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ABSTRACT
In this paper, we revisit and extend some mathematical aspects of Onsager’s theory of liquid crystals that have been investigated
in recent years by different communities (statistical mechanics, analysis, and probability). We introduce a model of anisotropic
molecules with three-dimensional orientations interacting via a Kac-type interaction. We prove that, in the limit in which the
range of the interaction is sent to infinity after the thermodynamic limit, the free energy tends to the infimum of an effec-
tive energy functional à la Onsager. We then prove that, if the spherical harmonic transform of the angular interaction has a
negative minimum, this effective free energy functional displays a first order phase transition as the total density of the system
increases.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0007613

I. INTRODUCTION
The problem of understanding phase transition phenomena in liquid crystals was first mathematically formalized in a seminal paper

by Onsager,1 in which he considered a simple microscopic model of anisotropic molecules interacting through repulsive interactions, and
derived an effective free energy functional for the system, of the following form:

ρ
β∫S2

f (Ω) log f (Ω)dΩ +
ρ2

2 ∫S2×S2
f (Ω) f (Ω′)φ(Ω ⋅Ω′)dΩdΩ′. (1.1)

Here, f (Ω) represents the distribution of the orientation of the molecules, and φ is an interaction potential, even under “orientation flip,”
Ω ⋅ Ω′ → −Ω ⋅ Ω′. Since then, the topic of phase transitions in liquid crystal models has attracted significant attention, and the equilibrium
phenomenology of liquid crystals is now well understood; see Ref. 2 for an extensive overview.

However, from a more fundamental point of view, several aspects of the mathematical theory of liquid crystalline phases are not well
understood. In particular, the problem of proving the existence of an oriented phase at low enough temperatures, or high enough densities, in
a system of anisotropic molecules with continuous orientational symmetry and finite range interactions, is almost completely open [the only
exceptions we are aware of (see Refs. 3–5) concern discrete, reflection positive, models with an internal O(N) degree of freedom or continuous
models that can be reduced to such discrete, reflection positive, systems, via correlation inequalities; see Ref. 6]. Even less is rigorously known
about the order of the phase transition from the disordered to the nematic phase, which is supposed to be of first order in great generality,
at least if Ω ∈ Sn, with n ≥ 2: loosely speaking, as soon as the molecules acquire a common orientation, the density is expected to have a
jump (at fixed activity) due to the fact that oriented elongated molecules can pack more efficiently than un-oriented ones. We believe that
the lack of rigorous results on the existence and nature of the phase transition in microscopic models for liquid crystals is related to the
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limited mathematical understanding of continuous symmetry breaking phenomena in systems with short range interactions: with a very few
exceptions,7–9 the only available results on the subject are based on reflection positivity and, therefore, are not robust under perturbations of
the microscopic Hamiltonian. Typically, the “natural” microscopic models of liquid crystals are not reflection positive, and therefore, there
are not many techniques available for attacking the problem. One possible route that, in our opinion, has not been explored enough in the
context of liquid crystals is to consider finite range models obtained as perturbation of mean field ones, in the spirit of Refs. 10 and 11. The
techniques developed by Ref. 10 in their standard form are suitable for studying problems with discrete symmetry breaking only; still, there is
hope that a generalization thereof can be used to attack the more challenging problem of continuous symmetry breaking and liquid crystalline
order.

Of course, in order for such a program to be feasible, the scaling limit of the finite range model to the mean field one, as well as
the properties of the effective energy functional for the limiting mean field model, must be understood in a complete and quantitative
form. Motivated by this, in this paper, we revisit and extend some aspects of the mathematical theory of liquid crystals that have been
investigated in recent years by different communities (statistical mechanics, analysis, and probability). In short, we introduce a model of
anisotropic molecules with long but finite range interactions (we denote the range by γ−1) and give a simple proof of the following facts:
(1) as the range γ−1 tends to infinity, the free energy of the model tends to the minimizer of a free energy functional à la Onsager, i.e., of
form (1.1); (2) this effective free energy functional displays a first order phase transition as the total density of the system is varied from
small to large values. Our results are not the first of this kind available in the literature, and some aspects of our proofs overlap with
known techniques developed by different mathematical communities: for instance, in the proof of (1), we use a criterium put forward by
Lebowitz and Penrose12 to show spatial homogeneity of the critical points, and in the proof of (2), we apply an argument already used
in Refs. 13 and 14 for analyzing the nature of the phase transition of the spatially homogeneous effective energy functional. Nevertheless,
since the topic at hand involves various mathematical and physics communities and previous results are delocalized in papers aimed at
researchers with different backgrounds, we deem worthwhile to have in the same short article both parts of the problem solved in a concise
way.

A. Previous results on the derivation of an effective free energy functional
In the standard mean-field scaling limit, N particles enclosed in a container interact among each other via a potential of strength N−1 and

range comparable with the container itself. Recently, models for nematic liquid crystals in this scaling limit have been considered,15 and the
free energy proved to converge to an appropriate effective energy functional, of the same form as the one originally considered by Onsager.
A priori, the predictions on the nature of the phase transition based on the limiting mean-field functional are not reliable for finite range
models (an exception is the case of finite range systems in large dimension, where in some cases, the mean field approximation can be
rigorously justified; see Ref. 16 for a proof covering models of interest for liquid crystals). In order to better understand the connection
between the limiting functional and finite-range models, it is important to clarify whether there are other limit procedures leading to the
Onsager functional. Onsager himself, in his original article,1 derives his effective energy functional by truncating the virial expansion for the
free energy at second order, an approximation that, unfortunately, is justified only at low enough densities (well below the critical density
beyond which the system is expected to enter a nematic phase); see Ref. 17 for a recent analysis of the virial expansion applicable to systems
of anisotropic molecules; see also Ref. 18 for a recent critical discussion of Onsager’s approximation and its range of applicability. A third
approach to derive the effective equation of state from microscopic models, standing somehow in between the two previous approximation
schemes, is based on the so-called “van der Waals limit,” or “Kac limit,” which has been rigorously proved to produce the expected effective
energy functional for several models of isotropic particles; see Refs. 12 and 19. In the van der Waals–Kac limit, particles interact on a typical
range of order γ−1 (instead of the size L of the macroscopic container), where γ goes to 0 after having taken the thermodynamic limit L→∞
at constant density ρ = N/Ld (where Ld is the d-dimensional volume of a cubic box of side L). One of the purposes of this note is to adapt the
methods of Refs. 12 and 19 to models of nematic liquid crystals, thus extending the proof of convergence to an effective energy functional à la
Onsager beyond the mean field analysis of Ref. 15. Let us conclude this subsection by remarking that the problem of computing the free energy
for models of anisotropic molecules with continuous symmetry and “really short-range” interactions (i.e., interactions of range comparable
with the size of the molecules themselves), in regimes of intermediate densities (potentially including the critical density for nematic phase
transition), is completely open. For recent progress in the case of anisotropic molecules with discrete orientations, see Refs. 20 and 21 and
references therein; it would be extremely interesting to extend these results to “clock-models” of anisotropic molecules with several, but finite,
allowed orientations, but this remains to be done.

