SHARING IS CARING: A COOPERATION SCHEME FOR RPL NETWORK RESILIENCE AND EFFICIENCY

Brandon Foubert brandon foubert@inria.fr

Julien Montavont
montavont@unistra.fr

Inria Lille - North Europe

ICube - UMR 7357

24th IEEE Symposium on Computers and Communications

OUTLINE

- SCIENTIFIC CONTEXT
 - Internet of Things
 - RPL: routing in the IoT
 - Inherent issues in RPL
- 2 Contribution
- **EXPERIMENTATION**
- Conclusion

Internet of Things (IoT)

Set of constrained objects interconnected with the Internet via wireless communications

Constraints

- Computation power
- Memory storage
- Battery → limited energy

New usages, new standards

- Classic IP protocols not efficient with IoT devices
- Specialized standards from the IEEE and the IETF

RPL: ROUTING IN THE IOT [WTB12]

- Proactive intra-domain distance-vector routing protocol
- Destination Oriented Directed Acyclic Graph (DODAG)
- Metrics: Hop count, Expected Transmission Count (ETX)...
- Traffic patterns: multi-point to point, point to multi-point, point to point

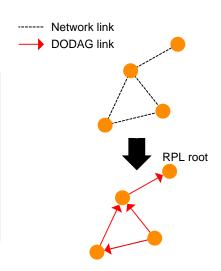


Figure 1: Physical and logical topology

[WTB12] T. Winter et al. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC 6550. Mar. 2012

RPL INHERENT ISSUES

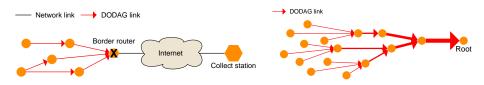


Figure 2: Border router failure

Figure 3: Funneling effect [WEC05]

SOLUTION = BORDER ROUTER REDUNDANCY

- Orphan nodes redirect traffic to another border router
- ullet Multiple exit points o traffic shared between multiple paths

[WEC05] Chieh-Yih Wan et al. "Siphon: Overload Traffic Management Using Multi-radio Virtual Sinks in Sensor Networks". In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems. ACM, 2005

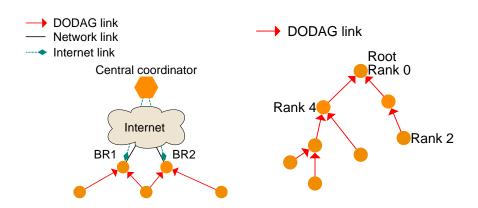


Figure 4: Central coordination [NMM16]

Figure 5: Local load balancing [KKP17]

[NMM16] Quang-Duy Nguyen et al. "RPL Border Router Redundancy in the Internet of Things". In: Ad-hoc, Mobile, and Wireless Networks. Ed. by Nathalie Mitton, Valeria Loscri, and Alexandre Mouradian. Springer International Publishing, 2016. ISBN: 978-4319-40500-4

[KKP17] H. S. Kim et al. "Load Balancing Under Heavy Traffic in RPL Routing Protocol for Low Power and Lossy Networks". In: IEEE Transactions on Mobile Computing 16.4 (Apr. 2017), pp. 964–979. ISSN: 1536-1233

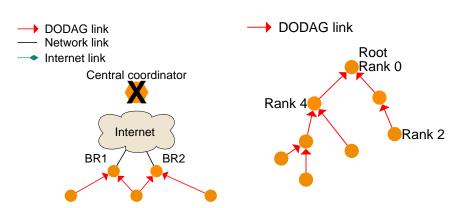


Figure 4: Single point of failure [NMM16]

Figure 5: Local load balancing [KKP17]

[NMM16] Quang-Duy Nguyen et al. "RPL Border Router Redundancy in the Internet of Things". In: Ad-hoc, Mobile, and Wireless Networks. Ed. by Nathalie Mitton, Valeria Loscri, and Alexandre Mouradian. Springer International Publishing, 2016. ISBN: 978-3-319-40509-4

