Fast algorithms for polynomials and matrices (A brief introduction to Computer Algebra)

- Part 1 -

Alin Bostan

SpecFun, INRIA

Seminar on Algebraic Systems Theory April 4, 2013

General framework

Computer algebra $=$ effective mathematics and algebraic complexity

- Effective mathematics: what can we compute?
- their complexity: how fast?

Mathematical Objects

- Main objects
- polynomials

$$
\begin{array}{r}
\mathbb{K}[x] \\
\mathbb{K}(x) \\
\mathbb{K}[[x]] \\
\mathcal{M}_{r}(\mathbb{K}) \\
\mathcal{M}_{r}(\mathbb{K}[x]) \\
\mathcal{M}_{r}(\mathbb{K}[[x]])
\end{array}
$$

- power series
- matrices
- polynomial matrices
- power series matrices
where \mathbb{K} is a field (generally assumed of characteristic 0 , or large enough)
- Secondary/auxiliary objects
- linear recurrences with constant, or polynomial, coefficients
$\mathbb{K}[n]\left\langle S_{n}\right\rangle$
- linear differential equations with polynomial coefficients
$\mathbb{K}[x]\left\langle\partial_{x}\right\rangle$

This course

- Aims
- design and analysis of fast algorithms for various algebraic problems
- Fast $=$ using asymptotically few operations $(+, \times, \div)$ in the basefield \mathbb{K}
- Holy Grail: quasi-optimal algorithms $=$ (time) complexity almost linear in the input/output size
- Specific algorithms depending on the kind of the input
- dense (i.e., arbitrary)
- structured (i.e., special relations between coefficients)
- sparse (i.e., few elements)
- In this lecture, we focus on dense objects

A word about structure and sparsity

- sparse means
- for degree n polynomials: $s \ll n$ coefficients
- for $r \times r$ matrices: $s \ll r^{2}$ entries
- structured means
- for $r \times r$ matrices: special form, e.g., Toeplitz, Hankel, Vandermonde, Cauchy, Sylvester, etc) \longrightarrow encoded by $O(r)$ elements
- for polynomials/power series: satisfying an equation (algebraic or differential) \longrightarrow encoded by degree/order of size $O(1)$
- In this lecture, we focus on dense objects

Computer algebra books

Fundamental Problems of Algorithmic Algebra

[^0]The Art of
Computer Programming
volume 2
Seminumerical Algorithms Third Edition

DONALD E. KNUTH

Complexity yardsticks

Important features:

- addition is easy: naive algorithm already optimal
- multiplication is the most basic (non-trivial) problem
- almost all problems can be reduced to multiplication

Are there quasi-optimal algorithms for:

- integer/polynomial/power series multiplication?
- matrix multiplication?

Big open problem!

Complexity yardsticks

$\mathrm{M}(n) \quad=$ complexity of polynomial multiplication in $\mathbb{K}[x]_{<n}$
$=O\left(n^{2}\right)$ by the naive algorithm
$=O\left(n^{1.58}\right)$ by Karatsuba's algorithm
$=O\left(n^{\log _{\alpha}(2 \alpha-1)}\right)$ by the Toom-Cook algorithm $(\alpha \geq 3)$
$=O(n \log n \log \log n)$ by the Schönhage-Strassen algorithm
$\mathrm{MM}(r)=$ complexity of matrix product in $\mathcal{M}_{r}(\mathbb{K})$
$=O\left(r^{3}\right)$ by the naive algorithm
$=O\left(r^{2.81}\right)$ by Strassen's algorithm
$=O\left(r^{2.38}\right)$ by the Coppersmith-Winograd algorithm
$\mathrm{MM}(r, n)=$ complexity of polynomial matrix product in $\mathcal{M}_{r}\left(\mathbb{K}[x]_{<n}\right)$
$=O\left(r^{3} \mathrm{M}(n)\right)$ by the naive algorithm
$=O\left(\mathrm{MM}(r) n \log (n)+r^{2} n \log n \log \log n\right)$ by the Cantor-Kaltofen algo
$=O\left(\mathrm{MM}(r) n+r^{2} \mathrm{M}(n)\right)$ by the B-Schost algorithm

Fast polynomial multiplication in practice

Practical complexity of Magma's multiplication in $\mathbb{F}_{p}[x]$, for $p=29 \times 2^{57}+1$.

