Parametric polynomial systems and linkages

Guillaume Moroz

Inria Nancy - Grand Est

Supelec, February 18, 2015

Linkages

Modeling

Parallel PR-PRR

- Actuator variables
- r_{1}, r_{2}
- Pose variables
- x, y
- Passive variables

- θ_{1}, θ_{2}
- Equations

$$
(F)\left\{\begin{array}{l}
x=\cos \left(\frac{2 \pi}{3}\right) r_{1}+\cos \left(\theta_{1}\right) \\
x=1+\cos \left(\frac{\pi}{3}\right) r_{2}+\cos \left(\theta_{2}\right) \\
y=\sin \left(\frac{2 \pi}{3}\right) r_{1}+\sin \left(\theta_{1}\right) \\
y=1+\sin \left(\frac{\pi}{3}\right) r_{2}+\sin \left(\theta_{2}\right)
\end{array}\right.
$$

Parametric system

$$
\begin{gathered}
S:\left\{\begin{array} { c }
{ f _ { 1 } (\underline { T } , \underline { X }) = 0 } \\
{ \vdots } \\
{ f _ { k } (\underline { T } , \underline { X }) = 0 }
\end{array} \text { and } \left\{\begin{array}{c}
g_{1}(\underline{T}, \underline{X}) \neq 0 \\
\vdots \\
g_{r}(\underline{T}, \underline{X}) \neq 0
\end{array}\right.\right. \\
f_{i}, g_{j} \in \mathbb{Q}[\underbrace{T_{1}, \cdots, T_{s}}_{\text {parameters }}, \underbrace{\left.X_{1}, \cdots, X_{n}\right]}_{\text {unknowns }}
\end{gathered}
$$

- Parametric system S
- Solutions: $\mathcal{C} \subset \mathbb{C}^{s} \times \mathbb{C}^{n}$

Parametric system

$$
\begin{gathered}
S_{t_{0}}:\left\{\begin{array} { c }
{ f _ { 1 } (\underline { t _ { 0 } } , \underline { X }) = 0 } \\
{ \vdots } \\
{ f _ { k } (\underline { t _ { 0 } } , \underline { X }) = 0 }
\end{array} \text { and } \quad \left\{\begin{array}{c}
g_{1}\left(\underline{t_{0}}, \underline{X}\right) \neq 0 \\
\vdots \\
g_{r}\left(\underline{t_{0}}, \underline{X}\right) \neq 0
\end{array}\right.\right. \\
f_{i}, g_{j} \in \mathbb{Q}[\underbrace{T_{1}, \cdots, T_{s}}_{\text {parameters }}, \underbrace{\left.X_{1}, \cdots, X_{n}\right]}_{\text {unknowns }}
\end{gathered}
$$

- Parametric system S
- Solutions: $\mathcal{C} \subset \mathbb{C}^{s} \times \mathbb{C}^{n}$
- For almost all $\underline{t_{0}} \in \mathbb{C}^{s}: S_{\underline{t_{0}}}$ has finitely many complex solutions.

Parametric system

$$
\begin{gathered}
S^{\mathbb{R}}:\left\{\begin{array} { c }
{ f _ { 1 } (\underline { T } , \underline { X }) = 0 } \\
{ \vdots } \\
{ f _ { k } (\underline { T } , \underline { X }) = 0 }
\end{array} \text { and } \left\{\begin{array}{c}
g_{1}(\underline{T}, \underline{X})>0 \\
\vdots \\
g_{r}(\underline{I}, \underline{X})>0
\end{array}\right.\right. \\
f_{i}, g_{j} \in \mathbb{Q}[\underbrace{T_{1}, \cdots, T_{s}}_{\text {parameters }}, \underbrace{\left.X_{1}, \cdots, X_{n}\right]}_{\text {unknowns }}
\end{gathered}
$$

- Parametric system S
- Solutions: $\mathcal{C} \subset \mathbb{C}^{s} \times \mathbb{C}^{n}$
- For almost all $\underline{t_{0}} \in \mathbb{C}^{s}: S_{\underline{t_{0}}}$ has finitely many complex solutions.

