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Abstract We prove a law of large numbers for the empirical density of one-dimensional,
boundary driven, symmetric exclusion processes with different types of non-reversible
dynamics at the boundary. The proofs rely on duality techniques.

Keywords Nonequilibrium stationary states ·Boundary driven interacting particle systems ·
Hydrostatics

1 Introduction

This article provides partial answers to a question raised to us by Spohn. The stationary
states of boundary driven interacting particle systems have been extensively studied lately, as
solvable examples of nonequilibrium stationary states, cf. [2,3] and references therein. One
of the main goals is to derive in this context the nonequilibrium functional which plays a role
analogous to the entropy in the Onsager theory of nonequilibrium thermodynamics [11,12].

This program has been achieved for a class of boundary driven interacting particle systems
in two different ways. On the one hand, relying on Derrida’s formula for the stationary state
as a product of matrices, Derrida et al. [4] obtained an explicit formula for the nonequilibrium
free energy of one-dimensional boundary driven exclusion processes. On the other hand and
by the same time, Bertini et al. [1] derived the same formula for the nonequilibrium free
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energy by solving the Hamilton–Jacobi equation for the quasi-potential associated to the
dynamical large deviations principle for the empirical density.

Both approaches rely on the deduction of a large deviations principle for the empir-
ical density under the stationary state. The proof of this result depends strongly on the
non-conservative boundary dynamics which models the interaction of the system with the
reservoirs, and it has been achieved only for dynamics which satisfy the detailed balance
conditions with respect to some Gibbs measure. If this dynamics is slightly perturbed, Der-
rida’s formula for the stationary state as a product of matrices is no more available, and a
bound for the entropy production, one of the fundamental ingredients in the proof of the one
and two blocks estimates, is no more available.

We examine in this article the asymptotic behavior of the empirical density under the
stationary state of boundary driven exclusion processes whose boundary dynamics do not
satisfy a detailed balance condition. We consider three classes of interaction. The first one
consists of all boundary dynamics whose generator does not increase the degree of functions
of degree 1 and 2. The second class includes all dynamics whose interaction with the reser-
voirs depends weakly on the configuration. Finally, the third class comprises all exclusion
processes whose boundary dynamics is speeded-up. Using duality techniques, we prove a
law of large numbers for the empirical measure under the stationary state for these three types
of interaction with the reservoirs.

Asymmetric exclusion dynamics on the positive half-line with complex boundary dynam-
ics have been considered by Sonigo [13].

2 Notation and Results

Consider the symmetric, simple exclusion process on �N = {1, . . . , N − 1} with reflecting
boundary conditions.This is theMarkovprocess on�N = {0, 1}�N whosegenerator, denoted
by Lb,N , is given by

(Lb,N f )(η) =
N−2∑

k=1

{ f (σ k,k+1η) − f (η)}. (2.1)

In this formula and below, the configurations of�N are represented by the Greek letters η, ξ ,
so that ηk = 1 if site k ∈ �N is occupied for the configuration η and ηk = 0 otherwise. The
symbol σ k,k+1η represents the configuration obtained from η by exchanging the occupation
variables ηk , ηk+1:

(σ k,k+1η) j =

⎧
⎪⎨

⎪⎩

ηk+1 if j = k

ηk if j = k + 1

η j if j ∈ �N \ {k, k + 1}.
This dynamics is put in contact at both ends with non-conservative dynamics. On the

right, it is coupled to a reservoir at density β ∈ (0, 1). This interaction is represented by the
generator Lr,N given by

(Lr,N f )(η) = {β(1 − ηN−1) + (1 − β)ηN−1}{ f (σ N−1η) − f (η)}, (2.2)

where σ kη, k ∈ �N , is the configuration obtained from η by flipping the occupation variable
ηk ,

(σ kη) j =
{
1 − ηk if j = k

η j if j ∈ �N \ {k}.
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On the left, the system is coupled with different non-conservative dynamics. The purpose
of this paper is to investigate the stationary state induced by these different interactions.

2.1 Boundary Dynamics Which Do Not Increase Degrees

The first left boundary dynamics we consider are those which keep the degree of functions
of degree 1 and 2: those whose generator, denoted by Ll,N , are such that for all j �= k,

Ll,Nη j = a j +
∑

�

a j
� η�,

Ll,Nη jηk = b j,k +
∑

�

b j,k
� η� +

∑

�,m

b j,k
�,mη�ηm

(2.3)

for some coefficients a j , a j
� , b

j,k , b j,k
� , b j,k

�,m .