What can be computed in 1 minute with a CA system*

 polynomial product ${ }^{\dagger}$ in degree 14,000,000 (>1 year with schoolbook) product of two integers with 500,000,000 binary digitsfactorial of $N=20,000,000$ (output of 140,000,000 digits) gcd of two polynomials of degree 600,000
resultant of two polynomials of degree 40,000
factorization of a univariate polynomial of degree 4,000
factorization of a bivariate polynomial of total degree 500
resultant of two bivariate polynomials of total degree 100 (output 10,000)
product/sum of two algebraic numbers of degree 450 (output 200,000)
determinant (char. polynomial) of a matrix with 4,500 $(2,000)$ rows determinant of an integer matrix with 32-bit entries and 700 rows

[^1]
A recent application: Gessel's conjecture

- Gessel walks: walks in \mathbb{N}^{2} using only steps in $\mathcal{S}=\{\nearrow, \swarrow, \leftarrow, \rightarrow\}$
- $g(i, j, n)=$ number of walks from $(0,0)$ to (i, j) with n steps in \mathcal{S}

Question: Nature of the generating function
$G(x, y, t)=\sum_{i, j, n=0}^{\infty} g(i, j, n) x^{i} y^{j} t^{n} \in \mathbb{Q}[[x, y, t]]$

- Computer algebra conjectures and proves:

Theorem [B. \& Kauers 2010] $G(x, y, t)$ is an algebraic function ${ }^{\dagger}$ and

$$
G(1,1, t)=\frac{1}{2 t} \cdot{ }_{2} F_{1}\left(\left.\begin{array}{c}
-1 / 12 \\
1 / 4 \\
2 / 3
\end{array} \right\rvert\,-\frac{64 t(4 t+1)^{2}}{(4 t-1)^{4}}\right)-\frac{1}{2 t} .
$$

- No human proof yet.

[^2]
Mathematical Objects

- Main objects
- polynomials

$$
\begin{array}{r}
\mathbb{K}[x] \\
\mathbb{K}(x) \\
\mathbb{K}[[x]] \\
\mathcal{M}_{r}(\mathbb{K}) \\
\mathcal{M}_{r}(\mathbb{K}[x]) \\
\mathcal{M}_{r}(\mathbb{K}[[x]])
\end{array}
$$

- power series
- matrices
- polynomial matrices
- power series matrices
where \mathbb{K} is a field (generally assumed of characteristic 0 , or large enough)
- Secondary/auxiliary objects
- linear recurrences with constant, or polynomial, coefficients
$\mathbb{K}[n]\left\langle S_{n}\right\rangle$
- linear differential equations with polynomial coefficients
$\mathbb{K}[x]\left\langle\partial_{x}\right\rangle$

Typical problems

- On all objects
- sum, product
- inversion, division
- On power series
- logarithm, exponential
- composition
- Padé and Hermite-Padé approximation
- On polynomials
- (multipoint) evaluation, interpolation
- (extended) greatest commun divisor, resultant
- shift
- composed sum and product
- On matrices
- system solving
- determinant, characteristic polynomial

Typical problems, and their complexities

- Polynomials, power series and matrices
- product
- division/inversion
$\mathrm{M}(n), \mathrm{MM}(r)$
$O(\mathrm{M}(n)), O(\mathrm{MM}(r))$
- On power series
- logarithm, exponential
- composition
- Padé approximation
$O(\mathrm{M}(n))$
$O(\sqrt{n \log n} \mathrm{M}(n))$
$O(\mathrm{M}(n) \log n)$
- On polynomials
- (multipoint) evaluation, interpolation
- extended gcd, resultant
- shift
$O(\mathrm{M}(n) \log n)$
$O(\mathrm{M}(n) \log n)$
$O(\mathrm{M}(n))$
- composed sum and product
- On matrices
- system solving, determinant
$O(\mathrm{MM}(r))$
- characteristic / minimal polynomial
$O(\mathrm{MM}(r))$

Typical problems, and the algorithms' designers

- Polynomials, power series and matrices
- product
- division/inversion

Sieveking-Kung 1972, Strassen 1969, 1973

- On power series
- logarithm, exponential

Brent 1975

- composition
- Padé approximation

Brent-Kung 1978
Brent-Gustavson-Yun 1980

- On polynomials
- (multipoint) evaluation, interpolation

Borodin-Moenck 1974

- extended gcd, resultant
- shift
- composed sum and product

Knuth-Schönhage 1971, Schwartz 1980
Aho-Steiglitz-Ullman 1975
B-Flajolet-Salvy-Schost 2006