In the applications we are interested in $\mathcal{C}_{\mathbb{R}} \subset \mathbb{R}^{s} \times \mathbb{R}^{n}$

Parametric system

- Parametric system S
- Solutions: $\mathcal{C} \subset \mathbb{C}^{s} \times \mathbb{C}^{n}$
- For almost all $\underline{t_{0}} \in \mathbb{C}^{s}: S_{t_{0}}$ has finitely many complex solutions.

In the applications we are interested in $\mathcal{C}_{\mathbb{R}} \subset \mathbb{R}^{s} \times \mathbb{R}^{n}$

Applications and general problem

Robotics: Parallel robots
[McAree, Daniel, Wenger, Chablat, ...]

Vision: Camera calibration
[Gao, Tang, Yang, ...]
Academic: Haas systems
[Dickenstein, Rojas, Rusek, Shih]

General problem: classification of the parameters' space

- Number of solutions of $S_{t_{0}}$ depends on $\underline{t_{0}}$
\Longrightarrow Classification of the parameters

State of the art (non exhaustive)

- Collins (1970): Cylindrical Algebraic Decomposition
- Implementations (QEPCAD, Redlog, Mathematica, ...), Efficient in practice for less than 3 variables
- Worst case doubly exponential in the number of variables
- Weispfenning (1992): Comprehensive Gröbner bases
- Implementations (Singular, Maple, Risa/Asir, ...)
- Time complexity not well understood
- Grigoriev, Vorobjov (1999): Maps of vector of multiplicities
- Time complexity analysis
- Difficult to implement efficiently
- Lazard, Rouillier (2004): Minimal discriminant variety
- Computed with Gröbner bases and CAD
- Relatively efficient in practice and in theory under some assumptions
- General case: combinatorial factors spoiled practical efficiency

Discriminant variety and classification

Discriminant variety

$$
\begin{gathered}
S:\left\{\begin{array} { c }
{ f _ { 1 } (\underline { T } , \underline { X }) = 0 } \\
{ \vdots } \\
{ f _ { k } (I , \underline { X }) = 0 }
\end{array} \quad \left\{\begin{array}{c}
g_{1}(\underline{T}, \underline{X}) \neq 0 \\
\vdots \\
g_{r}(T, \underline{X}) \neq 0
\end{array}\right.\right. \\
f_{i}, g_{j} \in \mathbb{Q}[\underbrace{T_{1}, \cdots, T_{s}}_{\text {parameters }}, \underbrace{\left.X_{1}, \cdots, X_{n}\right]}_{\text {unknowns }}
\end{gathered}
$$

- $\pi: \mathcal{C}=V(S) \rightarrow \mathbb{C}^{S}$ canonical projection

$$
(\underline{t}, \underline{x}) \mapsto \underline{t}
$$

Definition: covering map

Given a connected open set $U \subset \mathbb{C}^{s}$, we say that (π, U) is a covering map if:

- $\pi^{-1}(U)=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{m}$
- $\pi_{\mid \mathcal{C}_{i}}: \mathcal{C}_{i} \rightarrow U$ is a diffeomorpism
- $\mathcal{C}_{i} \cup \mathcal{C}_{j}=\emptyset$

Discriminant variety

- $\pi: \mathcal{C}=V(S) \rightarrow \mathbb{C}^{S}$ canonical projection $(\underline{t}, \underline{x}) \mapsto \underline{t}$

Definition: covering map

Given a connected open set $U \subset \mathbb{C}^{s}$, we say that (π, U) is a covering map if:

- $\pi^{-1}(U)=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{m}$
- $\pi_{\mid \mathcal{C}_{i}}: \mathcal{C}_{i} \rightarrow U$ is a diffeomorpism
- $\mathcal{C}_{i} \cup \mathcal{C}_{j}=\emptyset$

