
Fast algorithms for polynomials and matrices

(A brief introduction to Computer Algebra)

— Part 1 —

Alin Bostan

SpecFun, INRIA

Seminar on Algebraic Systems Theory
April 4, 2013



General framework

Computer algebra = e↵ective mathematics and algebraic complexity

• E↵ective mathematics: what can we compute?

• their complexity: how fast?



Mathematical Objects

• Main objects

– polynomials K[x]

– rational functions K(x)

– power series K[[x]]

– matrices M
r

(K)

– polynomial matrices M
r

(K[x])

– power series matrices M
r

(K[[x]])

where K is a field (generally assumed of characteristic 0, or large enough)

• Secondary/auxiliary objects

– linear recurrences with constant, or polynomial, coe�cients K[n]hS
n

i
– linear di↵erential equations with polynomial coe�cients K[x]h@

x

i



This course

• Aims

– design and analysis of fast algorithms for various algebraic problems

– Fast = using asymptotically few operations (+,⇥,÷) in the basefield K
– Holy Grail: quasi-optimal algorithms = (time) complexity almost linear

in the input/output size

• Specific algorithms depending on the kind of the input

– dense (i.e., arbitrary)

– structured (i.e., special relations between coe�cients)

– sparse (i.e., few elements)

• In this lecture, we focus on dense objects



A word about structure and sparsity

• sparse means

– for degree n polynomials: s⌧ n coe�cients

– for r ⇥ r matrices: s⌧ r2 entries

• structured means

– for r ⇥ r matrices: special form, e.g., Toeplitz, Hankel, Vandermonde,

Cauchy, Sylvester, etc) �! encoded by O(r) elements

– for polynomials/power series: satisfying an equation (algebraic or

di↵erential) �! encoded by degree/order of size O(1)

• In this lecture, we focus on dense objects



Computer algebra books



Complexity yardsticks

Important features:

• addition is easy: naive algorithm already optimal

• multiplication is the most basic (non-trivial) problem

• almost all problems can be reduced to multiplication

Are there quasi-optimal algorithms for:

• integer/polynomial/power series multiplication? Yes!

• matrix multiplication? Big open problem!



Complexity yardsticks

M(n) = complexity of polynomial multiplication in K[x]
<n

= O(n2) by the naive algorithm

= O
�
n1.58

�
by Karatsuba’s algorithm

= O
�
nlog↵ (2↵�1)

�
by the Toom-Cook algorithm (↵ � 3)

= O
�
n log n loglog n

�
by the Schönhage-Strassen algorithm

MM(r) = complexity of matrix product in M
r

(K)

= O(r3) by the naive algorithm

= O(r2.81) by Strassen’s algorithm

= O(r2.38) by the Coppersmith-Winograd algorithm

MM(r, n) = complexity of polynomial matrix product in M
r

(K[x]
<n

)

= O(r3 M(n)) by the naive algorithm

= O(MM(r)n log(n) + r2n log n loglog n) by the Cantor-Kaltofen algo

= O(MM(r)n+ r2 M(n)) by the B-Schost algorithm



Fast polynomial multiplication in practice

Practical complexity of Magma’s multiplication in F
p

[x], for p = 29⇥ 257 + 1.



What can be computed in 1 minute with a CA system⇤

polynomial product† in degree 14,000,000 (>1 year with schoolbook)

product of two integers with 500,000,000 binary digits

factorial of N = 20, 000, 000 (output of 140,000,000 digits)

gcd of two polynomials of degree 600,000

resultant of two polynomials of degree 40,000

factorization of a univariate polynomial of degree 4,000

factorization of a bivariate polynomial of total degree 500

resultant of two bivariate polynomials of total degree 100 (output 10,000)

product/sum of two algebraic numbers of degree 450 (output 200,000)

determinant (char. polynomial) of a matrix with 4,500 (2,000) rows

determinant of an integer matrix with 32-bit entries and 700 rows

⇤on a PC, (Intel Xeon X5160, 3GHz processor, with 8GB RAM), running Magma V2.16-7
†in K[x], for K = F67108879



