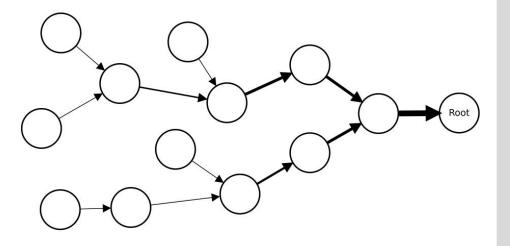


Sélection d'interface de communication dans les réseaux de capteurs multi-technologies

> Brandon Foubert, Nathalie Mitton CoRes, 28 Septembre 2020

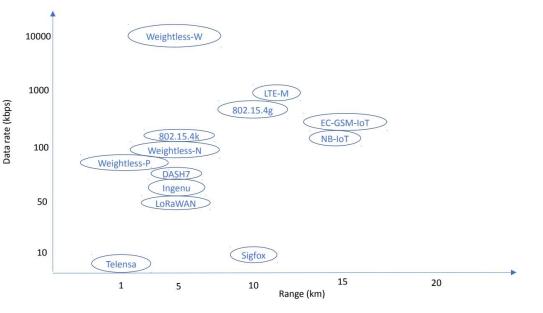

Wireless Sensor Networks (WSN)

Multi purpose tool for data acquisition

- > Environmental monitoring
- > Video camera surveillance
- > ...
- Energy self-sufficiency (batteries)
- Usually based on a single wireless communication technology

Thus

- Technology's capabilities limit deployments
 - > Coverage
 - > Throughput
 - > Latency
 - > Range
 - > ...



Many communication technologies

- ISM based technologies
 - > WiFi
 - > Bluetooth
 - > LoRaWAN
 - > Sigfox
 - >...
- Operators based technologies
 - > Sigfox
 - > LTE-M & NB-IoT
 - > ...

But

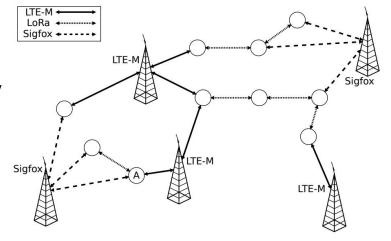
- No base station → no internet access
- Operators not present in every country
- Technologies restrictions limit multiple uses

Sencrop's case study

- Manufactures and sells autonomous weather stations
- Sigfox based
 - > Simple deployment
 - > Long range ([10 40] km)
 - > Low power consumption (~ 50 mA in TX mode)

At the price of

- > Coverage holes
- > Operators disfunctions
- > Low throughput ([100 600] bps)
- > Message number threshold (12B payload ; \leq 140 / day)


Multi-technologies WSN

Best technology selected as a function of the data type

- > Monitoring → low power consumption
- > Alarm \rightarrow fast communication
- > ...
- If the selected technology operator is down / not present → switch

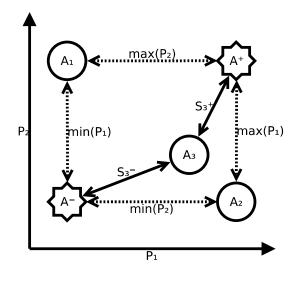
Thus

- We need a method to select the best fitted technology
- Problem known as Network Interface Selection (NIS)

Multiple Attribute Decision-Making (MADM) methods

- Most common tools to tacke NIS
- Takes a decision matrix as input
 - > Several alternatives
 - > Judged on several criterias
 - > To which are associated weights
- Applies a method to it
 - > Simple Additive Weighting (SAW)
 - > Weighted Product Method (WPM)
 - > ...
- Produces a ranking of the alternatives

	P_1	P_2		P_m
	w_1	w_2	•••	w_m
A_1	x_{11}	x_{12}	•••	x_{1m}
A_2	x_{21}	x_{22}	•••	x_{2m}
•••	•••	•••	•••	•••
A_n	x_{n1}	x_{n2}	•••	x_{nm}



Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

- One of the most used and studied MADM methods
- Compare alternatives based on
 - > Ideal positive alternative
 - > Ideal negative alternative
 - > Mathematical distances between alternatives and ideals

But

- Resource intensive computations
- Rank reversal

Rank reversal

• Caused by the « Euclidean » normalization

- Ranking is altered when the set of alternatives changes
 - > Removing worst alternatives can alter the top of the ranking

Example

- Ranking → [A1, A3, A2, A4]
- If A4 is removed, ranking should be [A1, A3, A2]
- But ranking → [A3, A2, A1]

	P_1	P_2	P_3
A_1	1.024537	7.828443	8.650221
A_2	4.226149	0.09865402	4.673396
A_3	8.026353	5.455392	2.536936
A_4	1.700537	1.398855	0.7656412

Rank reversal free & lighter TOPSIS

Rank reversal is caused by the normalization method

> Normalize values based on the whole set of values

Thus

- We propose a different normalization method
 - > Simplified computations
 - > Based on absolute bounds
- The application layer expresses needs
 - > Absolute bounds
 - > Weights

