Generalized mass action systems and positive solutions of polynomial systems

$A+B \rightleftharpoons C$

Stefan Müller and Georg Regensburger

Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences, Linz

Supélec, March 6, 2014
Gif-sur-Yvette, France

Chemical reaction network theory (CRNT)

Chemical reaction networks with mass-action kinetics (MAK) give rise to polynomial ODE systems with positive parameters

CRNT:

Uniqueness and existence of positive steady states

- independent of parameters (rate constants)
- depending only on network properties

Corresponding polynomial systems with positive parameters:
Uniqueness and existence of positive real solutions

- independent of parameters

Mass-action kinetics (MAK)

Reaction:

$$
1 \mathrm{~A}+1 \mathrm{~B} \rightarrow \mathrm{C}
$$

> A, B ... reactant species
> C . . . product species

MAK reaction rate:

$$
v=k c_{A}^{1} c_{B}^{1}
$$

$k>0 \ldots$ rate constant
$c_{\mathrm{A}}=c_{\mathrm{A}}(t) \geq 0 \ldots$ concentration of A
Contribution to network dynamics:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{c}
c_{\mathrm{A}} \\
c_{\mathrm{B}} \\
c_{\mathrm{C}} \\
\vdots
\end{array}\right)=k c_{\mathrm{A}} c_{\mathrm{B}}\left(\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right)+\cdots
$$

Chemical reaction networks

Example:

$$
\mathrm{A}+\underset{\underset{3}{\mathrm{~B}} \underset{\substack{1^{\prime}}}{\stackrel{1}{\rightleftarrows}} \mathrm{C} \quad \mathrm{~A}}{\stackrel{4}{\rightleftarrows}} \stackrel{4}{\underset{4^{\prime}}{\leftrightarrows}} \mathrm{D}
$$

A+B, C, 2A, A, D ... complexes
Dynamics for rate constants $k=\left(k_{1}, k_{1^{\prime}}, k_{2}, k_{3}, k_{4}, k_{4^{\prime}}\right)$:

$$
\frac{\mathrm{d} c}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{l}
c_{\mathrm{A}} \\
c_{\mathrm{B}} \\
c_{\mathrm{C}} \\
c_{\mathrm{D}}
\end{array}\right)=\left(\begin{array}{cccc}
-1 & 2 & -1 & -1 \\
-1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
k_{1} c_{\mathrm{A}} c_{\mathrm{B}}-k_{1}, c_{\mathrm{C}} \\
k_{2} c_{\mathrm{C}} \\
k_{3} c_{\mathrm{A}}^{2} \\
k_{4} c_{\mathrm{A}}-k_{4} c_{\mathrm{D}}
\end{array}\right)=N v_{k}(c)
$$

N ... stoichiometric matrix $v_{k} \ldots$ net reaction rates

Deficiency

Example:

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \underset{1^{\prime}}{\stackrel{1}{\rightleftarrows}} \mathrm{C} \\
& \mathrm{~A} \underset{4^{\prime}}{\stackrel{4}{\rightleftarrows}} \mathrm{D}
\end{aligned}
$$

$$
N=\left(\begin{array}{cccc}
-1 & 2 & -1 & -1 \\
-1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Definition

A network is weakly reversible if each connected component is strongly connected. Its deficiency is given by

$$
\delta=m-\ell-s
$$

m . . . number of complexes $\ell \ldots$ number of connected components $s \ldots$ dimension of stoichiometric subspace $S=\operatorname{im}(N)$

$$
\delta=5-2-3=0
$$

Deficiency zero theorem

Dynamics:

$$
\frac{\mathrm{d} c}{\mathrm{~d} t}=N v_{k}(c)
$$

$\Rightarrow \quad c(t) \in(c(0)+S) \quad$ with $S=\operatorname{im}(N)$

$$
(c(0)+S)_{\geq 0} \ldots \text { stoichiometric compatibility class }
$$

Theorem

A reaction network with zero deficiency has a unique asymptotically stable positive steady state in each stoichiometric compatibility class for all positive rate constants if and only if it is weakly reversible.