Fix p ≥ 0, and let�∗
p = {−p, . . . , 0},�∗

p = {0, 1}�∗
p . Consider the generators ofMarkov

chains on �∗
p given by

(LR f )(η) =
∑

j∈�∗
p

r j
[
α j (1 − η j ) + η j (1 − α j )

]{ f (σ jη) − f (η)},

(LC f )(η) =
∑

j∈�∗
p

∑

k∈�∗
p

c j,k
[
ηk(1 − η j ) + η j (1 − ηk)

]{ f (σ jη) − f (η)},

(L A f )(η) =
∑

j∈�∗
p

∑

k∈�∗
p

a j,k
[
ηkη j + (1 − η j )(1 − ηk)

]{ f (σ jη) − f (η)}.

In these formulae and below, r j , c j,k and a j,k are non-negative constants, 0 ≤ α j ≤ 1, and
c j, j = a j, j = 0 for j ∈ �∗

p .
The generator LR models the contact of the system at site j with an infinite reservoir at

density α j . At rate r j ≥ 0, a particle, resp. a hole, is placed at site j with probability α j , resp.
1 − α j . The generator LC models a replication mechanism, at rate c j,k ≥ 0, site j copies
the value of site k. The generator L A acts in a similar way. At rate a j,k ≥ 0, site j copies
the inverse value of site k. We add to these dynamics a stirring evolution which exchange the
occupation variables at nearest-neighbor sites:

(LS f )(η) =
−1∑

j=−p

{ f (σ j, j+1η) − f (η)}.

The evolution at the left boundary we consider consists in the superposition of the four
dynamics introduced above. The generator, denoted by Ll , is thus given by

Ll = LS + LR + LC + L A.

Denote by LG the generator of a general Glauber dynamics on �∗
p:

(LG f )(η) =
0∑

k=−p

ck(η){ f (σ kη) − f (η)}, (2.4)

where ck are non-negative jump rateswhich depend on the entire configuration (η−p, . . . , η0).
We prove in Lemma 3.2 that any Markov chain on �∗

p whose generator LD is given by
LD = LS + LG and which fulfills conditions (2.3) can be written as LS + LR + LC + L A
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[we show that there are non-negative parameters r j , c j,k , a j,k such that LG = LR+LC+L A].
Therefore, by examining theMarkov chain whose left boundary condition is characterized by
the generator Ll we are considering the most general evolution in which a stirring dynamics
is superposed with a spin flip dynamics which fulfills condition (2.3).

We prove in Lemma 3.3 that the Markov chain induced by the generator Ll has a unique
stationary state if ∑

j∈�∗
p

r j +
∑

j∈�∗
p

∑

k∈�∗
p

a j,k > 0. (2.5)

Assume that this condition is in force. Denote by μ the unique stationary state, and let

ρ(k) = Eμ[ηk], k ∈ �∗
p, (2.6)

be the mean density at site k under the measure μ. Clearly, 0 ≤ ρ(k) ≤ 1 for all k ∈ �∗
p .

Since Eμ[Llη j ] = 0, a straightforward computation yields that

0 = r j [α j − ρ( j)] + (Cρ)( j) + (Aρ)( j) + (Tρ)( j), j ∈ �∗
p, (2.7)

where

(Cρ)( j) =
∑

k∈�∗
p

c j,k[ρ(k) − ρ( j)], (Aρ)( j) =
∑

k∈�∗
p

a j,k[1 − ρ(k) − ρ( j)],

(Tρ)( j) =

⎧
⎪⎨

⎪⎩

ρ(−p + 1) − ρ(−p) if j = −p,

ρ(−1) − ρ(0) if j = 0,

ρ( j + 1) + ρ( j − 1) − 2ρ( j) otherwise.

We prove in Lemma 3.4 that (2.7) has a unique solution if condition (2.5) is in force.
Let�N ,p = {−p, . . . , N−1}. Consider the boundary driven, symmetric, simple exclusion

process on �N ,p = {0, 1}�N ,p whose generator, denoted by LN , is given by

LN = Ll + L0,1 + Lb,N + Lr,N , (2.8)

where L0,1 represent a stirring dynamics between sites 0 and 1:

(L0,1 f )(η) = f (σ 0,1η) − f (η).