A recent application: Gessel’s conjecture

• Gessel walks: walks in N2 using only steps in S = {%,., ,!}

• g(i, j, n) = number of walks from (0, 0) to (i, j) with n steps in S

Question: Nature of the generating function

G(x, y, t) =
1X

i,j,n=0

g(i, j, n)xiyjtn 2 Q[[x, y, t]]

I Computer algebra conjectures and proves:

Theorem [B. & Kauers 2010] G(x, y, t) is an algebraic function† and

G(1, 1, t) =
1

2t
·
2

F
1

✓�1/12 1/4

2/3

���� �
64t(4t+ 1)2

(4t� 1)4

◆
� 1

2t
.

I No human proof yet.

†Minimal polynomial P (x, y, t, G(x, y, t)) = 0 has > 1011 monomials; ⇡30Gb (!)



Mathematical Objects

• Main objects

– polynomials K[x]

– rational functions K(x)

– power series K[[x]]

– matrices M
r

(K)

– polynomial matrices M
r

(K[x])

– power series matrices M
r

(K[[x]])

where K is a field (generally assumed of characteristic 0, or large enough)

• Secondary/auxiliary objects

– linear recurrences with constant, or polynomial, coe�cients K[n]hS
n

i
– linear di↵erential equations with polynomial coe�cients K[x]h@

x

i



Typical problems

• On all objects

– sum, product

– inversion, division

• On power series

– logarithm, exponential

– composition

– Padé and Hermite-Padé approximation

• On polynomials

– (multipoint) evaluation, interpolation

– (extended) greatest commun divisor, resultant

– shift

– composed sum and product

• On matrices

– system solving

– determinant, characteristic polynomial



Typical problems, and their complexities

• Polynomials, power series and matrices

– product M(n), MM(r)

– division/inversion O(M(n)), O(MM(r))

• On power series

– logarithm, exponential O(M(n))

– composition O(
p
n log nM(n))

– Padé approximation O(M(n) log n)

• On polynomials

– (multipoint) evaluation, interpolation O(M(n) log n)

– extended gcd, resultant O(M(n) log n)

– shift O(M(n))

– composed sum and product O(M(n))

• On matrices

– system solving, determinant O(MM(r))

– characteristic / minimal polynomial O(MM(r))



Typical problems, and the algorithms’ designers

• Polynomials, power series and matrices

– product

– division/inversion Sieveking-Kung 1972, Strassen 1969, 1973

• On power series

– logarithm, exponential Brent 1975

– composition Brent-Kung 1978

– Padé approximation Brent-Gustavson-Yun 1980

• On polynomials

– (multipoint) evaluation, interpolation Borodin-Moenck 1974

– extended gcd, resultant Knuth-Schönhage 1971, Schwartz 1980

– shift Aho-Steiglitz-Ullman 1975

– composed sum and product B-Flajolet-Salvy-Schost 2006

• On matrices

– system solving, determinant Strassen 1969

– characteristic polynomial / minimal polynomial Keller-Gehrig 1985



Typical problems, and their complexities

• On power series matrices

– product MM(r, n)

– inversion O(MM(r, n))

– quasi-exponential (sol. of Y 0 = AY ) O(MM(r, n))

• On power series

– Hermite-Padé approximation of r series O(MM(r, n) log n)

• On polynomial matrices

– product MM(r, n)

– system solving O(MM(r, n) log n)

– determinant O(MM(r, n) log2(n))

– inversion Õ(r3 n), if r = 2k

– characteristic / minimal polynomial Õ(r2.6972 n)



