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Chemical reaction network theory (CRNT)

Chemical reaction networks with mass-action kinetics (MAK)
give rise to polynomial ODE systems with positive parameters

CRNT:

Uniqueness and existence of positive steady states
– independent of parameters (rate constants)
– depending only on network properties

Corresponding polynomial systems with positive parameters:

Uniqueness and existence of positive real solutions
– independent of parameters

generalized mass-action kinetics
depending on the relation between coefficients and exponents



Mass-action kinetics (MAK)

Reaction:
1 A + 1 B→ C

A, B . . . reactant species
C . . . product species

MAK reaction rate:
v = k c1

A c1
B

k > 0 . . . rate constant
cA = cA(t) ≥ 0 . . . concentration of A

Contribution to network dynamics:

d
dt


cA
cB
cC
...

 = k cAcB


−1
−1
1
0

 + · · ·



Chemical reaction networks

Example:

A + B
1 // C
1′
oo

2
��

A
4 // D
4′
oo

2A
3

cc

A+B,C,2A,A,D . . . complexes

Dynamics for rate constants k = (k1, k1′ , k2, k3, k4, k4′):

dc
dt

=
d
dt


cA
cB
cC
cD

 =


−1 2 −1 −1
−1 0 1 0
1 −1 0 0
0 0 0 1



k1cAcB − k1′cC

k2cC
k3c2

A
k4cA − k4′cD

 = N vk (c)

N . . . stoichiometric matrix
vk . . . net reaction rates



Deficiency

Example:

A + B
1 // C
1′
oo

2
��

A
4 // D
4′
oo

2A
3

cc N =


−1 2 −1 −1
−1 0 1 0
1 −1 0 0
0 0 0 1


Definition
A network is weakly reversible if each connected component is
strongly connected. Its deficiency is given by

δ = m − ` − s.

m . . . number of complexes
` . . . number of connected components

s . . . dimension of stoichiometric subspace S = im(N)

δ = 5 − 2 − 3 = 0



Deficiency zero theorem

Dynamics:
dc
dt

= N vk (c)

⇒ c(t) ∈ (c(0) + S) with S = im(N)

(c(0) + S)≥0 . . . stoichiometric compatibility class

Theorem
A reaction network with zero deficiency has a unique asymptotically
stable positive steady state in each stoichiometric compatibility class
for all positive rate constants if and only if it is weakly reversible.

(Horn-Jackson ’72, Horn ’72, Feinberg ’72)



Deficiency zero theorem

Example:

N vk (c) =


−1 2 −1 −1
−1 0 1 0
1 −1 0 0
0 0 0 1



k1cAcB − k1′cC

k2cC
k3c2

A
k4cA − k4′cD

 = 0

Deficiency zero theorem⇒ unique positive steady state Nvk (c) = 0
in each stoichiometric compatibility class for all rate constants

Polynomial equations with parameters:{
c > 0 |N vk (c) = 0

}
∩ (c′ + S)≥0

contains exactly one element for all c′ > 0 and all k > 0



Graph Laplacian

Minimal example:

A + B
1
�
1′

C

Dynamics:

dc
dt

=

−1
−1
1

 (k1 cAcB − k ′1 cC
)

= N vk (c)

Decomposition:

dc
dt

=

1 0
1 0
0 1


(
−k1 k1′

k1 −k1′

) (
cAcB
cC

)
= Y Ak Ψ(c)

(Horn-Jackson ’72)

Ak . . . weighted graph Laplacian



Complex balancing equilibria

Decomposition:
dc
dt

= Y Ak ψ(c)

Complex balancing equilibria:

Zk =
{
c > 0 |Ak ψ(c) = 0

}
Deficiency:

δ = dim(ker(Y ) ∩ im(Ak ))

Parametrization of complex balancing equilibria:

Proposition

c∗ ∈ Zk , ∅ ⇒ Zk =
{
c∗ ◦ ev = (c∗1 ev

1 , . . . , c
∗
n ev

n) | v ∈ S⊥
}

(Horn-Jackson ’72)

Monomial param.: Zk =
{
c∗ ◦ xW = (c1xw1

, . . . , cnxwn
) | x ∈ Rd

>

}
with W = (w1, . . . ,wn) ∈ Rd×n of rank d s.t. S = ker(W )



Birch’s theorem

S = ker(W ) with W = (w1, . . . ,wn) ∈ Rd×n

Existence/uniqueness of complex balancing equilibria in each
stoichiometric compatibility class, that is, exactly one element in{

c∗ ◦ xW | x ∈ Rd
>

}
∩ (c′ + ker(W ))

for all c∗ > 0 and c′ > 0⇔ surjectivity/injectivity of

fc∗ : Rd
> → C◦ ⊆ Rd , x 7→

n∑
k=1

c∗k xwk
wk

for all c∗ > 0, with the polyhedral cone

C =
{∑n

k=1ck wk ∈ Rd | c ∈ Rn
≥

}
.

Theorem
The map fc∗ is a bijection (real analytic isomorphism) for all c∗ > 0.