Deficiency zero theorem

Example:

$$
N v_{k}(c)=\left(\begin{array}{cccc}
-1 & 2 & -1 & -1 \\
-1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
k_{1} c_{A} c_{B}-k_{1}, c_{C} \\
k_{2} c_{\mathrm{C}} \\
k_{3} c_{\mathrm{A}}^{2} \\
k_{4} c_{\mathrm{A}}-k_{4} c_{\mathrm{D}}
\end{array}\right)=0
$$

Deficiency zero theorem \Rightarrow unique positive steady state $N v_{k}(c)=0$ in each stoichiometric compatibility class for all rate constants

Polynomial equations with parameters:

$$
\left\{c>0 \mid N v_{k}(c)=0\right\} \cap\left(c^{\prime}+S\right)_{\geq 0}
$$

contains exactly one element for all $c^{\prime}>0$ and all $k>0$

Graph Laplacian

Minimal example:

$$
\mathrm{A}+\mathrm{B} \underset{1^{\prime}}{\stackrel{1}{\rightleftarrows}} \mathrm{C}
$$

Dynamics:

$$
\frac{\mathrm{d} c}{\mathrm{~d} t}=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)\left(k_{1} c_{\mathrm{A}} c_{\mathrm{B}}-k_{1}^{\prime} c_{\mathrm{C}}\right)=N v_{k}(c)
$$

Decomposition:

$$
\frac{\mathrm{d} c}{\mathrm{~d} t}=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-k_{1} & k_{1^{\prime}} \\
k_{1} & -k_{1^{\prime}}
\end{array}\right)\binom{c_{\mathrm{A}} c_{\mathrm{B}}}{c_{\mathrm{C}}}=Y A_{k} \Psi(c)
$$

$A_{k} \ldots$ weighted graph Laplacian

Complex balancing equilibria

Decomposition:

$$
\frac{\mathrm{d} c}{\mathrm{~d} t}=Y A_{k} \psi(c)
$$

Complex balancing equilibria:

$$
Z_{k}=\left\{c>0 \mid A_{k} \psi(c)=0\right\}
$$

Deficiency:

$$
\delta=\operatorname{dim}\left(\operatorname{ker}(Y) \cap \operatorname{im}\left(A_{k}\right)\right)
$$

Parametrization of complex balancing equilibria:

Proposition

$c^{*} \in Z_{k} \neq \emptyset \quad \Rightarrow \quad Z_{k}=\left\{c^{*} \circ \mathrm{e}^{\nu}=\left(c_{1}^{*} \mathrm{e}_{1}^{\nu}, \ldots, c_{n}^{*} \mathrm{e}_{n}^{\nu}\right) \mid v \in S^{\perp}\right\}$
(Horn-Jackson '72)
Monomial param.: $\quad z_{k}=\left\{c^{*} \circ x^{W}=\left(c_{1} x^{w^{1}}, \ldots, c_{n} x^{w^{n}}\right) \mid x \in \mathbb{R}_{>}^{d}\right\}$ with $W=\left(w^{1}, \ldots, w^{n}\right) \in \mathbb{R}^{d \times n}$ of rank d s.t. $S=\operatorname{ker}(W)$

Birch's theorem

$$
S=\operatorname{ker}(W) \quad \text { with } \quad W=\left(w^{1}, \ldots, w^{n}\right) \in \mathbb{R}^{d \times n}
$$

Existence/uniqueness of complex balancing equilibria in each stoichiometric compatibility class, that is, exactly one element in

$$
\left\{c^{*} \circ x^{W} \mid x \in \mathbb{R}_{>}^{d}\right\} \cap\left(c^{\prime}+\operatorname{ker}(W)\right)
$$

for all $c^{*}>0$ and $c^{\prime}>0 \Leftrightarrow$ surjectivity/injectivity of

$$
f_{c^{*}}: \mathbb{R}_{>}^{d} \rightarrow C^{\circ} \subseteq \mathbb{R}^{d}, \quad x \mapsto \sum_{k=1}^{n} c_{k}^{*} x^{w^{k}} w^{k}
$$

for all $c^{*}>0$, with the polyhedral cone

$$
C=\left\{\sum_{k=1}^{n} c_{k} w^{k} \in \mathbb{R}^{d} \mid c \in \mathbb{R}_{\geq}^{n}\right\} .
$$

Theorem

The map $f_{c^{*}}$ is a bijection (real analytic isomorphism) for all $c^{*}>0$.