[KKP17] H. S. Kim et al. "Load Balancing Under Heavy Traffic in RPL Routing Protocol for Low Power and Lossy Networks". In: IEEE Transactions on Mobile Computing 16.4 (Apr. 2017), pp. 964–979. ISSN: 1536-1233

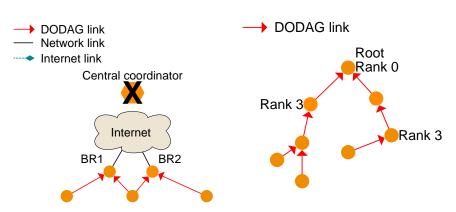


Figure 4: Single point of failure [NMM16]

Figure 5: Local load balancing [KKP17]

[NMM16] Quang-Duy Nguyen et al. "RPL Border Router Redundancy in the Internet of Things". In: Ad-hoc, Mobile, and Wireless Networks. Ed. by Nathalie Mitton, Valeria Loscri, and Alexandre Mouradian. Springer International Publishing, 2016. ISBN: 978-3-319-40509-4

[KKP17] H. S. Kim et al. "Load Balancing Under Heavy Traffic in RPL Routing Protocol for Low Power and Lossy Networks". In: IEEE Transactions on Mobile Computing 16.4 (Apr. 2017), pp. 964–979. ISSN: 1536-1233

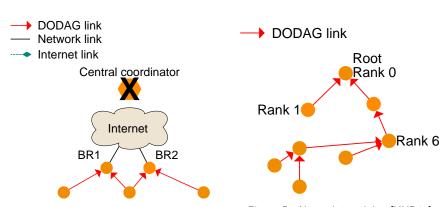


Figure 4: Single point of failure [NMM16]

Figure 5: Network instability [KKP17]

[NMM16] Quang-Duy Nguyen et al. "RPL Border Router Redundancy in the Internet of Things". In: Ad-hoc, Mobile, and Wireless Networks. Ed. by Nathalie Mitton, Valeria Loscri, and Alexandre Mouradian. Springer International Publishing, 2016. ISBN: 978-3-319-40509-4

[KKP17] H. S. Kim et al. "Load Balancing Under Heavy Traffic in RPL Routing Protocol for Low Power and Lossy Networks". In: IEEE Transactions on Mobile Computing 16.4 (Apr. 2017), pp. 964–979. ISSN: 1536-1233

OUTLINE

- SCIENTIFIC CONTEXT
- 2 Contribution
 - Considered scenario
 - Multiple border routers
 - Load balancing
 - Multiple IPv6 prefixes
- **EXPERIMENTATION**
- 4 Conclusion

CONSIDERED SCENARIO

- Smart cities: smart street lights, smart health, smart parking, etc.
 → colocated networks
- Different Internet service providers
- Different IPv6 prefixes
- Same IoT stack

Figure 6: Smart cities (from [IEE18])

[IEE18] IEEE smart cities. URL: https://beyondstandards.ieee.org/smart-cities/smart-smart-cities/ (visited on 08/20/2018)

Multiple Border Routers

Redundancy \rightarrow failure resilience & load sharing between exit points

- ⇒ RPL + distributed virtual DODAG root
- \Rightarrow Initialization using discovering (e.g. [KLR16])

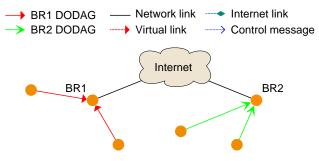


Figure 7: Border router discovering and inter-connexion

[KLR16] M. M. Khan et al. "A multi-sink coordination framework for low power and lossy networks". In: 2016 International Conference on Industrial Informatics and Computer Systems (CIICS). Mar. 2016, pp. 1–5

Multiple Border Routers

Redundancy \rightarrow failure resilience & load sharing between exit points

- ⇒ RPL + distributed virtual DODAG root
- \Rightarrow Initialization using discovering (e.g. [KLR16])