B. Previous results on the minimizers of the effective free energy functional
In his seminal paper, Onsager proved that the effective energy functional (1.1) displays a phase transition from isotropic to nematic

liquid, at least for certain simple reasonable choices of φ, most notably φ(x) =√1 − x2, which is the potential arising from the truncation of
the virial expansion, in the case of rod-like molecules. When we say that “the effective energy functional displays a phase transition,” we mean
that, while the minimizer of (1.1) is isotropic for ρ small enough, it is peaked around a given (arbitrary) direction Ω0 for ρ large enough. Given
this, two natural questions arise:

● Can we compute or characterize the critical points of the free energy functional?
● Can we determine the order of the phase transition from isotropic to nematic liquid?
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The problem of determining the order of phase transition has been studied for several effective free-energy functionals similar to the
Onsager one, e.g., for those arising in the mean field solution of the classical XY and Heisenberg models (see Ref. 22) and for the
McKean–Vlasov functional( see Ref. 23). In the latter case, the authors gave necessary and sufficient conditions for the existence of a first
order phase transition and exhibited examples of specific models in their class for which first order phase transitions can be proved; however,
their analysis does not apply to the Onsager case.

In order to attack both questions in the Onsager case, a natural approach is to study the Euler–Lagrange equation

f (Ω) = e−βρ ∫ φ(Ω⋅Ω′) f (Ω′)dΩ′

∫ e−βρ ∫ φ(Ω⋅Ω′) f (Ω′)dΩ′dΩ
. (1.2)

Unfortunately, for general interactions φ, including the case φ(x) =√1 − x2, this equation is infinite-dimensional and, therefore, very
hard to solve or analyze. Remarkably, there are special cases in which this equation reduces to a finite-dimensional one, most notably
the case of the so-called Maier–Saupe potential,24 φ(x) = 1 − x2. For this potential, in the case of three-dimensional orientations (Ω ∈ S2),
the Euler–Lagrange equation was solved independently in Refs. 25 and 26. These papers derive a complete classification of the critical
points and bifurcation diagram. Although the issue of the order of the phase transition is addressed neither in Ref. 25 nor in Ref. 26,
one can prove that the phase transition is discontinuous (first order); this follows, in particular, from our Theorem 2.2; see Sec. III.
For the “Onsager case” φ(x) =√1 − x2, Kayzer and Raveché13 built an iterative scheme to compute the axially symmetric solutions of
the Euler–Lagrange equation; recently, Vollmer14 obtained the full classification of the bifurcation points from the uniform solution.
An extension of Vollmer’s results, included in the present paper, implies that the phase transition is first order in the Onsager case, as
well.

Let us remark that an analogous bifurcation analysis for the Euler–Lagrange equation (1.2) in the case of two-dimensional orienta-
tions (Ω ∈ S1) has been worked out in Refs. 27 and 28 for various potentials, including Maier–Saupe and Onsager’s. The classification
and characterization of the critical points have been obtained in Ref. 29 for the family of potentials cos(n θ(Ω, Ω′)), where θ = θ(Ω, Ω′)
is the angle formed by Ω and Ω′, and n ≥ 1; for all these cases, the phase transition is continuous (second order). Note that this family
includes the Maier–Saupe potential (n = 2); the general case remains open, but we expect that the transition is generically continuous; see
Remark 5.1.

C. Plan of this paper
In Sec. II, we define the liquid crystal model we consider and state our two main results, namely, a variational formula for the

thermodynamic free energy (Theorem 2.1) and a simple criterion for the existence of a first order phase transition for the free energy
(Theorem 2.2). In Sec. III, we exhibit some concrete models, which these results apply to. In Sec. IV, we prove the variational for-
mula for the free energy, by adapting the proofs by Lebowitz and Penrose12 and Gates and Penrose19 on the van der Waals–Kac limit
to our case of interest, where particles have an internal orientational degree of freedom. Finally, in Sec. V, we prove our criterium for
the first order nature of the phase transition and discuss the fundamental differences between models with two- and three-dimensional
orientations.

II. MICROSCOPIC MODEL AND MAIN RESULTS
We consider a system of infinitely thin rods interacting via a pairwise potential and hard-core repulsion, modeled as follows: Given L > 0,

d ≥ 1, consider a large box ΛL = [0, L]d, containing N anisotropic particles, each characterized by a position xi ∈ ΛL, to be thought of as its
center, and a three-dimensional orientation Ωi ∈ S2. Note that we do not require the space dimension d to be the same as the rod orientation’s.
Letting x̄ = (x1, . . . , xN ) and Ω̄ = (Ω1, . . . , ΩN ), we assume the particles to interact via the pairwise potential

Vγ(x̄, Ω̄) = ∑
1≤i<j≤N

vγ(xi − xj, Ωi, Ωj).

Denoting Ω ⋅ Ω′ as the inner product in R3, we assume the potential vγ to have the form

vγ(r, Ω, Ω′) = q(r) + γdφ(γr, Ω ⋅Ω′),

where q(r) models an isotropic hard core repulsion with distance r0,

q(r) =
⎧⎪⎪⎨⎪⎪⎩
∞ if ∣r∣ ≤ r0

0 otherwise,
(2.1)

and φ : Rd × [−1, 1]→ R models the anisotropic long range interaction (the inverse range γ of φ should be thought of as a small parameter).
We assume that φ is integrable on Rd × [−1, 1] and, more specifically, that
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sup
τ>0

sup
x∈Λτ

sup
u∈[−1,1]

τd ∑
n∈Zd

∣φ(x + τn, u)∣ < +∞. (2.2)

Moreover, we assume that

φ(x, ⋅) is C1(x) − Lipschitz, (2.3)
φ(⋅, v) is continuously differentiable, (2.4)

both C1(x) and C2(x) ∶= supv ∣∇xφ(x, v)∣ are Riemann integrable overRd. (2.5)

The fact that the potential models a liquid crystalline interaction translates into φ being even in its second variable. However, since this is not
necessary to derive the free energy functional, we keep it as an assumption for our second result, which states that a first order phase transition
occurs in the thermodynamic limit.