Typical problems, and the algorithms’ designers

• On power series matrices

– product

– inversion Schulz 1933

– quasi-exponential B-Chyzak-Ollivier-Salvy-Schost-Sedoglavic 2007

• On power series

– Hermite-Padé approximation Beckermann-Labahn 1994

• On polynomial matrices

– product

– system solving Storjohann 2002

– determinant Storjohann 2002

– inversion Jeannerod-Villard 2005

– characteristic / minimal polynomial Kaltofen-Villard 2004



Other problems, and their complexities

• On structured (D-finite, algebraic) power series

– sum, product, Hadamard product O(n)

– inversion O(M(n)), O(n)

• On structured matrices

– Toeplitz-like: system solving, determinant O(M(r) log r)

– Vandermonde-like: system solving, determinant O(M(r) log2(r))

– Cauchy-like: system solving, determinant O(M(r) log2(r))

• On sparse matrices

– system solving O(r2)

– determinant O(r2)

– rank O(r2)

– minimal polynomial O(r2)



Other problems, and their complexities

• On structured (D-finite, algebraic) power series

– sum, product, Hadamard product folklore, but not su�ciently known!

– inversion

• On structured matrices

– Toeplitz-like: system solving, determinant Bitmead-Anderson-Morf 1980

– Vandermonde-like: system solving, determinant Pan 1990

– Cauchy-like: system solving, determinant Pan 2000

• On sparse matrices

– system solving Wiedemann 1986

– determinant Wiedemann 1986

– rank Kaltofen-Saunders 1991

– minimal polynomial Wiedemann 1986



Algorithmic paradigms

Given a problem, how to find an e�cient algorithm for its solution?

Five paradigms for algorithmic design

• divide and conquer (DAC)

• decrease and conquer (dac)

• baby steps / giant steps (BS-GS)

• change of representation (CR)

• Tellegen’s transposition principle (Tellegen)



Algorithmic paradigms, and main techniques

Given a problem, how to find an e�cient algorithm for its solution?

Five paradigms for algorithmic design

• divide and conquer

• decrease and conquer

– binary powering

– Newton iteration

– Keller-Gehrig iteration

• baby steps / giant steps

• change of representation

– evaluation-interpolation

– expansion-reconstruction

• Tellegen’s transposition principle



Divide and conquer

Idea: recursively break down a problem into two or more similar subproblems,

solve them, and combine their solutions

Origin: unknown, probably very ancient.

Modern form: merge sort algorithm von Neumann 1945

Our main examples:

• Karatsuba algorithm polynomial multiplication

• Strassen algorithm matrix product

• Strassen algorithm matrix inversion

• Borodin-Moenck algorithm polynomial evaluation-interpolation

• Beckermann-Labahn algorithm Hermite-Padé approximation

• Bitmead-Anderson-Morf algorithm solving Toeplitz-like linear systems

• Lehmer-Knuth-Schönhage-Moenck-Strassen algorithm extended gcd



Decrease and conquer

Idea: reduce each problem to only one similar subproblem of half size

Origin: probably Pingala’s Hindu classic Chandah-sutra, 200 BC

Modern form: binary search algorithm Mauchly 1946

Our main examples:

• binary powering exponentiation in rings

• modular exponentiation exponentiation in quotient rings

– N -th term of a recurrence with constant coe�cients

• Newton iteration power series root-finding

– polynomial division

– composed sum and product

– polynomial shift

• Kehler-Gehrig algorithm Krylov sequence computation

• Storjohann’s high order lifting algorithm polynomial matrices

• B-Schost algorithm interpolation on geometric sequences



Baby steps / giant steps

Idea: reduce a problem of size N to two similar subproblem of size
p
N

Origin: computational number theory, ⇡ 1960

Modern form: discrete logarithm problem Shanks 1969

Our main examples:

• Paterson-Stockmeyer 1973 polynomial evaluation in an algebra

• Strassen 1976 deterministic integer factorization

• Brent-Kung 1978 composition of power series

• Chudnovsky-Chudnovsky 1987 N -th term of a P-recursive sequence

– point counting on hyperelliptic curves

– polynomial solutions of linear di↵erential equations

– p-curvature of linear di↵erential operators

• Shoup 1995 power projection [`(1), `(u), . . . , `(uN�1)]