There is a little abuse of notation in the previous formulae because the generators are not
defined on the space �N ,p but on smaller spaces. We believe, however, that the meaning is
clear.

Due to the right boundary reservoir and the stirring dynamics, the process is ergodic.
Denote by μN the unique stationary state, and let

ρN (k) = EμN [ηk], k ∈ �N ,p, (2.9)

be the mean density at site k under the stationary state. Of course, 0 ≤ ρN (k) ≤ 1 for all
k ∈ �N ,p , N ≥ 1. We prove in Lemma 3.5 that under condition (2.5) there exists a finite
constant C0, independent of N , such that

∣∣ρN (k) − ρ(k)
∣∣ ≤ C0/N , for all − p ≤ k ≤ 0,

where ρ is the unique solution of (2.7).
The first main result of this articles establishes a law of large numbers for the empirical

measure under the stationary state μN .
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Theorem 2.1 Assume that
∑

j r j > 0. Then, for any continuous function G : [0, 1] → R,

lim
N→∞ EμN

[∣∣∣∣∣
1

N

N−1∑

k=1

G(k/N )[ηk − ū(k/N )]
∣∣∣∣∣

]
= 0,

where ū is the unique solution of the linear equation
{
0 = �u,

u(0) = ρ(0), u(1) = β.
(2.10)

We refer to Sect. 3 for the notation used in the next remark.

Remark 2.2 We believe that Theorem 2.1 remains in force if
∑

j∈�∗
p
r j = 0 and

∑
j,k∈�∗

p
a j,k > 0. This assertion is further discussed in Remark 4.5.

Remark 2.3 The case
∑

j∈�∗
p
r j +∑ j,k∈�∗

p
a j,k = 0 provides an example in which at the left

boundary sites behave as a voter model and acquire the value of one of their neighbors. One
can generalize this model and consider an exclusion process in which, at the left boundary,
the first site takes the value of the majority in a fixed interval {2, . . . , 2p}, the left boundary
generator being given by

(Ll f )(η) = f (Mη) − f (η),

where (Mη)k = ηk for k ≥ 2, and (Mη)1 = 1{∑2≤ j≤2p η j ≥ p}. In this case it is
conceivable that the system alternates between two states, one in which the left density is
close to 1 and one in which it is close to 0.

The proof of Theorem 2.1 is presented in Sects. 3 and 4. It relies on duality computations.
As the boundary conditions do not increase the degrees of a function, the equations obtained
from the identities EμN [LNη j ] = 0, EμN [LNη jηk] = 0 can be expressed in terms of the
density and of the correlation functions.

2.2 Small Perturbations of Flipping Dynamics

We examine in this subsection a model in which the rate at which the leftmost occupation
variable is flipped depends locally on the configuration. Consider the generator

LN = Ll + Lb,N + Lr,N , (2.11)

where Lb,N and Lr,N were defined in (2.1), (2.2). The left boundary generator is given by

(Ll f )(η) = c(η1, . . . , ηp)[ f (σ 1η) − f (η)].
for some non-negative function c : {0, 1}p → R+.

Let
A = min

ξ∈�p
c(0, ξ), B = min

ξ∈�p
c(1, ξ) (2.12)

be the minimal creation and annihilation rates, and denote by

λ(0, ξ) := c(0, ξ) − A, λ(1, η) := c(1, ξ) − B

the marginal rates. We allow ourselves below a little abuse of notation by considering λ as a
function defined on �N and which depends on the first p coordinates, instead of a function
defined on �p+1. With this notation the left boundary generator can be written as

(Ll f )(η) = [
A + (1 − η1)λ(η)

] [ f (T 1η) − f (η)] + [
B + η1λ(η)

] [ f (T 0η) − f (η)],
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where for a = 0, 1,

(T aη)k =
{
a if k = 1,

ηk otherwise.

TheMarkov chain with generator LN has a unique stationary state because it is irreducible
due to the stirring dynamics and the right boundary condition. Denote by μN the unique
stationary state of the generator LN , and by EμN the corresponding expectation. Let ρN (k) =
EμN [ηk], k ∈ �N .