The Gibbs distribution for this system with open boundary conditions is then given by

μβ,γ({Xi ∈ xi + dxi, Oi ∈ Ωi + dΩi}i=1,...,N ) = 1
Zβ(N, L, γ)

dx̄dΩ̄
N!

e−βVγ(x̄,Ω̄),

where Zβ(N, L, γ) is the partition function,

Zβ(N, L, γ) ∶= ∫
ΛN

L ×(S2)N

dx̄dΩ̄
N!

e−βVγ(x̄,Ω̄).

The thermodynamic free energy in the van der Waals–Kac limit is defined as

F β(ρ) = lim
γ→0

lim
L→∞

−1
βLd log Zβ(⌊ρLd⌋, L, γ).

Our goals are, first, to derive an expression for the free energy as a variational principle over the distribution in space and orientation
of the particles and then to show that this expression undergoes a first order phase transition under suitable assumptions on the interaction
potential φ. To state our first result, denote by ρcp = ρcp(r0) the close packing density at radius r0. Introduce the partition function relative to
N particles with hard core repulsion,

Zhc(N, L) = ∫
ΛN

L

dx̄
N!

1{xi−xj≥r0 , ∀i≠j≤N}, (2.6)

and define the corresponding free energy at density ρ as

F hc(ρ) = lim
L→∞

−1
βLd log Zhc(⌊ρLd⌋, L) (2.7)

=
⎧⎪⎪⎨⎪⎪⎩

β−1[ρ log(ρ/e) + Qr0 (ρ)] for ρ < ρcp

∞ otherwise,

where the positive term Qr0 (ρ) encompasses the loss of entropy due to the hard core repulsion. Note that this equation should be regarded
as a definition of Qr0 (ρ), whose existence follows from the classical theory of the thermodynamic limit of stable particle systems; see, e.g.,
Ref. 30, Chap. 3. While a closed, explicit, formula for Qr0 (ρ) is not available in general [an exception is the case d = 1, in which case Qr0 (ρ)
= −ρ log(1 − ρr0)], it is well known (see, e.g., Ref. 30, Chap. 4) that, if ρrd

0 is sufficiently small, Qr0 (ρ) is real analytic, and all the Taylor
coefficients of its expansion in ρ are computable via an explicit, constructive, algorithm; moreover, both Qr0 (ρ) and ρ−1Qr0 (ρ) are increasing
in r0 and convex and increasing in ρ (these properties follow from the fact that the second and third virial coefficients of the hard core gas are
positive; see Ref. 31). We are now ready to state our main results.

Theorem 2.1. Given a function f : Rd × S2 → R, we denote by f̄ the function on Rd defined as f̄ (x) = ∫S2 f (x, Ω)dΩ. Then,

F β(ρ) = inf
τ≥0
f ∈Rτ

F β,τ(ρ, f ), (2.8)

where
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F β,τ(ρ, f ) ∶= 1
τd {

1
β∫Λτ

Qr0 (ρf̄ (x))dx +
ρ
β∫Λτ×S2

f log f (x, Ω)dx dΩ (2.9)

+
ρ2

2 ∫Λτ×Rd×S2×S2
f (x, Ω) f (y, Ω′)φ(x − y, Ω ⋅Ω′)dx dy dΩ dΩ′},

and Rτ is the set of non-negative, L1
loc, τ-periodic functions such that

τ−d∫
Λτ×S2

f (x, Ω)dx dΩ = 1.

[If τ = 0, R0 consists of functions that are translationally invariant in x; if f ∈R0, we simply denote by f (Ω) the values of f .]

Note that the first two terms in (2.9) represent the contribution of the hard core free energy F hc defined in (2.7); in particular, the first
term comes from the hard-core potential q(r) of radius r0 in (2.1).32 Since Qr0 (ρ) = +∞ for ρ ≥ ρcp, in the minimization of F β,τ(ρ, f ), we can
assume without loss of generality that ρf̄ (x) < ρcp. For later reference, we denote F β(ρ, f ) ∶= F β,0(ρ, f ), and note that, for f ∈R0,

F β(ρ, f ) = 1
β
Qr0 (ρ) +

ρ
β∫S2

f log f (Ω)dΩ +
ρ2

2 ∫S2×S2
f (Ω) f (Ω′)φ̂(0, Ω ⋅Ω′)dΩ dΩ′,

where φ̂(0, u) = ∫Rd φ(x, u)dx.
Let us now give a criterion for F β(ρ) to exhibit a first order phase transition. Since we are mostly interested in the angular dependence of

the free energy functional, we focus on the r0 → 0+ limit of F β(ρ), which we denote by F 0
β(ρ) [we define F 0

β,τ(ρ, f ) and F 0
β(ρ, f ) analogously].

Most of the consideration below can be extended to the case of r0 small, thanks to the properties of Qr0 spelled after (2.7), but we will not
discuss this issue explicitly below.

Denote by Pℓ, with ℓ ∈ N0 (where N0 is the set of non-negative integers), the ℓth Legendre polynomial, whose definitions and basic
properties are briefly recalled in the Appendix.

Theorem 2.2. For ξ ∈ Rd, ℓ ∈ N0, define

Φ̂ℓ(ξ) = ∫Rd×[−1,1]
φ(x, u)Pℓ(u)e−ix⋅ξdudx. (2.10)

Assume that for any x ∈ Rd, φ(x, ⋅) is even and that there exists ℓ⋆ > 0 such that

inf
(ξ,ℓ)∈Rd×N

Φ̂ℓ(ξ) = Φ̂ℓ⋆ (0) < 0. (2.11)

Then, F 0
β(ρ) exhibits a first-order phase transition, in the sense that there exists a positive critical density ρc, strictly smaller than ρ⋆

∶= −4π/(βΦ̂ℓ⋆ (0)) such that

1. for any ρ < ρc, the uniform profile f 0 ≡ 1
4π is the unique global minimizer of F 0

β,τ(ρ, f ) for all τ ≥ 0;
2. for any ρc < ρ < ρ⋆, the uniform profile f 0 is a local stable minimum of F 0

β,τ(ρ, f ) for all τ ≥ 0; however, there exists τ ≥ 0 and f ′∈Rτ

such that F 0
β,τ(ρ, f ′) < F 0

β(ρ, f 0); and
3. for any ρ > ρ⋆, the uniform profile is locally unstable.