Discriminant variety

- $\pi: \mathcal{C}=V(S) \rightarrow \mathbb{C}^{s}$ canonical projection $(\underline{t}, \underline{x}) \mapsto \underline{t}$

Definition: covering map

Given a connected open set $U \subset \mathbb{C}^{s}$, we say that (π, U) is a covering map if:

- $\pi^{-1}(U)=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{m}$
- $\pi_{\mid \mathcal{C}_{i}}: \mathcal{C}_{i} \rightarrow U$ is a diffeomorpism
- $\mathcal{C}_{i} \cup \mathcal{C}_{j}=\emptyset$

Discriminant variety

Definition: Discriminant variety

$D(\mathcal{C}) \subset \mathbb{C}^{s}$ s.t. for all connected open set $U \subset \mathbb{C}^{s} \backslash D(\mathcal{C})$
(π, U) is a covering map

Discriminant variety

Property of the complex discriminant variety in the real
For all connected open set $U \subset \mathbb{R}^{s} \backslash D(\mathcal{C})$

$$
\left(\pi_{\mathbb{R}}, U\right) \text { is a covering map }
$$

Number of real roots of $S_{p}^{\mathbb{R}}$ constant for all $p \in U$

Discriminant variety

Definition: Minimal discriminant variety

The intersection of all the discriminant varieties of S.

$$
\begin{gathered}
D_{\min }(\mathcal{C})=V\left(D_{1}(\underline{T}), \ldots, D_{m}(\underline{T})\right) \\
D_{i} \in \mathbb{Q}\left[T_{1}, \ldots, T_{s}\right]
\end{gathered}
$$

Discriminant variety

- Different components:

$$
D_{\min }(\mathcal{C})= \begin{cases}D_{\text {ineq }}(\mathcal{C}): & \text { projection of } \overline{\mathcal{C}} \cap \cup_{i} V\left(g_{i}(\underline{T}, \underline{X})\right) \\ D_{\infty}(\mathcal{C}): & \text { divergence of the solutions } \\ D_{\text {mult }}(\mathcal{C}): & \text { projection of the multiple solutions } \\ D_{s d}(\mathcal{C}): & \text { components of dimension }<s\end{cases}
$$

Discriminant variety

- Different components:

$$
D_{\min }(\mathcal{C})= \begin{cases}D_{\text {ineq }}(\mathcal{C}): & \text { projection of } \overline{\mathcal{C}} \cap \cup_{i} V\left(g_{i}(\underline{T}, \underline{X})\right) \\ D_{\infty}(\mathcal{C}): & \text { divergence of the solutions } \\ D_{\text {mult }}(\mathcal{C}): & \text { projection of the multiple solutions } \\ D_{s d}(\mathcal{C}): & \text { components of dimension }<s\end{cases}
$$

Discriminant variety

- Different components:

$$
D_{\min }(\mathcal{C})= \begin{cases}D_{\text {ineq }}(\mathcal{C}): & \text { projection of } \overline{\mathcal{C}} \cap \cup_{i} V\left(g_{i}(\underline{T}, \underline{X})\right) \\ D_{\infty}(\mathcal{C}): & \text { divergence of the solutions } \\ D_{\text {mult }}(\mathcal{C}): & \text { projection of the multiple solutions } \\ D_{s d}(\mathcal{C}): & \text { components of dimension }<s\end{cases}
$$

Discriminant variety

- Different components:

$$
D_{\min }(\mathcal{C})= \begin{cases}D_{\text {ineq }}(\mathcal{C}): & \text { projection of } \overline{\mathcal{C}} \cap \cup_{i} V\left(g_{i}(\underline{T}, \underline{X})\right) \\ D_{\infty}(\mathcal{C}): & \text { divergence of the solutions } \\ D_{\text {mult }}(\mathcal{C}): & \text { projection of the multiple solutions } \\ D_{s d}(\mathcal{C}): & \text { components of dimension }<s\end{cases}
$$