Martin W. Birch

M. W. Birch, Maximum likelihood in three-way contingency tables, J. Roy. Statist. Soc. Ser. B 25 (1963), 220-233.

Statistical Laboratory, University of Cambridge, 1961

Source http://www.statslab.cam.ac.uk/Dept/Photos/pic61.html
Martin W. Birch (1939-69)

Birch's theorem

Minimal example:

$$
\begin{gathered}
S=\operatorname{im}(-1,-1,1)^{T}=\operatorname{ker}(W) \\
\quad \text { with } W=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
\end{gathered}
$$

Birch's theorem \Rightarrow There exists a unique solution $x \in \mathbb{R}_{>}^{3}$ for

$$
c_{1}^{*} x_{1}\binom{1}{0}+c_{2}^{*} x_{2}\binom{0}{1}+c_{3}^{*} x_{1} x_{2}\binom{1}{1}=\binom{y_{1}}{y_{2}}
$$

for all right-hand sides $y \in \mathbb{R}_{>}^{2}$ and for all parameters $c^{*} \in \mathbb{R}_{>}^{3}$.
All mass action systems arising from

$$
\mathrm{A}+\mathrm{B} \underset{1^{\prime}}{\stackrel{1}{\rightleftarrows}} \mathrm{C}
$$

have a unique positive steady state.

Generalized mass action kinetics

Mass action rate law is valid for elementary reactions in homogeneous and dilute solutions.

Intracellular environments are highly structured; more general reaction rates needed for applications in cell biology.

Generalized mass action systems

Minimal example:

$$
\begin{array}{ccc}
\mathrm{A}+\mathrm{B} & \stackrel{1}{\rightleftarrows} & \mathrm{C} \\
\vdots & & \vdots \\
\alpha \mathrm{~A}+\beta \mathrm{B} & & \gamma \mathrm{C}
\end{array}
$$

$\alpha, \beta, \gamma>0 \ldots$ kinetic orders $\alpha \mathrm{A}+\beta \mathrm{B}, \gamma \mathrm{C} \ldots$ kinetic complexes

Reaction rates:

$$
v_{1}=k_{1} C_{A}^{\alpha} C_{\mathrm{B}}^{\beta} \quad \text { and } \quad v_{1}=k_{1}, c_{\mathrm{C}}^{\gamma}
$$

Dynamics, decomposition:

$$
\frac{\mathrm{d} c}{\mathrm{~d} t}=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-k_{1} & k_{1^{\prime}} \\
k_{1} & -k_{1},
\end{array}\right)\binom{c_{\mathrm{A}}^{\alpha} C_{\mathrm{B}}^{\beta}}{c_{\mathrm{C}}^{\gamma}}=Y A_{k} \tilde{\psi}(c)
$$

Generalized mass action systems

$$
\begin{array}{ccc}
\mathrm{A}+\mathrm{B} & \stackrel{1}{\rightleftarrows} & \mathrm{C} \\
\vdots & & \vdots \\
\alpha \mathrm{~A}+\beta \mathrm{B} & & \gamma \mathrm{C}
\end{array}
$$

Stoichiometric subspace:

$$
N=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right), \quad S=\operatorname{im}(N)
$$

Kinetic-order subspace:

$$
\tilde{N}=\left(\begin{array}{c}
-\alpha \\
-\beta \\
\gamma
\end{array}\right), \quad \tilde{S}=\operatorname{im}(\tilde{N})
$$

Complex balancing equilibria:

$$
c^{*} \in \tilde{Z}_{k}=\left\{c>0 \mid A_{k} \tilde{\psi}(c)=0\right\} \quad \Rightarrow \quad \tilde{Z}_{k}=\left\{c^{*} \circ \mathrm{e}^{v} \mid v \in \tilde{S}^{\perp}\right\}
$$

Deficiency zero/Birch's theorem?

$$
\begin{gathered}
S=\operatorname{ker}(W) \text { and } \tilde{S}=\operatorname{ker}(\tilde{W}) \\
\text { with } \quad W=\left(w^{1}, \ldots, w^{n}\right) \text { and } \tilde{W}=\left(\tilde{w}^{1}, \ldots, \tilde{w}^{n}\right)
\end{gathered}
$$