Remark 2.3 (On the parity of ℓ⋆). Since the Legendre polynomials Pℓ are even (respectively, odd) on [−1, 1] iff ℓ is, and since we assumed
our potential φ to be even in its second variable, we obtain by symmetry Φ̂ℓ ≡ 0 for any odd ℓ. In particular, one must have, under the assumptions
of Theorem 2.2, that ℓ⋆ is even.

The Proof of Theorem 2.1 mimics the one of Ref. 19 and is given in Sec. IV. The Proof of Theorem 2.2 is given in Sec. V and goes as
follows: In our setting of pairwise particle interactions, the energetic contribution to the free energy can be expressed as a quadratic functional
of the particle distribution, both in space and orientation. In this context, one can then develop the entropic term around the uniform profile
f 0 to second order to determine the density ρ⋆ at which f 0 loses linear stability, as a function of the most negative eigenvalue of the energetic
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contribution. Developing further, two cases can arise: either at ρ⋆ the leading correction beyond the quadratic approximation is negative,
in which case at the critical density ρ⋆ the uniform profile is not a local minimizer for the free energy, which is sufficient to prove a first
order phase transition; or the leading order term is positive, in which case the uniform profile is a local minimizer. For general liquid crystal
models with orientation in S2, the first case arises and a first order phase transition can then be proved. Notably, this is not the case for
ferromagnetic models (cf. Remark 5.2) or two-dimensional liquid crystals for which the orientation is in S1 (cf. Remark 5.1). In both of
those cases, at the density ρ⋆, the uniform profile f 0 is, at least locally, a minimizer of the free energy. This, of course, is not sufficient to
preclude the existence of a first order phase transition but still sheds some light on the different phenomenologies of these three closely related
models.

III. EXAMPLES OF APPLICATIONS
Before proving Theorems 2.1 and 2.2, let us exhibit some explicit models that they can be applied to. Assume for simplicity that φ has

separate variables,

φ(x, u) = ϕ(x)g(u),

with ϕ : Rd → R, g : [−1, 1]→ R. In this case, defining λℓ ∶= ∫ Pℓ(u)g(u)du, the assumptions required for Theorems 2.1 and 2.2 to hold
translate into

ϕ is positive definite, C1, and integrable overRd, together with its derivative,

g is even, Lipschitz and∃ℓ⋆ > 0, s.t. infℓ>0λℓ = λℓ⋆ < 0.

Without loss of generality, we also assume that ∫Rd ϕ(x)dx = 1.
The case of Onsager’s potential corresponds to the choice g(u) =√1 − u2. In this case, the λℓ’s can be explicitly computed and form for

ℓ ≥ 1 an increasing sequence. Indeed, denoting by Pm
ℓ the associated Legendre polynomials [see (A2)],

λℓ = ∫
1

−1

√
1 − v2Pℓ(v)dv = 1

2ℓ + 1∫
1

−1
(P1

ℓ−1(v) − P1
ℓ+1(v))dv.

For m = 1 (cf. Ref. 33, p.646),

R1
2ℓ+1 ∶= ∫

1

−1
P1

2ℓ+1(u)du = − π(2ℓ + 2)
(2ℓ + 1)24ℓ+4 (

2ℓ + 2
ℓ + 1

)
2

so that

λ2ℓ = 1
4ℓ + 1

(R1
2ℓ−1 − R1

2ℓ+1) = − π
2(ℓ + 1)(2ℓ − 1)24ℓ (

2ℓ
ℓ
)

2
.

Note that this sequence is non-decreasing for positive indexes and vanishes as ℓ→∞. In particular, λ⋆ℓ = λ2 = −π/16. Therefore, by
Theorem 2.2, the system undergoes a first order phase transition, which occurs before the uniform profile f 0 loses linear stability at
ρ⋆ = 64/β.

The same explicit characterization of the phase transition for the limiting functional can be extended to more general functions g satis-
fying the assumptions above, provided we can compute the smallest λℓ ∶= ∫ Pℓ(u)g(u)du and show that it is negative. For example, choosing
g = (1 − u2)k, corresponding to an interaction [sin(θ(Ω, Ω′))]2k, the corresponding λ(k)

ℓ can be computed explicitly, recursively in k, thanks to
the identity

(1 − u2)Pℓ = (ℓ + 1)(ℓ + 2)
(2ℓ + 1)(2ℓ + 3)

(Pℓ − Pℓ+2) − ℓ(ℓ − 1)
(2ℓ + 1)(2ℓ − 1)

(Pℓ−2 − Pℓ),

which follows from using three times Bonnet’s recursion formula (A1). By this identity, the computation of λ(k)
ℓ can be reduced to that of λ(k−1)

ℓ ,
λ(k−1)
ℓ−2 , and λ(k−1)

ℓ+2 . For the Maier–Saupe potential, corresponding to k = 1, one obtains that λ0 = 4/3, λ2 = −4/15, and λℓ = 0 for any other ℓ > 0
so that the loss of linear stability occurs at ρ⋆ = 15π/β. Solving the recursion equation above, one can analogously derive the threshold for the
linear stability of the homogeneous profile for larger values of k.
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IV. THERMODYNAMIC LIMIT: PROOF OF THEOREM 2.1
As anticipated above, to prove Theorem 2.1, we follow Ref. 19. For the sake of conciseness, we will not detail some technical steps already

solved in Ref. 19 and instead present the general structure of the proof and focus on the necessary modifications to account for the presence
of the angular variables Ωi. Throughout, we tessellate ΛL into n ∶= nd boxes Λi

ℓ, of side ℓ, for 1 ≤ i ≤ n, where n = L/ℓ. We further consider
the inner box Λ̂i

ℓ ⊂ Λi
ℓ, with the same center as Λi

ℓ and side k = kℓ ∶= ℓ −
√
ℓ instead of ℓ. We also tessellate S2 = {Ω = (θ, ϕ) ∈ [0, π] × [0, 2π)}

into m ∶= m2 pieces Si each of surface s ∶= 4π/m. To give the reader a sense of the relative scales of those parameters, to carry out the proof,
we will consider the system in the limit

L→∞, then γ→ 0, then ℓ→∞, then m→∞. (4.1)

A. Upper bound
We first investigate the upper bound for the free energy, which corresponds to a lower bound on the partition function. Fix a family of

integers N = (Np
i )1≤i≤n, 1≤p≤m satisfying∑i,pNp

i = N, and define Ni = ∑pNp
i . We can then write

Zβ(N, L, γ) ≥ sup
N

⎧⎪⎪⎨⎪⎪⎩
1

∏i,pNp
i !∫(Λ̂1

L×S1)N1
1
. . .∫

(Λ̂n
L×Sm)Nm

n
dx̄dΩ̄e−βVγ(x̄,Ω̄)

⎫⎪⎪⎬⎪⎪⎭
.