Discriminant variety

- Different components:

$$
D_{\min }(\mathcal{C})= \begin{cases}D_{\text {ineq }}(\mathcal{C}): & \text { projection of } \overline{\mathcal{C}} \cap \cup_{i} V\left(g_{i}(\underline{T}, \underline{X})\right) \\ D_{\infty}(\mathcal{C}): & \text { divergence of the solutions } \\ D_{\text {mult }}(\mathcal{C}): & \text { projection of the multiple solutions } \\ D_{s d}(\mathcal{C}): & \text { components of dimension }<s\end{cases}
$$

Describing the real roots with the discriminant variety

Input

Output

Describing the real roots with the discriminant variety

Input

Output

Example

- 3-RPR: a 9-bar linkage
- Parallel robot
- r_{1} fixed
- Parameter space $\mathrm{Q}: r_{2}, r_{3}$
- Workspace $\mathrm{W}: B_{1_{x}}, B_{1 y}, \alpha_{x}, \alpha_{y}$
- Constraint equations:

$$
f_{1}=f_{2}=f_{3}=f_{4}=0
$$

- Discriminant variety and partition of Q

Cuspidal points

System (S):

$$
I:\left\{\begin{array}{l}
f_{1}=0 \\
f_{2}=0 \\
f_{3}=0 \\
f_{4}=0
\end{array}\right.
$$

$$
\begin{aligned}
& \mathcal{J}(I): j_{0}:=\operatorname{det}\left(\overrightarrow{d f_{1}}, \overrightarrow{d f_{2}}, \overrightarrow{d f_{3}}, \overrightarrow{d f_{4}}\right)=0 \\
& \mathcal{J}(I+\mathcal{J}(I)):\left\{\begin{array}{l}
j_{0} \\
j_{1}
\end{array}:=\operatorname{det}\left(\vec{d}_{1}, \overrightarrow{d f_{2}}, \overrightarrow{d f_{3}}, \overrightarrow{d f_{4}}\right)=0\right. \\
& j_{2}:=\operatorname{det}\left(\vec{f}_{1}, \overrightarrow{d f_{1}}, \overrightarrow{d f_{1}}, \overrightarrow{d f_{2}}, \overrightarrow{d j_{0}}, \overrightarrow{d f_{4}}\right)=0 \\
& j_{3}:=\operatorname{det}\left(\overrightarrow{d f_{1}}, \overrightarrow{d j_{0}}, \overrightarrow{d f_{3}}, \overrightarrow{d f_{4}}\right)=0 \\
& j_{4}:=\operatorname{det}\left(d \overrightarrow{d j}_{0}, \overrightarrow{d f_{2}}, \overrightarrow{d f_{3}}, \overrightarrow{d f_{4}}\right)=0
\end{aligned}
$$

Cuspidal points

System (S):
I: $\left\{\begin{array}{l}f_{1}=0 \\ f_{2}=0 \\ f_{3}=0 \\ f_{4}=0\end{array}\right.$

$$
\begin{array}{r}
\mathcal{J}(I): j_{0}:=\operatorname{det}\left(d \vec{f}_{1}, d \vec{f}_{2}, d \vec{f}_{3}, d \vec{f}_{4}\right)=0 \\
\mathcal{J}(I+\mathcal{J}(I)):\left\{\begin{array}{l}
j_{0}:=\operatorname{det}\left(\overrightarrow{d f_{1}}, \overrightarrow{d f_{2}}, \vec{d} \vec{d}_{3}, d \vec{f}_{4}\right)=0 \\
j_{1}:=\operatorname{det}\left(d \vec{f}_{1}, d \vec{f}_{2}, d \vec{f}_{3}, d \vec{j}_{0}\right)=0 \\
j_{2}:=\operatorname{det}\left(d f_{1}, d f_{2}, d j_{0}, d \vec{f}_{4}\right)=0 \\
j_{3}:=\operatorname{det}\left(d \vec{f}_{1}, d \overrightarrow{d j}_{j}, d \vec{f}_{3}, d \vec{f}_{4}\right)=0 \\
j_{4}:=\operatorname{det}\left(d \vec{j}_{0}, d \vec{f}_{2}, d \vec{f}_{3}, d \vec{f}_{4}\right)=0
\end{array}\right.
\end{array}
$$

