An algebraic analysis approach to the

 simplification of systems of linear functional equations.
Thomas Cluzeau

University of Limoges ; CNRS ; XLIM (France)

Joint work with A. Quadrat (INRIA Saclay, L2S)

Seminar on Algebraic Systems Theory - INRIA Saclay, L2S February 11, 2014

I Introduction / Motivation

Motivations

\diamond Objective of this work:
Use formal methods (algebraic manipulations) to simplify systems coming from mathematical physics, applied mathematics, engineering sciences or control theory
\diamond Interest:

- Simplify the equations of the system
\Rightarrow simplify the study of its structural properties
- Pre-conditioner to numerical analysis methods

General methodology

1 A linear system is defined by a matrix R with coefficients in a ring D of functional operators:

$$
R y=0 . \quad(\star)
$$

2 To (\star) we associate a left D-module M (finitely presented).
3 There exists a dictionary between the properties of (\star) and M.
4 Homological algebra allows to check the properties of M.
5 Effective algebra (non-commutative Gröbner/Janet bases) gives algorithms.

6 Implementation (Maple, Singular:Plural, GAP4, ...).

Example

\diamond Linearization of the Navier-Stokes \sim a parabolic Poiseuille profile

$$
\begin{cases}\partial_{t} u_{1}+4 y(1-y) \partial_{x} u_{1}-4(2 y-1) u_{2}-\nu\left(\partial_{x}^{2}+\partial_{y}^{2}\right) u_{1}+\partial_{x} p=0, \\ \partial_{t} u_{2}+4 y(1-y) \partial_{x} u_{2}-\nu\left(\partial_{x}^{2}+\partial_{y}^{2}\right) u_{2}+\partial_{y} p=0, \\ \partial_{x} u_{1}+\partial_{y} u_{2}=0 . & (\text { e.g., Vazquez-Krstic, IEEE 07) }\end{cases}
$$

\diamond Let us introduce the so-called Weyl algebra $A_{3}(\mathbb{Q}(\nu))$

$$
\begin{gathered}
D=\mathbb{Q}(\nu)[t, x, y]\left[\partial_{t} ; \text { id, } \frac{\partial}{\partial t}\right]\left[\partial_{x} ; \operatorname{id}, \frac{\partial}{\partial x}\right]\left[\partial_{y} ; \mathrm{id}, \frac{\partial}{\partial y}\right] . \\
\left(\partial_{x} y=y \partial_{x}, \partial_{x} x=x \partial_{x}+1, \partial_{x} \partial_{y}=\partial_{y} \partial_{x} \ldots\right):
\end{gathered}
$$

\diamond The system $(*)$ is defined by the matrix of PD operators:

$$
\left(\begin{array}{ccc}
\partial_{t}+4 y(1-y) \partial_{x}-\nu\left(\partial_{x}^{2}+\partial_{y}^{2}\right) & -4(2 y-1) & \partial_{x} \\
0 & \partial_{t}+4 y(1-y) \partial_{x}-\nu\left(\partial_{x}^{2}+\partial_{y}^{2}\right) & \partial_{y} \\
\partial_{x} & \partial_{y} & 0
\end{array}\right) .
$$

D : ring of functional operators (e.g., non-commutative)

\diamond Differential operators: $A=\mathbb{Q}, \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right], \mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{aligned}
& D=A\left[\partial_{1}, \ldots, \partial_{n}\right], \quad \partial_{i}=\frac{\partial}{\partial x_{i}}, \\
& P=\sum_{0 \leq|\mu| \leq m} a_{\mu}(x) \partial^{\mu} \in D, \quad \partial^{\mu}=\partial_{1}^{\mu_{1}} \ldots \partial_{n}^{\mu_{n}}, \quad a_{\mu} \in A .
\end{aligned}
$$

\diamond Shift operators: $A=\mathbb{Q}, \mathbb{Q}[n], \mathbb{Q}(n)$,

$$
\begin{aligned}
& D=A[\sigma] \\
& P=\sum_{i=0}^{m} a_{i}(n) \sigma^{i} \in D, \quad \sigma(a(n))=a(n+1) .
\end{aligned}
$$

\diamond Differential time-delay operators: $A=\mathbb{Q}, \mathbb{Q}[t], \mathbb{Q}(t)$,

$$
\begin{aligned}
& D=A\left[\frac{d}{d t}, \delta\right], \\
& P=\sum_{0 \leq i+j \leq m} a_{i j}(t) \frac{d^{i}}{d t^{i}} \delta^{j} \in D, \quad \delta(a(t))=a(t-h) .
\end{aligned}
$$

\diamond For every monomial order, there exists a Gröbner basis which can be computed by Buchberger algorithm.

Algebraic analysis

$\diamond D$ ring of functional operators, $R \in D^{q \times p}$ and \mathcal{F} a left D-module (the functional space):

$$
\forall P_{1}, P_{2} \in D, \forall \eta_{1}, \eta_{2} \in \mathcal{F}: P_{1} \eta_{1}+P_{2} \eta_{2} \in \mathcal{F}
$$

\diamond Consider the linear system $\operatorname{ker}_{\mathcal{F}}(R)=.\left\{\eta \in \mathcal{F}^{p} \mid R \eta=0\right\}$
\diamond As in number theory or algebraic geometry, with $\operatorname{ker}_{\mathcal{F}}(R$.) we associate the left D-module:

$$
M:=\operatorname{coker}_{D}(. R)=D^{1 \times p} /\left(D^{1 \times q} R\right),
$$

given by the finite presentation:

$$
\left.\right) 0,
$$

\diamond Malgrange's remark: $\operatorname{ker}_{\mathcal{F}}(R.) \cong \operatorname{hom}_{D}(M, \mathcal{F})$

Problems considered in this talk

\diamond Decomposition problem: $M=M_{1} \oplus M_{2}$
$\exists W \in \operatorname{GL}_{p}(D), V \in \mathrm{GL}_{q}(D)$ s.t. $V R W=\left(\begin{array}{cc}R_{1} & 0 \\ 0 & R_{2}\end{array}\right)$?
\diamond Serre's reduction problem: find a presentation of M defined by less generators and less relations
$\exists W \in \mathrm{GL}_{p}(D), V \in \mathrm{GL}_{q}(D)$ s.t. $V R W=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & R_{2}\end{array}\right)$?
\diamond Isomorphism / Equivalence problem: testing whether two linear systems (resp. modules) are isomorphic
\rightsquigarrow Important and difficult issue in system (resp. module) theory

Part 1

Decomposition problem

Homomorphims of finitely presented modules (1)

\diamond Let D be an Ore algebra of functional operators.
\diamond Let $R \in D^{q \times p}, R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ be two matrices.
\diamond Let us consider the finitely presented left D-modules:

$$
M=D^{1 \times p} /\left(D^{1 \times q} R\right), \quad M^{\prime}=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)
$$