Because of the hard core repulsion, if N i > ℓdρcp, the integrand vanishes so that we can safely assume that each of the N i’s is bounded by ℓdρcp.
Assume that ℓ is large enough so that

√
ℓ > r0 so that particles in different boxes do not interact via the hard core interaction. Recalling from

(2.6) the definition of the hard-core partition function Zhc(N i, k), we obtain

Zβ(N, L, γ) ≥ sup
N

⎧⎪⎪⎨⎪⎪⎩
∣S1∣N ∏iNi!

∏i,pNp
i !
∏

i
Zhc(Ni, k)e−βWmax(N)

⎫⎪⎪⎬⎪⎪⎭
, (4.2)

where Wmax(N) is the maximum of Vγ(x̄, Ω̄) over all N summing to N, such that N i ≤ ρcpℓ
d, and with Np

i particles in Λ̂i
ℓ × Sp. Denoting

φ p,q
i,j = inf

(x,x′)∈Λi
ℓ×Λj

ℓ

(Ω,Ω′)∈Sp×Sq

φ(γ(x − x′), Ω ⋅Ω′),

φp,q
i,j = sup

(x,x′)∈Λi
ℓ×Λj

ℓ

(Ω,Ω′)∈Sp×Sq

φ(γ(x − x′), Ω ⋅Ω′),

and noting that, for any i, φ(γ(xi − xi), Ωi ⋅ Ωi) = φ(0, 1), we find

Wmax(N) = γd

2 ∑i,j≤n
p,q≤m

Np
i Nq

j φ p,q
i,j −

Nγd

2
φ(0, 1) + Δ(N), (4.3)

where the supremum is taken over all families Np
i summing to N, and Δ(N) is bounded by

∣Δ(N)∣ ≤ γd

2 ∑i,j≤n
p,q≤m

Np
i Nq

j [φp,q
i,j − φ p,q

i,j ].

For any Ω ∈ S2 and any Ω1, Ω2 ∈ Sp for p ≤ m, we have ∣Ω ⋅ (Ω1 −Ω2)∣ ≤ c0/m for some constant c0 > 0. Therefore, by triangular inequality,
we obtain

φp,q
i,j − φ p,q

i,j ≤ sup
u∈[−1,1]

⎡⎢⎢⎢⎢⎣
sup

(x,x′)∈Λi
ℓ
×Λj

ℓ

φ(γ(x − x′), u) − inf
(x,x′)∈Λi

ℓ
×Λj

ℓ

φ(γ(x − x′), u)
⎤⎥⎥⎥⎥⎦

+
2c0

m
sup

(x,x′)∈Λi
ℓ
×Λj

ℓ

C1(γ(x − x′)) ∶= Ai,j + Bi,j,
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where C1(x) is the Lipschitz constant appearing in assumption (2.3). The right-hand side of the above equation no longer depends on p, q. In
particular,

∣Δ(N)∣ ≤ ρ2
cpγdℓ2d

2 ∑
i,j≤n
[Ai,j + Bi,j]. (4.4)

By assumption (2.5), limγ→0(γℓ)d∑iBi,j = O(1/m) uniformly in j. Analogously, by assumptions (2.4) and (2.5), (γℓ)d∑iAi,j = O(γℓ). Putting
things together, and recalling that nℓd = Ld, we find

lim
γ→0

lim
L→∞
∣Δ(N)∣L−d = O(1/m). (4.5)

Since the second term in the right-hand side of (4.3), divided by Ld, vanishes as L→∞, then γ→ 0, and using Stirling’s formula, (4.2)
implies

F β(ρ) ≤ lim
m→∞

lim
ℓ→∞

lim
γ→0

lim
L→∞

inf
N

Aβ(N), (4.6)

where the infimum is carried out over all families N = (Np
i )i≤n,p≤m summing to ρLd such that N i ≤ ρcpℓ

d and

Aβ(N) = 1
βLd∑

i,p
Np

i log
Np

i

Ni∣S1∣ −
1

βLd∑
i

log Zhc(Ni, k) +
γd

2Ld ∑
i,j≤n

p,q≤m

Np
i Nq

j φ p,q
i,j . (4.7)

Fix τ > 0, and recall from Theorem 2.1 the definition of the set Rτ . We are now ready to investigate the limit of the quantity above. Fix
ρ′ < ρcp and f ∈Rτ such that ρf̄ (x) ≤ ρ′ [recall the notation f̄ (x) = ∫S2 f (x, Ω)dΩ], and define M̃ = (M̃p

i )i≤n,p≤m as

M̃p
i = ⌊ρ∫Λi

L×Sp

f (γx, Ω)dxdΩ⌋. (4.8)

Note that we will take the limit m→∞ after ℓ→∞ so that each of the M̃p
i will go to∞ in any cell where f > 0. We then define the family Mp

i
by adding 1 to the smallest M̃p

i ’s in order to enforce ∑i,pMp
i = ⌊ρLd⌋. We now investigate the limit of the right-hand side of (4.6) for N =M.

Following the same steps as in Ref. 19, one can check that in the quadruple limit of (4.6), since ρf̄ ≤ ρ′ < ρcp,

RRRRRRRRRRR
1

βLd∑
i,p

Mp
i log

Mp
i

Mi∣S1∣−
ρ

β(L′)d∫ΛL′
[∫S2

f (x, Ω) log( f (x, Ω))dΩ − f̄ (x) log f̄ (x)]dx∣→ 0, (4.9)

where we shortened L′ = γL. Moreover, by the periodicity of f ,

1
(L′)d∫ΛL′

[∫S2
f (x, Ω) log( f (x, Ω))dΩ − f̄ (x) log f̄ (x)]dx

= 1
τd∫Λτ

[∫S2
f (x, Ω) log( f (x, Ω))dΩ − f̄ (x) log f̄ (x)]dx + O(1/L′).

