have enough injectives1. But

Db(S � grmod) ' Db(E � grmod).

The proof of this is not di�cult. It simply about another way of expressing the structure of graded
modules over S. This resembles the above Fourier analysis.

1Recall, we only consider f.g. modules.
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Example. Take S := k[x0, x1] and

M := S�1 = hx0, x1iS
The indeterminates x0 and x1 induce maps between

M1 = hx0, x1ik
and

M2 = hx2
0, x0x1, x

2
1ik

given by

µ1
0 :=

✓
1 0 0
0 1 0

◆
and µ1

1 :=

✓
0 1 0
0 0 1

◆
.

This yields a map a E with µ1 = e0µ
1
0 + e1µ

1
1 : E2 ! E3 between free modules over E. Taking

gradings and covariance seriously, we must write µ1 : !E(�1)2 ! !E(�2)3, with !E = Homk(E, k) a
free (=injective) E-module of rank 1. Doing this for all pairs of subsequent layers Mi,Mi+1 we obtain
a complex over E:

E(M) : 0! !E(�1)2
⇣
e0 e1 0
0 e0 e1

⌘

������!
µ1

!E(�2)3

 
e0 e1 0 0
0 e0 e1 0
0 0 e0 e1

!

��������!
µ2

!E(�3)4 ! · · ·

In general we obtain the complex

E(M) : · · · �! !E(�i)⌦k Mi
µi

�! !E(�i� 1)⌦k Mi+1
µi+1

��! · · · ,
where

µi :=
nX

j=0

ejµ
i
j

and µi
j is the matrix representing the action of xj : Mi ! Mi+1. E sends f.g. graded S-modules to

left bounded linear f.g. free complexes over E which eventually become exact. In fact, E induces an
equivalence of categories

E : Db(S � grmod)
⇠�! Db(E � grmod).

This is called the BGG-correspondence (cf. [BGG78, EFS03]).

4. Back to the tunnel effect between a variety and a ring

Instead of explaining the Fourier synthesis for the derived tunnel between the two di↵erent rings
S and E I will sketch the Fourier synthesis between the variety X = Pn and the endomorphism ring
End(

Ln
i=0 ⌦

i
Pn(i)) of the tilting object T =

Ln
i=0 ⌦

i
Pn(i).

For the Fourier synthesis we need another complex, the so-called Tate resolution

T(M) : · · ·! T�2(M)! T�1(M)! T0(M)! T1(M)! · · · .
Start with the exact E-complex E(M)�0 and compute an infinite minimal free resolution T(M) to the
left.

E(M) : 0 !E(�1)2 · · ·

�
e0 e1 0
0 e0 e1

�

!E(0)1 !E(�1)2 · · ·!E(2)1!E(3)2T(M) : · · ·
( e0
e1 ) ( e0·e1 ) ( e0 e1 )

�
e0 e1 0
0 e0 e1

�

The Tate resolution T(M), which only depends on the the sheafification F = fM , encodes all sheaf
cohomology groups H i

` = H i(F(`)) as the socles of its modules Ti(M), more precisely, we have the
decomposition

Ti(M) = Ti(F) =
nM

j=0

!E(j � i)⌦k H
j
i�j.
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H0
0H0

�1
. . .H0

�n

...H1
1

. . .
...

...
. . .. . .Hn�1

�n

Hn
0

. . .. . .Hn
�nHn

�1�n

`

iT
�1

T
0

To recover F = fM from the Tate resolution T(F) replace !E(`) in Ti(F) by ⌦`
Pn(`), the `th exterior

power of the twisted cotangent sheaf. The morphisms between the !E(`)’s can be naturally identified
with morphisms between the ⌦`

Pn(`)’s, more precisely, Hom(!E(i),!E(j)) ⇠= Hom(⌦i
Pn(i),⌦

j
Pn(j)). The

resulting complex ⌦(T(F)) is (contrary to T(F)) bounded and lives in cohomological degrees �n, . . . , n
(cf. [EFS03]). The complex

⌦(T(F)) = T(F)⌦L

 
nM

i=0

⌦i
Pn(i)

!

is isomorphic to F ⇠= H0(⌦(T(F))) in Db(Pn).

H0
0H0

�1
. . .H0

�n

H1
0

. . .
. . .

...

...
. . .. . .Hn�1

�n

Hn
0

. . .Hn
1�nHn

�n

`

i

00000

50000

00200

00005

000000

`

iT
�1

T
0

0�1

Now we see the usefulness of derived equivalences. The graded
S-module MHM (of twisted global sections) representing the so-
called Horrocks-Mumford bundle EHM has 19 generators with
35 relations. The derived equivalence now allows us to replace
MHM by a graded E-module having 2 generators with 5 relations:
T�1(EHM) = !E(4)⌦k H

3
�4, T

0(EHM) = !E(2)⌦k H
2
�2 with socles of

dimension dimk H
3
�4 = 5 and dimk H

2
�2 = 2. The Tate morphism

T�1(EHM) ! T0(EHM) is thus determined by a degree 2 map from
H3

�4 to H2
�2, i.e., by a k-linear map

V2 V ⇤ ⌦H3
�4 ! H2

�2 which can
be represented by the matrix

d�1
HM =

✓
e1 ^ e4 e2 ^ e0 e3 ^ e1 e4 ^ e2 e0 ^ e3
e2 ^ e3 e3 ^ e4 e4 ^ e0 e0 ^ e1 e1 ^ e2

◆
2 E2⇥5.

5. System theory

Linear systems over a ring of functional operators form an Abelian category A. The derived category
Db(A) has probably many other Abelian subcategories B ⇢ Db(A) with a derived equivalence (or
tunnel) Db(A) � Db(B).
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