Fast algorithms for polynomials and matrices (A brief introduction to Computer Algebra)

- Part 2 -

Alin Bostan

SpecFun, INRIA

Seminar on Algebraic Systems Theory April 25, 2013

Subproduct tree

Problem: Given $a_{0}, \ldots, a_{n-1} \in \mathbb{K}$, compute $A=\prod_{i=0}^{n-1}\left(x-a_{i}\right)$

Master Theorem: $\mathrm{C}(n)=2 \cdot \mathrm{C}(n / 2)+O(\mathrm{M}(n)) \quad \Longrightarrow \quad \mathrm{C}(n)=O(\mathrm{M}(n) \log n)$

Fast multipoint evaluation

[Borodin-Moenck, 1974]

Pb : Given $a_{0}, \ldots, a_{n-1} \in \mathbb{K}$ and $P \in \mathbb{K}[x]_{<n}$, compute $P\left(a_{0}\right), \ldots, P\left(a_{n-1}\right)$

Naive algorithm: Compute $P\left(a_{i}\right)$ independently

Basic idea: Use recursively Bézout's identity $P(a)=P(x) \bmod (x-a)$

Divide and conquer: Same idea as for DFT $=$ evaluation by repeated division

- $\quad P_{0}=P \bmod \left(x-a_{0}\right) \cdots\left(x-a_{n / 2-1}\right)$
- $\quad P_{1}=P \bmod \left(x-a_{n / 2}\right) \cdots\left(x-a_{n-1}\right)$

$$
\Longrightarrow\left\{\begin{array}{l}
P_{0}\left(a_{0}\right)=P\left(a_{0}\right), \quad \ldots, \quad P_{0}\left(a_{n / 2-1}\right)=P\left(a_{n / 2-1}\right) \\
P_{1}\left(a_{n / 2}\right)=P\left(a_{n / 2}\right), \quad \ldots, \quad P_{1}\left(a_{n-1}\right)=P\left(a_{n-1}\right)
\end{array}\right.
$$

Fast multipoint evaluation

[Borodin-Moenck, 1974]

Pb : Given $a_{0}, \ldots, a_{n-1} \in \mathbb{K}$ and $P \in \mathbb{K}[x]_{<n}$, compute $P\left(a_{0}\right), \ldots, P\left(a_{n-1}\right)$

Master Theorem: $\mathrm{C}(n)=2 \cdot \mathrm{C}(n / 2)+O(\mathrm{M}(n)) \quad \mathrm{C}(n)=O(\mathrm{M}(n) \log n)$

Fast interpolation

[Borodin-Moenck, 1974]
Problem: Given $a_{0}, \ldots, a_{n-1} \in \mathbb{K}$ mutually distinct, and $v_{0}, \ldots, v_{n-1} \in \mathbb{K}$, compute $P \in \mathbb{K}[x]_{<n}$ such that $P\left(a_{0}\right)=v_{0}, \ldots, P\left(a_{n-1}\right)=v_{n-1}$

Naive algorithm: Linear algebra, Vandermonde system
Lagrange's algorithm: Use $P(x)=\sum_{i=0}^{n-1} v_{i} \frac{\prod_{j \neq i}\left(x-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)}$
Fast algorithm: Modified Lagrange formula

$$
P=A(x) \cdot \sum_{i=0}^{n-1} \frac{v_{i} / A^{\prime}\left(a_{i}\right)}{x-a_{i}}
$$

- Compute $c_{i}=v_{i} / A^{\prime}\left(a_{i}\right)$ by fast multipoint evaluation
- Compute $\sum_{i=0}^{n-1} \frac{c_{i}}{x-a_{i}}$ by divide and conquer

Fast interpolation

[Borodin-Moenck, 1974]
Problem: Given $a_{0}, \ldots, a_{n-1} \in \mathbb{K}$ mutually distinct, and $v_{0}, \ldots, v_{n-1} \in \mathbb{K}$, compute $P \in \mathbb{K}[x]_{<n}$ such that $P\left(a_{0}\right)=v_{0}, \ldots, P\left(a_{n-1}\right)=v_{n-1}$

Master Theorem: $\mathrm{C}(n)=2 \cdot \mathrm{C}(n / 2)+O(\mathrm{M}(n)) \quad \Longrightarrow \quad \mathrm{C}(n)=O(\mathrm{M}(n) \log n)$

