RPL COOPERATION EXPERIMENTS USING FIT IOT-LAB TESTBED

Brandon Foubert brandon.foubert@inria.fr Julien Montavont montavont@unistra.fr

ICube - UMR 7357

Inria Lille - Nord Europe

Íngia -

Journées non-thématiques du GDR Réseaux et Systèmes Distribués

January 23, 2020

OUTLINE

Scientific context

- Internet of Things
- RPL: routing in the IoT
- Inherent issues in RPL

2 CONTRIBUTION

3 Experimentation

4 CONCLUSION

Set of constrained objects interconnected with the Internet via wireless communications

CONSTRAINTS

- Computation power
- Memory storage
- Battery \rightarrow limited energy

NEW USAGES, NEW STANDARDS

- Classic IP protocols not efficient with IoT devices
- Specialized standards from the IEEE and the IETF

RPL: ROUTING IN THE IOT [WTB12]

- Proactive intra-domain distance-vector routing protocol
- Destination Oriented Directed Acyclic Graph (DODAG)
- Metrics: Hop count, Expected Transmission Count (ETX)...
- Traffic patterns: multi-point to point, point to multi-point, point to point

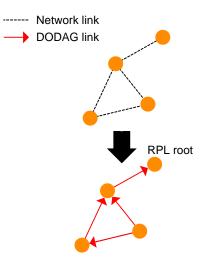
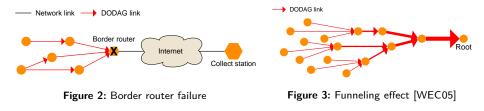



Figure 1: Physical and logical topology

[WTB12] T. Winter et al. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC 6550. Mar. 2012

RPL INHERENT ISSUES

Solution = border router redundancy

• Orphan nodes redirect traffic to another border router

 $\bullet\,$ Multiple exit points \rightarrow traffic shared between multiple paths

[WEC05] Chieh-Yih Wan et al. "Siphon: Overload Traffic Management Using Multi-radio Virtual Sinks in Sensor Networks". In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems. ACM, 2005

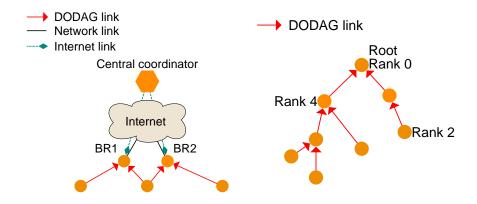


Figure 4: Central coordination [NMM16]

Figure 5: Local load balancing [KKP17]

[NMM16] Quang-Duy Nguyen et al. "RPL Border Router Redundancy in the Internet of Things". In: Ad-hoc, Mobile, and Wireless Networks. Ed. by Nathalie Mitton, Valeria Loscri, and Alexandre Mouradian. Springer International Publishing, 2016. ISBN: 978-3-319-40509-4

[KKP17] H. S. Kim et al. "Load Balancing Under Heavy Traffic in RPL Routing Protocol for Low Power and Lossy Networks". In: IEEE Transactions on Mobile Computing 16.4 (Apr. 2017), pp. 964–979. ISSN: 1536-1233

BRANDON FOUBERT

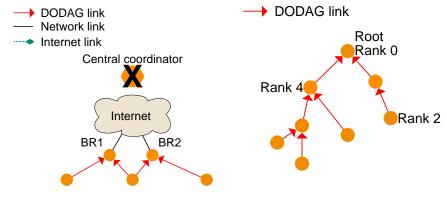


Figure 4: Single point of failure [NMM16]

Figure 5: Local load balancing [KKP17]

[NMM16] Quang-Duy Nguyen et al. "RPL Border Router Redundancy in the Internet of Things". In: Ad-hoc, Mobile, and Wireless Networks. Ed. by Nathalie Mitton, Valeria Loscri, and Alexandre Mouradian. Springer International Publishing, 2016. ISBN: 978-3-319-40509-4