Theorem 2.4 Suppose that

(p − 1)
∑

ξ∈�p

{λ(0, ξ) + λ(1, ξ)} < A + B. (2.13)

Then, the limit
α := lim

N→∞ ρN (1)

exists, and it does not depend on the boundary conditions at N − 1. Moreover, for any
continuous function G : [0, 1] → R,

lim
N→∞ EμN

[∣∣∣
1

N

N−1∑

k=1

G(k/N )[ηk − ū(k/N )]
∣∣∣

]
= 0,

where ū is the unique solution of the linear equation (2.10) with ρ(0) = α.

Remark 2.5 There is not a simple closed formula for the left density α. By coupling, it is
proven that the sequence ρN (1) is Cauchy and has therefore a limit. The density ρN (1) can
be expressed in terms of the dual process, a stirring dynamics with creation and annihilation
at the boundary.

Remark 2.6 Asimilar result holds for boundary driven exclusion processes inwhich particles
are created at sites 1 ≤ k ≤ q with rates depending on the configuration through the first p
sites, provided the rates depend weakly [in the sense (2.13)] on the configuration.

Remark 2.7 One can weaken slightly condition (2.13). For ζ ∈ {0, 1}q , 0 ≤ q ≤ p − 1, let
A(ζ ) = minξ c(ζ, ξ), where the minimum is carried over all configurations ξ ∈ {0, 1}p−q .
For a = 0, 1, and ζ ∈ ∪0≤q≤p−1{0, 1}q , let R(ζ, a) = A(ζ, a) − A(ζ ) ≥ 0 be the marginal
rate. The same proof shows that the assertion of Theorem 2.4 holds if

p∑

q=2

(q − 1)
∑

ζ∈{0,1}q
R(ζ ) < A + B.

Remark 2.8 In [5], Erignoux proves that the empiricalmeasure evolves in time as the solution
of the heat equation with the corresponding boundary conditions.

The proof of Theorem 2.4 is presented in Sect. 5. It is based on a duality argument which
consists in studying the process reversed in time. We show that under the conditions of
Theorem 2.4, to determine the value of the occupation variable η1 at time 0, we only need to
know from the past the behavior of the process in a finite space-time window.
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2.3 Speeded-Up Boundary Condition

Recall the notation introduced in Sect. 2.1. Fix p > 1 and consider an irreducible continuous-
time Markov chain on �∗

p , p > 0. Denote by Ll the generator of this process, and by μ the
unique stationary state. Let

ρ(k) = Eμ[ηk], k ∈ �∗
p, (2.14)

be the mean density at site k under the measureμ. Clearly, 0 < ρ(k) < 1 for all k ∈ �∗
p . The

density can not be 0 or 1 because every configuration has a strictly positive weight under the
stationary measure.

Fix a sequence �N → ∞, and consider the boundary driven, symmetric, simple exclusion
process on �N ,p whose generator, denoted by LN , is given by

LN = �N Ll + L0,1 + Lb,N + Lr,N ,

where L0,1 represent a stirring dynamics between sites 0 and 1, introduced below (2.8). Note
that the left boundary dynamics has been speeded-up by �N .

Due to the right boundary reservoir and the stirring dynamics, the process is ergodic.
Denote by μN the unique stationary state, and let

ρN (k) = EμN [ηk], k ∈ �N ,p,

be the mean density at site k under the stationary state.

Theorem 2.9 There exists a finite constant C0, independent of N , such that |ρN (0)−ρ(0)| ≤
C0/

√
�N . Moreover, for any continuous function G : [0, 1] → R,

lim
N→∞ EμN

[∣∣∣
1

N

N−1∑

k=1

G(k/N )[ηk − ū(k/N )]
∣∣∣

]
= 0,

where ū is the unique solution of the linear equation (2.10).

Remark 2.10 The proof of this theorem is based on duality computations, and does not
requires one and two-blocks estimates. There is an alternative proof relying on an estimate
of the entropy production along the lines presented in [6, Proposition 2], [9, Proposition 3.3].
This proof applies to gradient and non-gradient models [8], but it requires �N to grow at least
as N .

The proof of Theorem 2.9 is presented in Sect. 6. As the boundary condition has been
speeded-up, each time the occupation variables η0, η1 are exchanged, the distribution of the
variable η0 is close to its stationary distribution with respect to the left-boundary dynamics.