- Curve in \mathbb{C}^{7} (determinantal ideal)
- Description:
- r_{1} : parameter
- $r_{2}, r_{3}, t_{x}, t_{y}, u_{x}, u_{y}$: unknowns
- $N: x \mapsto \#\left\{\right.$ real solutions of (S) for $\left.r_{1}=x\right\}$

Classification of cuspidal configurations

10 cuspidal points

11-bar linkage

Planar rigid linkage

3-bar

5-bar

11-bar

Constraints

- Fixed length bars: $c_{i j}$
- Free revolute joints
- Zero degree of freedom

- Several assembly modes
- Number depends on $c_{i j}$
- Max number of assembly modes?

Properties of minimally rigid linkages

- Construction steps

Henneberg steps: H_{1} and H_{2}

- 3-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

Henneberg steps: H_{1} and H_{2}

- 5-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

Henneberg steps: H_{1} and H_{2}

- 7-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

Henneberg steps: H_{1} and H_{2}

- 9-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

Henneberg steps: H_{1} and H_{2}

- 11-bar rigid linkage

Properties known before [Emiris and M. 11]

Maximal number of assembly modes

bars	3	5	7	9	11	13	15	17
upper	2	4	8	24	64	128	512	2048
lower	2	4	8	24	48	96	288	576

Theorem

A linkage is minimally rigid \Leftrightarrow It is constructed with H_{1} and H_{2}

Corollary

$$
\# \text { Links }=2 \# \text { Joints }-3
$$

Outline

(1) Upper Bound

- Algebraic Modeling
- Mixed Volume
(2) Lower Bound
- Adaptive Sampling

Algebraic Modeling I

- $c_{i j}: 10$ parameters
- $x_{i}, y_{i}: 14$ variables

$$
\left\{\begin{array}{l}
x_{1}=0, y_{1}=0 \\
x_{2}=1, y_{2}=0
\end{array}\right.
$$

$$
\left\{\begin{array} { r l }
{ x _ { 3 } ^ { 2 } + y _ { 3 } ^ { 2 } } & { = c _ { 1 3 } } \\
{ (x _ { 3 } - 1) ^ { 2 } + y _ { 3 } ^ { 2 } } & { = c _ { 2 3 } } \\
{ (x _ { 5 } - 1) ^ { 2 } + y _ { 5 } ^ { 2 } } & { = c _ { 2 5 } } \\
{ (x _ { 6 } - x _ { 3 }) ^ { 2 } + (y _ { 6 } - y _ { 3 }) ^ { 2 } + y _ { 7 } ^ { 2 } } & { = c _ { 3 6 } } \\
{ x _ { 4 } ^ { 2 } + y _ { 4 } ^ { 2 } } & { = c _ { 1 7 } }
\end{array} \quad \left\{\begin{array} { r l }
{ }
\end{array} \quad \left\{\begin{array} { r l }
{ }
\end{array} \quad \left\{\begin{array}{rl}
\\
\left(x_{6}-x_{4}\right)^{2}+\left(y_{6}-y_{4}\right)^{2} & =c_{46} \\
\left(x_{5}-x_{6}\right)^{2}+\left(y_{5}-y_{6}\right)^{2} & =c_{56} \\
\left(x_{7}-x_{5}\right)^{2}+\left(y_{7}-y_{5}\right)^{2} & =c_{57} \\
\left(x_{4}-x_{7}\right)^{2}+\left(y_{4}-y_{7}\right)^{2} & =c_{47}
\end{array}\right.\right.\right.\right.
$$