[KKP17] H. S. Kim et al. "Load Balancing Under Heavy Traffic in RPL Routing Protocol for Low Power and Lossy Networks". In: *IEEE Transactions on Mobile Computing* 16.4 (Apr. 2017), pp. 964–979. ISSN: 1536-1233

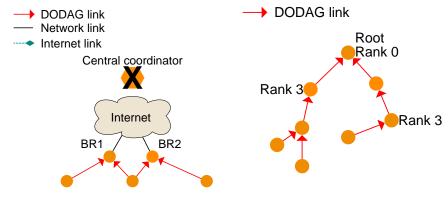
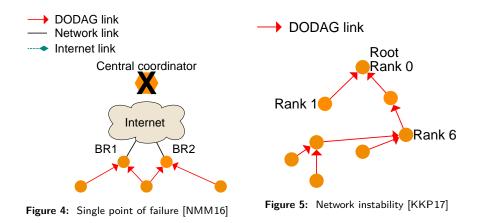



Figure 4: Single point of failure [NMM16]

Figure 5: Local load balancing [KKP17]

[NMM16] Quang-Duy Nguyen et al. "RPL Border Router Redundancy in the Internet of Things". In: Ad-hoc, Mobile, and Wireless Networks. Ed. by Nathalie Mitton, Valeria Loscri, and Alexandre Mouradian. Springer International Publishing, 2016. ISBN: 978-3-319-40509-4

[KKP17] H. S. Kim et al. "Load Balancing Under Heavy Traffic in RPL Routing Protocol for Low Power and Lossy Networks". In: *IEEE Transactions on Mobile Computing* 16.4 (Apr. 2017), pp. 964–979. ISSN: 1536-1233

[NUM16] Quang-Duy Nguyen et al. "RPL Border Router Redundancy in the Internet of Things". In: Ad-hoc, Mobile, and Wireless Networks. Ed. by Nathalie Mitton, Valeria Loscri, and Alexandre Mouradian. Springer International Publishing, 2016. ISBN: 978-3-319-40509-4

[KKP17] H. S. Kim et al. "Load Balancing Under Heavy Traffic in RPL Routing Protocol for Low Power and Lossy Networks". In: *IEEE Transactions on Mobile Computing* 16.4 (Apr. 2017), pp. 964–979. ISSN: 1536-1233

BRANDON FOUBERT

OUTLINE

1 Scientific context

2 CONTRIBUTION

- Considered scenario
- Multiple border routers
- Load balancing
- Multiple IPv6 prefixes

3 EXPERIMENTATION

4 CONCLUSION

CONSIDERED SCENARIO

- Smart cities: smart street lights, smart health, smart parking, etc.
 → colocated networks
- Different Internet service providers
- Different IPv6 prefixes
- Same IoT stack

Figure 6: Smart cities (from [IEE18])

[IEE18] IEEE smart cities. URL: https://beyondstandards.ieee.org/smart-cities/smart-smart-cities/ (visited on 08/20/2018)

BRANDON FOUBERT

Multiple border routers

Redundancy \rightarrow failure resilience & load sharing between exit points \Rightarrow RPL + distributed virtual DODAG root \Rightarrow Initialization using discovering (*e.g.* [KLR16])

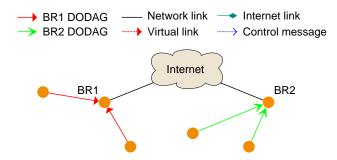


Figure 7: Border router discovering and inter-connexion

[KLR16] M. M. Khan et al. "A multi-sink coordination framework for low power and lossy networks". In: 2016 International Conference on Industrial Informatics and Computer Systems (CIICS). Mar. 2016, pp. 1–5

BRANDON FOUBERT

Multiple border routers

Redundancy \rightarrow failure resilience & load sharing between exit points \Rightarrow RPL + distributed virtual DODAG root \Rightarrow Initialization using discovering (*e.g.* [KLR16])

