

Drone assisted multi-technology rescue operations

Farouk Mezghani, Nathalie Mitton

CoRes June 2019

Context & motivation

Network infrastructure destroyed !

Leverage short range communication for disaster recovery

Various energy levels

Rescue operations might Mot take a long time

Mobile devices have multiple network technologies

On the fly cellular communication

Innia

UAV characteristics

Multi-rotor drone

Fixed wing drone

Mobility

- better manoeuvrability can adapt their speed
- Flight autonomy
- > Up to 45 min

- less flight flexibility
- > Up to 2 hours

Multi-technology communication

Phase 1: Scan & collect survivors locations

Periodic each ΔT

Inría

Phase 2: Drone path planning

STEP1: Steiner Zones approach to determine the stops

➔ Minimize the number of stops

- 8

Phase 2: Drone path planning

STEP2: TSP Path planning based on CONCORDE TOOL

➔ Shortest path passing through all stops

Simulation

- > The Opportunistic Network Environment (The ONE)
- > Up to 200 survivor nodes
- Each survivor has a mobile device featuring 3 network technologies (e.g. Bluetooth, WiFi, Cellular) with different Transmission Range (RC) and Energy Consumption (EC)

TR (Bluetooth) < TR (WiFi) < TR (Cellular)
EC (Bluetooth) < EC (WiFi) < EC (Cellular)

Drone Path-Time = T_{Hovering} + T_{moving}
Drone speed = 10m/s → T_{moving}

Drone minimum Hovering time: T_{Hovering}=5s
Drone-Survivor data exchange time=2s

Simulation – comparison of 4 path planning approaches

Results

Various densities (# survivor-nodes; 20, 50, 100, 150, 200)

Results

Various densities (# survivor-nodes; 20, 50, 100, 150, 200)

Drone Path-Time= T_{Hovering} + T_{moving}

Path time

Ínría

Conclusion

During disaster scenarios:

- Leverage nowadays mobile devices
 - Exploit available communication technologies
 - Take initial energy levels into account
- > Exploit flying cell tower (BS carried by UAV)
 - Drone limited autonomy
 - Limited number of UAVs because of its high cost
 - Compute the shortest path for the UAV

Innia

Thank you for your attention !