Similarly,

∣− 1
n∑i

1
βℓd log Zhc(Mi, k) − 1

(L′)d∫ΛL′
F hc(ρf̄ (x))dx∣→ 0,

and, by periodicity again, 1
(L′)d ∫ΛL′

F hc(ρf̄ (x))dx = 1
τd ∫Λτ

F hc(ρf̄ (x))dx. Finally,
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RRRRRRRRRRRRRRRR

γd

2Ld ∑
i,j≤n

p,q≤m

Mp
i Mq

j φ p,q
i,j −

ρ2

2(L′)d∫ΛL′×ΛL′
dx dx′∫S2×S2

dΩ dΩ′ f (x, Ω) f (x′, Ω′)φ(x − x′, Ω ⋅Ω′)
RRRRRRRRRRRRRRRR
→ 0.

In the last line, the integral over ΛL′ ×ΛL′ can be freely replaced by ΛL′ ×Rd because ρf̄ is bounded by ρ′ and φ is integrable. Finally, by
periodicity, we can rewrite

ρ2

2(L′)d∫ΛL′×Rd
dx dx′∫S2×S2

dΩ dΩ′ f (x, Ω) f (x′, Ω′)φ(x − x′, Ω ⋅Ω′)

= ρ2

2τd∫Λτ×Rd
dx dx′∫S2×S2

dΩ dΩ′ f (x, Ω) f (x′, Ω′)φ(x − x′, Ω ⋅Ω′).

To conclude, let us explicitly write M =M(ρ, f ) to indicate the dependency of M on ρ and on f ∈Rτ . Define Γρ
n,m(ρ′) [respectively,

Rτ(ρ′)] the set of N ’s that sum up to ρLd and such that each of the N i’s is bounded by ρ′ℓd (respectively, functions f ∈Rτ such that ρf̄ is
bounded by ρ′ < ρcp). We rewrite (4.6) as

F β(ρ) ≤ lim
ρ′→ρcp

lim
m→∞

lim
ℓ→∞

lim
γ→0

lim
L→∞

inf
N∈Γρ

n,m(ρ′)
Aβ(N) (4.10)

≤ lim
ρ′→ρcp

⎡⎢⎢⎢⎢⎢⎣
lim

m→∞
lim
ℓ→∞

lim
γ→0

lim
L→∞

inf
τ>0

f ∈Rτ (ρ′)

Aβ(M(ρ, f ))

⎤⎥⎥⎥⎥⎥⎦
,

which, thanks to the three estimates above, proves the upper bound after straightforward computations, since for ρ′ < ρcp fixed, we can
exchange the limits in brackets with the infinity.

B. Lower bound
For the lower bound on the free energy, which corresponds to an upper bound on the partition function, we first write

Zβ(N, L, γ) ≤∑
N

⎡⎢⎢⎢⎢⎣
1

∏i,pNp
i !∫(Λ1

L×S1)N1
1
. . .∫

(Λn
L×Sm)Nm

n
dx̄dΩ̄e−βWmin(N)

⎤⎥⎥⎥⎥⎦
, (4.11)

where the sum is taken over all families N summing to N; moreover, Wmin(N) is a lower bound on Vγ for configurations with Np
i particles in

Λi × Sp, of the same form as in (4.3), with the only difference that Δ(N) is replaced by a different remainder Δ′(N), bounded in the same way
as (4.4) and (4.5). From (4.11), we get

Zβ(N, L, γ) ≤ 2m(ρcpℓ
d)nsup

N

⎡⎢⎢⎢⎢⎣
∣S1∣N ∏iNi!

∏i,pNp
i !
∏

i
Zhc(Ni, ℓ)e−βWmin(N)

⎤⎥⎥⎥⎥⎦
, (4.12)

where the factor 2m(ρcpℓ
d)n in the right-hand side is a crude upper bound on the number of families (Np

i ) such that∑pNp
i = Ni and each N i is

less than ρcpℓ
d; to obtain this bound, we simply ignored the constraint that∑ i N i = N. Note that, in limit (4.1), the contribution of this term to

the free energy vanishes. Therefore, by repeating the same considerations as in Subsection IV A, we find that the free energy F β(ρ) is bounded
from below by the same expression as in the right-hand side of (4.10), and this concludes the Proof of the Theorem.

V. PHASE TRANSITION IN LIQUID CRYSTALS: PROOF OF THEOREM 2.2
We recall that the functional of interest is the r0 → 0+ limit of (2.9), namely,

F 0
β,τ(ρ, f ) = 1

τd {
ρ
β∫Λτ×S2

f (x, Ω) log f (x, Ω)dx dΩ (5.1)

+
ρ2

2 ∫Λτ×Rd
dx dy∫S2×S2

dΩ dΩ′ f (x, Ω) f (y, Ω′)φ(x − y, Ω ⋅Ω′)}.
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Proof of Item 1. It is straightforward to check that f 0 ≡ 1/4π is a critical point of F 0
β,τ(ρ, f ) for all β, ρ, τ. In order to show that f 0 is the

global minimizer for ρ small enough, fix τ ≥ 0 and write f ∈Rτ as f = f 0(1 + 4πh), with ∫Λτ×S2 h = 0 and 4πh ≥ −1. We have

F 0
β,τ(ρ, f ) −F 0

β,τ(ρ, f 0) = ρ
β
⟨(1 + 4πh) log(1 + 4πh)⟩ + Eτ(ρ, h), (5.2)

where ⟨F⟩ = 1
4πτd ∫Λτ×S2 F(x, Ω)dx dΩ and

Eτ(ρ, h) = ρ2

2τd∫Λτ×Rd
dx dy∫S2×S2

dΩ dΩ′ h(x, Ω)h(y, Ω′)φ(x − y, Ω ⋅Ω′).

Thanks to the periodicity of h(⋅, Ω), we can rewrite

Eτ(ρ, h) = ρ2

2τd∫Λτ×Λτ

dx dy∫S2×S2
dΩ dΩ′ h(x, Ω)h(y, Ω′)φτ(x − y, Ω ⋅Ω′),

where φτ(x, u) = ∑n∈Zd φ(x + nτ, u). Now, thanks to integrability condition (2.2), ∣φτ(x, u)∣ ≤ Kτ−d for some constant K, uniformly in τ, u.
Therefore,

F 0
β,τ(ρ, f ) −F 0

β,τ(ρ, f 0) ≥ ρ
β
⟨(1 + 4πh) log(1 + 4πh)⟩ − 8π2ρ2K⟨∣h∣⟩2. (5.3)

Let h+ and h− be the positive and negative parts of h, respectively. We let H = 4π⟨h+⟩ = 4π⟨h−⟩ ≤ 1. Using the convexity of (1 + x) log(1 + x)
and of (1 − x) log(1 − x), we find

⟨(1 + 4πh) log(1 + 4πh)⟩ ≥ (1 + H) log(1 + H) + (1 −H) log(1 −H),

which is bounded from below by H2 for all 0 ≤ H ≤ 1. Using also the fact that 4π⟨∣h∣⟩ = 2H, from (5.3), we find

F 0
β,τ(ρ, f ) −F 0

β,τ(ρ, f 0) ≥ ρ
β

H2 − 2ρ2KH2, (5.4)

which proves that f 0 is the unique global minimizer, if ρ < (2βK)−1. This proves item 1 of Theorem 2.2, with ρc as the sup of the values of ρ
for which f 0 is the unique global minimizer.