Decrease and conquer I

Evaluation-interpolation, geometric case

Subproduct tree, geometric case

[B-Schost, 2005]
Problem: Given $q \in \mathbb{K}$, compute $A=\prod_{i=0}^{n-1}\left(x-q^{i}\right)$
Idea: Compute $B_{1}=\prod_{i=n / 2}^{n-1}\left(x-q^{i}\right)$ from $B_{0}=\prod_{i=0}^{n / 2-1}\left(x-q^{i}\right)$, by a homothety

$$
B_{1}(x)=B_{0}\left(\frac{x}{q^{n / 2}}\right) \cdot q^{(n / 2)^{2}}
$$

Decrease and conquer:

- Compute $B_{0}(x)$ by a recursive call
- Deduce $B_{1}(x)$ from $B_{0}(x)$
- Return $A(x)=B_{0}(x) B_{1}(x)$

Master Theorem: $\mathrm{C}(n)=\mathrm{C}(n / 2)+O(\mathrm{M}(n)) \quad \Longrightarrow \quad \mathrm{C}(n)=O(\mathrm{M}(n))$

Fast multipoint evaluation, geometric case

 [Bluestein, 1970]Problem: Given $q \in \mathbb{K}$ and $P \in \mathbb{K}[x]_{<n}$, compute $P(1), P(q), \ldots, P\left(q^{n-1}\right)$
The needed values are: $\quad P\left(q^{i}\right)=\sum_{j=0}^{n-1} c_{j} q^{i j}, \quad 0 \leq i<n$
Bluestein's trick: $\quad i j=\frac{(i+j)^{2}-i^{2}-j^{2}}{2} \Longrightarrow q^{i j}=q^{(i+j)^{2} / 2} \cdot q^{-i^{2} / 2} \cdot q^{-j^{2} / 2}$

$$
\Longrightarrow \quad P\left(q^{i}\right)=q^{-i^{2} / 2} \cdot \underbrace{\sum_{j=0}^{n-1} c_{j} q^{-j^{2} / 2} \cdot q^{(i+j)^{2} / 2}}_{\text {convolution: }}
$$

$$
\left[x^{n-1+i}\right]\left(\sum_{k=0}^{n-1} c_{k} q^{-k^{2} / 2} x^{n-k-1}\right)\left(\sum_{\ell=0}^{2 n-2} q^{\ell^{2} / 2} x^{\ell}\right)
$$

Conclusion: Fast evaluation on a geometric sequence in $O(\mathrm{M}(n))$

Fast interpolation, geometric case

[B-Schost, 2005]
Problem: Given $q \in \mathbb{K}$, and $v_{0}, \ldots, v_{n-1} \in \mathbb{K}$, compute $P \in \mathbb{K}[x]_{<n}$ such that $P(1)=v_{0}, \ldots, P\left(q^{n-1}\right)=v_{n-1}$

Fast algorithm: Modified Lagrange formula

$$
P=A(x) \cdot \sum_{i=0}^{n-1} \frac{v_{i} / A^{\prime}\left(q^{i}\right)}{x-q^{i}}, \quad A=\prod_{i}\left(x-q^{i}\right)
$$

- Compute $\prod_{i=0}^{n-1}\left(x-q^{i}\right) \quad$ by decrease and conquer
- Compute $c_{i}=v_{i} / A^{\prime}\left(q^{i}\right)$ by Bluestein's algorithm
- Compute $\sum_{i=0}^{n-1} \frac{c_{i}}{x-q^{i}} \quad$ by decrease and conquer

Fast interpolation, geometric case

[B-Schost, 2005]

Problem: Given $q \in \mathbb{K}$, and $v_{0}, \ldots, v_{n-1} \in \mathbb{K}$, compute $P \in \mathbb{K}[x]_{<n}$ such that $P(1)=v_{0}, \ldots, P\left(q^{n-1}\right)=v_{n-1}$

Subproblem: Given $c_{0}, \ldots, c_{n-1} \in \mathbb{K}$, compute $\quad R(x)=\sum_{i=0}^{n-1} \frac{c_{i}}{x-q^{i}}$
Idea: change of representation - enough to compute $R \bmod x^{n}$
Second idea: $R \bmod x^{n}=$ multipoint evaluation at $\left\{1, q^{-1}, \ldots, q^{-(n-1)}\right\}$:

$$
\sum_{i=0}^{n-1} \frac{c_{i}}{x-q^{i}} \bmod x^{n}=-\sum_{i=0}^{n-1}\left(\sum_{j=0}^{n-1} c_{i} q^{-i(j+1)} x^{j}\right)=-\sum_{j=0}^{n-1} C\left(q^{-j-1}\right) x^{j}
$$

