Parametric polynomial systems and linkages

Guillaume Moroz

Inria Nancy - Grand Est

Supelec, February 18, 2015

Guillaume Moroz (Inria Nancy - Grand Est) Parametric polynomial systems and linkages Supelec, February 18, 2015 1 / 32

Linkages

A3

 $\theta_1 <$

Image: Image:

문 🛌 🖻

Parallel <u>P</u>R-<u>P</u>RR

Actuator variables

- *r*₁, *r*₂
- Pose variables

• *x*, *y*

Passive variables

• θ_1, θ_2

Equations

$$(F) \begin{cases} x = \cos(\frac{2\pi}{3})r_1 + \cos(\theta_1) \\ x = 1 + \cos(\frac{\pi}{3})r_2 + \cos(\theta_2) \\ y = \sin(\frac{2\pi}{3})r_1 + \sin(\theta_1) \\ y = 1 + \sin(\frac{\pi}{3})r_2 + \sin(\theta_2) \end{cases}$$

$$S : \begin{cases} f_1(\underline{T}, \underline{X}) = 0 \\ \vdots & \text{and} \\ f_k(\underline{T}, \underline{X}) = 0 \end{cases} \begin{cases} g_1(\underline{T}, \underline{X}) \neq 0 \\ \vdots \\ g_r(\underline{T}, \underline{X}) \neq 0 \end{cases}$$
$$f_i, g_j \in \mathbb{Q}[\underbrace{T_1, \cdots, T_s}_{parameters}, \underbrace{X_1, \cdots, X_n}_{unknowns}]$$

- Parametric system S
- Solutions: $\mathcal{C} \subset \mathbb{C}^{s} \times \mathbb{C}^{n}$

Parametric system

$$S_{\underline{t_0}}: \begin{cases} f_1(\underline{t_0}, \underline{X}) = 0 \\ \vdots & \text{and} \\ f_k(\underline{t_0}, \underline{X}) = 0 \end{cases} \begin{cases} g_1(\underline{t_0}, \underline{X}) \neq 0 \\ \vdots \\ g_r(\underline{t_0}, \underline{X}) \neq 0 \end{cases}$$
$$f_i, g_j \in \mathbb{Q}[\underbrace{T_1, \cdots, T_s}_{parameters}, \underbrace{X_1, \cdots, X_n}_{unknowns}]$$

- Parametric system S
- Solutions: $\mathcal{C} \subset \mathbb{C}^s \times \mathbb{C}^n$
- For almost all $\underline{t_0} \in \mathbb{C}^s$: S_{t_0} has finitely many complex solutions.

- Parametric system S
- Solutions: $\mathcal{C} \subset \mathbb{C}^s \times \mathbb{C}^n$
- For almost all $\underline{t_0} \in \mathbb{C}^s$: S_{t_0} has finitely many complex solutions.

In the applications we are interested in $\mathcal{C}_{\mathbb{R}} \subset \mathbb{R}^{s} \times \mathbb{R}^{n}$

Parametric system

- Parametric system S
- Solutions: $\mathcal{C} \subset \mathbb{C}^s \times \mathbb{C}^n$
- For almost all $\underline{t_0} \in \mathbb{C}^s$: S_{t_0} has finitely many complex solutions.

In the applications we are interested in $\mathcal{C}_{\mathbb{R}} \subset \mathbb{R}^{s} \times \mathbb{R}^{n}$

Robotics: Parallel robots

Vision: Camera calibration

Academic: Haas systems

[McAree, Daniel, Wenger, Chablat, ...]

[Gao, Tang, Yang, ...]

[Dickenstein, Rojas, Rusek, Shih]

General problem: classification of the parameters' space

- Number of solutions of S_{t_0} depends on t_0
- \Rightarrow Classification of the parameters

State of the art (non exhaustive)

- Collins (1970): Cylindrical Algebraic Decomposition
 - Implementations (QEPCAD, Redlog, Mathematica, ...) , Efficient in practice for less than 3 variables
 - Worst case doubly exponential in the number of variables
- Weispfenning (1992): Comprehensive Gröbner bases
 - Implementations (Singular, Maple, Risa/Asir, ...)
 - Time complexity not well understood
- Grigoriev, Vorobjov (1999): Maps of vector of multiplicities
 - Time complexity analysis
 - Difficult to implement efficiently
- Lazard, Rouillier (2004): Minimal discriminant variety
 - Computed with Gröbner bases and CAD
 - Relatively efficient in practice and in theory under some assumptions
 - General case: combinatorial factors spoiled practical efficiency