Existence/uniqueness of complex balancing equilibria in each stoichiometric compatibility class, that is, exactly one element in

$$
\left\{c^{*} \circ \mathrm{e}^{v} \mid v \in \tilde{S}^{\perp}\right\} \cap\left(c^{\prime}+S\right)
$$

for all $c^{*}>0$ and $c^{\prime}>0 \Leftrightarrow$ surjectivity/injectivity of the generalized polynomial map

$$
\begin{equation*}
f_{c^{*}}: \mathbb{R}_{>}^{d} \rightarrow C^{\circ} \subseteq \mathbb{R}^{d}, \quad x \mapsto \sum_{k=1}^{n} c_{k}^{*} x^{\tilde{w}^{k}} w^{k} \tag{gpm}
\end{equation*}
$$

for all $c^{*}>0$.
Deficiency zero theorem: $S=\tilde{S}$
Birch' theorem: $\tilde{W}=W$
How much can we perturb the exponents/subspace/cone?

Sign vectors

For $x \in \mathbb{R}^{n}$, obtain the sign vector $\sigma(x) \in\{-, 0,+\}^{n}$ by applying the sign function componentwise:

$$
\sigma\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
+ \\
0 \\
-
\end{array}\right)
$$

Point configurations, hyperplane arrangements, face lattices of cones Theory of oriented matroids

Generalized Birch's theorem

Theorem

If $\sigma(\tilde{S})=\sigma(S)$ and $(+, \ldots,+)^{T} \in \sigma\left(S^{\perp}\right)$, then the generalized polynomial map $f_{c^{*}}$, defined in Eqn. (gpm), is a real analytic isomorphism for all $c^{*}>0$.

CRNT:

Theorem

If a reaction network with zero deficiency is weakly reversible and conservative, then there exists a unique positive steady state in each stoichiometric compatibility class, for all positive rate constants and all kinetic complexes with $\sigma(\tilde{S})=\sigma(S)$.

Generalized Birch's theorem

Minimal example:

$$
\begin{gathered}
S=\operatorname{im}(-1,-1,1)^{\top} \text { and } \tilde{S}=\operatorname{im}(-\alpha,-\beta, \gamma)^{\top} \text { with } \alpha, \beta, \gamma>0 \\
\sigma(S)=\left\{\left(\left(\begin{array}{l}
- \\
- \\
+
\end{array}\right),\left(\begin{array}{l}
+ \\
+ \\
-
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\}=\sigma(\tilde{S}) \quad \text { and } \quad\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \in S^{\perp}\right. \\
W=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \text { and } \tilde{W}=\left(\begin{array}{lll}
\gamma & 0 & \alpha \\
0 & \gamma & \beta
\end{array}\right)
\end{gathered}
$$

Theorem \Rightarrow There exists a unique solution $x \in \mathbb{R}_{>}^{3}$ for

$$
c_{1}^{*} x_{1}^{\gamma}\binom{1}{0}+c_{2}^{*} x_{2}^{\gamma}\binom{0}{1}+c_{3}^{*} x_{1}^{\alpha} x_{2}^{\beta}\binom{1}{1}=\binom{y_{1}}{y_{2}}
$$

for all $y \in \mathbb{R}_{>}^{2}$, all parameters $c^{*} \in \mathbb{R}_{>}^{3}$, and all exponents $\alpha, \beta, \gamma>0$.
All generalized mass action systems arising from the minimal example have a unique positive steady state.

Outlook

- Stability of complex balancing equilibria
- Injectivity and multiple general steady states
- Generalized mass action systems and (dynamically) equivalent mass action systems
- Algorithms for sign vector (software for oriented matroids)
- Examples from cell biology

Thanks!

References

with S. Müller,
Generalized mass action systems: complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces, SIAM Journal on Applied Mathematics 72 (2012), 1926-1947.
with S. Müller, E. Feliu, C. Conradi, A. Shiu, A. Dickenstein, Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry, 2013, 25 pp. Submitted. arXiv:1311.5493 [math.AG]