Conclusion: Algorithm for interpolation at a geometric sequence in $O(\mathrm{M}(n))$ (generalization of the IDFT)

Product of polynomial matrices

[B-Schost, 2005]
Problem: Given $A, B \in \mathcal{M}_{r}\left(\mathbb{K}[x]_{<n}\right)$, compute $C=A B$

Idea: change of representation - evaluation-interpolation at a geometric sequence $\mathcal{G}=\left\{1, q, q^{2}, \ldots, q^{2 n-2}\right\}$

- Evaluate A and B at \mathcal{G}
- Multiply values $C(v)=A(v) B(v)$ for $v \in \mathcal{G}$
$O(n \mathrm{MM}(r))$
- Interpolate C from values
$O\left(r^{2} \mathrm{M}(n)\right)$

Total complexity

$$
O\left(r^{2} \mathrm{M}(n)+n \mathrm{MM}(r)\right)
$$

Decrease and conquer II

Newton iteration

Newton's tangent method: real case

 [Newton, 1671]
$x_{1}=1.5000000000000000000000000000000$
$x_{2}=1.4166666666666666666666666666667$
$x_{3}=1.4142156862745098039215686274510$
$x_{4}=1.4142135623746899106262955788901$
$x_{5}=1.4142135623730950488016896235025$

Newton's tangent method: power series case

$$
\begin{gathered}
x_{\kappa+1}=\mathcal{N}\left(x_{\kappa}\right)=x_{\kappa}-\left(x_{\kappa}^{2}-(1-t)\right) /\left(2 x_{\kappa}\right), \quad x_{0}=1 \\
x_{1}=1-\frac{1}{2} t \\
x_{2}=1-\frac{1}{2} t-\frac{1}{8} t^{2}-\frac{1}{16} t^{3}-\frac{1}{32} t^{4}-\frac{1}{64} t^{5}-\frac{1}{128} t^{6}-\frac{1}{256} t^{7}-\frac{1}{512} t^{8}-\frac{1}{1024} t^{9}+\cdots \\
x_{3}=1-\frac{1}{2} t-\frac{1}{8} t^{2}-\frac{1}{16} t^{3}-\frac{5}{128} t^{4}-\frac{7}{256} t^{5}-\frac{21}{1024} t^{6}-\frac{33}{2048} t^{7}-\frac{107}{8192} t^{8}-\frac{177}{16384} t^{2}
\end{gathered}
$$

Newton's tangent method: power series case

In order to solve $\varphi(x, g)=0$ in $\mathbb{K}[[x]]$ (where $\varphi \in \mathbb{K}[[x, y]], \varphi(0,0)=0$ and $\left.\varphi_{y}(0,0) \neq 0\right)$, iterate

$$
\begin{gathered}
g_{\kappa+1}=g_{\kappa}-\frac{\varphi\left(g_{\kappa}\right)}{\varphi_{y}\left(g_{\kappa}\right)} \bmod x^{2^{\kappa+1}} \\
g-g_{\kappa+1}=g-g_{\kappa}+\frac{\varphi(g)+\left(g_{\kappa}-g\right) \varphi_{y}(g)+O\left(\left(g-g_{\kappa}\right)^{2}\right)}{\varphi_{y}(g)+O\left(g-g_{\kappa}\right)}=O\left(\left(g-g_{\kappa}\right)^{2}\right) .
\end{gathered}
$$

- The number of correct coefficients doubles after each iteration
- Total cost $=2 \times($ the cost of the last iteration $)$

Theorem [Cook 1966, Sieveking 1972 \& Kung 1974, Brent 1975]
Division, logarithm and exponential of power series in $\mathbb{K}[[x]]$ can be computed at precision N using $O(\mathrm{M}(N))$ operations in \mathbb{K}

Division, logarithm and exponential of power series

 [Sieveking1972, Kung1974, Brent1975]To compute the reciprocal of $f \in \mathbb{K}[[x]]$ with $f(0) \neq 0$, choose $\varphi(g)=1 / g-f$:

$$
g_{0}=1 / f_{0} \quad \text { and } \quad g_{\kappa+1}=g_{\kappa}+g_{\kappa}\left(1-f g_{\kappa}\right) \quad \bmod x^{2^{\kappa+1}} \quad \text { for } \kappa \geq 0
$$