Change of representation

Idea: represent objects in a di↵erent way, mathematically equivalent, but

better suited for the algorithmic treatment

Origin: unknown, probably Sun Zi ⇡ 300 (Chinese remainder theorem)

Modern form: the Czech number system Svoboda-Valach 1955

Our main examples: One can represent

• a polynomial by

– the list of its coe�cients

– the values it takes at su�ciently many points easy ⇥
– its Newton sums (= powersums of roots) easy ⌦,�

• a rational fraction by

– the coe�cient lists of its denominator and numerator

– its values at su�ciently many points

– its Taylor series expansion



Tellegen’s transposition principle

Idea: to solve a linear problem, find an algorithm for its dual, and transpose it

Origin: electrical network theory: Tellegen, Bordewijk, ⇡ 1950

Modern form: transposition of algorithms, complexity version Fiduccia 1972

Our main examples:

• improve algorithms by constant factors

– Hanrot-Quercia-Zimmermann 2002 middle product for polynomials

– B-Lecerf-Schost 2003 multipoint evaluation and interpolation

• prove computational equivalence between problems

– B-Schost 2004 multipoint evaluation , interpolation

• discover new algorithms

– B-Salvy-Schost 2008 base conversions

• understand (connections between) existing algorithms

– DFT: decimation in time vs. decimation in frequency

– Strassen’s polynomial division vs. Shoup’s extension of recurrences



The Master Theorem

Suppose that the complexity C(n) of an algorithm satisfies

C(n)  s · C
⇣n
2

⌘
+ T(n),

where the function T is such that qT(n)  T(2n). Then, for n!1

C(n) =

8
>><

>>:

O(T(n)), if s < q,

O(T(n) log n), if s = q,

O
⇣
T(n)nlog

s
q

⌘
, if s > q.

Proof:

C(n)  T(n) + s · C
⇣n
2

⌘

 T(n) + s · T
⇣n
2

⌘
+ · · ·+ sk�1 · T

⇣ n

2k�1

⌘
+ sk · C

⇣ n

2k

⌘

 T(n) ·
 
1 +

s

q
+ · · ·+

✓
s

q

◆
log(n)�1

!
+ slogn · C(1)



The Master Theorem, main consequences

Corollary DFT / Karatsuba

C(n)  s · C
⇣n
2

⌘
+O(n) =) C(n) =

8
<

:
O(n log n), if s = 2

O(nlog s), if s � 3

Corollary Newton / evaluation-interpolation

C(n)  s · C
⇣n
2

⌘
+O(M(n)) =) C(n) =

8
<

:
O(M(n)), if s = 1

O(M(n) log n), if s = 2

Corollary Strassen’s matrix product

C(n)  s · C
⇣n
2

⌘
+O(n2), (s � 5) =) C(n) = O(nlog s)

Corollary Strassen’s matrix inversion

C(n)  s · C
⇣n
2

⌘
+O(MM(n)), (s  3) =) C(n) = O(MM(n))



Divide and conquer



Karatsuba’s algorithm

Gauss’s trick (⇡1800) The product of two complex numbers can be computed

using only 3 real multiplications

(ai+ b)(ci+ d) = (ad+ bc)i+(bd� ac) = ((a+ b)(c+ d)� bd� ac)i+(bd� ac)

Kolmogorov (1956) n2 conjecture: n2 ops. are needed to multiply n-digit integers

Karatsuba (1960) disproof of the Kolmogorov conjecture

�! first DAC algorithm in Computer algebra; it combines Gauss’s trick (on

polynomials) with the power of recursion

(axn/2 + b)(cxn/2 + d) = acxn + ((a+ b)(c+ d)� bd� ac)xn/2 + bd

Master Theorem: K(n) = 3 ·K(n/2) +O(n) =) K(n) = O(nlog(3)) = O(n1.59)