(Birch ’63, Horn-Jackson ’72, Fulton ’93)



Martin W. Birch

M. W. Birch, Maximum likelihood in three-way contingency tables,
J. Roy. Statist. Soc. Ser. B 25 (1963), 220–233.

Statistical Laboratory, University of Cambridge, 1961

Source http://www.statslab.cam.ac.uk/Dept/Photos/pic61.html

Martin W. Birch (1939–69)

http://www.statslab.cam.ac.uk/Dept/Photos/pic61.html


Birch’s theorem

Minimal example:

S = im(−1,−1,1)T = ker(W )

with W =

(
1 0 1
0 1 1

)
Birch’s theorem⇒ There exists a unique solution x ∈ R3

> for

c∗1 x1

(
1
0

)
+ c∗2 x2

(
0
1

)
+ c∗3 x1x2

(
1
1

)
=

(
y1
y2

)
for all right-hand sides y ∈ R2

> and for all parameters c∗ ∈ R3
>.

All mass action systems arising from

A + B
1
�
1′

C

have a unique positive steady state.



Generalized mass action kinetics

Mass action rate law is valid
for elementary reactions in homogeneous and dilute solutions.

Intracellular environments are highly structured;
more general reaction rates needed for applications in cell biology.



Generalized mass action systems

Minimal example:

A + B
1
�
1′

C
...

...

αA + βB γC

α, β, γ > 0 . . . kinetic orders
αA + βB, γC . . . kinetic complexes

Reaction rates:
v1 = k1cαAcβB and v1′ = k1′c

γ

C

Dynamics, decomposition:

dc
dt

=

1 0
1 0
0 1


(
−k1 k1′

k1 −k1′

) (
cαAcβB
cγC

)
= Y Ak ψ̃(c)



Generalized mass action systems

A + B
1
�
1′

C
...

...

αA + βB γC

Stoichiometric subspace:

N =

−1
−1
1

 , S = im(N)

Kinetic-order subspace:

Ñ =

−α−β
γ

 , S̃ = im(Ñ)

Complex balancing equilibria:

c∗ ∈ Z̃k =
{
c > 0 |Ak ψ̃(c) = 0

}
⇒ Z̃k = {c∗ ◦ ev | v ∈ S̃⊥}



Deficiency zero/Birch’s theorem?

S = ker(W ) and S̃ = ker(W̃ )

with W = (w1, . . . ,wn) and W̃ = (w̃1, . . . , w̃n)

Existence/uniqueness of complex balancing equilibria in each
stoichiometric compatibility class, that is, exactly one element in

{c∗ ◦ ev | v ∈ S̃⊥} ∩ (c′ + S)

for all c∗ > 0 and c′ > 0⇔ surjectivity/injectivity of the generalized
polynomial map

fc∗ : Rd
> → C◦ ⊆ Rd , x 7→

n∑
k=1

c∗k x w̃k
wk (gpm)

for all c∗ > 0.

Deficiency zero theorem: S = S̃
Birch’ theorem: W̃ = W

How much can we perturb the exponents/subspace/cone?



Sign vectors

For x ∈ Rn, obtain the sign vector σ(x) ∈ {−,0,+}n

by applying the sign function componentwise:

σ

 1
0
−1

 =

+
0
−


Point configurations, hyperplane arrangements, face lattices of cones
Theory of oriented matroids

Source: Bachem-Kern ’92



Generalized Birch’s theorem

Theorem

If σ(S̃) = σ(S) and (+, . . . ,+)T ∈ σ(S⊥),
then the generalized polynomial map fc∗ , defined in Eqn. (gpm),
is a real analytic isomorphism for all c∗ > 0.

CRNT:

Theorem
If a reaction network with zero deficiency is weakly reversible and
conservative, then there exists a unique positive steady state
in each stoichiometric compatibility class, for all positive rate constants
and all kinetic complexes with σ(S̃) = σ(S).



Generalized Birch’s theorem

Minimal example:

S = im(−1,−1,1)T and S̃ = im(−α,−β, γ)T with α, β, γ > 0

σ(S) =


−−
+

 ,
+
+
−

 ,
00
0


 = σ(S̃) and

11
2

 ∈ S⊥

W =

(
1 0 1
0 1 1

)
and W̃ =

(
γ 0 α

0 γ β

)

Theorem⇒ There exists a unique solution x ∈ R3
> for

c∗1 xγ1

(
1
0

)
+ c∗2 xγ2

(
0
1

)
+ c∗3 xα1 xβ2

(
1
1

)
=

(
y1
y2

)
for all y ∈ R2

>, all parameters c∗ ∈ R3
>, and all exponents α, β, γ > 0.

All generalized mass action systems arising from the minimal example
have a unique positive steady state.



Outlook

Stability of complex balancing equilibria
Injectivity and multiple general steady states
Generalized mass action systems
and (dynamically) equivalent mass action systems
Algorithms for sign vector (software for oriented matroids)
Examples from cell biology

Thanks!
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