It is easy to see that at any density beyond ρc, there exists a non-uniform f with lower free energy than f 0. To see this, for any ϵ > 0,
choose ρc < ρ ≤ ρc + ϵ, in correspondence of which there is τ ≥ 0 and f ≠ f 0 in Rτ such that

F 0
β,τ(ρ, f ) ≤ F 0

β,τ(ρ, f 0). (5.5)

This is possible by the very definition of ρc. More explicitly, (5.5) means

∫
Λτ×S2

( f (x, Ω) log f (x, Ω) − f 0 log f 0)dx dΩ (5.6)

≤ βρ
2 ∫Λτ×Rd

dx dy∫S2×S2
dΩ dΩ′φ(x − y, Ω ⋅Ω′)( f 2

0 − f (x, Ω) f (y, Ω′)).

The left-hand side is positive because f log f is strictly convex and f is nonuniform. As a consequence, the right-hand side is positive, too; so,
if we take any ρ′ > ρ,

∫
Λτ×S2

( f (x, Ω) log f (x, Ω) − f 0 log f 0)dx dΩ (5.7)

< βρ′

2 ∫Λτ×Rd
dx dy∫S2×S2

dΩ dΩ′φ(x − y, Ω ⋅Ω′)( f 2
0 − f (x, Ω) f (y, Ω′)),
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that is, F 0
β,τ(ρ′, f ) < F 0

β,τ(ρ′, f 0), as announced.

Proof of Items 2 and 3. In light of what we already proved above, in order to complete the Proof of item 2 of Theorem 2.2, we are left
with proving that the value of the density at which f 0 loses linear stability is strictly larger than ρc. Fix τ ≥ 0. Consider a small perturbation
f = f 0 + εh, where h is τ-periodic such that ∫Λτ×S2 h = 0. If we expand the free energy up to order ε3 included, we find

F 0
β,τ(ρ, f 0 + εh) −F 0

β,τ(ρ, f 0) (5.8)

= ε2[8π2ρ
β
⟨h2⟩ + Eτ(ρ, h)] − ε3 32π3ρ

β
⟨h3⟩ + O(ε4).

As the next step, we diagonalize Eτ(ρ, h). Passing to Fourier space with respect to the x variable, we get

Eτ(ρ, h) = ρ2

2τ2d ∑
k∈Zd
∫S2×S2

ĥk(Ω)̂h−k(Ω′)φ̂k(Ω ⋅Ω′)dΩdΩ′, (5.9)

where for k ∈ Zd,

ĥk(Ω) = ∫
Λτ

h(x, Ω)e
2iπ
τ k⋅xdx and φ̂k(u) = ∫Rd

φ(y, u)e−
2iπ
τ k⋅ydy.

Next, for any k ∈ Zd, define the operator Gk acting on a function g on S2 as

(Gkg)(Ω) = ∫S2
φ̂k(Ω ⋅Ω′)g(Ω′)dΩ′.

For later reference, we denote by Gk(Ω, Ω′) = φ̂k(Ω ⋅Ω′) the kernel of Gk. Moreover, let Lz , L± be the usual angular momentum operators,

Lz = 1
i
∂

∂ϕ
and L± = e±iϕ(± ∂

∂θ
+ i cot(θ)

∂

∂ϕ
),

where (θ, ϕ) ∈ [0, π] × [0, 2π] are the spherical coordinates of an element Ω ∈ S2. Straightforward computations, for Ω = (θ, ϕ) and Ω′
= (θ′, ϕ′), yield

Ω ⋅Ω′ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′),

[L±Gk(⋅, Ω′)](Ω) = ∂uφ̂k(Ω ⋅Ω′)[∓ sin θ cos θ′e±iϕ ± cos θ sin θ′e±iϕ′]
= −[L±Gk(Ω, ⋅)](Ω′),

[LzGk(⋅, Ω′)](Ω) = ∂uφ̂k(Ω ⋅Ω′) sin θ sin θ′i sin(ϕ − ϕ′) = −[LzGk(Ω, ⋅)](Ω′),

which, by integration by parts, proves that Gk commutes both with Lz and with L±.
As defined in more detail in the Appendix, we consider the spherical harmonics defined for ℓ ∈ N0, ∣m∣ ≤ ℓ,

Ym
ℓ (θ, ϕ) = Cℓ,mPm

ℓ (cos θ)eimϕ,

where Cℓ,m are normalizing constants making it an orthonormal family and Pm
ℓ ’s are the associated Legendre polynomials. They satisfy the

classical relations

L±Ym
ℓ =
√

(ℓ ∓m)(ℓ ±m + 1)Ym±1
ℓ

and
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L2Ym
ℓ ∶= [L+L− + L2

z]Ym
ℓ = ℓ(ℓ + 1)Ym

ℓ .