\diamond We are interested in the abelian group $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$ of
D-morphisms from M to M^{\prime} :

$$
\begin{array}{rlllll}
D^{1 \times q} & \xrightarrow{. R} & D^{1 \times p} & \xrightarrow{\pi} & M & \longrightarrow 0 \\
\downarrow f & \\
D^{1 \times q^{\prime}} & \xrightarrow{R^{\prime}} & D^{1 \times p^{\prime}} & \xrightarrow{\pi^{\prime}} & M^{\prime} & \longrightarrow 0 .
\end{array}
$$

Homomorphims of finitely presented modules (1)

\diamond Let D be an Ore algebra of functional operators.
\diamond Let $R \in D^{q \times p}, R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ be two matrices.
\diamond We have the following commutative exact diagram:

$$
\begin{array}{rlrlll}
D^{1 \times q} & \xrightarrow{. R} & D^{1 \times p} & \xrightarrow{\pi} & M & \longrightarrow 0 \\
\downarrow \cdot Q & & \downarrow . P & & \downarrow f & \\
D^{1 \times q^{\prime}} & \xrightarrow{. R^{\prime}} & D^{1 \times p^{\prime}} & \xrightarrow{\pi^{\prime}} & M^{\prime} & \longrightarrow
\end{array}
$$

$$
\exists f: M \rightarrow M^{\prime} \Longleftrightarrow \exists P \in D^{p \times p^{\prime}}, Q \in D^{q \times q^{\prime}} \text { such that: }
$$

$$
R P=Q R^{\prime}
$$

Moreover, we have $f(\pi(\lambda))=\pi^{\prime}(\lambda P)$, for all $\lambda \in D^{1 \times p}$.

Homomorphims of finitely presented modules (1)

\diamond Let D be an Ore algebra of functional operators.
\diamond Let $R \in D^{q \times p}, R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ be two matrices.
\diamond We have the following commutative exact diagram:

\[

\]

- $\bar{P}=P+Z R^{\prime}$,

■ $\bar{Q}=Q+R Z+Z_{2} R_{2}^{\prime}$,

- $R \bar{P}=\bar{Q} R^{\prime}$.

Moreover, we have $f(\pi(\lambda))=\pi^{\prime}(\lambda P)=\pi^{\prime}(\lambda \bar{P})$, for all $\lambda \in D^{1 \times p}$.

Homomorphims of finitely presented modules (2)

$\diamond \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ can be written as a quotient: let

$$
L=\left\{P \in D^{p \times p^{\prime}} \mid \exists Q \in D^{q \times q^{\prime}}: R P=Q R^{\prime}\right\}
$$

We have

$$
\operatorname{hom}_{D}\left(M, M^{\prime}\right) \cong L /\left(D^{p \times q^{\prime}} R^{\prime}\right)
$$

\diamond If $M^{\prime}=M$, then $\operatorname{end}_{D}(M)$ can be written as a quotient of the ring

$$
L=\left\{P \in D^{p \times p} \mid \exists Q \in D^{q \times q}: R P=Q R\right\}
$$

by the two-sided ideal $D^{p \times q} R$:

$$
\operatorname{end}_{D}(M)^{\mathrm{op}} \cong L /\left(D^{p \times q} R\right)
$$

Computation of $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$: commutative case (1)

\diamond If D is a commutative ring, then $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$ is a D-module \rightsquigarrow We are going to compute a family of generators with their relations
\diamond The Kronecker product of $E \in D^{q \times p}$ and $F \in D^{r \times s}$ is:

$$
E \otimes F=\left(\begin{array}{ccc}
E_{11} F & \ldots & E_{1 p} F \\
\vdots & \vdots & \vdots \\
E_{q 1} F & \ldots & E_{q p} F
\end{array}\right) \in D^{(q r) \times(p s)} .
$$

Lemma: If $U \in D^{a \times b}, V \in D^{b \times c}$ and $W \in D^{c \times d}$, then we have:

$$
\operatorname{row}(U V W)=\operatorname{row}(V)\left(U^{\top} \otimes W\right)
$$

$\operatorname{row}\left(R P I_{p^{\prime}}\right)=\operatorname{row}(P)\left(R^{T} \otimes I_{p^{\prime}}\right), \quad \operatorname{row}\left(I_{q} Q R^{\prime}\right)=\operatorname{row}(Q)\left(I_{q} \otimes R^{\prime}\right)$.
We are reduced to computing $\operatorname{ker}_{D}\left(\cdot\binom{R^{T} \otimes I_{p^{\prime}}}{-I_{q} \otimes R^{\prime}}\right)$.

Computation of $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$: commutative case (2)

\diamond This way we get a family $\left\{P_{1}, \ldots, P_{s}\right\}$ of generators of L
\diamond Then, we reduce the rows of the P_{i} with respect to G a Gröbner basis of the rows of R^{\prime} to get a family of generators $\left\{f_{1}, \ldots, f_{s}\right\}$ of $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$
\diamond Using another syzygies computation, we obtain the relations between generators: $\sum_{j=1}^{s} X_{i j} f_{j}=0, i=1, \ldots, \ell$
\diamond If $M^{\prime}=M$, we can also compute the table of multiplication of the generators: $f_{i} \circ f_{j}=\sum_{j=1}^{s} \gamma_{i j k} f_{k}, i, j=1, \ldots, s$

If $D<F_{1}, \ldots, F_{s}>$ is the free associated algebra generated by the F_{i}, then

$$
\operatorname{end}_{D}(M)=D<F_{1}, \ldots, F_{s}>/ I
$$

where I is the two-sided ideal

$$
I=<\sum^{s} X_{i j} F_{j}, i=1, \ldots, \ell, F_{i} \circ F_{j}-\sum^{s} \gamma_{i j k} F_{k}, i, j=1, \ldots, s>
$$

Example: tank model Dubois-Petit-Rouchon, ECC99 (1)

\diamond Let $D=\mathbb{Q}[\partial, \delta](\partial f(t)=\dot{f}(t), \delta f(t)=f(t-h))$ and consider the system matrix

$$
R=\left(\begin{array}{ccc}
\delta^{2} & 1 & -2 \partial \delta \\
1 & \delta^{2} & -2 \partial \delta
\end{array}\right) \in D^{2 \times 3}, \quad M=D^{1 \times 3} /\left(D^{1 \times 2} R\right)
$$

\diamond Applying our algorithm: $\operatorname{end}_{D}(M)$ generated by the $f_{e_{i}}, i=1, \ldots, 4$ defined by $f_{\alpha}(\pi(\lambda))=\pi\left(\lambda P_{\alpha}\right)$, for all $\lambda \in D^{1 \times 3}$, where

$$
\begin{gathered}
P_{\alpha}=\left(\begin{array}{ccc}
\alpha_{1} & \alpha_{2} & 2 \alpha_{3} \partial \delta \\
\alpha_{2}+2 \alpha_{4} \partial & \alpha_{1}-2 \alpha_{4} \partial & 2 \alpha_{3} \partial \delta \\
\alpha_{4} \delta & -\alpha_{4} \delta & \alpha_{1}+\alpha_{2}+\alpha_{3}\left(\delta^{2}+1\right)
\end{array}\right), \\
Q_{\alpha}=\left(\begin{array}{cc}
\alpha_{1}-2 \alpha_{4} \partial & \alpha_{2}+2 \alpha_{4} \partial \\
\alpha_{2} & \alpha_{1}
\end{array}\right),
\end{gathered}
$$

$\alpha=\left(\alpha_{1}, \ldots, \alpha_{4}\right) \in D^{1 \times 4}$ and $\left\{e_{j}\right\}_{j=1, \ldots, 4}$ the standard basis of $D^{1 \times 4}$.

