Fast algorithms for polynomials and matrices
(A brief introduction to Computer Algebra)
— Part 1 —

Alin Bostan

y 4
: informatiques g”mathématiques

SpecFun, INRIA

Seminar on Algebraic Systems Theory
April 4, 2013

General framework

Computer algebra = effective mathematics and algebraic complexity

e [Effective mathematics: what can we compute?

e their complexity: how fast?

Mathematical Objects

e Main objects

— polynomials K|z]
— rational functions K(x)
— power series K||x]]
— matrices M..(K)
— polynomial matrices M. (K|z])
— power series matrices M, (K[[z]])

where K is a field (generally assumed of characteristic 0, or large enough)

e Secondary/auxiliary objects
— linear recurrences with constant, or polynomial, coefficients K([n]{Sy)

— linear differential equations with polynomial coefficients K|z]{0,)

This course

e Aims

— design and analysis of fast algorithms for various algebraic problems
— Fast = using asymptotically few operations (+, x, +) in the basefield K

— Holy Grail: quasi-optimal algorithms = (time) complexity almost linear
in the input/output size

e Specific algorithms depending on the kind of the input

— dense (i.e., arbitrary)

— structured (i.e., special relations between coefficients)

— sparse (i.e., few elements)

e In this lecture, we focus on dense objects

A word about structure and sparsity

® sparse means
— for degree n polynomials: s < n coefficients

— for r x r matrices: s < r? entries

e structured means

— for r X r matrices: special form, e.g., Toeplitz, Hankel, Vandermonde,
Cauchy, Sylvester, etc) — encoded by O(r) elements

— for polynomials/power series: satisfying an equation (algebraic or
differential) — encoded by degree/order of size O(1)

e In this lecture, we focus on dense objects

Computer algebra books

The Design Mathématiques & Applications 42
:? gA"a"tf;s Joundidi Abdeljacued Fundamental Problems
it i i of Algorithmic Algebra
AHO | HOPCROFT | ULLMAN Méthodes matricielles - -

Introduction d la Polynomial

and Matrix
Computations

Volume 1
Fundamental
Algorithms

Dario Bini and Victor Pan

Birkhiiuser Chee Keng Yap

'& Springer T Sk’

THE CLASSIC WORK Modern Computer Algebra sccondcdition
NEWLY UPDATED AND REVISED

ALGORITHMS

Joachim von zur Gathen and Jlirgen Gerhard

FOR COMPUTER
el ALGEBRA

M. AMIN SHOKROLLAHI
Ve 1

The Art of

Computer "R
. cmetnsinte | ALGEBRAIC
Programmlng h] FHSmES COMPLEXITY THEORY
isugitre — —
Seminumerical Algorithms
Third Edition . I
[|]
m . !'..Lh
|

DONALD E. KNUTH @

Complexity yardsticks

Important features:
e addition is easy: naive algorithm already optimal
e multiplication is the most basic (non-trivial) problem

e almost all problems can be reduced to multiplication

Are there quasi-optimal algorithms for:
e integer/polynomial /power series multiplication? Yes!

e matrix multiplication? Big open problem!

Complexity yardsticks

M(n) = complexity of polynomial multiplication in K|x|-,
= O(n®) by the naive algorithm
= O

(n
= O(n'°8= 22~} Dy the Toom-Cook algorithm (o > 3)

1-58) by Karatsuba’s algorithm

= O(nlognloglog n) by the Schonhage-Strassen algorithm

MM(r) = complexity of matrix product in M, (K)
= O(r?) by the naive algorithm
= O(r?®!) by Strassen’s algorithm
= O(r??%) by the Coppersmith-Winograd algorithm

MM(r,n) = complexity of polynomial matrix product in M, (K|z|-},)
= O(r*M(n)) by the naive algorithm
= O(MM(r)nlog(n) + r*nlognloglogn) by the Cantor-Kaltofen algo
= O(MM(r)n +r?M(n)) by the B-Schost algorithm

Fast polynomial multiplication in practice

2
2.5 I | I I
"FastMuluphcaton.out” ——
_ 1 L
o
-~ ‘/
=
o
jar
E 1.5 |
k=
u
E
& 1 -
E
-
=
E
E 05 F -
0 | | | |

SN} [(I 15000 20040

degree of multiplicands

Practical complexity of Magma’s multiplication in F,[x], for p = 29 x 2°7 + 1.