The idea behind the trick

Let f = ax+ b, g = cx+ d. Compute h = fg by evaluation-interpolation:

Evaluation:

b = f(0) d = g(0)

a+ b = f(1) c+ d = g(1)

a = f(1) c = g(1)

Multiplication:

h(0) = f(0) · g(0)
h(1) = f(1) · g(1)
h(1) = f(1) · g(1)

Interpolation:

h = h(0) + (h(1)� h(0)� h(1))x+ h(1)x2



Toom’s algorithm

Let

f = f
0

+ f
1

x+ f
2

x2, g = g
0

+ g
1

x+ g
2

x2

and

h = fg = h
0

+ h
1

x+ h
2

x2 + h
3

x3 + h
4

x4.

To get h, do again:

• evaluation,

• multiplication,

• interpolation.

Now, 5 values are needed, because h has 5 unknown coe�cients:

• 0, 1,�1, 2,1 other choices are possible

• would not work with coe�cients in F
2

.



The evaluation / interpolation phase

Evaluation:

f(0) = f
0

g(0) = g
0

f(1) = f
0

+ f
1

+ f
2

g(1) = g
0

+ g
1

+ g
2

f(�1) = f
0

� f
1

+ f
2

g(�1) = g
0

� g
1

+ g
2

f(2) = f
0

+ 2f
1

+ 4f
2

g(2) = g
0

+ 2g
1

+ 4g
2

f(1) = f
2

g(1) = g
2

Multiplication:

h(0) = f(0)g(0), . . . , h(1) = f(1)g(1)

Interpolation: recover h from its values.

=) one can multiply degree-2 polynomials using 5 products instead of 9

Master Theorem: T(n) = 5 ·T(n/3)+O(n) =) T(n) = O(nlog3(5)) = O(n1.47)



Generalization of Toom

Let

f = f
0

+ f
1

x+ · · ·+ f
↵�1

x↵�1, g = g
0

+ g
1

x+ · · ·+ g
↵�1

x↵�1

and

h = fg = h
0

+ h
1

x+ · · ·+ h
2↵�2

x2↵�2.

Analysis: at each step,

• divide n by ↵; number of terms in f, g

• and perform 2↵� 1 recursive calls; number of terms in h

• the extra operations count is `n, for some `.

Master theorem:

T(n) = O(nlog↵(2↵�1)).

Examples:

↵ = 100 =) O(n1.15), ↵ = 1000 =) O(n1.1), ↵ = 10000 =) O(n1.07)



Discrete Fourier Transform
(Gentleman-Sande 1966, decimation-in-frequency)

Problem: Given n = 2k, f 2 K[x]
<n

, and ! 2 K a primitive n-th root of unity,

compute (f(1), f(!), . . . , f(!n�1))

Idea: ! = n-th primitive root of 1 =) !2 = n

2

-th primitive root of 1, and

r
0

(x) =f(x) mod xn/2 � 1 =) f(!2j) = r
0

�
(!2)j

�

r
1

(x) =f(x) mod xn/2 + 1 =) f(!2j+1) = r
1

(!2j+1) = r
1

(!x)��
x=(!

2
)

j

Moreover, O(n) ops. are enough to get r
0

(x), r
1

(x), r
1

(!x) from f(x)

Complexity: F(n) = 2 · F(n/2) +O(n) =) F(n) = O(n log n)



Discrete Fourier Transform
(Cooley-Tukey 1965, decimation-in-time)

Problem: Given n = 2k, f 2 K[x]
<n

, and ! 2 K a primitive n-th root of unity,

compute (f(1), f(!), . . . , f(!n�1))

Idea: Write f = f
even

(x2) + xf
odd

(x2), with deg(f
even

), deg(f
odd

) < n/2.

