Ingia-

LoRa in a haystack: a study of the LoRa signal behavior

> Ibrahim Amadou, **Brandon Foubert**, Nathalie Mitton

LPWANs and LoRA

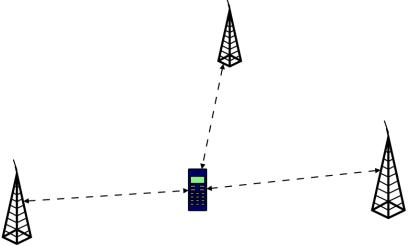
LPWANs → Long range & low energy consumption BUT low data rate

LoRa → Semtech Long Range technology

Chirp Spread Spectrum

Sub-GHz frequency

Spreading factors → trade-off between range and data rate


LoRa for geolocation

Time Difference of Arrival

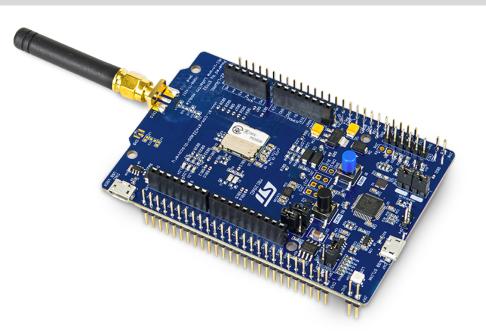
Very inaccurate (from meters to kilometers errors)

Accuracy can improve with math magic

Motivations

Why inaccurate? Stability of the signal?

- → study LoRa signal characteristics in relation to the environment
- → study LoRa signal under mobility
- → in field experiments


System setup

B-L072Z-LRWAN1 LORA®/Sigfox TM discovery kit

Two devices (no gateway → P2P)

Firmware → ping pong

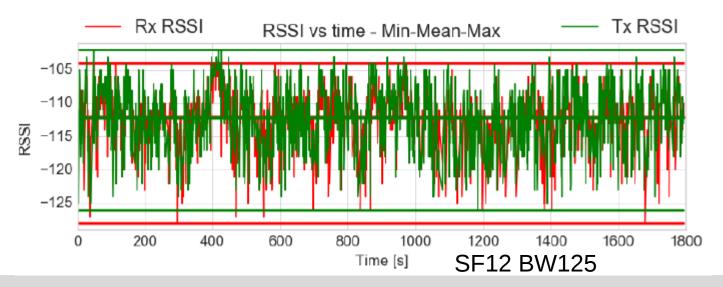
No line of sight in scenarios!



Parameter	Values			
Spreading factor	[7, 8, 9, 10, 11, 12]			
Bandwidth	[125, 250] kHz			
Coding rate	4/5			
Transmission power	+14 dBm			
Carrier frequency	868.1 MHz			
Payload size	32 bytes			

First scenario

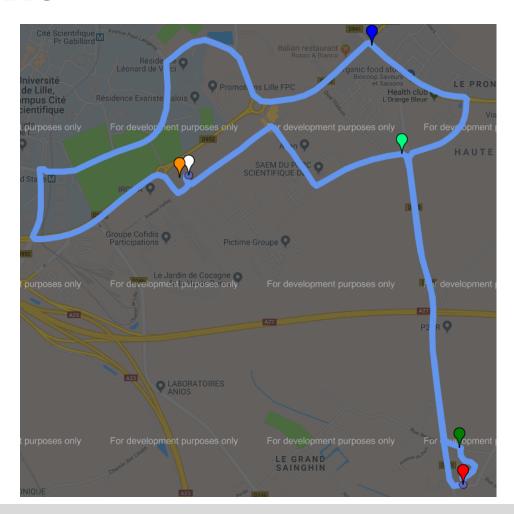
Peri-urban environment
Static devices (~122.5 m)
Signal goes through the building



First scenario: results

Independently of spreading factor and bandwidth:

- « stable » RSSI
- small variance
- → good for geolocation

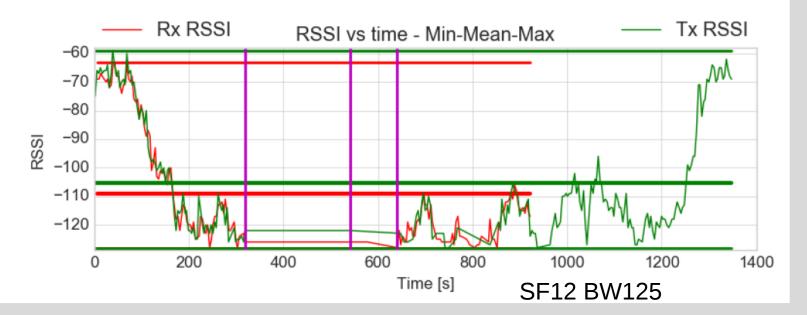


Second scenario

Peri-urban environment

One static device, one mobile device (in car)

Car speed ~30-90 km/h



Second scenario: results

Distance increase → RSSI decrease

Three phases: symmetric → asymmetric (cut) → symmetric

Max symmetric communication distance → 1.12 km

Third scenario

Dense urban environment

How far can we go with each spreading factor?

Rx (SF=12)

Third scenario: results

Assymetric signals (greater bandwith → more assymetric)

	SF	7	8	9	10	11	12
Max distance →	Range (m)	104.22	122.91	164.98	184.49	208.30	208.96

Takeaways

- P2P LoRa & no line of sight → greatly reduce max range
- Moderate speed (40km/h) is OK
- High speed (90km/h) is not!
- LoRa signal stability highly depends on the environment
- Rural more stable than urban → less obstacles & less movement
- → Future work: further investigate the impact of the environment (e.g. air humidity, pressure, etc.) on LoRa performance

Thank you for your attention!

Any question? brandon.foubert@inria.fr