What can be computed in 1 minute with a CA system*

polynomial product’ in degree 14,000,000 (>1 year with schoolbook)
product of two integers with 500,000,000 binary digits

factorial of N = 20,000,000 (output of 140,000,000 digits)

gcd of two polynomials of degree 600,000

resultant of two polynomials of degree 40,000

factorization of a univariate polynomial of degree 4,000

factorization of a bivariate polynomial of total degree 500

resultant of two bivariate polynomials of total degree 100 (output 10,000)
product/sum of two algebraic numbers of degree 450 (output 200,000)
determinant (char. polynomial) of a matrix with 4,500 (2,000) rows

determinant of an integer matrix with 32-bit entries and 700 rows

*on a PC, (Intel Xeon X5160, 3GHz processor, with 8GB RAM), running Magma V2.16-7
Tin K[z], for K = Fg7108879

A recent application: Gessel's conjecture

o Gessel walks: walks in N? using only steps in S = {4, —}

e g(i,j,n) = number of walks from (0,0) to (z,j) with n steps in S

Question: Nature of the generating function

G(z,y,1 Z g(i, j,n) &'y’'t" € Q[[z,y, 1]

» Computer algebra conjectures and proves:

Theorem [B. & Kauers 2010] G(z,y,t) is an algebraic function’ and

1 ~1/12 1/4 64t (4t + 1)? 1
G(lvlat):_tQF1< ‘_ 4(t—14)>_2_t
2/3 ()

» No human proof yet.

TMinimal polynomial P(x,y,t, G(z,y,t)) = 0 has > 10! monomials; ~30Gb (!)

Mathematical Objects

e Main objects

— polynomials K|z]
— rational functions K(x)
— power series K||x]]
— matrices M..(K)
— polynomial matrices M. (K|z])
— power series matrices M, (K[[z]])

where K is a field (generally assumed of characteristic 0, or large enough)

e Secondary/auxiliary objects
— linear recurrences with constant, or polynomial, coefficients K([n]{Sy)

— linear differential equations with polynomial coefficients K|z]{0,)

Typical problems

On all objects

— sum, product

— Inversion, division

On power series

— logarithm, exponential

— composition

— Padé and Hermite-Padé approximation
On polynomials

— (multipoint) evaluation, interpolation
— (extended) greatest commun divisor, resultant
— shift

— composed sum and product

On matrices

— system solving

— determinant, characteristic polynomial

Typical problems, and their complexities

Polynomials, power series and matrices

— product
— division/inversion

On power series

— logarithm, exponential

— composition

— Padé approximation

On polynomials

— (multipoint) evaluation, interpolation

— extended gcd, resultant

— shift

— composed sum and product

On matrices

— system solving, determinant

— characteristic / minimal polynomial

M(n), MM(r)
O(M(n)), O(MM(r))

O(M(n))

O(vnlognM(n))
O(M(n)logn)

Typical problems, and the algorithms’ designers

Polynomials, power series and matrices
— product
— division/inversion Sieveking-Kung 1972, Strassen 1969, 1973

On power series
— logarithm, exponential

— composition

Brent 1975
Brent-Kung 1978

— Padé approximation Brent-Gustavson-Yun 1980

On polynomials

— (multipoint) evaluation, interpolation

Borodin-Moenck 1974

— extended gcd, resultant Knuth-Schonhage 1971, Schwartz 1980
— shift Aho-Steiglitz-Ullman 1975

— composed sum and product

On matrices
— system solving, determinant

— characteristic polynomial / minimal polynomial

B-Flajolet-Salvy-Schost 2006

Strassen 1969
Keller-Gehrig 1985

Typical problems, and their complexities

e On power series matrices

product
inversion

quasi-exponential (sol. of Y/ = AY)

e On power series

— Hermite-Padé approximation of r series

e On polynomial matrices

product
system solving
determinant
inversion

characteristic / minimal polynomial

MM(r,n)
O(MM(r,n))
O(MM(r,n))