3 Proof of Theorem 2.1: One Point Functions

We prove in this section that the density of particles under the stationary state μN is close
to the solution of the linear parabolic equation (2.10). We first show that the left boundary
dynamics we consider is indeed the most general one which does not increase the degree of
functions of degree 1 and 2.

For A ⊂ �∗
p , let �A : �∗

p → R be given by �A(η) = ∏
k∈A ηk . Clearly, any function

f : �∗
p → R can be written as a linear combination of the functions �A. A function f is

said to be a monomial of order n if it can be written as a linear combination of functions �A
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where |A| = n for all A. It is said to be a polynomial of order n if it can be written as a sum
of monomials of order m ≤ n.

Recall the definition of the generator LG given in (2.4). Fix −p ≤ k ≤ 0, and write the
jump rate ck as

ck =
∑

A⊂�∗
p

Rk,A�A,

where the sum is carried over all subsets A of �∗
p .

Lemma 3.1 The functions LG�{ j}, resp. LG�{ j,k}, −p ≤ j �= k ≤ 0, are polynomials of
order 1, resp. of order 2, if and only if there exists constants Rl,∅, Rl,{m}, l, m ∈ �∗

p such
that

c j (η) = R j,∅ + R j,{ j}η j +
∑

k:k �= j

R j,{k}ηk(1 − 2η j ). (3.1)

Proof Fix j ∈ �∗
p . A straightforward computation shows that

LG�{ j} =
∑

A �� j

R j,A�A −
∑

A �� j

(2R j,A + R j,A∪{ j})�A∪{ j}.

Hence, LG�{ j} is a polynomial of order 1 if and only if R j,B = R j,B∪{ j} = 0 for all B ⊂ �∗
p

such that |B| ≥ 2, j /∈ B. This proves that LG�{ j} is a polynomial of order 1 if and only if
condition (3.1) holds.

If the rates are given by (3.1), for all j �= k ∈ �∗
p ,

(LG�{ j})(η) = R j,∅(1 − 2η j ) − R j,{ j}η j +
∑

�:��= j

R j,{�}η�,

and

(LG�{ j,k})(η) = R j,∅(1 − 2η j )ηk + Rk,∅(1 − 2ηk)η j − (
R j,{ j} + Rk,{k}

)
η jηk

+
∑

�:��= j,k

R j,{�}ηkη� +
∑

�:��= j,k

Rk,{�}η jη�,

which is a polynomial of degree 2. This proves the lemma. 
�

Note Observe that at this point we do not make any assertion about the sign of the constants
R j,∅, R j,{k}.

The next result states that a generator LG whose rates satisfy condition (3.1) can bewritten
as LR + LC + L A. Denote by P j , resp. N j , −p ≤ j ≤ 0, the subset of points k ∈ �∗

p \ { j},
such that R j,{k} ≥ 0, resp. R j,{k} < 0.

Lemma 3.2 The rates c j (η) given by (3.1) are non-negative if and only if

p j := R j,∅ + R j,{ j} −
∑

k∈P j

R j,{k} ≥ 0,

q j := R j,∅ +
∑

k∈N j

R j,{k} ≥ 0.
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In this case, there exist non-negative rates r j , c j,k , a j,k and densitiesα j ∈ [0, 1], k �= j ∈ �∗
p,

such that for all j ∈ �∗
p, η ∈ �∗

p,

c j (η) = r j
[
α j (1 − η j ) + (1 − α j )η j

]+
∑

k∈�∗
p

c j,k
[
η j (1 − ηk) + ηk(1 − η j )

]
,

+
∑

k∈�∗
p

a j,k
[
η jηk + (1 − ηk)(1 − η j )

]
.

Proof The first assertion of the lemma is elementary and left to the reader. For j �= k ∈ �∗
p ,

define

c j,k = R j,{k}1{k ∈ P j } ≥ 0, a j,k = −R j,{k}1{k ∈ N j } ≥ 0,

r j := p j + q j ≥ 0, α j := q j

p j + q j
1{r j �= 0} ∈ [0, 1].

It is elementary to check that the second assertion of the lemma holds with these definitions.