- On matrices
- system solving, determinant

Strassen 1969

- characteristic polynomial / minimal polynomial

Typical problems, and their complexities

- On power series matrices
- product
- inversion
- quasi-exponential (sol. of $Y^{\prime}=A Y$)

$$
\begin{array}{r}
\mathrm{MM}(r, n) \\
O(\mathrm{MM}(r, n)) \\
O(\mathrm{MM}(r, n))
\end{array}
$$

- On power series
- Hermite-Padé approximation of r series
- On polynomial matrices
- product
- system solving
- determinant
- inversion
- characteristic / minimal polynomial

$$
\begin{array}{r}
\mathrm{MM}(r, n) \\
O(\mathrm{MM}(r, n) \log n) \\
O\left(\mathrm{MM}(r, n) \log ^{2}(n)\right) \\
\tilde{O}\left(r^{3} n\right), \text { if } r=2^{k} \\
\tilde{O}\left(r^{2.6972} n\right)
\end{array}
$$

Typical problems, and the algorithms' designers

- On power series matrices
- product
- inversion

Schulz 1933

- quasi-exponential

B-Chyzak-Ollivier-Salvy-Schost-Sedoglavic 2007

- On power series
- Hermite-Padé approximation

Beckermann-Labahn 1994

- On polynomial matrices
- product
- system solving
- determinant
- inversion
- characteristic / minimal polynomial

Storjohann 2002
Storjohann 2002
Jeannerod-Villard 2005
Kaltofen-Villard 2004

Other problems, and their complexities

- On structured (D-finite, algebraic) power series
- sum, product, Hadamard product

$$
\begin{array}{r}
O(n) \\
O(\mathrm{M}(n)), \\
O(n)
\end{array}
$$

- inversion
- On structured matrices
- Toeplitz-like: system solving, determinant
- Vandermonde-like: system solving, determinant
- Cauchy-like: system solving, determinant
- On sparse matrices
- system solving
- determinant
- rank
- minimal polynomial

Other problems, and their complexities

- On structured (D-finite, algebraic) power series
- sum, product, Hadamard product folklore, but not sufficiently known!
- inversion
- On structured matrices
- Toeplitz-like: system solving, determinant Bitmead-Anderson-Morf 1980
- Vandermonde-like: system solving, determinant Pan 1990
- Cauchy-like: system solving, determinant

Pan 2000

- On sparse matrices
- system solving

Wiedemann 1986

- determinant
- rank

Wiedemann 1986
Kaltofen-Saunders 1991

- minimal polynomial

Wiedemann 1986

Algorithmic paradigms

Given a problem, how to find an efficient algorithm for its solution?

Five paradigms for algorithmic design

- divide and conquer
- change of representation
- Tellegen's transposition principle

Algorithmic paradigms, and main techniques

Given a problem, how to find an efficient algorithm for its solution?
Five paradigms for algorithmic design

- divide and conquer
- decrease and conquer
- binary powering
- Newton iteration
- Keller-Gehrig iteration
- baby steps / giant steps
- change of representation
- evaluation-interpolation
- expansion-reconstruction
- Tellegen's transposition principle

Divide and conquer

Idea: recursively break down a problem into two or more similar subproblems, solve them, and combine their solutions

Origin: unknown, probably very ancient. Modern form: merge sort algorithm
von Neumann 1945

Our main examples:

- Karatsuba algorithm
- Strassen algorithm
- Strassen algorithm
- Borodin-Moenck algorithm
- Beckermann-Labahn algorithm
- Bitmead-Anderson-Morf algorithm
- Lehmer-Knuth-Schönhage-Moenck-Strassen algorithm
polynomial evaluation-interpolation
Hermite-Padé approximation
solving Toeplitz-like linear systems
extended gcd

Decrease and conquer

Idea: reduce each problem to only one similar subproblem of half size
Origin: probably Pingala's Hindu classic Chandah-sutra, 200 BC Modern form: binary search algorithm

Our main examples:

- binary powering
exponentiation in rings
- modular exponentiation exponentiation in quotient rings
- N-th term of a recurrence with constant coefficients
- Newton iteration
power series root-finding
- polynomial division
- composed sum and product
- polynomial shift
- Kehler-Gehrig algorithm

Krylov sequence computation

- Storjohann's high order lifting algorithm
polynomial matrices
- B-Schost algorithm

Baby steps / giant steps

Idea: reduce a problem of size N to two similar subproblem of size \sqrt{N}
Origin: computational number theory, ≈ 1960
Modern form: discrete logarithm problem
Shanks 1969
Our main examples:

- Paterson-Stockmeyer 1973
- Strassen 1976
- Brent-Kung 1978
- Chudnovsky-Chudnovsky 1987
- point counting on hyperelliptic curves
- polynomial solutions of linear differential equations
- p-curvature of linear differential operators
- Shoup 1995

Change of representation

Idea: represent objects in a different way, mathematically equivalent, but better suited for the algorithmic treatment

Origin: unknown, probably $\mathrm{Sun} \mathrm{Zi} \approx 300$ (Chinese remainder theorem) Modern form: the Czech number system

Our main examples: One can represent

- a polynomial by
- the list of its coefficients
- the values it takes at sufficiently many points
- its Newton sums ($=$ powersums of roots)
- a rational fraction by
- the coefficient lists of its denominator and numerator
- its values at sufficiently many points
- its Taylor series expansion

Tellegen's transposition principle

Idea: to solve a linear problem, find an algorithm for its dual, and transpose it
Origin: electrical network theory: Tellegen, Bordewijk, ≈ 1950
Modern form: transposition of algorithms, complexity version
Fiduccia 1972
Our main examples:

- improve algorithms by constant factors
- Hanrot-Quercia-Zimmermann 2002 middle product for polynomials
- B-Lecerf-Schost 2003 multipoint evaluation and interpolation
- prove computational equivalence between problems
- B-Schost 2004 multipoint evaluation \Leftrightarrow interpolation
- discover new algorithms
- B-Salvy-Schost 2008
- understand (connections between) existing algorithms
- DFT: decimation in time vs. decimation in frequency
- Strassen's polynomial division vs. Shoup's extension of recurrences

The Master Theorem

Suppose that the complexity $C(n)$ of an algorithm satisfies

$$
\mathrm{C}(n) \leq s \cdot \mathrm{C}\left(\frac{n}{2}\right)+\mathrm{T}(n)
$$

where the function T is such that $q \mathrm{~T}(n) \leq \mathrm{T}(2 n)$. Then, for $n \rightarrow \infty$

$$
\mathrm{C}(n)= \begin{cases}O(\mathrm{~T}(n)), & \text { if } s<q \\ O(\mathrm{~T}(n) \log n), & \text { if } s=q \\ O\left(\mathrm{~T}(n) n^{\log \frac{s}{q}}\right), & \text { if } s>q\end{cases}
$$

Proof:

$$
\begin{aligned}
\mathrm{C}(n) & \leq \mathrm{T}(n)+s \cdot \mathrm{C}\left(\frac{n}{2}\right) \\
& \leq \mathrm{T}(n)+s \cdot \mathrm{~T}\left(\frac{n}{2}\right)+\cdots+s^{k-1} \cdot \mathrm{~T}\left(\frac{n}{2^{k-1}}\right)+s^{k} \cdot \mathrm{C}\left(\frac{n}{2^{k}}\right) \\
& \leq \mathrm{T}(n) \cdot\left(1+\frac{s}{q}+\cdots+\left(\frac{s}{q}\right)^{\log (n)-1}\right)+s^{\log n} \cdot \mathrm{C}(1)
\end{aligned}
$$

The Master Theorem, main consequences

Corollary
DFT / Karatsuba

$$
\mathrm{C}(n) \leq s \cdot \mathrm{C}\left(\frac{n}{2}\right)+O(n) \quad \Longrightarrow \quad \mathrm{C}(n)= \begin{cases}O(n \log n), & \text { if } s=2 \\ O\left(n^{\log s}\right), & \text { if } s \geq 3\end{cases}
$$

Corollary

$$
\mathrm{C}(n) \leq s \cdot \mathrm{C}\left(\frac{n}{2}\right)+O(\mathrm{M}(n)) \quad \Longrightarrow \quad \mathrm{C}(n)= \begin{cases}O(\mathrm{M}(n)), & \text { if } s=1 \\ O(\mathrm{M}(n) \log n), & \text { if } s=2\end{cases}
$$

Corollary

$$
\mathrm{C}(n) \leq s \cdot \mathrm{C}\left(\frac{n}{2}\right)+O\left(n^{2}\right), \quad(s \geq 5) \quad \Longrightarrow \quad \mathrm{C}(n)=O\left(n^{\log s}\right)
$$