O(MM(r,n)logn)

MM(r,n)
O(MM(r,n)logn)
O(MM(r, n)log®(n))
O(r3n), if r = 2%
O(T2'6972 n)

Typical problems, and the algorithms’ designers

e On power series matrices

— product
— inversion Schulz 1933
— quasi-exponential B-Chyzak-Ollivier-Salvy-Schost-Sedoglavic 2007

e On power series

— Hermite-Padé approximation Beckermann-Labahn 1994

e On polynomial matrices

— product

— system solving Storjohann 2002
— determinant Storjohann 2002
— inversion Jeannerod-Villard 2005

— characteristic / minimal polynomial Kaltofen-Villard 2004

Other problems, and their complexities

e On structured (D-finite, algebraic) power series

— sum, product, Hadamard product

— 1nversion

e On structured matrices

— Toeplitz-like: system solving, determinant O(M(r) log)
— Vandermonde-like: system solving, determinant O(M(r) logQ(?“))
— Cauchy-like: system solving, determinant O(M(r) IOgQ(T))

e On sparse matrices

system solving

determinant

rank

minimal polynomial

Other problems, and their complexities

e On structured (D-finite, algebraic) power series
— sum, product, Hadamard product folklore, but not sufficiently known!

— 1nversion

e On structured matrices
— Toeplitz-like: system solving, determinant Bitmead-Anderson-Morf 1980
— Vandermonde-like: system solving, determinant Pan 1990

— Cauchy-like: system solving, determinant Pan 2000

e On sparse matrices

— system solving Wiedemann 1986
— determinant Wiedemann 1986
— rank Kaltofen-Saunders 1991

— minimal polynomial Wiedemann 1986

Algorithmic paradigms

Given a problem, how to find an efficient algorithm for its solution?

Five paradigms for algorithmic design

e divide and conquer (DAC)
e decrease and conquer (dac)
e baby steps / giant steps (BS-GS)
e change of representation (CR)
e Tellegen’s transposition principle (Tellegen)

Algorithmic paradigms, and main techniques

Given a problem, how to find an efficient algorithm for its solution?

Five paradigms for algorithmic design

e divide and conquer
e decrease and conquer
— binary powering
— Newton iteration
— Keller-Gehrig iteration

e baby steps / giant steps

e change of representation
— evaluation-interpolation

— expansion-reconstruction

e Tellegen’s transposition principle

Divide and conquer

|ldea: recursively break down a problem into two or more similar subproblems,

solve them, and combine their solutions

Origin: unknown, probably very ancient.
Modern form: merge sort algorithm von Neumann 1945

Our main examples:

e Karatsuba algorithm polynomial multiplication
e Strassen algorithm matrix product
e Strassen algorithm matrix inversion
e Borodin-Moenck algorithm polynomial evaluation-interpolation
e Beckermann-Labahn algorithm Hermite-Padé approximation
e Bitmead-Anderson-Morf algorithm solving Toeplitz-like linear systems

e Lehmer-Knuth-Schonhage-Moenck-Strassen algorithm extended gcd

Decrease and conquer

|dea: reduce each problem to only one similar subproblem of half size

Origin: probably Pingala’s Hindu classic Chandah-sutra, 200 BC
Modern form: binary search algorithm Mauchly 1946

Our main examples:
e binary powering exponentiation in rings

e modular exponentiation exponentiation in quotient rings

— N-th term of a recurrence with constant coefficients

e Newton iteration power series root-finding
— polynomial division
— composed sum and product

— polynomial shift
e Kehler-Gehrig algorithm Krylov sequence computation
e Storjohann’s high order lifting algorithm polynomial matrices

e B-Schost algorithm interpolation on geometric sequences

Baby steps / giant steps

|ldea: reduce a problem of size N to two similar subproblem of size v N

Origin: computational number theory, ~ 1960
Modern form: discrete logarithm problem Shanks 1969