Discriminant variety and classification

Guillaume Moroz (Inria Nancy - Grand Est) Parametric polynomial systems and linkages Supelec, February 18, 2015 7 / 32

$$S : \begin{cases} f_1(\underline{T}, \underline{X}) = 0 \\ \vdots \\ f_k(\underline{T}, \underline{X}) = 0 \end{cases} \begin{cases} g_1(\underline{T}, \underline{X}) \neq 0 \\ \vdots \\ g_r(\underline{T}, \underline{X}) \neq 0 \end{cases}$$
$$f_i, g_j \in \mathbb{Q}[\underline{T_1, \cdots, T_s}, \underbrace{X_1, \cdots, X_n}] \\ parameters & unknowns \end{cases}$$
$$\bullet \pi : \ \mathcal{C} = V(S) \rightarrow \mathbb{C}^s \text{ canonical projection} \\ (\underline{t}, \underline{x}) \mapsto \underline{t} \end{cases}$$
Definition: covering map
Given a connected open set $U \subset \mathbb{C}^s$, we say that (π, U) is a covering map if
 $\bullet \pi^{-1}(U) = \mathcal{C}_1 \cup \cdots \cup \mathcal{C}_m$

•
$$\pi_{|\mathcal{C}_i}: \mathcal{C}_i \to U$$
 is a diffeomorpism

•
$$C_i \cup C_j = \emptyset$$

6

•
$$\pi$$
 : $\mathcal{C} = V(S) \rightarrow \mathbb{C}^s$ canonical projection
 $(\underline{t}, \underline{x}) \mapsto \underline{t}$

Definition: covering map

Given a connected open set $U \subset \mathbb{C}^s$, we say that (π, U) is a covering map if:

•
$$\pi^{-1}(U) = \mathcal{C}_1 \cup \cdots \cup \mathcal{C}_m$$

•
$$\pi_{|\mathcal{C}_i}: \mathcal{C}_i \to U$$
 is a diffeomorpism

•
$$C_i \cup C_j = \emptyset$$

•
$$\pi: \mathcal{C} = V(S) \rightarrow \mathbb{C}^{s}$$
 canonical projection
 $(\underline{t}, \underline{\mathbf{x}}) \mapsto \underline{t}$

Definition: covering map

Given a connected open set $U \subset \mathbb{C}^s$, we say that (π, U) is a covering map if:

•
$$\pi^{-1}(U) = \mathcal{C}_1 \cup \cdots \cup \mathcal{C}_m$$

•
$$\pi_{|\mathcal{C}_i}:\mathcal{C}_i o U$$
 is a diffeomorpism

•
$$C_i \cup C_j = \emptyset$$

Definition: Discriminant variety

 $D(\mathcal{C}) \subset \mathbb{C}^{s}$ s.t. for all connected open set $U \subset \mathbb{C}^{s} \setminus D(\mathcal{C})$

 (π, U) is a covering map

Guillaume Moroz (Inria Nancy - Grand Est) Parametric polynomial systems and linkages Supelec, February 18, 2015 8 / 32

Property of the complex discriminant variety in the real

For all connected open set $U \subset \mathbb{R}^s \setminus D(\mathcal{C})$

 $(\pi_{\mathbb{R}}, U)$ is a covering map

Number of real roots of $S_p^{\mathbb{R}}$ constant for all $p \in U$

Definition: Minimal discriminant variety

The intersection of all the discriminant varieties of S.

$$D_{min}(\mathcal{C}) = V(D_1(\underline{T}), \dots, D_m(\underline{T}))$$
$$D_i \in \mathbb{Q}[T_1, \dots, T_s]$$

$$D_{min}(\mathcal{C}) = \begin{cases} D_{ineq}(\mathcal{C}):\\ D_{\infty}(\mathcal{C}):\\ D_{mult}(\mathcal{C}):\\ D_{sd}(\mathcal{C}): \end{cases}$$

$$D_{min}(\mathcal{C}) = \begin{cases} D_{ineq}(\mathcal{C}) \\ D_{\infty}(\mathcal{C}): \\ D_{mult}(\mathcal{C}) \\ D_{sd}(\mathcal{C}): \end{cases}$$

projection of $\overline{\mathcal{C}} \cap \bigcup_i V(g_i(\underline{T}, \underline{X}))$ divergence of the solutions projection of the multiple solutions components of dimension < s

:

Describing the real roots with the discriminant variety

Guillaume Moroz (Inria Nancy - Grand Est) Parametric polynomial systems and linkages Supelec, February 18, 2015 10 / 32