Example: tank model Dubois-Petit-Rouchon, ECC99 (2)

\diamond We also obtain that the $\left\{f_{e_{i}}\right\}_{i=1, \ldots, 4}$ satisfy the following D-linear relations:

$$
\left(\delta^{2}-1\right) f_{e_{4}}=0, \quad \delta^{2} f_{e_{1}}+f_{e_{2}}-f_{e_{3}}=0, \quad f_{e_{1}}+\delta^{2} f_{e_{2}}-f_{e_{3}}=0
$$

\diamond The multiplication table is given by:

$f_{e_{c}} \circ f_{e_{r}}$	$f_{e_{1}}$	$f_{e_{2}}$	$f_{e_{3}}$	$f_{e_{4}}$
$f_{e_{1}}$	$f_{e_{1}}$	$f_{e_{2}}$	$f_{e_{3}}$	$f_{e_{4}}$
$f_{e_{2}}$	$f_{e_{2}}$	$f_{e_{1}}$	$f_{e_{3}}$	$2 \partial f_{e_{1}}-2 \partial f_{e_{2}}+f_{e_{4}}$
$f_{e_{3}}$	$f_{e_{3}}$	$f_{e_{3}}$	$\left(\delta^{2}+1\right) f_{e_{3}}$	$2 \partial f_{e_{1}}-2 \partial f_{e_{2}}+2 f_{e_{4}}$
$f_{e_{4}}$	$f_{e_{4}}$	$-f_{e_{4}}$	0	$-2 \partial f_{e_{4}}$

$\diamond I=<$
$\left(\delta^{2}-1\right) f_{e_{4}}, \delta^{2} f_{e_{1}}+f_{e_{2}}-f_{e_{3}}, f_{e_{1}}+\delta^{2} f_{e_{2}}-f_{e_{3}}, \ldots, f_{e_{4}} \circ f_{e_{4}}+2 \partial f_{e_{4}}>$
We have:

$$
\operatorname{end}_{D}(M)=D<f_{e_{1}}, f_{e_{2}}, f_{e_{3}}, f_{e_{4}}>/ l
$$

Computation of $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$: non-commutative case

\diamond If D is a non-commutative ring, then $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$ is an abelian group and generally an infinite-dimensional k-vector space.
\Rightarrow find a k-basis of morphisms with given degrees in x_{i} and in ∂_{j} :
1 Take an ansatz for P with chosen degrees.
2 Compute $R P$ and a Gröbner basis G of the rows of R^{\prime}.
3 Reduce the rows of $R P$ w.r.t. G.
4 Solve the system on the coefficients of the ansatz so that all the normal forms vanish.
5 Substitute the solutions in P and compute Q by means of a factorization.

Beltrami equations

$$
\diamond \text { Let } D=A_{2}(\mathbb{Q})=\mathbb{Q}[x, y]\left[\partial_{x}, \partial_{y}\right] \text { and } M=D^{1 \times 2} /\left(D^{1 \times 2} R\right) \text { : }
$$

$$
R=\left(\begin{array}{cc}
\partial_{x} & -x \partial_{y} \\
\partial_{y} & x \partial_{x}
\end{array}\right) \in D^{2 \times 2}
$$

■ $\operatorname{end}_{D}(M)_{0,1}$ is defined by $P=Q=a I_{2}, a \in \mathbb{Q}$.
■ $\operatorname{end}_{D}(M)_{1,0}$ is defined by $\left(a_{1}, a_{2} \in \mathbb{Q}\right)$:

$$
P=Q=\left(\begin{array}{cc}
a_{1}+a_{2} \partial_{y} & 0 \\
0 & a_{1}+a_{2} \partial_{y}
\end{array}\right) .
$$

■ $\operatorname{end}_{D}(M)_{1,1}$ is defined by $\left(a_{1}, a_{2}, a_{3} \in \mathbb{Q}\right)$:

$$
\begin{aligned}
& P=\left(\begin{array}{cc}
a_{3}\left(y \partial_{y}+x \partial_{x}-1\right)+a_{2} \partial_{y}+a_{1} & 0 \\
-a_{3} \partial_{y} & a_{3} y \partial_{y}+a_{2} \partial_{y}+a_{1}
\end{array}\right), \\
& Q=\left(\begin{array}{cc}
a_{3}\left(y \partial_{y}+x \partial_{x}\right)+a_{2} \partial_{y}+a_{1} & a_{3} x \partial_{y} \\
0 & a_{2} \partial_{y}+a_{3} y \partial_{y}+a_{1}
\end{array}\right)
\end{aligned}
$$

Decomposition theorem - C.-Q., 2008

Theorem

Let $R \in D^{q \times p}, M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ and $f \in \operatorname{end}_{D}(M)$ defined by P and Q satisfying

$$
P^{2}=P, \quad Q^{2}=Q \quad(\text { idempotent matrices }) \quad \Rightarrow f^{2}=f
$$

If the left D-modules

$$
\operatorname{ker}_{D}(. P), \operatorname{im}_{D}(. P), \operatorname{ker}_{D}(. Q), \operatorname{im}_{D}(. Q)
$$

are free, then there exist $U \in \mathrm{GL}_{p}(D), V \in \mathrm{GL}_{q}(D)$ such that

$$
V R U^{-1}=\left(\begin{array}{cc}
R_{1} & 0 \\
0 & R_{2}
\end{array}\right) \in D^{q \times p} .
$$

Dirac equations (1)

\diamond Let us consider the following complex matrices:

$$
\begin{array}{ll}
\gamma^{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right), \quad \gamma^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right), \\
\gamma^{3}=\left(\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & i \\
i & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{array}\right), & \gamma^{4}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
\end{array}
$$

\diamond The Dirac equation has the form $\sum_{i=1}^{4} \gamma^{i} \partial y / \partial x_{i}=0$:

$$
\left\{\begin{array}{l}
d_{4} y_{1}-i d_{3} y_{3}-\left(i d_{1}+d_{2}\right) y_{4}=0, \\
d_{4} y_{2}-\left(i d_{1}-d_{2}\right) y_{3}+i d_{3} y_{4}=0, \\
i d_{3} y_{1}+\left(i d_{1}+d_{2}\right) y_{2}-d_{4} y_{3}=0, \\
\left(i d_{1}-d_{2}\right) y_{1}-i d_{3} y_{2}-d_{4} y_{4}=0,
\end{array} \quad d_{i}=\partial / \partial x_{i} .\right.
$$