Our main examples:

e Paterson-Stockmeyer 1973 polynomial evaluation in an algebra
e Strassen 1976 deterministic integer factorization
e Brent-Kung 1978 composition of power series
e Chudnovsky-Chudnovsky 1987 N-th term of a P-recursive sequence

— point counting on hyperelliptic curves
— polynomial solutions of linear differential equations

— p-curvature of linear differential operators

e Shoup 1995 power projection [((1),4(u), ..., L(ulN"1)]

Change of representation

ldea: represent objects in a different way, mathematically equivalent, but

better suited for the algorithmic treatment

Origin: unknown, probably Sun Zi ~ 300 (Chinese remainder theorem)
Modern form: the Czech number system Svoboda-Valach 1955

Our main examples: One can represent

e a polynomial by
— the list of its coefficients
— the values it takes at sufficiently many points easy X

— its Newton sums (= powersums of roots) easy ®, @

e a rational fraction by

— the coefficient lists of its denominator and numerator
— its values at sufficiently many points

— its Taylor series expansion

Tellegen's transposition principle
|dea: to solve a linear problem, find an algorithm for its dual, and transpose it
Origin: electrical network theory: Tellegen, Bordewijk, ~ 1950
Modern form: transposition of algorithms, complexity version Fiduccia 1972

Our main examples:

e improve algorithms by constant factors
— Hanrot-Quercia-Zimmermann 2002 middle product for polynomials

— B-Lecerf-Schost 2003 multipoint evaluation and interpolation

e prove computational equivalence between problems

— B-Schost 2004 multipoint evaluation < interpolation

e discover new algorithms

— B-Salvy-Schost 2008 base conversions

e understand (connections between) existing algorithms
— DFT: decimation in time vs. decimation in frequency

— Strassen’s polynomial division vs. Shoup’s extension of recurrences

The Master Theorem
Suppose that the complexity C(n) of an algorithm satisfies
C(n) <s-C (g) + T(n),

where the function T is such that ¢T(n) < T(2n). Then, for n — o

), if s <gq,
logn), if s =g,
\O(T(n) nlog§> : if s > q.

Proof:

The Master Theorem, main consequences

Corollary

Corollary

n

C(n)SS'C(2

) +0M(n))

Corollary

Corollary

DFT / Karatsuba

C(n) =

O(nlogn), if s =2
O(nl°g%), if s >3

Newton / evaluation-interpolation

o {O(M(n)), fs =1
O(M(n)logn), ifs=2

Strassen’s matrix product

— C(n) = O(n'°%*)

Strassen’s matrix inversion

C(n) < s-C (g) LOMM(@R)), (s<3) = C(n)=O0(MM(n))

Divide and conquer

Karatsuba's algorithm

Gauss's trick (/2 1800) The product of two complex numbers can be computed
using only 3 real multiplications

(ai+b)(ci+d) = (ad+bc)i + (bd — ac) = ((a + b)(c + d) — bd — ac)i + (bd — ac)

Kolmogorov (1956) n? conjecture: n? ops. are needed to multiply n-digit integers

Karatsuba (1960) disproof of the Kolmogorov conjecture
— first DAC algorithm in Computer algebra; it combines Gauss’s trick (on
polynomials) with the power of recursion

(az™? +b)(cx™? + d) = acz™ + ((a + b)(c + d) — bd — ac)z™? + bd

Master Theorem: K(n) =3-K(n/2)+0(n) = K(n) = O(n'e®)) = O(n'>?)

The idea behind the trick

Let f =ax +0b, g =cx+ d. Compute h = fg by evaluation-interpolation:

Evaluation:
b = f(0) d = 9(0)
a+b = f(1) c+d = ¢g(1)
a = f(o0) c = g(o0)
Multiplication:
h(0) = f(0)-g(0)
A(1) = f()

Interpolation:

Toom's algorithm

Let
f=fo+ fiz+ fax®, g=go+ g1z + goa®
and
h= fg=ho+ hiz + hox® + hsx> + hyzt.
To get h, do again:
e evaluation,

e multiplication,

e interpolation.

Now, 5 values are needed, because h has 5 unknown coefficients:

e 0,1,—1,2, 00 other choices are possible

e would not work with coefficients in .