Then f(!j) = f
even

(!2j) + !jf
odd

(!2j), and (!2j)
0j<n

= n

2

-roots of 1.

Complexity: F(n) = 2 · F(n/2) +O(n) =) F(n) = O(n log n)



Inverse DFT

Problem: Given n = 2k, v
0

, . . . , v
n�1

2 K and ! 2 K a primitive n-th root of

unity, compute f 2 K[x]
<n

such that f(1) = v
0

, . . . , f(!n�1) = v
n�1

• V
!

· V
!

�1 = n · I
n

! performing the inverse DFT in size n amounts to:

– performing a DFT at

1

1
,

1

!
, · · · , 1

!n�1

– dividing the results by n.

• this new DFT is the same as before:

1

!i

= !n�i,

so the outputs are just shu✏ed.

Consequence: the cost of the inverse DFT is O(n log(n))



FFT polynomial multiplication

Suppose the basefield K contains enough roots of unity

To multiply two polynomials f, g in K[x], of degrees < n:

• find N = 2k such that h = fg has degree less than N N  4n

• compute DFT(f,N) and DFT(g,N) O(N log(N))

• multiply the values to get DFT(h,N) O(N)

• recover h by inverse DFT O(N log(N))

Cost: O(N log(N)) = O(n log(n))

General case: Create artificial roots of unity O(n log(n) log log n)



Strassen’s matrix multiplication algorithm

Same idea as for Karatsuba’s algorithm: trick in low size + recursion

Additional di�culty: Formulas should be non-commutative

2

4 a b

c d

3

5⇥

2

4 x y

z t

3

5 ()

2

666664

a b 0 0

c d 0 0

0 0 a b

0 0 c d

3

777775
⇥

2

666664

x

z

y

t

3

777775

Crucial remark: If " 2 {0, 1} and ↵ 2 K, then 1 multiplication su�ces for E · v,
where v is a vector, and E is a matrix of one of the following types:
2

666666664

↵ ↵

"↵ "↵

3

777777775

,

2

666666664

↵ �↵

"↵ �"↵

3

777777775

,

2

666666664

↵ "↵

�↵ �"↵

3

777777775



Strassen’s matrix multiplication algorithm

Problem: Write

M =

2

666664

a b 0 0

c d 0 0

0 0 a b

0 0 c d

3

777775

as a sum of less than 8 elementary matrices.

M �

2

666664

a a

a a

3

777775

| {z }
E1

�

2

666664 d d

d d

3

777775

| {z }
E2

=

2

666664

b� a

c� a d� a

a� d b� d

c� d

3

777775



Strassen’s matrix multiplication algorithm

Problem: Write

M =

2

666664

a b 0 0

c d 0 0

0 0 a b

0 0 c d

3

777775

as a sum of less than 8 elementary matrices.

M � E
1

� E
2

=

2

666664

d� a a� d

d� a a� d

3

777775

| {z }
E3

�

2

666664

b� a

c� a d� a

a� d b� d

c� d

3

777775



Strassen’s matrix multiplication algorithm

Problem: Write

M =

2

666664

a b 0 0

c d 0 0

0 0 a b

0 0 c d

3

777775

as a sum of less than 8 elementary matrices.

M � E
1

� E
2

� E
3

=

2

666664

b� a

a� d b� d

3

777775
+

2

666664

c� a d� a

c� d

3

777775



Strassen’s matrix multiplication algorithm

Problem: Write

M =

2

666664

a b 0 0

c d 0 0

0 0 a b

0 0 c d

3

777775

as a sum of less than 8 elementary matrices.

M�E
1

�E
2

�E
3

=

2

666664

b� a

(b�d)�(b�a) b� d

3

777775

| {z }
E4 + E5

+

2

666664

c� a (c�a)�(c�d)

c� d

3

777775

| {z }
E6 + E7



Strassen’s matrix multiplication algorithm

Problem: Write

M =

2

666664

a b 0 0

c d 0 0

0 0 a b

0 0 c d

3

777775

as a sum of less than 8 elementary matrices.