Corollary
Strassen's matrix inversion

$$
\mathrm{C}(n) \leq s \cdot \mathrm{C}\left(\frac{n}{2}\right)+O(\mathrm{MM}(n)), \quad(s \leq 3) \quad \Longrightarrow \quad \mathrm{C}(n)=O(\mathrm{MM}(n))
$$

Divide and conquer

Karatsuba's algorithm

Gauss's trick (≈ 1800) The product of two complex numbers can be computed using only 3 real multiplications
$(a i+b)(c i+d)=(a d+b c) i+(b d-a c)=((a+b)(c+d)-b d-a c) i+(b d-a c)$

Kolmogorov (1956) n^{2} conjecture: n^{2} ops. are needed to multiply n-digit integers

Karatsuba (1960)
disproof of the Kolmogorov conjecture \longrightarrow first DAC algorithm in Computer algebra; it combines Gauss's trick (on polynomials) with the power of recursion

$$
\left(a x^{n / 2}+b\right)\left(c x^{n / 2}+d\right)=a c x^{n}+((a+b)(c+d)-b d-a c) x^{n / 2}+b d
$$

Master Theorem: $\mathrm{K}(n)=3 \cdot \mathrm{~K}(n / 2)+O(n) \Longrightarrow \mathrm{K}(n)=O\left(n^{\log (3)}\right)=O\left(n^{1.59}\right)$

The idea behind the trick

Let $f=a x+b, g=c x+d$. Compute $h=f g$ by evaluation-interpolation:

Evaluation:

$$
\begin{array}{llll}
b & =f(0) & d & =g(0) \\
a+b & =f(1) & c+d & =g(1) \\
a & =f(\infty) & c & =g(\infty)
\end{array}
$$

Multiplication:

$$
\begin{aligned}
h(0) & =f(0) \cdot g(0) \\
h(1) & =f(1) \cdot g(1) \\
h(\infty) & =f(\infty) \cdot g(\infty)
\end{aligned}
$$

Interpolation:

$$
h=h(0)+(h(1)-h(0)-h(\infty)) x+h(\infty) x^{2}
$$

Toom's algorithm

Let

$$
f=f_{0}+f_{1} x+f_{2} x^{2}, \quad g=g_{0}+g_{1} x+g_{2} x^{2}
$$

and

$$
h=f g=h_{0}+h_{1} x+h_{2} x^{2}+h_{3} x^{3}+h_{4} x^{4} .
$$

To get h, do again:

- evaluation,
- multiplication,
- interpolation.

Now, 5 values are needed, because h has 5 unknown coefficients:

- $0,1,-1,2, \infty$
- would not work with coefficients in \mathbb{F}_{2}.

The evaluation / interpolation phase

Evaluation:

$$
\begin{aligned}
& f(0)=f_{0} \\
& g(0)=g_{0} \\
& f(1)=f_{0}+f_{1}+f_{2} \quad g(1)=g_{0}+g_{1}+g_{2} \\
& f(-1)=f_{0}-f_{1}+f_{2} \quad g(-1)=g_{0}-g_{1}+g_{2} \\
& f(2)=f_{0}+2 f_{1}+4 f_{2} \quad g(2) \quad=g_{0}+2 g_{1}+4 g_{2} \\
& f(\infty)=f_{2} \\
& g(\infty)=g_{2}
\end{aligned}
$$

Multiplication:

$$
h(0)=f(0) g(0), \quad \ldots, \quad h(\infty)=f(\infty) g(\infty)
$$

Interpolation: recover h from its values.
\Longrightarrow one can multiply degree- 2 polynomials using 5 products instead of 9
Master Theorem: $\mathrm{T}(n)=5 \cdot \mathrm{~T}(n / 3)+O(n) \Longrightarrow \mathrm{T}(n)=O\left(n^{\log _{3}(5)}\right)=O\left(n^{1.47}\right)$

Generalization of Toom

Let

$$
f=f_{0}+f_{1} x+\cdots+f_{\alpha-1} x^{\alpha-1}, \quad g=g_{0}+g_{1} x+\cdots+g_{\alpha-1} x^{\alpha-1}
$$

and

$$
h=f g=h_{0}+h_{1} x+\cdots+h_{2 \alpha-2} x^{2 \alpha-2}
$$

Analysis: at each step,

- divide n by α;
number of terms in f, g
- and perform $2 \alpha-1$ recursive calls; number of terms in h
- the extra operations count is ℓn, for some ℓ.