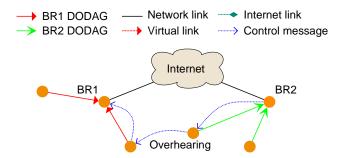


Figure 7: Border router discovering and inter-connexion

[KLR16] M. M. Khan et al. "A multi-sink coordination framework for low power and lossy networks". In: 2016 International Conference on Industrial Informatics and Computer Systems (CIICS). Mar. 2016, pp. 1–5

BRANDON FOUBERT

Multiple border routers

Redundancy \rightarrow failure resilience & load sharing between exit points \Rightarrow RPL + distributed virtual DODAG root \Rightarrow Initialization using discovering (*e.g.* [KLR16])

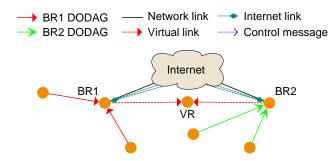


Figure 7: Border router discovering and inter-connexion

[KLR16] M. M. Khan et al. "A multi-sink coordination framework for low power and lossy networks". In: 2016 International Conference on Industrial Informatics and Computer Systems (CIICS). Mar. 2016, pp. 1–5

BRANDON FOUBERT

- Multiple RPL instances \rightarrow border router differentiation
- Colocated networks \rightarrow nodes set "redirectable" flag
- Congested border router \rightarrow DODAG Redirection Solicitation (DRS)

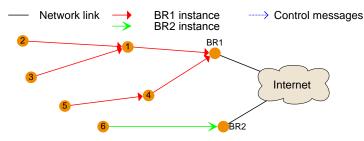


Figure 8: Redirection of node 4 from BR1 to BR2

- Multiple RPL instances \rightarrow border router differentiation
- \bullet Colocated networks \rightarrow nodes set "redirectable" flag
- Congested border router → DODAG Redirection Solicitation (DRS)

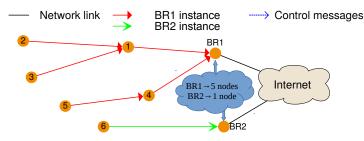


Figure 8: Redirection of node 4 from BR1 to BR2

- Multiple RPL instances \rightarrow border router differentiation
- Colocated networks \rightarrow nodes set "redirectable" flag
- Congested border router \rightarrow DODAG Redirection Solicitation (DRS)

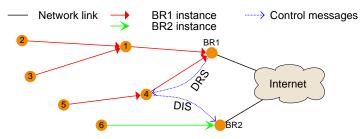


Figure 8: Redirection of node 4 from BR1 to BR2

- Multiple RPL instances \rightarrow border router differentiation
- Colocated networks \rightarrow nodes set "redirectable" flag
- Congested border router \rightarrow DODAG Redirection Solicitation (DRS)

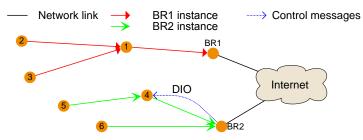
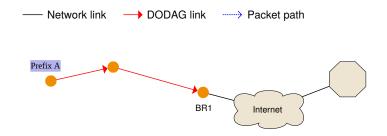
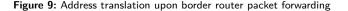
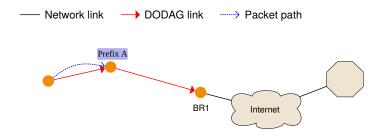
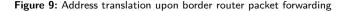




Figure 8: Redirection of node 4 from BR1 to BR2

Considered scenario \rightarrow multiple distinct IPv6 prefixes \Rightarrow RPL + IPv6 Network Prefix Translation (NPT) [WB11] \Rightarrow Prefixes sharing \rightarrow backup routes \rightarrow multi-homing

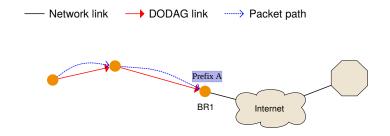


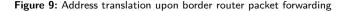


[WB11] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation. RFC 6296. June 2011