Complexity: $\mathrm{C}(N)=\mathrm{C}(N / 2)+O(\mathrm{M}(N)) \quad \Longrightarrow \quad \mathrm{C}(N)=O(\mathrm{M}(N))$
Corollary: division of power series at precision N in $O(\mathrm{M}(N))$

Division, logarithm and exponential of power series

 [Sieveking1972, Kung1974, Brent1975]To compute the reciprocal of $f \in \mathbb{K}[[x]]$, choose $\varphi(g)=1 / g-f$:

$$
g_{0}=1 / f_{0} \quad \text { and } \quad g_{\kappa+1}=g_{\kappa}+g_{\kappa}\left(1-f g_{\kappa}\right) \quad \bmod x^{2^{\kappa+1}} \quad \text { for } \kappa \geq 0
$$

Complexity: $\mathrm{C}(N)=\mathrm{C}(N / 2)+O(\mathrm{M}(N)) \quad \Longrightarrow \quad \mathrm{C}(N)=O(\mathrm{M}(N))$
Corollary: division of power series at precision N in $O(\mathrm{M}(N))$
Corollary: Logarithm $\log (f)=-\sum_{i \geq 1} \frac{(1-f)^{i}}{i}$ of $f \in 1+x \mathbb{K}[[x]] \quad$ in $O(\mathrm{M}(N))$:

- compute the Taylor expansion of $h=f^{\prime} / f$ modulo x^{N-1}
- take the antiderivative of h

Division, logarithm and exponential of power series

[Sieveking1972, Kung1974, Brent1975]
To compute the reciprocal of $f \in \mathbb{K}[[x]]$, choose $\varphi(g)=1 / g-f$:

$$
g_{0}=1 / f_{0} \quad \text { and } \quad g_{\kappa+1}=g_{\kappa}+g_{\kappa}\left(1-f g_{\kappa}\right) \quad \bmod x^{2^{\kappa+1}} \quad \text { for } \kappa \geq 0
$$

Complexity: $\mathrm{C}(N)=\mathrm{C}(N / 2)+O(\mathrm{M}(N)) \quad \Longrightarrow \quad \mathrm{C}(N)=O(\mathrm{M}(N))$
Corollary: division of power series at precision N in $O(\mathrm{M}(N))$
Corollary: Logarithm $\log (f)=-\sum_{i \geq 1} \frac{(1-f)^{i}}{i}$ of $f \in 1+x \mathbb{K}[[x]] \quad$ in $O(\mathrm{M}(N))$:

- compute the Taylor expansion of $h=f^{\prime} / f$ modulo x^{N-1}
- take the antiderivative of h

Corollary: Exponential $\exp (f)=\sum_{i \geq 0} \frac{f^{i}}{i!}$ of $f \in x \mathbb{K}[[x]]$. Use $\phi(g)=\log (g)-f$:

$$
g_{0}=1 \quad \text { and } \quad g_{\kappa+1}=g_{\kappa}-g_{\kappa}\left(\log \left(g_{\kappa}\right)-f\right) \quad \bmod x^{2^{\kappa+1}} \quad \text { for } \kappa \geq 0
$$

Complexity: $\mathrm{C}(N)=\mathrm{C}(N / 2)+O(\mathrm{M}(N)) \quad \Longrightarrow \quad \mathrm{C}(N)=O(\mathrm{M}(N))$

Application: Euclidean division for polynomials

 [Strassen, 1973]Pb: Given $F, G \in \mathbb{K}[x]_{\leq N}$, compute (Q, R) in Euclidean division $F=Q G+R$
Naive algorithm:
Idea: look at $F=Q G+R$ from infinity: $Q \sim_{+\infty} F / G$
Let $N=\operatorname{deg}(F)$ and $n=\operatorname{deg}(G)$. Then $\operatorname{deg}(Q)=N-n, \operatorname{deg}(R)<n$ and

$$
\underbrace{F(1 / x) x^{N}}_{\operatorname{rev}(F)}=\underbrace{G(1 / x) x^{n}}_{\operatorname{rev}(G)} \cdot \underbrace{Q(1 / x) x^{N-n}}_{\operatorname{rev}(Q)}+\underbrace{R(1 / x) x^{\operatorname{deg}(R)}}_{\operatorname{rev}(R)} \cdot x^{N-\operatorname{deg}(R)}
$$