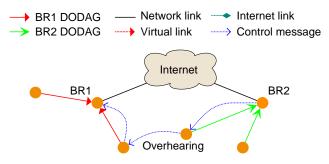


Figure 7: Border router discovering and inter-connexion

[KLR16] M. M. Khan et al. "A multi-sink coordination framework for low power and lossy networks". In: 2016 International Conference on Industrial Informatics and Computer Systems (CIICS). Mar. 2016, pp. 1–5

Multiple Border Routers

Redundancy \rightarrow failure resilience & load sharing between exit points

- ⇒ RPL + distributed virtual DODAG root
- \Rightarrow Initialization using discovering (e.g. [KLR16])

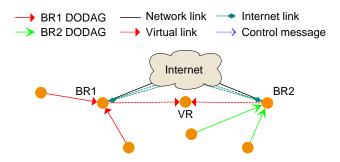


Figure 7: Border router discovering and inter-connexion

[KLR16] M. M. Khan et al. "A multi-sink coordination framework for low power and lossy networks". In: 2016 International Conference on Industrial Informatics and Computer Systems (CIICS). Mar. 2016, pp. 1–5

Border router redundancy \rightarrow static (*i.e.* non-adaptative) load balancing \Rightarrow RPL + explicit redirection:

- ullet Multiple RPL instances o border router differentiation
- ullet Colocated networks o nodes set "redirectable" flag
- Congested border router → DODAG Redirection Solicitation (DRS)

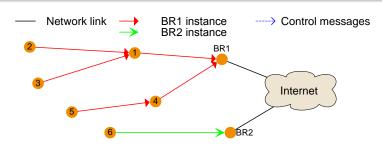


Figure 8: Redirection of node 4 from BR1 to BR2

Border router redundancy \rightarrow static (*i.e.* non-adaptative) load balancing \Rightarrow RPL + explicit redirection:

- ullet Multiple RPL instances o border router differentiation
- ullet Colocated networks o nodes set "redirectable" flag
- Congested border router → DODAG Redirection Solicitation (DRS)

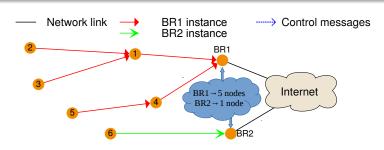


Figure 8: Redirection of node 4 from BR1 to BR2

Border router redundancy \rightarrow static (*i.e.* non-adaptative) load balancing \Rightarrow RPL + explicit redirection:

- ullet Multiple RPL instances o border router differentiation
- ullet Colocated networks o nodes set "redirectable" flag
- Congested border router → DODAG Redirection Solicitation (DRS)

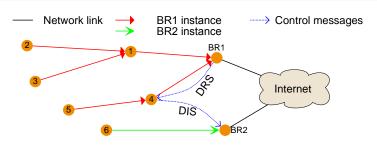


Figure 8: Redirection of node 4 from BR1 to BR2

Border router redundancy \rightarrow static (*i.e.* non-adaptative) load balancing \Rightarrow RPL + explicit redirection:

- ullet Multiple RPL instances o border router differentiation
- ullet Colocated networks o nodes set "redirectable" flag
- Congested border router → DODAG Redirection Solicitation (DRS)

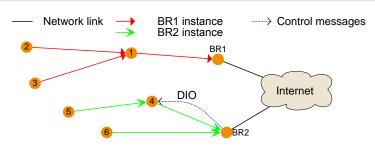
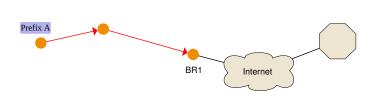



Figure 8: Redirection of node 4 from BR1 to BR2

Network link

Considered scenario \rightarrow multiple distinct IPv6 prefixes

- \Rightarrow RPL + IPv6 Network Prefix Translation (NPT) [WB11]
- \Rightarrow Prefixes sharing \rightarrow backup routes \rightarrow multi-homing