Brandon F	OUBERT
-----------	--------

Considered scenario \rightarrow multiple distinct IPv6 prefixes \Rightarrow RPL + IPv6 Network Prefix Translation (NPT) [WB11] \Rightarrow Prefixes sharing \rightarrow backup routes \rightarrow multi-homing

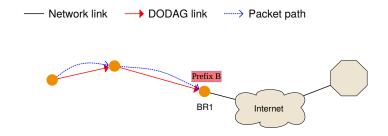


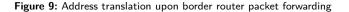


[WB11] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation. RFC 6296. June 2011

Brandon F	OUBERT
-----------	--------

Considered scenario \rightarrow multiple distinct IPv6 prefixes \Rightarrow RPL + IPv6 Network Prefix Translation (NPT) [WB11] \Rightarrow Prefixes sharing \rightarrow backup routes \rightarrow multi-homing

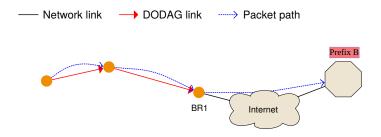


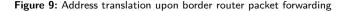


[WB11] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation. RFC 6296. June 2011

Brandon F	OUBERT
-----------	--------

Considered scenario \rightarrow multiple distinct IPv6 prefixes \Rightarrow RPL + IPv6 Network Prefix Translation (NPT) [WB11] \Rightarrow Prefixes sharing \rightarrow backup routes \rightarrow multi-homing





[WB11] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation. RFC 6296. June 2011

Brandon	Foubert
---------	---------

Considered scenario \rightarrow multiple distinct IPv6 prefixes \Rightarrow RPL + IPv6 Network Prefix Translation (NPT) [WB11] \Rightarrow Prefixes sharing \rightarrow backup routes \rightarrow multi-homing

[WB11] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation. RFC 6296. June 2011

Brandon	Foubert
---------	---------

OUTLINE

Scientific context

2 CONTRIBUTION

3 EXPERIMENTATION

- Experimental setup
- Topologies
- Bandwidth repartition
- End-to-end packet error rate
- Number of one-hop transmissions
- Energy consumption

4 CONCLUSION

FIT/IOT-LAB

Figure 10: Strasbourg testbed

HARDWARE

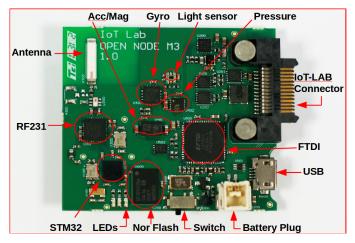


Figure 11: M3 Open Node

EXPERIMENTAL SETUP

- Contiki OS 3.x \rightarrow Contiki RPL
- FIT/IoT-LAB testbed, M3 nodes

PARAMETERS

- IEEE 802.15.4 CSMA/CA
- no radio duty cycle mecanism
- 1 UDP packet per second
- sub-DODAG size threshold as congestion trigger

Scenario

- 2 border routers & 8 traffic generating nodes
- Border router 53 wakes up 60s after border router 18
- 100 experiments of 1h each

TOPOLOGIES

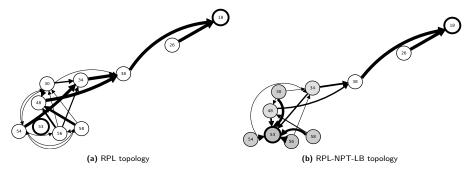


Figure 12: Cumulative final DODAGs from all experiments (the thicker a link is, the more frequently it appears)