In particular, since Gk commutes with Lz and L±, it also commutes with the angular momentum L2; therefore, its eigenvectors are
Ym
ℓ ’s. Furthermore, since Gk commutes with L±, the corresponding eigenvalues λℓ,m(k) = λℓ(k) do not depend on m. Writing the identity

λℓ(k)Y0
ℓ(θ, ϕ) = (GkY0

ℓ)(θ, ϕ) at θ = 0, we get

λℓ(k) = 2π∫
1

−1
Pℓ(u)φ̂k(u)du = 2πΦ̂ℓ(2kπ

τ
),

where Φ̂ℓ(ξ) was defined in (2.10). If we now expand each of the ĥk appearing in (5.9) in spherical harmonics, we can rewrite

Eτ(ρ, h) = πρ2

τ2d ∑
ℓ∈N0

ℓ

∑
m=−ℓ

∑
k∈Zd

∣̂hk,ℓ,m∣2Φ̂ℓ(2kπ
τ
) (5.10)

≥ ρ2Φ̂ℓ⋆ (0)
2τd ∫

Λτ×S2
h2(x, Ω)dxdΩ = 2πρ2Φ̂ℓ⋆ (0)⟨h2⟩. (5.11)

To establish the lower bound, we used Assumption 2.11 and both Fourier and spherical harmonics versions of Parseval’s identity.
Plugging this back into (5.8), we see that the square brackets in the right-hand side are bounded from below as

8π2ρ
β
⟨h2⟩ + Eτ(ρ, h) ≥ 4π2ρ

β
(2 − (βρ/2π)∣Φ̂ℓ⋆ (0)∣)⟨h2⟩, (5.12)

which proves the linear stability of f 0 for any ρ < ρ⋆ ∶= 4π
β∣Φ̂ℓ⋆ (0)∣

. Let us identify Ω ∈ S2 with its polar coordinates (θ, ϕ), and let h⋆ be the
function h⋆(x, θ, ϕ) ∶= Pℓ⋆ (cos θ). Note that, choosing h = h⋆, Eq. (5.12) is valid with the equality sign. This implies the linear stability of f 0
for any ρ > ρ⋆, thus proving item 3 of Theorem 2.2.

We are left with proving that ρc < ρ⋆. For this purpose, compute (5.8) at τ = 0, ρ = ρ⋆, and h = h⋆,

F 0
β(ρ⋆, f 0 + εh⋆) −F 0

β(ρ⋆, f 0) = −ε3 32π3ρ⋆

β
⟨(h⋆)3⟩ + O(ε4). (5.13)

The ε3 term in the right-hand side equals

−ε3 16π3ρ⋆

β ∫
1

−1
P3
ℓ⋆ (u)du.

Recalling that ℓ⋆ is even (see Remark 2.3), this integral can be computed explicitly, recognizing that it is a special case of Gaunt’s formula; see,
e.g., Ref. 34, (7.125), p.771; we thus get

∫
1

−1
P3
ℓ⋆ (u)du = 2

(2s)!3

(6s + 1)!
(3s)!2

s!6 > 0,

where we used the shorthand notation s for the positive integer s = ℓ⋆/2. In particular, for ε small enough, the rhs of (5.13) is negative, which
proves that at ρ = ρ⋆, the uniform profile is not a global minimizer of F 0

β(ρ, f ). This concludes the Proof of Theorem 2.2.

Remark 5.1 (Case of angular dimension 2, Ω ∈ S1). Note that the same analysis can be applied to study the free energy functional for
angles in S1. In this case, the density ρ⋆ at which the uniform profile loses linear stability can be expressed as a function of the minimal Fourier
coefficient, in orientation and space, of φ. In this case, however, ∫ cos3(u)du vanishes, and the next contribution O(ε4) in (5.13) is positive. One
therefore expects that the transition is instead continuous, i.e., that for any ρ < ρ⋆, the uniform profile is the global minimizer. As mentioned in
the Introduction, this has in fact been proved for some special choices of the interaction potential, including Maier and Saupe’s (see Ref. 29), but
to the best of our knowledge, a proof for (more) general potentials is missing.

Remark 5.2 (Magnetic interaction vs liquid crystals). The choice of a magnetic rather than liquid-crystalline interaction formally corre-
sponds to a choice of an odd function φ(x, ⋅). In this case, λℓ(k) vanishes for ℓ even instead. However, for any ℓ odd, the integral ∫S2 P3

ℓ vanishes
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so that the proof above for a discontinuous phase transition no longer holds. In fact, the converse holds, and at the critical point ρ⋆ for an odd
interaction potential φ(x, ⋅), for ε small enough,

F β(ρ⋆, f 0 + εh⋆) ≥ F β(ρ⋆, f 0).

This is in line with the known fact that the mean field Heisenberg model undergoes a second order phase transition;22 an analogous fact is
expected for more general magnetic interactions.
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APPENDIX: LEGENDRE POLYNOMIALS AND SPHERICAL HARMONICS

We first recall some basic properties of the Legendre polynomials Pℓ. For more on the topic, we refer the reader to, e.g., Ref. 35. This is
the unique family of polynomials Pℓ : [−1, 1]→ R satisfying the following:

– for any ℓ ∈ N0, Pℓ is a degree ℓ polynomial and Pℓ(1) = 1 and
– the family (Pℓ)ℓ∈N0 is orthonormal in L2, i.e., ∫ 1

−1Pℓ(u)Pk(u)du = 2
2ℓ+1 1{ℓ=k} for any k, ℓ ∈ N0.

In particular, since P0 ≡ 1, for any ℓ ≠ 0, ∫ 1
−1Pℓ(u)du = 0. The Legendre polynomials have the same parity as ℓ. The Legendre polynomials

satisfy Bonnet’s recursion formula

(n + 2)Pn+2 = (2n + 3)uPn+1 − (n + 1)Pn. (A1)

The associated Legendre polynomials Pm
ℓ can then be defined for m = 0, . . . , ℓ as

Pm
ℓ (u) = (−1)m(1 − u2)m/2 dm

dum [Pℓ(u)], (A2)

and for m = −1, . . . ,−ℓ,

P−m
ℓ (u) = (−1)m (ℓ −m)!

(ℓ + m)!
Pm
ℓ (u).

Those polynomials satisfy the orthogonality relations

∫
1

−1
Pm
ℓ (u)Pm

k (u)du = 2(ℓ + m)!
(2ℓ + 1)(ℓ −m)!

1{ℓ=k}

and

∫
1

−1

Pm
ℓ (u)Pn

ℓ(u)
1 − u2 du = (ℓ + m)!

m(ℓ −m)!
1{m=n>0} +∞× 1{m=n=0}.

The associated Legendre polynomials have the same parity as ℓ + m,

Pm
ℓ (−u) = (−1)ℓ+mPm

ℓ (u).

The spherical harmonics Ym
ℓ can finally be defined as the functions Ym

ℓ : S2 → R,

Ym
ℓ (θ, ϕ) = Cℓ,mPm

ℓ (cos θ)eimϕ,

where Cℓ,m =
√

(2ℓ+1)(ℓ−m)!
4π(ℓ+m)! are normalizing constants making the family orthonormal,

∫
π

θ=0
∫

2π

ϕ=0
Ym
ℓ (θ, ϕ)Yn,∗

k (θ, ϕ) sin θdθdϕ = 1{k=ℓ, n=m}.
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