→ DODAG link ····· Packet path

Figure 9: Address translation upon border router packet forwarding

[WB11] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation. RFC 6296. June 2011

Considered scenario → multiple distinct IPv6 prefixes

- ⇒ RPL + IPv6 Network Prefix Translation (NPT) [WB11]
- \Rightarrow Prefixes sharing \rightarrow backup routes \rightarrow multi-homing

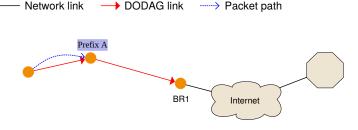


Figure 9: Address translation upon border router packet forwarding

[WB11] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation. RFC 6296. June 2011

Brandon Foubert SHARING IS CARING 8 / 15

Considered scenario → multiple distinct IPv6 prefixes

⇒ RPL + IPv6 Network Prefix Translation (NPT) [WB11]

Network link — DODAG link — Packet path

 \Rightarrow Prefixes sharing \rightarrow backup routes \rightarrow multi-homing

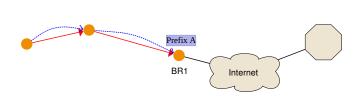


Figure 9: Address translation upon border router packet forwarding

SHARING IS CARING 8 / 15

[WB11] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation. RFC 6296. June 2011

Multiple IPv6 prefixes

Considered scenario \rightarrow multiple distinct IPv6 prefixes \Rightarrow RPL + IPv6 Network Prefix Translation (NPT) [WB11] \Rightarrow Prefixes sharing \rightarrow backup routes \rightarrow multi-homing — Network link \longrightarrow DODAG link \longrightarrow Packet path

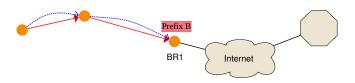


Figure 9: Address translation upon border router packet forwarding

[WB11] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation. RFC 6296. June 2011

Network link

Considered scenario \rightarrow multiple distinct IPv6 prefixes

- \Rightarrow RPL + IPv6 Network Prefix Translation (NPT) [WB11]
- \Rightarrow Prefixes sharing \rightarrow backup routes \rightarrow multi-homing

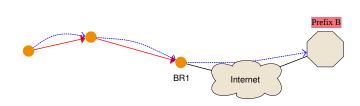


Figure 9: Address translation upon border router packet forwarding

[WB11] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation. RFC 6296. June 2011

OUTLINE

- SCIENTIFIC CONTEXT
- 2 CONTRIBUTION
- 3 Experimentation
 - Experimental setup
 - Topologies
 - Bandwidth repartition
 - End-to-end packet error rate
 - Number of one-hop transmissions
 - Energy consumption
- 4 Conclusion

EXPERIMENTAL SETUP

- Contiki OS 3.x → Contiki RPL
- FIT/IoT-LAB: testbed with real hardware

PARAMETERS

- IEEE 802.15.4 CSMA/CA
- no radio duty cycle mecanism
- 1 UDP packet per second
- sub-DODAG size threshold as congestion trigger

Scenario

- 2 border routers & 8 traffic generating nodes
- Border router 53 wakes up 60s after border router 18
- 100 experiments of 1h each

TOPOLOGIES

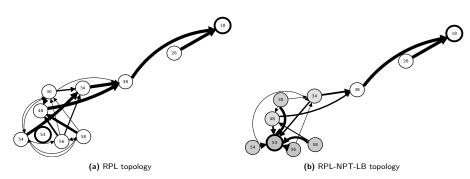


Figure 10: Cumulative final DODAGs from all experiments (the thicker a link is, the more frequently it appears)