Master theorem:

$$
\mathrm{T}(n)=O\left(n^{\log _{\alpha}(2 \alpha-1)}\right)
$$

Examples:

$$
\alpha=100 \Longrightarrow O\left(n^{1.15}\right), \quad \alpha=1000 \Longrightarrow O\left(n^{1.1}\right), \quad \alpha=10000 \Longrightarrow O\left(n^{1.07}\right)
$$

Discrete Fourier Transform (Gentleman-Sande 1966, decimation-in-frequency)

Problem: Given $n=2^{k}, f \in \mathbb{K}[x]_{<n}$, and $\omega \in \mathbb{K}$ a primitive n-th root of unity, compute $\left(f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right)$

Idea: $\omega=n$-th primitive root of $1 \Longrightarrow \omega^{2}=\frac{n}{2}$-th primitive root of 1 , and $r_{0}(x)=f(x) \bmod x^{n / 2}-1 \quad \Longrightarrow \quad f\left(\omega^{2 j}\right)=r_{0}\left(\left(\omega^{2}\right)^{j}\right)$ $r_{1}(x)=f(x) \bmod x^{n / 2}+1 \quad \Longrightarrow \quad f\left(\omega^{2 j+1}\right)=r_{1}\left(\omega^{2 j+1}\right)=\left.r_{1}(\omega x)\right|_{x=\left(\omega^{2}\right)^{j}}$
Moreover, $O(n)$ ops. are enough to get $r_{0}(x), r_{1}(x), r_{1}(\omega x)$ from $f(x)$

Complexity: $\quad \mathrm{F}(n)=2 \cdot \mathrm{~F}(n / 2)+O(n) \Longrightarrow \mathrm{F}(n)=O(n \log n)$

Discrete Fourier Transform (Cooley-Tukey 1965, decimation-in-time)

Problem: Given $n=2^{k}, f \in \mathbb{K}[x]_{<n}$, and $\omega \in \mathbb{K}$ a primitive n-th root of unity, compute $\left(f(1), f(\omega), \ldots, f\left(\omega^{n-1}\right)\right)$

Idea: Write $f=f_{\text {even }}\left(x^{2}\right)+x f_{\text {odd }}\left(x^{2}\right), \quad$ with $\operatorname{deg}\left(f_{\text {even }}\right), \operatorname{deg}\left(f_{\text {odd }}\right)<n / 2$.
Then $f\left(\omega^{j}\right)=f_{\text {even }}\left(\omega^{2 j}\right)+\omega^{j} f_{\text {odd }}\left(\omega^{2 j}\right)$, and $\left(\omega^{2 j}\right)_{0 \leq j<n}=\frac{n}{2}$-roots of 1 .

Complexity:

$$
\mathrm{F}(n)=2 \cdot \mathrm{~F}(n / 2)+O(n) \quad \Longrightarrow \quad \mathrm{F}(n)=O(n \log n)
$$

Inverse DFT

Problem: Given $n=2^{k}, v_{0}, \ldots, v_{n-1} \in \mathbb{K}$ and $\omega \in \mathbb{K}$ a primitive n-th root of unity, compute $f \in \mathbb{K}[x]_{<n}$ such that $f(1)=v_{0}, \ldots, f\left(\omega^{n-1}\right)=v_{n-1}$

- $V_{\omega} \cdot V_{\omega^{-1}}=n \cdot I_{n} \rightarrow$ performing the inverse DFT in size n amounts to:
- performing a DFT at

$$
\frac{1}{1}, \quad \frac{1}{\omega}, \cdots, \frac{1}{\omega^{n-1}}
$$

- dividing the results by n.
- this new DFT is the same as before:

$$
\frac{1}{\omega^{i}}=\omega^{n-i}
$$

so the outputs are just shuffled.

Consequence: the cost of the inverse DFT is $O(n \log (n))$

FFT polynomial multiplication

Suppose the basefield \mathbb{K} contains enough roots of unity

To multiply two polynomials f, g in $\mathbb{K}[x]$, of degrees $<n$:

- find $N=2^{k}$ such that $h=f g$ has degree less than N

$$
N \leq 4 n
$$

- compute $\operatorname{DFT}(f, N)$ and $\operatorname{DFT}(g, N)$
- multiply the values to get $\operatorname{DFT}(h, N)$
- recover h by inverse DFT

Cost: $O(N \log (N))=O(n \log (n))$

General case: Create artificial roots of unity

Strassen's matrix multiplication algorithm

Same idea as for Karatsuba's algorithm: trick in low size + recursion
Additional difficulty: Formulas should be non-commutative