Dirac equations (2)

\diamond Let us consider $D=\mathbb{Q}(i)\left[d_{1}, d_{2}, d_{3}, d_{4}\right]$, the matrix

$$
R=\left(\begin{array}{cccc}
d_{4} & 0 & -i d_{3} & -\left(i d_{1}+d_{2}\right) \\
0 & d_{4} & -i d_{1}+d_{2} & i d_{3} \\
i d_{3} & i d_{1}+d_{2} & -d_{4} & 0 \\
i d_{1}-d_{2} & -i d_{3} & 0 & -d_{4}
\end{array}\right) \in D^{4 \times 4},
$$

and the finitely presented D-module $M=D^{1 \times 4} /\left(D^{1 \times 4} R\right)$.
\diamond Computing idempotents of $\operatorname{end}_{D}(M)$, we obtain a idempotent f defined by the pair of matrices:

$$
P=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right), \quad Q=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right),
$$

\diamond We have $P^{2}=P$ and $Q^{2}=Q$, i.e., the D-modules $\operatorname{ker}_{D}(. P)$, $\operatorname{im}(. P), \operatorname{ker}_{D}(. Q)$ and $\operatorname{im}(. Q)$ are projective, i.e., free.

Dirac equation

\diamond Computing bases for these modules, we then get:

$$
\Rightarrow U=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right), \quad V=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & -1 & 0 & -1
\end{array}\right)
$$

\diamond The matrix R is then equivalent to the block-diagonal one:

$$
\Rightarrow V R U^{-1}=\left(\begin{array}{cccc}
i d_{3}-d_{4} & -i d_{1}-d_{2} & 0 & 0 \\
i d_{1}-d_{2} & i d_{3}+d_{4} & 0 & 0 \\
0 & 0 & i d_{3}+d_{4} & i d_{1}+d_{2} \\
0 & 0 & i d_{1}-d_{2} & -i d_{3}+d_{4}
\end{array}\right) .
$$

Part 2

Serre's reduction

String with an interior mass (Fliess et al, COCV 98)

$$
\begin{align*}
& \int \phi_{1}(t)+\psi_{1}(t)-\phi_{2}(t)-\psi_{2}(t)=0, \\
& \dot{\phi}_{1}(t)+\dot{\psi}_{1}(t)+a \phi_{1}(t)-a \psi_{1}(t)-b \phi_{2}(t)+b \psi_{2}(t)=0, \\
& \phi_{1}\left(t-2 h_{1}\right)+\psi_{1}(t)-u\left(t-h_{1}\right)=0, \\
& \phi_{2}(t)+\psi_{2}\left(t-2 h_{2}\right)-v\left(t-h_{2}\right)=0 \text {. } \\
& \partial f(t)=\dot{f}(t), \quad \sigma_{1} f(t)=f\left(t-h_{1}\right), \quad \sigma_{2} f(t)=f\left(t-h_{2}\right) . \\
& \begin{aligned}
V & \left(\begin{array}{cccccc}
1 & 1 & -1 & -1 & 0 & 0 \\
\partial+a & \partial-a & -b & b & 0 & 0 \\
\sigma_{1}^{2} & 1 & 0 & 0 & -\sigma_{1} & 0 \\
0 & 0 & 1 & \sigma_{2}^{2} & 0 & -\sigma_{2}
\end{array}\right) W \\
& =\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \partial_{1}+a+b & a \sigma_{1} & b \sigma_{2}
\end{array}\right) .
\end{aligned} \\
& (\star) \Leftrightarrow \dot{z}_{1}(t)+(a+b) z_{1}(t)+a z_{2}\left(t-h_{1}\right)+b z_{3}\left(t-h_{2}\right)=0 .
\end{align*}
$$

String with an interior mass (Fliess et al, COCV 98)

The unimodular matrices V and W are defined by:

$$
\begin{aligned}
& V=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\sigma_{1}^{2} & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
(a-b-\partial) \sigma_{1}^{2}+\partial+a & -1 & \partial-a+b & -2 b
\end{array}\right) \in \operatorname{GL}_{4}(D), \\
& W=\left(\begin{array}{cccccc}
1 & 0 & 0 & -1 & -\sigma_{1} & 0 \\
0 & -1 & 0 & 0 & \sigma_{1} & 0 \\
0 & 0 & 1 & 0 & 0 & \sigma_{2} \\
0 & -1 & -1 & -1 & 0 & -\sigma_{2} \\
0 & 0 & 0 & -\sigma_{1} & -\sigma_{1}^{2}+1 & 0 \\
0 & -\sigma_{2} & -\sigma_{2} & -\sigma_{2} & 0 & -\sigma_{2}^{2}+1
\end{array}\right) \in \mathrm{GL}_{6}(D) .
\end{aligned}
$$

Serre's reduction isomorphism - Boudellioua-Q., 2010

\diamond Let $R \in D^{q \times p}$ be a full row rank matrix, $0 \leq r \leq q-1$, and $\Lambda \in D^{q \times(q-r)}$ such that there exists $U \in \mathrm{GL}_{p+q-r}(D)$ satisfying:

$$
(R \quad-\Lambda) U=\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)
$$

\diamond Let us denote by

$$
U=\left(\begin{array}{ll}
S_{1} & Q_{1} \\
S_{2} & Q_{2}
\end{array}\right) \in \operatorname{GL}_{p+q-r}(D)
$$

where:

$$
S_{1} \in D^{p \times q}, S_{2} \in D^{(q-r) \times q}, Q_{1} \in D^{p \times(p-r)}, Q_{2} \in D^{(q-r) \times(p-r)}
$$

\diamond Then, we have:

$$
M=D^{1 \times p} /\left(D^{1 \times q} R\right) \cong L=D^{1 \times(p-r)} /\left(D^{1 \times(q-r)} Q_{2}\right)
$$

\diamond The converse result also holds. These results only depend on:

$$
\rho(\Lambda) \in \operatorname{ext}_{D}^{1}\left(M, D^{1 \times(q-r)}\right) \triangleq D^{q \times(q-r)} /\left(R D^{p \times(q-r)}\right)
$$

Ring conditions

\diamond Proposition: Let $R \in D^{q \times p}$ be a full row rank matrix and $\Lambda \in D^{q \times(q-r)}$ such that $P=(R \quad-\Lambda) \in D^{q \times(p+q-r)}$ admits a right-inverse over D. Moreover, if D is either a

1 principal left ideal domain,
$\sqrt{2}$ commutative polynomial ring with coefficients in a field,
3 Weyl algebra $A_{n}(k)$ or $B_{n}(k)$, where k is a field of characteristic 0 , and $p-r \geq 2$,
4 ring of OD operators $A\langle\partial\rangle$, where $A=k \llbracket t \rrbracket$ and k is a field of characteristic 0 , or $A=k\{t\}$ and $k=\mathbb{R}$ or \mathbb{C}, and $p-r \geq 2$, then there exists $U \in \mathrm{GL}_{p+q-r}(D)$ satisfying that $P U=\left(\begin{array}{ll}I_{q} & 0\end{array}\right)$.
\diamond The matrix U can be obtained by means of:

- a Jacobson form (JACOBSON),
- the Quillen-Suslin theorem (QuillenSuSlin),

■ Stafford's theorem (Stafford).