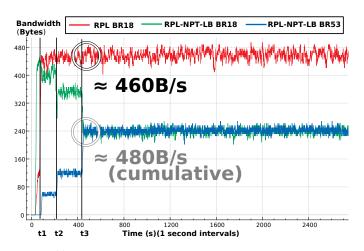


Figure 11: Better division of the traffic load between border routers

END-TO-END PACKET ERROR RATE

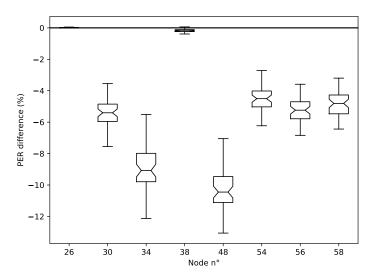


Figure 12: End-to-end losses difference between RPL-NPT-LB and RPL (lower is better)

NUMBER OF ONE-HOP TRANSMISSIONS

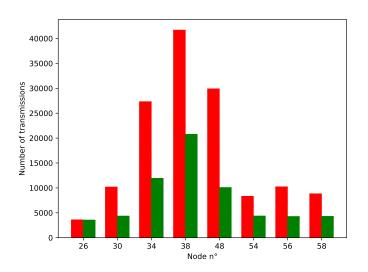


Figure 13: Number of transmissions (red is RPL — green is RPL-NPT-LB)

ENERGY CONSUMPTION

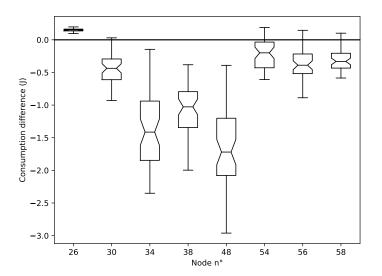


Figure 14: Energy consumption difference between RPL-NPT-LB and RPL (lower is better)

OUTLINE

- 1 SCIENTIFIC CONTEXT
- 2 CONTRIBUTION
- 3 EXPERIMENTATION
- **4** Conclusion

CONCLUSION

- IoT and RPL \rightarrow single point of failure (border router)
- ullet Colocated networks o cooperation for redundancy

CONCLUSION

- IoT and RPL \rightarrow single point of failure (border router)
- ullet Colocated networks o cooperation for redundancy

FUTURE WORK

- Experiment with larger and random network layouts
- Different congested mode triggers
- Precise assessment before redirection (e.g. link quality)

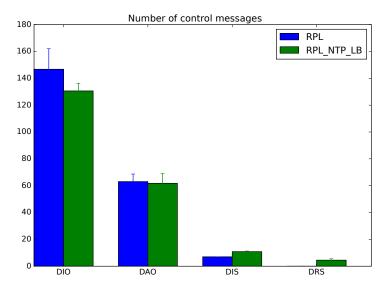
THANK YOU FOR YOUR ATTENTION! QUESTIONS?

SHARING IS CARING: A COOPERATION SCHEME FOR RPL NETWORK RESILIENCE AND EFFICIENCY

Brandon Foubert brandon.foubert@inria.fr

Julien Montavont montavont@unistra.fr

Inria Lille - North Europe



ICube - UMR 7357

CONTROL MESSAGES

 $\textbf{Figure 15:} \ \, \textbf{Transmission number of control messages}$

EXPERIMENTAL PARAMETERS

MAC layer	IEEE 802.15.4 CSMA/CA
MAC acknowledgments	Enabled
MAC Tx queue size	1 packet
RDC mechanism	No RDC (NULLRDC)
Traffic type	UDP packets
Traffic rate	1 packet per second
Tx power	3 dBm
Rx power threshold	-60 dBm
Motes used	10 M3 open node
RPL mode	Non-storing
RPL OF	MRHOF ETX
Congested mode trigger	Sub-DODAG size threshold

REPARTITION OF TRANSMISSION STATE

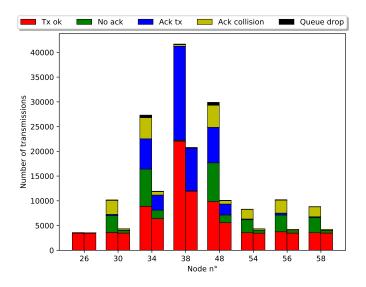


Figure 16: Repartition of transmission state (left RPL — right RPL-NPT-LB)