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \times\left[\begin{array}{ll}
x & y \\
z & t
\end{array}\right] \Longleftrightarrow\left[\begin{array}{cccc}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{array}\right] \times\left[\begin{array}{l}
x \\
z \\
y \\
t
\end{array}\right]
$$

Crucial remark: If $\varepsilon \in\{0,1\}$ and $\alpha \in \mathbb{K}$, then 1 multiplication suffices for $E \cdot v$, where v is a vector, and E is a matrix of one of the following types:
$\left[\begin{array}{cc}\alpha & \alpha \\ \varepsilon \alpha & \varepsilon \alpha\end{array}\right],\left[\begin{array}{cc}\alpha & -\alpha \\ \varepsilon \alpha & -\varepsilon \alpha\end{array}\right],\left[\begin{array}{cc}\alpha & \varepsilon \alpha \\ -\alpha & -\varepsilon \alpha \\ & \end{array}\right]$

Strassen's matrix multiplication algorithm

Problem: Write

$$
M=\left[\begin{array}{llll}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{array}\right]
$$

as a sum of less than 8 elementary matrices.

Strassen's matrix multiplication algorithm

Problem: Write

$$
M=\left[\begin{array}{llll}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{array}\right]
$$

as a sum of less than 8 elementary matrices.

$$
M-E_{1}-E_{2}=\underbrace{\left[\begin{array}{lll}
d-a & a-d \\
d-a & a-d \\
& & b-a \\
& & \\
c-a & & d-a \\
& & \\
& & \\
& & c-d
\end{array}\right]}_{E_{3}} \begin{array}{lll}
& & \\
& &
\end{array}]
$$

Strassen's matrix multiplication algorithm

Problem: Write

$$
M=\left[\begin{array}{llll}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{array}\right]
$$

as a sum of less than 8 elementary matrices.

$$
M-E_{1}-E_{2}-E_{3}=\left[\begin{array}{cc}
b-a \\
a-d & b-d \\
& \\
& \\
& \\
& \\
& \\
c-a-d
\end{array}\right]
$$

Strassen's matrix multiplication algorithm

Problem: Write

$$
M=\left[\begin{array}{llll}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{array}\right]
$$

as a sum of less than 8 elementary matrices.

Strassen's matrix multiplication algorithm

Problem: Write

$$
M=\left[\begin{array}{llll}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{array}\right]
$$

as a sum of less than 8 elementary matrices.

Conclusion

$$
M=E_{1}+E_{2}+E_{3}+E_{4}+E_{5}+E_{6}+E_{7}
$$

\Longrightarrow one can multiply 2×2 matrices using 7 products instead of 8

Master Theorem:
$\mathrm{MM}(r)=7 \cdot \mathrm{MM}(r / 2)+O\left(r^{2}\right) \quad \Longrightarrow \quad \mathrm{MM}(r)=O\left(r^{\log _{2}(7)}\right)=O\left(r^{2.81}\right)$

Inversion of dense matrices

[Strassen, 1969]
To invert a dense matrix $A=\left[\begin{array}{cc}A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2}\end{array}\right] \in \mathcal{M}_{r}(\mathbb{K})$:

1. Invert $A_{1,1}$ (recursively)
2. Compute the Schur complement $\Delta:=A_{2,2}-A_{2,1} A_{1,1}^{-1} A_{1,2}$

3 . Invert Δ (recursively)
4. Recover the inverse of A as

$$
A^{-1}=\left[\begin{array}{cc}
I & -A_{1,1}^{-1} A_{1,2} \\
& I
\end{array}\right] \times\left[\begin{array}{ll}
A_{1,1}^{-1} & \\
& \Delta^{-1}
\end{array}\right] \times\left[\begin{array}{cc}
I & \\
-A_{2,1} A_{1,1}^{-1} & I
\end{array}\right]
$$

Master Theorem: $\mathrm{C}(r)=2 \cdot \mathrm{C}\left(\frac{r}{2}\right)+O(\mathrm{MM}(r)) \quad \Longrightarrow \quad \mathrm{C}(r)=O(\mathrm{MM}(r))$
Corollary: inversion A^{-1} and system solving $A^{-1} b$ in time $O(\mathrm{MM}(r))$

Subproduct tree

Problem: Given $a_{0}, \ldots, a_{n-1} \in \mathbb{K}$, compute $A=\prod_{i=0}^{n-1}\left(x-a_{i}\right)$