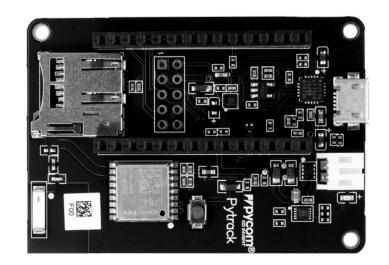
Algorithm 1 Lightweight normalization Require: x_{ij} the raw value of each attribute j for each candidate ifor each attribute P_j do if P_j is an upward attribute then B_j^+ is the upper bound of P_j $r_{ij} = \frac{x_{ij}}{B_j^+}$ else if P_j is a downward attribute then B_j^- is the lower bound of P_j $r_{ij} = \frac{B_j^-}{x_{ij}}$ end if end for return r_{ij} the normalized value of x_{ij}

Complexity reduction

• Modification of the normalization allows further simplification of the TOPSIS method

- > Trivial ideal alternatives construction
- > Quicker distances computation
- For a decision matrix of size *nm*
 - > 5mn 2 operations spared

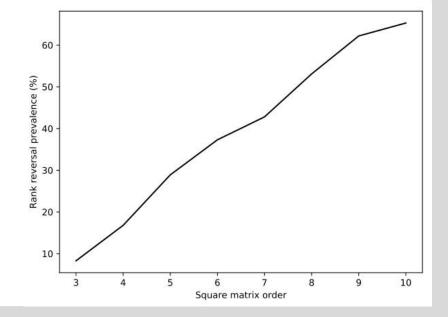
$$\begin{array}{c}
A^{+} = [v_{1}^{+} \dots v_{m}^{+}] \\
A^{-} = [v_{1}^{-} \dots v_{m}^{-}] \\
v_{j}^{+} = Argmax \{v_{ij}, i = 1, \dots, n\} \\
v_{j}^{-} = Argmin \{v_{ij}, i = 1, \dots, n\} \end{array}$$


$$\begin{array}{c}
A^{+} = [1 \dots 1] \\
A^{-} = [0 \dots 0]
\end{array}$$

$$\begin{array}{c}
S^{+}_{i} = \sqrt{\sum_{j=1}^{m} (v_{j}^{-} - v_{ij})^{2}} \\
S^{-}_{i} = \sqrt{\sum_{j=1}^{m} (v_{j}^{-} - v_{ij})^{2}} \\
S^{-}_{i} = \sqrt{\sum_{j=1}^{m} v_{ij}^{2}} \\
\end{array}$$

Experiments' hardware

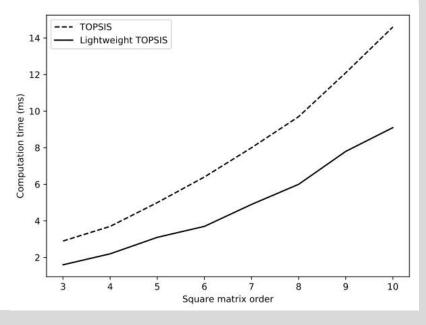
- FiPy modules from Pycom
 - > Offers WiFi, BLE, LoRa, Sigfox, LTE-M & NB-IoT technologies
 - > MicroPython implementation
- Coupled with Pytrack expansion board



Rank reversal prevalence

Experimental protocol

- > TOPSIS on random matrix
- > Random alternative removal
- > TOPSIS on resulting matrix
- > Comparison between rankings
- Results highly dependent on the decision matrix size
 - > Population of 1000 experiments / matrix order
 - > The bigger \rightarrow the most frequent is rank reversal
 - > 5*5 matrix → reversal in 30% of experiments
- If NIS happens periodically, this is considerable


Proposition evaluation

• TOPSIS vs lightweight TOPSIS

- > Measurements of time needed for algorithms completion
- > Weights determined based on the data requirements
- > Quantification of the rankings similarity
 - TOPSIS does not embed an objective comparison referential
- Population of 7000 experiments
- Mean speed up of 38%
- Ranking similarity in 82% of the experiments
- For a 5*5 matrix
 - > 4.79 ms vs 2.96 ms
 - > 0.05 ms standard deviation
 - > 448 µJ saved per TOPSIS run
 - 68 mA max & 3.6 V
 - Based on the FiPy CPU data-sheet

W _{monitoring}	0.6	0.1	0.3
Walarm	0.1	0.8	0.1

Energy Delay Cost

Conclusion

- Multi-technologies WSN can overcome classical WSN deployment limitations
- The MADM TOPSIS is an interesting method to make the NIS on devices
- Our proposition
 - > Eliminates rank reversal
 - > Reduces complexity, which in turn reduces energy consumption
 - > Without sacrificing the ranking quality

Ingoing future work

Extend the NIS method to multi-technology route selection

Thank you for your attention! Any questions?

brandon.foubert@inria.fr