Serre's reduction equivalence - Boudellioua-Q., 2010

\diamond If $\Lambda \in D^{q \times(q-r)}$ admits a left-inverse $\Gamma \in D^{(q-r) \times q}, \Gamma \Lambda=I_{q-r}$, then Q_{1} admits the left-inverse $T_{1}+T_{2} \Gamma R \in D^{(p-r) \times p}$ and the left D-module $\operatorname{ker}_{D}\left(. Q_{1}\right)$ is stably free of rank r :

$$
\operatorname{ker}_{D}\left(\cdot Q_{1}\right) \oplus D^{1 \times(p+1-q)} \cong D^{1 \times p}
$$

\diamond If the left D-module $\operatorname{ker}_{D}\left(. Q_{1}\right)$ is free, then $\exists Q_{3} \in D^{p \times r}$ s.t.:

$$
V=\left(\begin{array}{ll}
Q_{3} & Q_{1}
\end{array}\right) \in \operatorname{GL}_{p}(D)
$$

\diamond Then, we have $W=\left(\begin{array}{ll}R Q_{3} & \Lambda\end{array}\right) \in \mathrm{GL}_{q}(D)$,

$$
W^{-1}=\binom{Y_{3} S_{1}}{-S_{2}+Q_{2} Y_{1} S_{1}}
$$

with $V^{-1}=\left(\begin{array}{ll}Y_{3}^{T} & Y_{1}^{T}\end{array}\right)^{T}, Y_{3} \in D^{r \times p}, Y_{1} \in D^{(p-r) \times p}$ and:

$$
W^{-1} R V=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & Q_{2}
\end{array}\right)
$$

Example: Wind tunnel model

\diamond The wind tunnel model (Manitius, IEEE TAC 84):

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)+a x_{1}(t)-k a x_{2}(t-h)=0, \\
\dot{x}_{2}(t)-x_{3}(t)=0, \\
\dot{x}_{3}(t)+\omega^{2} x_{2}(t)+2 \zeta \omega x_{3}(t)-\omega^{2} u(t)=0 .
\end{array}\right.
$$

\diamond Let us consider $D=\mathbb{Q}(a, k, \omega, \zeta)[\partial, \delta]$, the system matrix

$$
R=\left(\begin{array}{cccc}
\partial+a & -k a \delta & 0 & 0 \\
0 & \partial & -1 & 0 \\
0 & \omega^{2} & \partial+2 \zeta \omega & -\omega^{2}
\end{array}\right) \in D^{3 \times 4}
$$

and the finitely presented D-module $M=D^{1 \times 4} /\left(D^{1 \times 3} R\right)$.

Example: Wind tunnel model

\diamond Let us consider $\Lambda=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ and $P=\left(\begin{array}{ll}R & -\Lambda\end{array}\right)$.
\diamond The matrix P admits the following right-inverse S :

$$
S=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & -\frac{\partial+2 \zeta \omega}{\omega^{2}} & -\frac{1}{\omega^{2}} \\
-1 & 0 & 0
\end{array}\right) \in D^{5 \times 3} .
$$

\diamond According to Quillen-Suslin theorem, $E=D^{1 \times 5} /\left(D^{1 \times 3} P\right)$ is a free D-module of rank 2 .

Example: Wind tunnel model

\diamond Computing a basis of E, we obtain that $U \in \operatorname{GL}_{5}(D)$,

$$
U=\left(\begin{array}{ccccc}
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & \omega^{2} \\
0 & -1 & 0 & 0 & \omega^{2} \partial \\
0 & -\frac{\partial+2 \zeta \omega}{\omega^{2}} & -\frac{1}{\omega^{2}} & 0 & \partial^{2}+2 \zeta \omega \partial+\omega^{2} \\
-1 & 0 & 0 & -(\partial+a) & -\omega^{2} k a \delta
\end{array}\right)
$$

satisfies that $P U=\left(\begin{array}{ll}1 & 0\end{array}\right)$ (OreModules, QuillenSuslin).
\diamond The wind tunnel model is equivalent to the sole equation:

$$
\begin{gathered}
(\partial+a) \zeta_{1}+\omega^{2} k a \delta \zeta_{2}=0 \\
\Leftrightarrow \quad \dot{\zeta}_{1}(t)+a \zeta_{1}(t)+\omega^{2} k a \zeta_{2}(t-h)=0 .
\end{gathered}
$$

Example: Wind tunnel model

\diamond The vector $\Lambda=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ admits the left-inverse $\Gamma=\Lambda^{T}$.
\diamond We compute $Q_{3} \in D^{2 \times 2}$ such that $V=\left(Q_{3}^{\top} \quad Q_{1}^{T}\right) \in \mathrm{GL}_{4}(D)$:

$$
V=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & \omega^{2} \\
0 & -1 & 0 & \omega^{2} \partial \\
-\frac{1}{\omega^{2}} & -\frac{\partial+2 \zeta \omega}{\omega^{2}} & 0 & \partial^{2}+2 \zeta \omega \partial+\omega^{2}
\end{array}\right)
$$

\diamond We have $W=\left(\begin{array}{ll}R Q_{3} & \Lambda\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right) \in \operatorname{GL}_{3}(D)$ and:

$$
W^{-1} R V=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -(\partial+a) & -\omega^{2} k a \delta
\end{array}\right)
$$

Part 3

Isomorphism / Equivalence problem

Problem considered

\diamond Isomorphism / Equivalence problem: testing whether two linear systems (resp. modules) are isomorphic. \rightsquigarrow Important issue in system (resp. module) theory.