Conclusion

M = E
1

+ E
2

+ E
3

+ E
4

+ E
5

+ E
6

+ E
7

=) one can multiply 2⇥ 2 matrices using 7 products instead of 8

Master Theorem:

MM(r) = 7 ·MM(r/2) +O(r2) =) MM(r) = O(rlog2(7)) = O(r2.81)



Inversion of dense matrices
[Strassen, 1969]

To invert a dense matrix A =

2

4 A
1,1

A
1,2

A
2,1

A
2,2

3

5 2M
r

(K):

1. Invert A
1,1

(recursively)

2. Compute the Schur complement � := A
2,2

�A
2,1

A�1

1,1

A
1,2

3. Invert � (recursively)

4. Recover the inverse of A as

A�1 =

2

4 I �A�1
1,1A1,2

I

3

5⇥

2

4 A�1
1,1

��1

3

5⇥

2

4 I

�A2,1A
�1
1,1 I

3

5

Master Theorem: C(r) = 2 · C
�
r

2

�
+O(MM(r)) =) C(r) = O(MM(r))

Corollary: inversion A�1 and system solving A�1b in time O(MM(r))



Subproduct tree

Problem: Given a
0

, . . . , a
n�1

2 K, compute A =
Q

n�1

i=0

(x� a
i

)

Master Theorem: C(n) = 2 · C(n/2) +O(M(n)) =) C(n) = O(M(n) log n)



Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given a
0

, . . . , a
n�1

2 K and P 2 K[x]
<n

, compute P (a
0

), . . . , P (a
n�1

)

Naive algorithm: Compute P (a
i

) independently O(n2)

Basic idea: Use recursively Bézout’s identity P (a) = P (x) mod (x� a)

Divide and conquer: Same idea as for DFT = evaluation by repeated division

• P
0

= P mod (x� a
0

) · · · (x� a
n/2�1

)

• P
1

= P mod (x� a
n/2

) · · · (x� a
n�1

)

=)

8
<

:
P
0

(a
0

) = P (a
0

), . . . , P
0

(a
n/2�1

) = P (a
n/2�1

)

P
1

(a
n/2

) = P (a
n/2

), . . . , P
1

(a
n�1

) = P (a
n�1

)



Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given a
0

, . . . , a
n�1

2 K and P 2 K[x]
<n

, compute P (a
0

), . . . , P (a
n�1

)

Master Theorem: C(n) = 2 · C(n/2) +O(M(n)) =) C(n) = O(M(n) log n)



Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given a
0

, . . . , a
n�1

2 K mutually distinct, and v
0

, . . . , v
n�1

2 K,

compute P 2 K[x]
<n

such that P (a
0

) = v
0

, . . . , P (a
n�1

) = v
n�1

Naive algorithm: Linear algebra, Vandermonde system O(MM(n))

Lagrange’s algorithm: Use P (x) =
n�1X

i=0

v
i

Q
j 6=i

(x� a
j

)
Q

j 6=i

(a
i

� a
j

)
O(n2)

Fast algorithm: Modified Lagrange formula

P = A(x) ·
n�1X

i=0

v
i

/A0(a
i

)

x� a
i

• Compute c
i

= v
i

/A0(a
i

) by fast multipoint evaluation O(M(n) log n)

• Compute
n�1X

i=0

c
i

x� a
i

by divide and conquer O(M(n) log n)



Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given a
0

, . . . , a
n�1

2 K mutually distinct, and v
0

, . . . , v
n�1

2 K,

compute P 2 K[x]
<n

such that P (a
0

) = v
0

, . . . , P (a
n�1

) = v
n�1

Master Theorem: C(n) = 2 · C(n/2) +O(M(n)) =) C(n) = O(M(n) log n)