The evaluation / interpolation phase

Evaluation:
f0) = fo g(0) = 9o
f) = fot+fi+fo g(1) = go+g1+g0
f(=1) = fo—fi+fo g(=1) = go—91+ g
f(2) = fot+2fi+4f 9(2) = go+2g1+ 492
f(o0) = fo g(oo) = g9
Multiplication:
h(0) = £(0)g(0), , h(co) = f(o0)g(o0)

Interpolation: recover h from its values.

—> one can multiply degree-2 polynomials using 5 products instead of 9

Master Theorem: T(n) =5-T(n/3)+0(n) = T(n) = O(n'°8:®)) = O(n'*7)

Generalization of Toom
Let

f:f0+f1x+“'+foz—1aja_1a 9290+g1$+°“+ga—1x0‘_1

and
h = fg — ho + hlili + -+ hga_2$2a_2.

Analysis: at each step,

e divide n by a; number of terms in f, g
e and perform 2a — 1 recursive calls; number of terms in h

e the extra operations count is /n, for some /.

Master theorem:
T(n) _ O(nloga(Qa—l)).

Examples:

a=100 = O(n*'®), a=1000 = O(n*!), «a=10000 = O(n*7)

Discrete Fourier Transform
(Gentleman-Sande 1966, decimation-in-frequency)

Problem: Given n = 2*, f € K[z]|,, and w € K a primitive n-th root of unity,

compute (f(1), f(w),.... f(w"™"))

ldea: w = n-th primitive root of 1 = w? = 5-th primitive root of 1, and

ro(x) =f(x) mod /2% 1 — fw?) =rg ((wQ)j)
ri(x) =f(x) mod "2 41 — flw?™) = (WPt = rl(wx)‘

r=(w?)J

Moreover, O(n) ops. are enough to get ro(z),r1(x), r1(wx) from f(x)

Complexity: F(n)=2-F(n/2)+0(n) = F(n)=0(nlogn)

Discrete Fourier Transform
(Cooley-Tukey 1965, decimation-in-time)

Problem: Given n = 2*, f € K[z],, and w € K a primitive n-th root of unity,

compute (f(1), f(w),..., f(w™™1))

ldea: Write f = foven(2?) + T foqa(x?), with deg(foven), deg(foqad) < n/2.

Then f(w?) = foven(w?) + w? foaa(w?), and (w?)o<j<n = F-roots of 1.

Complexity: F(n)=2-F(n/2)+0(n) = F(n)=0O(nlogn)

Inverse DF T

Problem: Given n = 2, vg,...,v,—1 € K and w € K a primitive n-th root of
unity, compute f € K[z|., such that f(1) = vg,..., f(W" 1) =v,_1

o V, - V,-1 =n-1I, — performing the inverse DFT in size n amounts to:

— performing a DFT at

1
oo

— dividing the results by n.

e this new DFT is the same as before:

n—1
— = W y

BL

so the outputs are just shuffled.

Consequence: the cost of the inverse DFT is O(nlog(n))

FFT polynomial multiplication

Suppose the basefield K contains enough roots of unity

To multiply two polynomials f, g in K|z]|, of degrees < n:

e find N = 2% such that h = fg has degree less than N N <4n
e compute DFT(f, N) and DFT(g, N) O(N log(N))
e multiply the values to get DFT(h, V) O(N)
e recover h by inverse DFT O(N log(N))

Cost: O(N log(N)) = O(nlog(n))

General case: Create artificial roots of unity O(nlog(n)loglogn)

Strassen’s matrix multiplication algorithm

Same idea as for Karatsuba’s algorithm: trick in low size + recursion

Additional difficulty: Formulas should be non-commutative

Crucial remark: If € € {0,1} and « € K, then 1 multiplication suffices for F - v,

S

o O O

b
d
0
0

0
0
a

C

0
0
b
d

X
Z

Y
t

where v is a vector, and F is a matrix of one of the following types:

EQ

EQ

EQ

—E&X

EX

—E

Strassen’s matrix multiplication algorithm

Problem: Write

a b 0 O
c d 0 0
M =
0 0 a b
0 0 ¢ d
as a sum of less than 8 elementary matrices.
4 a] i] i b—a
a a c—a d—a
M — _ —
a—d b—d
c—d

59 o o
Q. o

Strassen’s matrix multiplication algorithm

Problem: Write
0

b
c d 0
0

a

0 0 c

as a sum of less than 8 elementary matrices.

d—a a—d
M —FE{ — FEy = _
d—a a—d

QL o0 O O

Strassen’s matrix multiplication algorithm

Problem: Write

M—F, —Ey— E3 =

S QL -

0
0
a

C

QL o4 O O

Strassen’s matrix multiplication algorithm

Problem: Write

M—-FE1—FEy—FE3 =

oS QL

0
0
a

C

QL o0 O O

Strassen’s matrix multiplication algorithm

Problem: Write

a b 0 0

c d 0 O
M =

O O a b

() 0 c d

as a sum of less than 8 elementary matrices.

Conclusion
M =FE +Ey+ E3+ Ey+ Bs + Eg + Er

—> one can multiply 2 X 2 matrices using 7 products instead of 8

Master Theorem:
MM(r) = 7-MM(r/2) + O(r?2) = MM(r) = O(r'°e:(D) = O(r2-81)

Inversion of dense matrices
[Strassen, 1969]

: : Arn Aip
To invert a dense matrix A = e M, (K):

As1 Aapo

1. Invert A;; (recursively)
2. Compute the Schur complement A = AQ’Q — A271A1_7%A172
3. Invert A (recursively)

4. Recover the inverse of A as

I —A71A
Al[1,1411,2 %

1

Master Theorem: C(r) =2-C(%) + O(MM(r)) = C(r) = O(MM(r))

Corollary: inversion A~! and system solving A~1b in time O(MM(r))

Subproduct tree

Problem: Given ag,...,a,—1 € K, compute A = H?:_()l(x — a;)

A=)

[(:1: ap)(x a,l)} (x a_g)(:r:—an_l)J
N

Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given ag,...,a,—1 € Kand P € K|z|-,,, compute P(ag),...,P(a,_1)
Naive algorithm: Compute P(a;) independently O(n?)
Basic idea: Use recursively Bézout’s identity P(a) = P(x) mod (x — a)

Divide and conquer: Same idea as for DFT = evaluation by repeated division
e Py=P mod(z—ag) - (x—ap21)

e P =P mod (z—ay;) (T~ an1)

Po(CLQ) == P(CL()), ceey Po(an/2_1) = P(an/g_l)
Pl(an/z) :P(an/z), e ooy Pl(an_l) :P(an_l)

Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given ag,...,a,—1 € Kand P € K|z|-,,, compute P(ag),...,P(a,_1)

mod(-, Bo) mod(-, B1)
{P mod BU] {P mod Bl}
IHOV \Iil()d moV \?Od
{Pmod(a:—a,o)(x —aq) Pmod (z — an,—3)(x — a,_ 1)}

mod / \Erlod mod / \mod

[P mod (z — (10)} [P mod (x — al)} X {P mod (x — Gn_g)] lP mod (x — a,n_l)}

Master Theorem: C(n) =2-C(n/2) + O(M(n)) = C(n) = O(M(n) logn)

Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given ag,...,a,—1 € K mutually distinct, and vg,...,v,—1 € K,
compute P € K|x|.,, such that P(ag) = vg,..., P(an_1) = Un_1

Naive algorithm: Linear algebra, Vandermonde system O(MM(n))
3757, a’J) 2

Lagrange's algorithm: Use P(x Z UZH 2) O(n*?)
375%

Fast algorithm: Modified Lagrange formula

n—1
vi/A’(a;)
P = A(x) -
). 3 e
e Compute ¢; = v;/A’(a;) by fast multipoint evaluation O(M(n)logn)
n—1 ¢
e Compute Z by divide and conquer O(M(n)logn)
T — a;

Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given ag,...,a,—1 € K mutually distinct, and vg,...,v,—1 € K,
compute P € K[x|.,, such that P(ag) = vg,..., P(an_1) = vn_1