Explicit characterization of isomorphic f. p. modules

Theorem

Let $M_{1}=D^{1 \times p} /\left(D^{1 \times q} R_{1}\right), M_{2}=D^{1 \times t} /\left(D^{1 \times s} Q_{2}\right)$.
Then $M_{1} \cong M_{2}$ iff there exist matrices $R_{2} \in D^{q \times s}, Q_{1} \in D^{p \times t}$, $S_{1} \in D^{p \times q}, S_{2} \in D^{s \times q}, T_{1} \in D^{t \times p}, T_{2} \in D^{t \times s}, V_{1} \in D^{q \times I}$, $V_{2} \in D^{t \times I}, W_{1} \in D^{p \times m}$, and $W_{2} \in D^{s \times m}$ such that

$$
\begin{aligned}
& \left(\begin{array}{ll}
R_{1} & R_{2} \\
T_{1} & T_{2}
\end{array}\right)\left(\begin{array}{ll}
S_{1} & Q_{1} \\
S_{2} & Q_{2}
\end{array}\right)=I_{q+t}+\binom{V_{1}}{V_{2}}\left(\begin{array}{ll}
P_{1} & 0
\end{array}\right), \\
& \left(\begin{array}{ll}
S_{1} & Q_{1} \\
S_{2} & Q_{2}
\end{array}\right)\left(\begin{array}{ll}
R_{1} & R_{2} \\
T_{1} & T_{2}
\end{array}\right)=I_{p+s}+\binom{W_{1}}{W_{2}}\left(\begin{array}{ll}
0 & P_{2}
\end{array}\right),
\end{aligned}
$$

where $P_{1} \in D^{1 \times q}$ and $P_{2} \in D^{m \times s}$ are defined by:

$$
\operatorname{ker}_{D}\left(\cdot R_{1}\right)=D^{1 \times 1} P_{1}, \quad \operatorname{ker}_{D}\left(\cdot Q_{2}\right)=D^{1 \times m} P_{2} .
$$

Consequence, links with Serre's reduction

Corollary

With the notations and the assumptions of the previous theorem, let $q+t=p+s=: u$.

1 Then, we have:
$\left(\begin{array}{cc}R_{1} & R_{2} \\ T_{1} & T_{2}\end{array}\right)\left(\begin{array}{cc}S_{1} & Q_{1} \\ S_{2} & Q_{2}\end{array}\right)=I_{u} \Leftrightarrow\left(\begin{array}{cc}S_{1} & Q_{1} \\ S_{2} & Q_{2}\end{array}\right)\left(\begin{array}{ll}R_{1} & R_{2} \\ T_{1} & T_{2}\end{array}\right)=I_{u}$.
$2 \diamond$ If either R_{1} or Q_{2} has full row rank, then (1) holds. \diamond Equivalently, if R_{1} or Q_{2} has full row rank, then $M_{1} \cong M_{2}$ is equivalent to the existence of $R_{2}, Q_{1}, S_{1}, S_{2}, T_{1}, T_{2}$ such that $\left(\begin{array}{ll}R_{1} & R_{2} \\ T_{1} & T_{2}\end{array}\right)\left(\begin{array}{ll}S_{1} & Q_{1} \\ S_{2} & Q_{2}\end{array}\right)=I_{q+t}$.

Isomorphisms from the unimodular completion problem

Theorem

Let p, q, s, t be 4 non-negative integers s.t. $q+t=p+s:=u$, and $R_{1} \in D^{q \times p}, R_{2} \in D^{q \times s}, Q_{1} \in D^{p \times t}, Q_{2} \in D^{s \times t}, S_{1} \in D^{p \times q}$, $S_{2} \in D^{s \times q}, T_{1} \in D^{t \times p}$, and $T_{2} \in D^{t \times s}$ matrices such that:
$\left(\begin{array}{ll}R_{1} & R_{2} \\ T_{1} & T_{2}\end{array}\right)\left(\begin{array}{ll}S_{1} & Q_{1} \\ S_{2} & Q_{2}\end{array}\right)=I_{u},\left(\begin{array}{ll}S_{1} & Q_{1} \\ S_{2} & Q_{2}\end{array}\right)\left(\begin{array}{ll}R_{1} & R_{2} \\ T_{1} & T_{2}\end{array}\right)=I_{u}$.
Then, we have:

$$
\left\{\begin{array}{l}
\operatorname{coker}_{D}\left(. R_{1}\right) \cong \operatorname{coker}_{D}\left(\cdot Q_{2}\right), \operatorname{ker}_{D}\left(\cdot R_{1}\right) \cong \operatorname{ker}_{D}\left(. Q_{2}\right), \\
\operatorname{coker}_{D}\left(\cdot S_{1}\right) \cong \operatorname{coker}_{D}\left(\cdot T_{2}\right), \operatorname{ker}_{D}\left(\cdot S_{1}\right) \cong \operatorname{ker}_{D}\left(\cdot T_{2}\right), \\
\operatorname{coker}_{D}\left(\cdot Q_{1}\right) \cong \operatorname{coker}_{D}\left(\cdot R_{2}\right), \operatorname{ker}_{D}\left(\cdot Q_{1}\right) \cong \operatorname{ker}_{D}\left(\cdot R_{2}\right), \\
\operatorname{coker}_{D}\left(. T_{1}\right) \cong \operatorname{coker}_{D}\left(\cdot S_{2}\right), \operatorname{ker}_{D}\left(. T_{1}\right) \cong \operatorname{ker}_{D}\left(\cdot S_{2}\right) .
\end{array}\right.
$$

Consequences of the theorem

$1 R_{1}$ has full row rank iff so is Q_{2}.
$2 R_{2}$ admits a left inv. iff so is Q_{1}. More precisely:
■ $Z_{2} \in D^{s \times q}$ left inv. of $R_{2} \Longrightarrow T_{1}-T_{2} Z_{2} R_{1}$ left inv. of Q_{1}.

- $Y_{1} \in D^{t \times p}$ left inv. of $Q_{1} \Longrightarrow S_{2}-Q_{2} Y_{1} S_{1}$ left inv. of R_{2}.

3 If R_{2} or Q_{1} admits a left inv., then $\operatorname{ker}_{D}\left(. R_{2}\right) \cong \operatorname{ker}_{D}\left(. Q_{1}\right)$ is a stably free left D-module of rank $q-s=p-t$.
$4 \operatorname{ker}_{D}\left(. R_{2}\right)$ is a free left D-module of rank r iff so is $\operatorname{ker}_{D}\left(. Q_{1}\right)$:

- If $B_{2} \in D^{r \times q}$ is a basis of $\operatorname{ker}_{D}\left(. R_{2}\right)$ (i.e., B_{2} has full row rank and satisfies $\left.\operatorname{ker}_{D}\left(\cdot R_{2}\right)=D^{1 \times r} B_{2}\right)$, then $C_{2}:=B_{2} R_{1} \in D^{r \times p}$ is a basis of $\operatorname{ker}_{D}\left(\cdot Q_{1}\right)$.
- If $C_{1} \in D^{r \times p}$ is a basis of $\operatorname{ker}_{D}\left(. Q_{1}\right)$, then $B_{1}:=C_{1} S_{1} \in D^{r \times q}$ is a basis of $\operatorname{ker}_{D}\left(. Q_{1}\right)$.

New formulation of Serre's reduction equivalence

Theorem

If $R \in D^{q \times p}$ (not necessarily full row rank), then the following assertions are equivalent:
1 There exist $\Lambda \in D^{q \times(q-r)}$ such that:

- there exists $\Gamma \in D^{(q-r) \times q}$ satisfying $\Gamma \Lambda=I_{q}$,
- the stably free left D-module $\operatorname{ker}_{D}(. \Lambda)$ is free of rank r, i.e., there exists a full row rank matrix $B \in D^{r \times q}$ such that $\operatorname{ker}_{D}(. \Lambda)=D^{1 \times r} B$,
- there exists a matrix $U \in \mathrm{GL}_{p+q-r}(D)$ such that $\left(\begin{array}{ll}R & -\Lambda\end{array}\right) U=\left(\begin{array}{ll}I_{q} & 0\end{array}\right)$.
2 There exist $V \in \operatorname{GL}_{q}(D), W \in \operatorname{GL}_{p}(D), 0 \leq r \leq q-1$, and $R_{2} \in D^{(q-r) \times(p-r)}$ such that:

$$
V R W=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & R_{2}
\end{array}\right)
$$

Theorem (H. Fitting, 1936)

Two matrices presenting isomorphic left D-modules can be inflated with blocks of 0 and I to get equivalent matrices.