Number of solutions

- Mixed Volume: n! Volume(Support)

- Our system: 2^{10}

Algebraic Modeling II

- Distance matrix

$$
\begin{aligned}
& \\
& \\
& v_{1}
\end{aligned} v_{2} \quad v_{3} \quad v_{4} \quad v_{5} \quad v_{6} \quad v_{7} ~ 子 \begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4} \\
& v_{5} \\
& v_{6} \\
& v_{7}
\end{aligned}\left[\begin{array}{cccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & c_{12} & c_{13} & c_{14} & x_{15} & x_{16} & c_{17} \\
1 & c_{12} & 0 & c_{23} & x_{24} & c_{25} & x_{26} & x_{27} \\
1 & c_{13} & c_{23} & 0 & x_{34} & x_{35} & c_{36} & x_{37} \\
1 & c_{14} & x_{24} & x_{34} & 0 & x_{45} & c_{46} & c_{47} \\
1 & x_{15} & c_{25} & x_{35} & x_{45} & 0 & c_{56} & c_{57} \\
1 & x_{16} & x_{26} & c_{36} & c_{46} & c_{56} & 0 & x_{67} \\
1 & c_{17} & x_{27} & x_{37} & c_{47} & c_{57} & x_{67} & 0
\end{array}\right]
$$

Theorem

The distance matrix has rank 4.

Corollary

All the 5×5 minors vanish.

Algebraic Modeling II

$$
\left\{\begin{array}{l}
D(0,4,5,6,7)\left(c_{46}, c_{47}, c_{56}, c_{57}, x_{45}, x_{67}\right)=0 \\
D(0,1,4,6,7)\left(c_{14}, c_{17}, c_{46}, c_{47}, x_{16}, x_{67}\right)=0 \\
D(0,1,4,5,7)\left(c_{14}, c_{17}, c_{47}, c_{57}, x_{15}, x_{45}\right)=0 \\
D(0,1,2,3,5)\left(c_{12}, c_{13}, c_{25}, c_{23}, x_{15}, x_{35}\right)=0 \\
D(0,1,3,5,6)\left(c_{13}, c_{36}, c_{56}, x_{15}, x_{16}, x_{35}\right)=0
\end{array}\right.
$$

- Upper Bound
- Mixed volume: 56
- Lower Bound?

Adaptive Sampling

- Uniform sampling
- No linkage found with 56 assembly modes
- Adaptive sampling
- Simulated annealing
- Cross-Entropy Method

Step k
Step k+1

Results

- Random simulations for different sampling methods

Uniform	Simulated annealing	Cross-entropy
$44(572)$	$52(17)$	$52(199)$
$42(196)$	$54(247)$	$54(132)$
$48(27)$	$48(362)$	$52(186)$
$44(200)$	$52(14)$	$54(130)$
$42(200)$	$54(547)$	$56(497)$
$44(424)$	$54(315)$	$56(328)$
$46(48)$	$56(425)$	$56(454)$
$42(170)$	$50(585)$	$54(375)$
$42(18)$	$54(26)$	$56(552)$
$46(366)$	$52(474)$	$56(355)$

Results

coses)

Conclusion

- 9-bar linkage
- Discriminant variety can be computed:
- on the equation constraints
- on the cuspidal equation constraints
- Classification of the parameter space
- 11-bar linkage
- No complete classification of the parameter space
- Distance matrices and mixed volume:
- at most 56 assembly modes
- simulated annealing and cross entropy method:
- a 11-bar linkage with exactly 56 assembly modes
- n vertices linkage
- State-of-the-art: $\Omega\left(2.89^{n}\right)$ and $O\left(4^{n}\right)$ possible embeddings
- New lower bound: $\Omega\left(2.3^{n}\right)$

Merci!