Describing the real roots with the discriminant variety

Example

- 3-RPR: a 9-bar linkage
 - Parallel robot
 - r1 fixed
 - Parameter space Q: r₂, r₃
 - Workspace W: $B_{1x}, B_{1y}, \alpha_x, \alpha_y$
 - Constraint equations:

$$f_1 = f_2 = f_3 = f_4 = 0$$

• Discriminant variety and partition of Q

Cuspidal points

System (S): $I: \begin{cases} f_1 = 0 \\ f_2 = 0 \\ f_3 = 0 \\ f_4 = 0 \end{cases}$

$$\mathcal{J}(I): \underline{j_0}:= \det(\vec{df_1}, \vec{df_2}, \vec{df_3}, \vec{df_4}) = 0$$

• • = • • = •

2

$$\mathcal{J}(I+\mathcal{J}(I)): \begin{cases} j_0 := \det(\vec{df_1}, \vec{df_2}, \vec{df_3}, \vec{df_4}) = 0\\ j_1 := \det(\vec{df_1}, \vec{df_2}, \vec{df_3}, \vec{df_9}) = 0\\ j_2 := \det(\vec{df_1}, \vec{df_2}, \vec{df_9}, \vec{df_4}) = 0\\ j_3 := \det(\vec{df_1}, \vec{df_2}, \vec{df_3}, \vec{df_4}) = 0\\ j_4 := \det(\vec{df_9}, \vec{df_2}, \vec{df_3}, \vec{df_4}) = 0 \end{cases}$$

Cuspidal points

System (S): $J(I) : j_{0} := \det(\vec{df_{1}}, \vec{df_{2}}, \vec{df_{3}}, \vec{df_{4}}) = 0$ $f_{2} = 0$ $f_{3} = 0$ $f_{4} = 0$ $J(I + J(I)) : \begin{cases} j_{0} := \det(\vec{df_{1}}, \vec{df_{2}}, \vec{df_{3}}, \vec{df_{4}}) = 0 \\ j_{1} := \det(\vec{df_{1}}, \vec{df_{2}}, \vec{df_{3}}, \vec{df_{4}}) = 0 \\ j_{2} := \det(\vec{df_{1}}, \vec{df_{2}}, \vec{df_{3}}, \vec{df_{4}}) = 0 \\ j_{3} := \det(\vec{df_{1}}, \vec{df_{2}}, \vec{df_{3}}, \vec{df_{4}}) = 0 \\ j_{4} := \det(\vec{df_{1}}, \vec{df_{2}}, \vec{df_{3}}, \vec{df_{4}}) = 0 \end{cases}$

- Curve in \mathbb{C}^7 (determinantal ideal)
- Description:
 - r₁ : parameter
 - $r_2, r_3, t_x, t_y, u_x, u_y$: unknowns
 - $N: x \mapsto #\{\text{real solutions of } (S) \text{ for } r_1 = x\}$

▲ 東 ▶ | ▲ 更 ▶

10 cuspidal points

Guillaume Moroz (Inria Nancy - Grand Est) Parametric polynomial systems and linkages Supelec, February 18, 2015 14 / 32

э

11-bar linkage

Guillaume Moroz (Inria Nancy - Grand Est) Parametric polynomial systems and linkages Supelec, February 18, 2015 15 / 32

æ

3

Planar rigid linkage

- Several assembly modes
- Number depends on *c_{ij}*
- Max number of assembly modes?

Properties of minimally rigid linkages

• Construction steps

Henneberg steps: H_1 and H_2

• 3-bar rigid linkage

• Construction steps

Henneberg steps: H_1 and H_2

• 5-bar rigid linkage

• Construction steps

Henneberg steps: H_1 and H_2

• 7-bar rigid linkage

• Construction steps

Henneberg steps: H_1 and H_2

• 9-bar rigid linkage

• Construction steps

Henneberg steps: H_1 and H_2

• 11-bar rigid linkage

Properties known before [Emiris and M. 11]

Maximal number of assembly modes

bars	3	5	7	9	11	13	15	17
upper	2	4	8	24	64	128	512	2048
lower	2	4	8	24	48	96	288	576

Theorem

A linkage is minimally rigid \Leftrightarrow It is constructed with H_1 and H_2

Corollary

$$#Links = 2#Joints - 3$$

Outline

- Upper Bound
 - Algebraic Modeling
 - Mixed Volume
- 2 Lower Bound
 - Adaptive Sampling