Example: theory of 2D linear elasticity

$\diamond(S)\left\{\begin{array}{l}\partial_{1} \xi_{1}=0, \\ \frac{1}{2}\left(\partial_{2} \xi_{1}+\partial_{1} \xi_{2}\right)=0, \\ \partial_{2} \xi_{2}=0,\end{array}\right.$

$$
\left(S^{\prime}\right)\left\{\begin{array}{l}
\partial_{1} \zeta_{1}=0, \\
\partial_{2} \zeta_{1}-\zeta_{2}=0, \\
\partial_{1} \zeta_{2}=0, \\
\partial_{1} \zeta_{3}+\zeta_{2}=0, \\
\partial_{2} \zeta_{3}=0, \\
\partial_{2} \zeta_{2}=0 .
\end{array}\right.
$$

$\diamond D=\mathbb{Q}\left[\partial_{1}, \partial_{2}\right]$. We have:

$$
(S) \Leftrightarrow R\left(\begin{array}{ll}
\xi_{1} & \xi_{2}
\end{array}\right)^{T}=0, \quad\left(S^{\prime}\right) \Leftrightarrow R^{\prime}\left(\begin{array}{lll}
\zeta_{1} & \zeta_{2} & \zeta_{3}
\end{array}\right)^{T}=0,
$$

where

$$
R=\left(\begin{array}{cc}
\partial_{1} & 0 \\
\frac{1}{2} \partial_{2} & \frac{1}{2} \partial_{1} \\
0 & \partial_{2}
\end{array}\right), \quad R^{\prime}=\left(\begin{array}{cccccc}
\partial_{1} & \partial_{2} & 0 & 0 & 0 & 0 \\
0 & -1 & \partial_{1} & 1 & 0 & \partial_{2} \\
0 & 0 & 0 & \partial_{1} & \partial_{2} & 0
\end{array}\right)^{T} .
$$

\diamond We associate $M=D^{1 \times 2} /\left(D^{1 \times 3} R\right)$ and $\left.M^{\prime}=D_{\circlearrowleft}^{1 \times 3} /\left(D^{1 \times 6} R^{\prime}\right)\right)_{\underline{\underline{1}}}$

Example: theory of 2D linear elasticity (continued)

\diamond Algorithms computing homomorphisms are implemented in:
1 the Maple package OreMorphisms based on OreModules (F. Chyzak, A. Quadrat, D. Robertz):
http://www.ensil.unilim.fr/~cluzeau/OreMorphisms/
2 GAP4/homalg (M. Barakat et al): http://wwwb.math.rwth-aachen.de/homalg/

Here, we find that the matrices

$$
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), Q=\frac{1}{2}\left(\begin{array}{llllll}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0
\end{array}\right)
$$

satisfy

$$
R P=Q R^{\prime}
$$

and then define a homomorphism between M and M^{\prime}.

Characterization of an isomorphism

$\diamond f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ given by P and Q such that $R P=Q R^{\prime}$.
\diamond Let $S \in D^{r \times p}, T \in D^{r \times q^{\prime}}$ be such that

$$
\operatorname{ker}_{D}\left(.\left(\begin{array}{ll}
P^{T} & R^{\prime T}
\end{array}\right)^{T}\right)=D^{1 \times r}\left(\begin{array}{ll}
S & -T
\end{array}\right)
$$

$$
\text { and } L \in D^{q \times r}, S_{2} \in D^{r_{2} \times r} \text { s.t. } R=L S \text { and } \operatorname{ker}_{D}(. S)=D^{1 \times r_{2}} S_{2}
$$

$$
\operatorname{ker} f=\left(D^{1 \times r} S\right) /\left(D^{1 \times q} R\right) \cong D^{1 \times r} /\left(D^{1 \times\left(q+r_{2}\right)}\left(\begin{array}{ll}
L^{T} & S_{2}^{T}
\end{array}\right)^{T}\right)
$$

\diamond Moreover: coker $f=D^{1 \times p^{\prime}} /\left(D^{1 \times\left(p+q^{\prime}\right)}\left(\begin{array}{ll}P^{T} & R^{\prime T}\end{array}\right)^{T}\right)$.
\diamond Then f is an isomorphism iff the matrices $\left(\begin{array}{ll}L^{T} & S_{2}^{T}\end{array}\right)^{T}$ and $\left(\begin{array}{ll}P^{T} & R^{\prime T}\end{array}\right)^{T}$ admit a left inverse.
\diamond All matrices can be computed from P and Q using Gröbner bases techniques (OreMorphisms, GAP4/homalg,...).

Example: theory of 2D linear elasticity (continued)

\diamond Using this result and, for example OreMorphisms, we can easily check that the homomorphism defined by the matrices P and Q given before is an isomorphism so that for our example

$$
M \cong M^{\prime}
$$

\diamond Fitting's theorem $\Rightarrow R$ and R^{\prime} can be inflated with blocks of 0 and I to get equivalent matrices.
\diamond Goal of the following: construct this equivalence of matrices.

Explicit formula for the inverse of an isomorphism

$\diamond f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ given by P and Q such that $R P=Q R^{\prime}$.
$\diamond f \in \operatorname{iso}_{D}\left(M, M^{\prime}\right)$ iff there exist $P^{\prime} \in D^{p^{\prime} \times p}, Q^{\prime} \in D^{q^{\prime} \times q}$,
$Z \in D^{p \times q}$ and $Z^{\prime} \in D^{p^{\prime} \times q^{\prime}}$ satisfying the following relations:

$$
\left\{\begin{array}{c}
R^{\prime} P^{\prime}=Q^{\prime} R, \\
P P^{\prime}+Z R=I_{p}, \quad P^{\prime} P+Z^{\prime} R^{\prime}=I_{p^{\prime}}
\end{array}\right.
$$

Then, there exist $Z_{2} \in D^{q \times r}$ and $Z_{2}^{\prime} \in D^{q^{\prime} \times r^{\prime}}$ satisfying:

$$
Q Q^{\prime}+R Z+Z_{2} R_{2}=I_{q}, \quad Q^{\prime} Q+R^{\prime} Z^{\prime}+Z_{2}^{\prime} R_{2}^{\prime}=I_{q^{\prime}}
$$

where $R_{2} \in D^{r \times q}$ (resp., $R_{2}^{\prime} \in D^{r^{\prime} \times q^{\prime}}$) is s.t. $\operatorname{ker}_{D}(. R)=D^{1 \times r} R_{2}$ $\left(\operatorname{resp} ., \operatorname{ker}_{D}\left(. R^{\prime}\right)=D^{1 \times r^{\prime}} R_{2}^{\prime}\right)$.
\diamond Particular case of an isom.: equivalence $\left(P^{\prime}=P^{-1}, Q^{\prime}=Q^{-1}\right)$.