Algorithm:

- Compute $\operatorname{rev}(Q)=\operatorname{rev}(F) / \operatorname{rev}(G) \bmod x^{N-n+1}$
- Recover Q
- Deduce $R=F-Q G$

Application: extension of recurrences

 [Shoup, 1991]Problem: Given $N \in \mathbb{N}$ and the first n terms u_{0}, \ldots, u_{n-1} of a recurrent sequence with constant coefficients of order n, compute u_{n}, \ldots, u_{N}

Naive algorithm: unroll the recurrence

Idea: $\sum_{i \geq 0} u_{i} x^{i}$ is rational $A(x) / B(x)$, with B given by the input recurrence, and $\operatorname{deg}(A)<\operatorname{deg}(B)$
Example (Fibonacci): $F_{i+2}=F_{i+1}+F_{i} \Longleftrightarrow \sum_{i} F_{i} x^{i}=\frac{F_{0}+\left(F_{1}-F_{0}\right) x}{1-x-x^{2}}$

Algorithm:

- Compute A from B and u_{0}, \ldots, u_{n-1}
- Expand A / B modulo x^{N+1}

Application: conversion coefficients \leftrightarrow power sums

[Schönhage, 1982]

Any polynomial $F=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ in $\mathbb{K}[x]$ can be represented by its first n power sums $S_{i}=\sum_{F(\alpha)=0} \alpha^{i}$

Conversions coefficients \leftrightarrow power sums can be performed

- either in $O\left(n^{2}\right)$ using Newton identities (naive way):

$$
i a_{i}+S_{1} a_{i-1}+\cdots+S_{i}=0, \quad 1 \leq i \leq n
$$

- or in $O(\mathrm{M}(n))$ using generating series

$$
\frac{\operatorname{rev}(F)^{\prime}}{\operatorname{rev}(F)}=-\sum_{i \geq 0} S_{i+1} x^{i} \Longleftrightarrow \operatorname{rev}(F)=\exp \left(-\sum_{i \geq 1} \frac{S_{i}}{i} x^{i}\right)
$$

Application: special bivariate resultants

[B-Flajolet-Salvy-Schost, 2006]

Composed products and sums: manipulation of algebraic numbers

$$
F \otimes G=\prod_{F(\alpha)=0, G(\beta)=0}(x-\alpha \beta), \quad F \oplus G=\prod_{F(\alpha)=0, G(\beta)=0}(x-(\alpha+\beta))
$$

Output size:

$$
N=\operatorname{deg}(F) \operatorname{deg}(G)
$$

Linear algebra: $\chi_{x y}, \chi_{x+y}$ in $\mathbb{K}[x, y] /(F(x), G(y))$
Resultants: $\operatorname{Res}_{y}\left(F(y), y^{\operatorname{deg}(G)} G(x / y)\right), \operatorname{Res}_{y}(F(y), G(x-y))$
Better: \otimes and \oplus are easy in Newton representation

$$
\begin{aligned}
\sum \alpha^{s} \sum \beta^{s} & =\sum(\alpha \beta)^{s} \quad \text { and } \\
\sum \frac{\sum(\alpha+\beta)^{s}}{s!} x^{s} & =\left(\sum \frac{\sum \alpha^{s}}{s!} x^{s}\right)\left(\sum \frac{\sum \beta^{s}}{s!} x^{s}\right)
\end{aligned}
$$

Corollary: Fast polynomial shift $P(x+a)=P(x) \oplus(x+a) \quad O(\mathrm{M}(\operatorname{deg}(P)))$

Newton iteration on power series: operators and systems

In order to solve an equation $\phi(Y)=0$, with $\phi:(\mathbb{K}[[x]])^{r} \rightarrow(\mathbb{K}[[x]])^{r}$,

1. Linearize: $\phi\left(Y_{\kappa}-U\right)=\phi\left(Y_{\kappa}\right)-\left.D \phi\right|_{Y_{\kappa}} \cdot U+O\left(U^{2}\right)$, where $\left.D \phi\right|_{Y}$ is the differential of ϕ at Y.
2. Iterate: $Y_{\kappa+1}=Y_{\kappa}-U_{\kappa+1}$, where $U_{\kappa+1}$ is found by
3. Solve linear equation: $\left.D \phi\right|_{Y_{k}} \cdot U=\phi\left(Y_{\kappa}\right)$ with $\operatorname{val} U>0$.