Master Theorem: $\mathrm{C}(n)=2 \cdot \mathrm{C}(n / 2)+O(\mathrm{M}(n)) \quad \Longrightarrow \quad \mathrm{C}(n)=O(\mathrm{M}(n) \log n)$

Fast multipoint evaluation

[Borodin-Moenck, 1974]

Pb : Given $a_{0}, \ldots, a_{n-1} \in \mathbb{K}$ and $P \in \mathbb{K}[x]_{<n}$, compute $P\left(a_{0}\right), \ldots, P\left(a_{n-1}\right)$

Naive algorithm: Compute $P\left(a_{i}\right)$ independently

Basic idea: Use recursively Bézout's identity $P(a)=P(x) \bmod (x-a)$

Divide and conquer: Same idea as for DFT $=$ evaluation by repeated division

- $\quad P_{0}=P \bmod \left(x-a_{0}\right) \cdots\left(x-a_{n / 2-1}\right)$
- $\quad P_{1}=P \bmod \left(x-a_{n / 2}\right) \cdots\left(x-a_{n-1}\right)$

$$
\Longrightarrow\left\{\begin{array}{l}
P_{0}\left(a_{0}\right)=P\left(a_{0}\right), \quad \ldots, \quad P_{0}\left(a_{n / 2-1}\right)=P\left(a_{n / 2-1}\right) \\
P_{1}\left(a_{n / 2}\right)=P\left(a_{n / 2}\right), \quad \ldots, \quad P_{1}\left(a_{n-1}\right)=P\left(a_{n-1}\right)
\end{array}\right.
$$

Fast multipoint evaluation

[Borodin-Moenck, 1974]

Pb : Given $a_{0}, \ldots, a_{n-1} \in \mathbb{K}$ and $P \in \mathbb{K}[x]_{<n}$, compute $P\left(a_{0}\right), \ldots, P\left(a_{n-1}\right)$

Master Theorem: $\mathrm{C}(n)=2 \cdot \mathrm{C}(n / 2)+O(\mathrm{M}(n)) \quad \mathrm{C}(n)=O(\mathrm{M}(n) \log n)$

Fast interpolation

[Borodin-Moenck, 1974]
Problem: Given $a_{0}, \ldots, a_{n-1} \in \mathbb{K}$ mutually distinct, and $v_{0}, \ldots, v_{n-1} \in \mathbb{K}$, compute $P \in \mathbb{K}[x]_{<n}$ such that $P\left(a_{0}\right)=v_{0}, \ldots, P\left(a_{n-1}\right)=v_{n-1}$

Naive algorithm: Linear algebra, Vandermonde system
Lagrange's algorithm: Use $P(x)=\sum_{i=0}^{n-1} v_{i} \frac{\prod_{j \neq i}\left(x-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)}$
Fast algorithm: Modified Lagrange formula

$$
P=A(x) \cdot \sum_{i=0}^{n-1} \frac{v_{i} / A^{\prime}\left(a_{i}\right)}{x-a_{i}}
$$

- Compute $c_{i}=v_{i} / A^{\prime}\left(a_{i}\right)$ by fast multipoint evaluation
- Compute $\sum_{i=0}^{n-1} \frac{c_{i}}{x-a_{i}}$ by divide and conquer

Fast interpolation

[Borodin-Moenck, 1974]
Problem: Given $a_{0}, \ldots, a_{n-1} \in \mathbb{K}$ mutually distinct, and $v_{0}, \ldots, v_{n-1} \in \mathbb{K}$, compute $P \in \mathbb{K}[x]_{<n}$ such that $P\left(a_{0}\right)=v_{0}, \ldots, P\left(a_{n-1}\right)=v_{n-1}$

Master Theorem: $\mathrm{C}(n)=2 \cdot \mathrm{C}(n / 2)+O(\mathrm{M}(n)) \quad \Longrightarrow \quad \mathrm{C}(n)=O(\mathrm{M}(n) \log n)$

[^0]: THE CLASSIC WORK
 Updated and revised

[^1]: * on a PC, (Intel Xeon X5160, 3GHz processor, with 8GB RAM), running Magma V2.16-7 \dagger in $\mathbb{K}[x]$, for $\mathbb{K}=\mathbb{F}_{67108879}$

[^2]: ${ }^{\dagger}$ Minimal polynomial $P(x, y, t, G(x, y, t))=0$ has $>10^{11}$ monomials; $\approx 30 \mathrm{~Gb}(!)$