The case of full row rank matrices

\diamond Let $R \in D^{q \times p}, R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ and $f \in \operatorname{iso}_{D}\left(M, M^{\prime}\right)$.
\diamond We have:
1 The matrices

$$
U=\left(\begin{array}{cc}
I_{p} & P \\
-P^{\prime} & I_{p^{\prime}}-P^{\prime} P
\end{array}\right), V=\left(\begin{array}{cc}
I_{p}-P P^{\prime} & -P \\
P^{\prime} & I_{p^{\prime}}
\end{array}\right)
$$

are unimodular and satisfy $V=U^{-1}$.
$2 \operatorname{diag}\left(R, I_{p^{\prime}}\right) U=W \operatorname{diag}\left(I_{p}, R^{\prime}\right)$ where

$$
W=\left(\begin{array}{cc}
R & Q \\
-P^{\prime} & Z^{\prime}
\end{array}\right) \in D^{\left(q+p^{\prime}\right) \times\left(p+q^{\prime}\right)}
$$

3 If R and R^{\prime} have full row rank, then $q+p^{\prime}=p+q^{\prime}$,

$$
\begin{array}{r}
W \in \mathrm{GL}_{\left(q+p^{\prime}\right)}(D), \quad W^{-1}=\left(\begin{array}{cc}
Z & -P \\
Q^{\prime} & R^{\prime}
\end{array}\right) \text { and } \\
\operatorname{diag}\left(I_{p}, R^{\prime}\right)=W^{-1} \operatorname{diag}\left(R, I_{p^{\prime}}\right) \cup
\end{array}
$$

Example: theory of linear elasticity (continued)

\diamond Here, we get:

$$
U=\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 \\
-\partial_{2} & 0 & -\partial_{2} & 1 & 0 \\
0 & -1 & 0 & 0 & 0
\end{array}\right) \in \operatorname{GL}_{5}(D)
$$

\diamond Moreover, the matrix W has the form:

$$
W=\left(\begin{array}{cccccccc}
\partial_{1} & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} \partial_{2} & \frac{1}{2} \partial_{1} & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \partial_{2} & 0 & 0 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\partial_{2} & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \in D^{6 \times 8} .
$$

\diamond Then $\operatorname{diag}\left(R, I_{3}\right) U=W \operatorname{diag}\left(I_{2}, R^{\prime}\right)$ but W is not unimodular.

The general case

Theorem

Let $R \in D^{q \times p}, R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ and $f \in \operatorname{iso}_{D}\left(M, M^{\prime}\right)$. With the previous notations and $s:=q+p^{\prime}+p+q^{\prime}$, we have

$$
\begin{aligned}
& L^{\prime}=Y^{-1} L X \quad \Leftrightarrow \quad L=Y L^{\prime} X^{-1} \\
& \text { where } L=\left(\begin{array}{cc}
R & 0 \\
0 & I_{p^{\prime}} \\
0 & 0 \\
0 & 0
\end{array}\right) \in D^{s \times\left(p+p^{\prime}\right)}, L^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
I_{p} & 0 \\
0 & R^{\prime}
\end{array}\right) \in D^{s \times\left(p+p^{\prime}\right)} \text {, } \\
& X=\left(\begin{array}{cc}
I_{p} & P \\
-P^{\prime} & I_{p^{\prime}}-P^{\prime} P
\end{array}\right), \quad X^{-1}=\left(\begin{array}{cc}
I_{p}-P P^{\prime} & -P \\
P^{\prime} & I_{P^{\prime}}
\end{array}\right) \text {, } \\
& Y=\left(\begin{array}{cccc}
I_{q} & 0 & R & Q \\
0 & I_{p^{\prime}} & -P^{\prime} & Z^{\prime} \\
-Z & P & 0 & P Z^{\prime}-Z Q \\
-Q^{\prime} & -R^{\prime} & 0 & Z_{2}^{\prime} R_{2}^{\prime}
\end{array}\right), Y^{-1}=\left(\begin{array}{cccc}
Z_{2} R_{2} & 0 & -R & -Q \\
P^{\prime} Z-Z^{\prime} Q^{\prime} & 0 & P^{\prime} & -Z^{\prime} \\
Z & -P & I_{p} & 0 \\
Q^{\prime} & R^{\prime} & 0 & I_{q^{\prime}}
\end{array}\right)
\end{aligned}
$$

Example: theory of 2D linear elasticity (continued)

\diamond Here, we get

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \partial_{1} & 0 & 0 \\
0 & 0 & \partial_{2} & -1 & 0 \\
0 & 0 & 0 & \partial_{1} & 0 \\
0 & 0 & 0 & 1 & \partial_{1} \\
0 & 0 & 0 & 0 & \partial_{2} \\
0 & 0 & 0 & \partial_{2} & 0
\end{array}\right)=Y^{-1}\left(\begin{array}{ccccc}
\partial_{1} & 0 & 0 & 0 & 0 \\
\frac{1}{2} \partial_{2} & \frac{1}{2} \partial_{1} & 0 & 0 & 0 \\
0 & \partial_{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) X,
$$

where $X \in \mathrm{GL}_{5}(D)$ and $Y \in \mathrm{GL}_{14}(D)$ are given by:

Example: theory of 2D linear elasticity (continued)

$$
X=\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 \\
-\partial_{2} & 0 & -\partial_{2} & 1 & 0 \\
0 & -1 & 0 & 0 & 0
\end{array}\right)
$$

$$
Y=
$$

$$
\left(\begin{array}{cccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \partial_{1} & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & \frac{1}{2} \partial_{2} & \frac{1}{2} \partial_{1} & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & \partial_{2} & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\partial_{2} & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & -\partial_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\partial_{2} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\partial_{2} & 0 & 0 & 0 & -\partial_{1} & 0 & 0 & 0 & -\partial_{2} & \partial_{1} & 1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & -1 & -\partial_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & -\partial_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 \partial_{2} & \partial_{1} & 0 & -\partial_{2} & 0 & 0 & 0 & 0 & 0 & 0 & -\partial_{2} & \partial_{1} & 1
\end{array}\right) .
$$

Work in progress

\diamond Reduction of the size of 0 and $/$ blocks using stable range hypotheses (constructive version of Warfield's results).

The OreMorphisms package

\diamond Algorithms are implemented in a Maple package called OreMorphisms based on the library OreModules developed by Q. et Robertz:
http://wwwb.math.rwth-aachen.de/OreModules
\diamond It is freely available with a library of examples at:
http://www.ensil.unilim.fr/~cluzeau/OreMorphisms