э

Algebraic Modeling I

c_{ij}: 10 parameters *x_i*, *y_i*: 14 variables

$$x_1 = 0, y_1 = 0 x_2 = 1, y_2 = 0$$

$$\begin{cases} x_3^2 + y_3^2 = c_{13} \\ (x_3 - 1)^2 + y_3^2 = c_{23} \\ (x_5 - 1)^2 + y_5^2 = c_{25} \\ (x_6 - x_3)^2 + (y_6 - y_3)^2 = c_{36} \\ x_4^2 + y_4^2 = c_{14} \end{cases} \begin{cases} x_7^2 + y_7^2 = c_{17} \\ (x_6 - x_4)^2 + (y_6 - y_4)^2 = c_{46} \\ (x_5 - x_6)^2 + (y_5 - y_6)^2 = c_{56} \\ (x_7 - x_5)^2 + (y_7 - y_5)^2 = c_{57} \\ (x_4 - x_7)^2 + (y_4 - y_7)^2 = c_{47} \end{cases}$$

Guillaume Moroz (Inria Nancy - Grand Est) Parametric polynomial systems and linkages Supelec, February 18, 2015 24 / 32

Number of solutions

• Mixed Volume: *n*! *Volume*(*Support*)

• Our system: 2¹⁰

Guillaume Moroz (Inria Nancy - Grand Est) Parametric polynomial systems and linkages Supelec, February 18, 2015 25 / 32

Algebraic Modeling II

Distance matrix

		v_1	<i>v</i> ₂	V3	V4	<i>V</i> 5	V ₆	V7	
	Γ0	1	1	1	1	1	1	1	1
v_1	1	0	<i>c</i> ₁₂	<i>c</i> ₁₃	<i>c</i> ₁₄	<i>x</i> ₁₅	<i>x</i> ₁₆	<i>c</i> ₁₇	
<i>v</i> ₂	1	<i>c</i> ₁₂	0	<i>c</i> ₂₃	<i>x</i> ₂₄	<i>C</i> 25	<i>x</i> ₂₆	<i>x</i> 27	
V3	1	<i>c</i> ₁₃	<i>c</i> ₂₃	0	<i>x</i> 34	<i>x</i> 35	<i>c</i> ₃₆	X37	
V4	1	<i>C</i> ₁₄	<i>x</i> ₂₄	<i>x</i> 34	0	X45	C 46	C 47	
<i>V</i> 5	1	<i>x</i> ₁₅	<i>C</i> 25	<i>x</i> 35	X45	0	<i>C</i> 56	<i>C</i> 57	
v ₆	1	<i>x</i> ₁₆	x ₂₆	<i>c</i> ₃₆	<i>c</i> 46	<i>c</i> ₅₆	0	x ₆₇	
V7	[1	<i>c</i> ₁₇	x ₂₇	x ₃₇	C47	<i>C</i> 57	x ₆₇	0	

Theorem

The distance matrix has rank 4.

Corollary

All the 5x5 minors vanish.

Guillaume Moroz (Inria Nancy - Grand Est) Parametric polynomial systems and linkages Supelec, February 18, 2015

Algebraic Modeling II

- Upper Bound
 - Mixed volume: 56
- Lower Bound?

Adaptive Sampling

- Uniform sampling
 - No linkage found with 56 assembly modes
- Adaptive sampling
 - Simulated annealing
 - Cross-Entropy Method

Results

• Random simulations for different sampling methods

Uniform	Simulated annealing	Cross-entropy
44 (572)	52 (17)	52 (199)
42 (196)	54 (247)	54 (132)
48 (27)	48 (362)	52 (186)
44 (200)	52 (14)	54 (130)
42 (200)	54 (547)	<mark>56</mark> (497)
44 (424)	54 (315)	<mark>56</mark> (328)
46 (48)	<mark>56</mark> (425)	<mark>56</mark> (454)
42 (170)	50 (585)	54 (375)
42 (18)	54 (26)	<mark>56</mark> (552)
46 (366)	52 (474)	<mark>56</mark> (355)
42 (18) 46 (366)	54 (26) 52 (474)	56 (552) 56 (355)

3

Results

Guillaume Moroz (Inria Nancy - Grand Est) Parametric polynomial systems and linkages Supelec, February 18, 2015 30 / 32

イロト イポト イヨト イヨト

3

Conclusion

• 9-bar linkage

- Discriminant variety can be computed:
 - on the equation constraints
 - on the cuspidal equation constraints
- Classification of the parameter space
- 11-bar linkage
 - No complete classification of the parameter space
 - Distance matrices and mixed volume:
 - at most 56 assembly modes
 - simulated annealing and cross entropy method:
 - a 11-bar linkage with exactly 56 assembly modes
- *n* vertices linkage
 - State-of-the-art: $\Omega(2.89^n)$ and $O(4^n)$ possible embeddings
 - New lower bound: $\Omega(2.3^n)$

Merci !

Guillaume Moroz (Inria Nancy - Grand Est) Parametric polynomial systems and linkages Supelec, February 18, 2015 32 / 32

★ Ξ ► < Ξ ►</p>

2