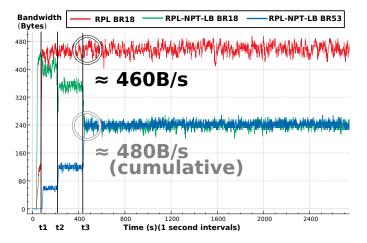


Figure 13: Better division of the traffic load between border routers

END-TO-END PACKET ERROR RATE

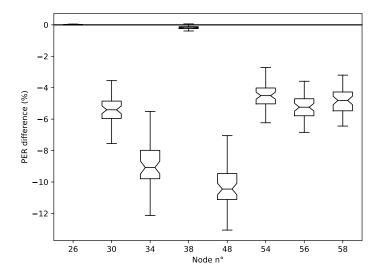


Figure 14: End-to-end losses difference between RPL-NPT-LB and RPL (lower is better)

BRANDON FOUBERT

NUMBER OF ONE-HOP TRANSMISSIONS

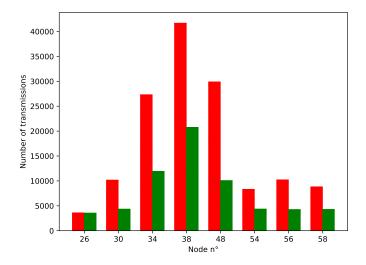


Figure 15: Number of transmissions (red is RPL — green is RPL-NPT-LB)

ENERGY CONSUMPTION

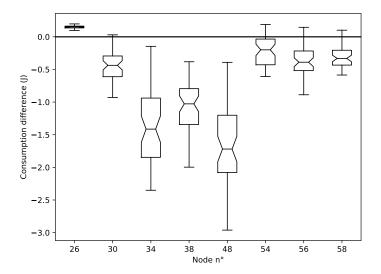


Figure 16: Energy consumption difference between RPL-NPT-LB and RPL (lower is better)

BRANDON FOUBERT

OUTLINE

Scientific context

- **2** CONTRIBUTION
- **3** EXPERIMENTATION

- $\bullet~\mbox{loT}$ and RPL \rightarrow single point of failure (border router)
- \bullet Colocated networks \rightarrow cooperation for redundancy

- IoT and RPL \rightarrow single point of failure (border router)
- \bullet Colocated networks \rightarrow cooperation for redundancy

FUTURE WORK

- Experiment with larger and random network layouts
- Different congested mode triggers
- Precise assessment before redirection (e.g. link quality)

RPL cooperation experiments using FIT IoT-LAB testbed Contact: brandon.foubert@inria.fr

Thank you for your attention! Any questions?

[FM19] Brandon Foubert and Julien Montavont. "Sharing is caring: a cooperation scheme for RPL network resilience and efficiency". In: ISCC 2019 - 24th Symposium on Computers and Communications. June 2019

CONTROL MESSAGES

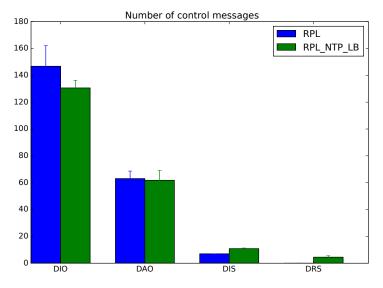


Figure 17: Transmission number of control messages

MAC layer	IEEE 802.15.4 CSMA/CA
MAC acknowledgments	Enabled
MAC Tx queue size	1 packet
RDC mechanism	No RDC (NULLRDC)
Traffic type	UDP packets
Traffic rate	1 packet per second
Tx power	3 dBm
Rx power threshold	-60 dBm
Motes used	10 M3 open node
RPL mode	Non-storing
RPL OF	MRHOF ETX
Congested mode trigger	Sub-DODAG size threshold

REPARTITION OF TRANSMISSION STATE

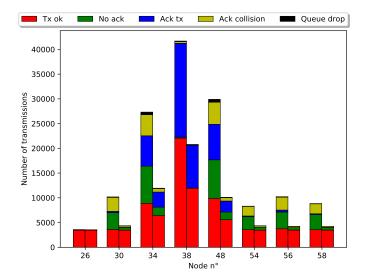


Figure 18: Repartition of transmission state (left RPL — right RPL-NPT-LB)