�

Lemma 3.3 The Markov chain induced by the generator Ll has a unique stationary state
if
∑

j∈�∗
p
r j + ∑

j,k∈�∗
p
a j,k > 0. In contrast, if

∑
j∈�∗

p
r j + ∑

j,k∈�∗
p
a j,k = 0 and

∑
j,k∈�∗

p
c j,k > 0, then the Markov chain induced by the generator Ll has exactly two

stationary states which are the Dirac measures concentrated on the configurations with all
sites occupied or all sites empty.

Proof Assume first that
∑

j∈�∗
p
r j > 0. Let j ∈ �∗

p such that r j > 0. If α j > 0, the
configuration inwhich all sites are occupied can be reached fromany configuration bymoving
with the stirring dynamics each empty site to j , and then filling it up with the reservoir. This
proves that under this condition there exists a unique stationary state concentrated on the
configurations which can be attained from the configuration in which all sites are occupied.
Analogously, if α j = 0, the configuration in which all sites are empty can be reached from
any configuration.

Suppose that
∑

j∈�∗
p
r j = 0 and

∑
j,k∈�∗

p
a j,k > 0.We claim that from any configuration

we can reach any configuration whose total number of occupied sites is comprised between
1 and |�∗

p| − 1 = p. Since the stirring dynamics can move particles and holes around, we
have only to show that it is possible to increase, resp. decrease, the number of particles up to
|�∗

p| − 1, resp. 1.
Let k �= j ∈ �∗

p such that a j,k > 0. To increase the number of particles up to |�∗
p| − 1,

move the two empty sites to j and k, and create a particle at site j . Similarly one can decrease
the number of particles up to 1. This proves that under the previous assumptions there exists
a unique stationary state concentrated on the set of configurations whose total number of
particles is comprised between 1 and |�∗

p| − 1.
Assume that

∑
j∈�∗

p
r j = 0,

∑
j,k∈�∗

p
a j,k = 0 and

∑
j,k∈�∗

p
c j,k > 0. In this case, the

configuration with all sites occupied and the one with all sites empty are absorbing states.
Let k �= j ∈ �∗

p such that c j,k > 0. If there is at least one particle, to increase the number
of particles, move the empty site to j , the occupied site to k, and create a particle at site j .
Similarly, we can decrease the number of particle if there is at least one empty site. This
proves that in this case the set of stationary states is a pair formed by the configurations with
all sites occupied and the one with all sites empty. 
�
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Lemma 3.4 Suppose that
∑

j∈�∗
p
r j+∑ j,k∈�∗

p
a j,k > 0. Then, there exists a unique solution

to (2.7).

Proof Equation (2.6) provides a solution and guarantees existence. We turn to uniqueness.
Suppose first that

∑
j∈�∗

p
r j > 0 and

∑
j,k∈�∗

p
a j,k = 0. In this case, the operatorA vanishes.

Consider two solution ρ(1), ρ(2), and denote their difference by γ . The difference satisfies
the linear equation

0 = − r j γ ( j) + (Cγ )( j) + (Tγ )( j), j ∈ �∗
p.

Let π be the unique stationary state of the random walk on �∗
p whose generator is C + T.

Multiply both sides of the equation by γ ( j) π( j) and sum over j to obtain that

0 = −
∑

j∈�∗
p

r j γ ( j)2π( j) + 〈(C + T)γ, γ 〉,

where 〈 f, g〉 represents the scalar product in L2(π). As all terms on the right-hand side are
negative, the identity 〈(C + T)γ, γ 〉 = 0 yields that γ is constant. Since, by hypothesis,∑

j r j > 0, γ ≡ 0, which proves the lemma.
Suppose next that

∑
j∈�∗

p
r j > 0 and

∑
j,k∈�∗

p
a j,k > 0. Define the rates t j,k ≥ 0,

j �= k ∈ �∗
p , so that

(T f )( j) =
∑

k:k �= j

t j,k [ f (k) − f ( j)], j ∈ �∗
p.

Let �ext
p = {−1, 1} × �∗

p . Points in �ext
p are represented by the symbol (σ, k), σ = ± 1,

−p ≤ k ≤ 0. We extend the definition of a function f : �∗
p → R to �ext

p by setting
f (1, k) = f (k), f (−1, k) = 1 − f (k), k ∈ �∗

p . This new function is represented by

f̂ : �ext
p → R.