Then, the sequence Y_{κ} converges quadratically to the solution Y.

Application: inversion of power series matrices

[Schulz, 1933]

To compute the inverse Z of a matrix of power series $Y \in \mathcal{M}_{r}(\mathbb{K}[[x]])$:

- Choose the $\operatorname{map} \phi: Z \mapsto I-Y Z$ with differential $\left.D \phi\right|_{Y}: U \mapsto-Y U$
- Equation for $U:-Y U=I-Y Z_{\kappa} \bmod x^{2^{\kappa+1}}$
- Solution: $U=-Y^{-1}\left(I-Y Z_{\kappa}\right)=-Z_{\kappa}\left(I-Y Z_{\kappa}\right) \bmod x^{2^{\kappa+1}}$

This yields the following Newton-type iteration for Y^{-1}

$$
Z_{\kappa+1}=Z_{\kappa}+Z_{\kappa}\left(I_{r}-Y Z_{\kappa}\right) \quad \bmod x^{2^{\kappa+1}}
$$

Complexity:

$$
\mathrm{C}_{\mathrm{inv}}(N)=\mathrm{C}_{\mathrm{inv}}(N / 2)+O(\mathrm{MM}(r, N)) \quad \Longrightarrow \quad \mathrm{C}_{\mathrm{inv}}(N)=O(\mathrm{MM}(r, N))
$$

Application: non-linear systems

In order to solve a system $Y=H(Y)=\phi(Y)+Y$, with $H:(\mathbb{K}[[x]])^{r} \rightarrow(\mathbb{K}[[x]])^{r}$, such that $I_{r}-\partial H / \partial Y$ is invertible at 0 .

1. Linearize: $\phi\left(Y_{\kappa}-U\right)-\phi\left(Y_{\kappa}\right)=U-\partial H / \partial Y\left(Y_{\kappa}\right) \cdot U+O\left(U^{2}\right)$.
2. Iterate $Y_{\kappa+1}=Y_{\kappa}-U_{\kappa+1}$, where $U_{\kappa+1}$ is found by
3. Solve linear equation: $\left(I_{r}-\partial H / \partial Y\left(Y_{\kappa}\right)\right) \cdot U=H\left(Y_{\kappa}\right)-Y_{\kappa}$ with $\operatorname{val} U>0$.

This yields the following Newton-type iteration:

$$
\left\{\begin{array}{l}
Z_{\kappa+1}=Z_{\kappa}+Z_{\kappa}\left(I_{r}-\left(I_{r}-\partial H / \partial Y\left(Y_{\kappa}\right)\right) Z_{\kappa}\right) \bmod x^{2^{\kappa+1}} \\
Y_{\kappa+1}=Y_{\kappa}-Z_{\kappa+1}\left(H\left(Y_{\kappa}\right)-Y_{\kappa}\right) \bmod x^{2^{\kappa+1}}
\end{array}\right.
$$

computing simultaneously a matrix and a vector.

Application: quasi-exponential of power series matrices

[B-Chyzak-Ollivier-Salvy-Schost-Sedoglavic 2007]

To compute the solution $Y \in \mathcal{M}_{r}(\mathbb{K}[[x]])$ of the system $Y^{\prime}=A Y$

- choose the map $\phi: Y \mapsto Y^{\prime}-A Y$, with differential ϕ.
- the equation for U is $U^{\prime}-A U=Y_{\kappa}^{\prime}-A Y_{\kappa} \bmod x^{2^{\kappa+1}}$
- the method of variation of constants yields the solution

$$
U=Y_{\kappa} V_{\kappa} \bmod x^{2^{\kappa+1}}, \quad Y_{\kappa}^{\prime}-A Y_{\kappa}=Y_{\kappa} V_{\kappa}^{\prime} \bmod x^{2^{\kappa+1}}
$$

This yields the following Newton-type iteration for Y :

$$
Y_{\kappa+1}=Y_{\kappa}-Y_{\kappa} \int Y_{\kappa}^{-1}\left(Y_{\kappa}^{\prime}-A Y_{\kappa}\right) \quad \bmod x^{2^{\kappa+1}}
$$

Complexity:
$\mathrm{C}_{\text {solve }}(N)=\mathrm{C}_{\text {solve }}(N / 2)+O(\mathrm{MM}(r, N)) \quad \Longrightarrow \quad \mathrm{C}_{\text {solve }}(N)=O(\mathrm{MM}(r, N))$

