POLYMORPHICAL WIRELESS COMMUNICATION FOR CONNECTED AGRICULTURE

Brandon Foubert, Nathalie Mitton

Tel: + 33 3 59 57 79 43 - Mail: brandon.foubert@inria.fr - Inria Lille-Nord Europe

40 avenue Halley - 59650 Villeneuve d'Ascq - France

Future ubiquitous networks

CONTEXT

Goal: Extend geographical range of operation & over-the-air firmware upgrades

100 bytes per second 140 x 12 bytes / day upstream 4 x 8 bytes / day downstream

Sigfox deployment map

Idea: Multiple radio technologies & multi-hop networks

CELLULAR NETWORKS

Enhanced Machine Type

Communication (eMTC a.k.a. LTE-M)

- Based on 4G (LTE)
- ¬ 1 Mbps bit-rate
- 7 1,4 MHz bandwidth
- ¬ eDRX & PSM

Narrow-band IoT (NB-IoT)

- Also based on 4G
- 250 kbps down & 20 kbps up bit-rate
- 7 180 kHz bandwidth
- ¬ No handover

eMTC & NB-IoT only need a firmware upgrade of the base stations to be deployed

LOW POWER WIDE AREA NETWORK

100

68

51

100

LoRa

¬ 0,3-50 kbps bit-rate

¬ 3 classes of device

Ingenu

[¬] 2,4 GHz ISM band

78 kbps up

¬ 19,5 kbps down

Weightless

¬ 3 standards: W/P/N

¬ 0,2-100 kbps

¬ Ack & FotA

[9] LoRaWAN cove https://lora-allian LoRa deployment map

Many more technologies: Telensa, DASH7, Qowisio, WAVIoT...

DISCUSSION

Energy consumption

¬ Hardware dependent

Based on datasheets:

UNB < LoRa < Weightless-P < Cellular < Ingenu

¬ Ratio bit-rate / energy ?

Coverage

Highly dependent on the environment

" UNB > LoRa > Weightless-P > Cellular > Ingenu

Penetration of natural environment?

Financial cost

- $\ \ ^{\lnot}$ Highly dependent on countries, operators and so on
- ¬ Cellular « brokers » e.g. Hologram (1\$/month +40¢/MB)

된 님		Module	Connectivity	Infrastructure
[12] Ray Brian. Cost of building with LPWAN technologies. Dec. 2018. url: https://www.link-labs.com/blog/	LTE-M	\$10-15	\$3-5 / mo for 1MB	
	NB-IOT	\$7-12	<\$1 /mo for 100kb	
	Sigfox	\$5-10	<\$1 / mo	
	Ingenu	\$10-15	?	
	LoRaWAN Public	\$9-12	\$1-2 / mo	
	LoRaWAN Private	\$9-12	\$0.25 / mo	\$500
[12] Ray LPWAN t https://w	Symphony Link	\$15	\$0.25 / mo	\$500

Deployment

- Cellular is by far the largest deployment
- LoRa can be deployed as a private network / not cellular
- Tevolution in the future ?

Usage of the spectrum

 $^{\neg}$ A = {Ai, for i=1,2,...,n} the set of candidates

 $^{\neg}$ C = {Cj, for j=1,2,...,m} the set of attributes

- ¬ Many LPWANs on the sub-GHz ISM unlicensed
- Cellular use licensed bands, but partly LTE bands

NETWORK INTERFACE SELECTION

	C1 (w1)	C2 (w2)		Cm (wm)
A1	a11	a21		am1
A2	a12	a22		am2
An	a1n	a2n		amn

Multi Attribute Decision Making (MADM) matrix eung, "Multi-Attribute Network Selectio IIS for Heterogeneous Wireless Access," 2 umer Communications and Networking as Vegas, NV, 2007, pp. 808-812

Solution (TOPSIS) Attribute 1

Problem: Complex calculations & ranking abnormalities

Euclidean normalization

$$r_{ij} = \frac{a_{ij}}{\sqrt{\sum_{i=1}^{N} a_{ij}^2}}$$

$$S_{i}^{+} = \sqrt{\sum_{j=1}^{m} (v_{j}^{+} - v_{ij})}$$
$$S_{i}^{-} = \sqrt{\sum_{j=1}^{m} (v_{j}^{-} - v_{ij})}$$

Ranking instability

- ¬ Alteration of the final ranking when removing worst
- Caused by euclidean normalization
- Using alternative normalization methods can reduce

the effect but not neutralize it

LIGHT TOPSIS FOR IOT

Simple and stable normalization

Reduce complexity and eliminate rank reversal

¬ Application layer expresses needs in terms of bounds and weights

" Use fixed bounds for each attribute

if Cj is upward then we have :

Bj+ the upper bound else if Ci is downward then we have: if C_j upward $r_{ij} = \frac{a_{ij}}{R^+}$

Similarity to Ideal

if C_j downward r_{ij} =

Bj- the lower bound

REFERENCES

[1] Sencrop. url: https://sencrop.com/. [2] U. Raza, P. Kulkarni, and M. Sooriyabandara. "Low Power Wide Area Networks: An Overview". In: IEEE Communications Surveys Tutorials 19.2 (2017), pp. 855-873.

[3] Finnegan Joseph and Stephen Brown. "A Comparative Survey of LPWA Networking". In: (May 2017). [4] Sigfox coverage map. Dec. 2018. url: https://www.sigfox.com/en/coverage.

[5] Global mobile Suppliers Association (GSA). Evolution from LTE to 5G:

2018. url: https://lot.mobi/blog/2g-and-3g-networks-are-shutting-down-

[6] Mobile IoT Deployments. Dec. 2018. url https://www.gsma.com/iot/deployment-map/.
[7] Heimar Lecht. 2G and 3G networks are shutting down globally?! Dec.

[8] Semtech LoRa technology overview. Dec. 2018. url:

[9] LoRaWAN coverage map. Dec. 2018. url: https://lora-alliance.org/. [10] RPMA: Technology for the Internet of Things. Tech. rep. url: https: // theinternetofthings . report /Resources/Whitepapers/4cbc5e5e-6ef8-4455-b8cd-f6e3888624cb_RPMA%20Technology.pdf. [11] Weightless. Dec. 2018. url: http://www.weightless.org/.

[12] Ray Brian. Cost of building with LPWAN technologies. Dec. 2018. url: https://www.link-labs.com/blog/ costs-in-iot-lte-m-vs-nh-iot-vs-sigfox-vs-lora [13] Hologram. Dec. 2018. url: https://hologram.io/. [14] F. Bari and V. Leung, "Multi-Attribute Network Selection by Iterative TOPSIS for Heterogeneous Wireless Access," 2007 4th IEEE Consumer Communications and Networking Conference, Las Vegas,

NV, 2007, pp. 808-812 [15] Senouci, M. (2018). Sélection adaptative de la technologie réseau pour le transport de données dépendant du contexte (Doctoral dissertation, Paris Est).