With this notation we may rewrite Eq. (2.7) as

0 = r(1, j) [α(1, j) − ρ̂(1, j)] + (̂C ρ̂) (1, j) + (Â ρ̂) (1, j) + (̂T ρ̂) (1, j), j ∈ �∗
p, (3.2)

where r(1, j) = r j , α(1, j) = α j ,

(Â ρ̂) (1, j) =
∑

k∈�∗
p

a j,k [ρ̂(−1, k) − ρ̂(1, j) ],

and Ĉ, T̂ are the generators of the Markov chains on �ext
p characterized by the rates ĉ, t̂ given

by

ĉ [(± 1, j), (± 1, k)] = c j,k, ĉ [(± 1, j), (∓ 1, k)] = 0,

t̂ [(± 1, j), (± 1, k)] = t j,k, t̂ [(± 1, j), (∓ 1, k)] = 0.

Multiply Eq. (2.7) by −1 to rewrite it as

0 = r(−1, j) [α(−1, j) − ρ̂(−1, j)] + (̂C ρ̂)(−1, j) + (Â ρ̂)(−1, j) + (̂T ρ̂)(−1, j) (3.3)

for any j ∈ �∗
p , where r(−1, j) = r j , α(−1, j) = 1 − α j , and

(Â ρ̂)(−1, j) =
∑

k∈�∗
p

a j,k [ρ̂(1, k) − ρ̂(−1, j) ].
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Since the operator Ĉ+Â+ T̂ defines an irreducible randomwalk on�ext
p , we may proceed

as in the first part of the proof to conclude that there exists a unique solution of (2.7).
Finally, suppose that

∑
j∈�∗

p
r j = 0 and

∑
j,k∈�∗

p
a j,k > 0. Let ρ be a solution to (2.7).

Then, its extension ρ̂ is a solution to (3.2), (3.3). The argument presented in the first part
of the proof yields that any solution of these equations is constant. Since ρ̂(1, k) = ρ(k) =
1− ρ̂(−1, k), we conclude that this constant must be 1/2. This proves that in the case where∑

j∈�∗
p
r j = 0,

∑
j,k∈�∗

p
a j,k > 0, the unique solution to (2.7) is constant equal to 1/2. 
�

Recall from (2.9) the definition of ρN .

Lemma 3.5 Suppose that
∑

j∈�∗
p
r j +∑

j,k∈�∗
p
a j,k > 0. Then, for 0 ≤ k < N,

ρN (k) = k

N
β + N − k

N
ρN (0). (3.4)

Moreover, there exists a finite constant C0, independent of N , such that
∣∣ ρN (k) − ρ(k)

∣∣ ≤ C0/N , −p ≤ k ≤ 0,

where ρ is the unique solution of (2.7).

Proof Fix 1 ≤ k < N . As μN is the stationary state, EμN [LN ηk] = 0. Hence, if we set
ρN (N ) = β, (�NρN )(k) := ρN (k − 1)+ρN (k + 1)− 2ρN (k) = 0. In particular, ρN solves
the discrete difference equation

(�NρN )(k) = 0, 1 ≤ k < N , ρN (N ) = β, ρN (0) = ρN (0),

whose unique solution is given by (3.4). This proves the first assertion of the lemma.
We turn to the second statement. It is clear that ρN ( j) fulfills (2.7) for −p ≤ j < 0. For

j = 0 the equation is different due to the stirring dynamics between 0 and 1 induced by the
generator L0,1. We have that

0 = r0 [α0 − ρN (0)] + (CρN )(0) + (AρN )(0) + (�NρN )(0).

By (3.4), we may replace ρN (1) by [1− (1/N )] ρN (0)+ (1/N )β, and the previous equation
becomes

0 = r0 [α0 − ρN (0)] + (CρN )(0) + (AρN )(0) + (TρN )(0) + 1

N

[
β − ρN (0)

]
. (3.5)

This equation corresponds to (2.7) with r ′
0 = r0 + (1/N ) and α′

0 = (α0 r0 + β/N )/[r0 +
(1/N )].

By Lemma 3.4, Eq. (2.7) for j �= 0 and (3.5) for j = 0 has a unique solution. Let
γN = ρN − ρ, where ρ is the solution of (2.7). γN satisfies

0 = 1

N
[β − ρN (0)] δ0, j − r j γN ( j) + (CγN )( j) + (AγN )( j) + (TγN )( j),

where δ0, j is equal to 1 if j = 0 and is equal to 0 otherwise.
We complete the proof in the case A = 0. The other cases can be handled by increasing

the space, as in the proof of Lemma 3.4. Denote by π the stationary state of the generator
C+ T. Multiply both sides of the previous equation by π( j)γN ( j) and sum over j to obtain
that ∑

j∈�∗
p

r j γN ( j)2π( j) + 〈− (C + T) γN , γN 〉 = θN γN (0) π(0),
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where θN = (1/N ) [β − ρN (0)]. Let k ∈ �∗
p such that rk > 0. Such k exists by assumption.

Rewrite γN (0) as
∑

k< j≤0[γN ( j)−γN ( j−1)]+γN (k) and use Young’s inequality to obtain
that there exists a finite constant C0, depending only on p, π and on the rates c j,k , r j such
that

θN γN (0) π(0) ≤ (1/2) rk γN (k)2 π(k) + (1/2) 〈− (C + T) γN , γN 〉 + C0 θ2N .

Here and throughout the article, the value of the constant C0 may change from line to line.
The two previous displayed equations and the fact that |β − ρN (0)| ≤ 1 yield that

∑

j∈�∗
p

r j γN ( j)2π( j) + 〈− (C + T) γN , γN 〉 ≤ C0

N 2 ·

In particular, γN (k)2 ≤ C0/N 2 and [γN ( j + 1) − γN ( j)]2 ≤ C0/N 2 for −p ≤ j < 0. This
completes the proof of the lemma. 
�

4 Proof of Theorem 2.1: Two Point Functions

We examine in this section the two-point correlation function under the stationary state μN .
Denote by DN the discrete simplex defined by

DN = {( j, k) : −p ≤ j < k ≤ N − 1} and set �N = {−1, 1} × DN .

Let
η̄m = 1 − ηm, ρ̄N (m) = 1 − ρN (m), m ∈ �N ,p,

and define the two-point correlation function ϕN (σ, j, k), (σ, j, k) ∈ �N , by

ϕN (1, j, k) = EμN

[{η j − ρN ( j)} {ηk − ρN (k)} ],
ϕN (−1, j, k) = EμN

[{η̄ j − ρ̄N ( j)} {ηk − ρN (k)} ]. (4.1)

Note thatϕN (−1, j, k) = −ϕN (1, j, k). The identity EμN [LN {η j −ρN ( j)} {ηk−ρN (k)}] =
0 provides a set of equations for ϕN . Their exact form requires some notation.

Denote by Lrw
N the generator of the symmetric, nearest-neighbor random walk on DN .

This generator is defined by the next two sets of equations. If k − j > 1,

(Lrw
N φ)( j, k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�φ)( j, k) if j > −p, k < N − 1,

(∇+
1 φ)(−p, k) + (�2φ)(−p, k) if j = −p, k < N − 1,

(�1φ)( j, N − 1) + (∇−
2 φ)( j, N − 1) if j > −p, k = N − 1,

(∇+
1 φ)(−p, N − 1) + (∇−

2 φ)(−p, N − 1) if j = −p, k = N − 1,

while for −p < k < N − 2,

(Lrw
N φ)(k, k + 1) = (∇−

1 φ)(k, k + 1) + (∇+
2 φ)(k, k + 1),

(Lrw
N φ)(−p,−p + 1) = (∇+

2 φ)(−p,−p + 1),

(Lrw
N φ)(N − 2, N − 1) = (∇−

1 φ)(N − 2, N − 1).

In these formulae, ∇±
i , resp. �i , represents the discrete gradients, resp. Laplacians, given by

(∇±
1 φ)( j, k) = φ( j ± 1, k) − φ( j, k), (∇±

2 φ)( j, k) = φ( j, k ± 1) − φ( j, k),

(�1φ)( j, k) = φ( j − 1, k) + φ( j + 1, k) − 2φ( j, k),
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(�2φ)( j, k) = φ( j, k − 1) + φ( j, k + 1) − 2φ( j, k),

(�φ)( j, k) = (�1φ)( j, k) + (�2φ)( j, k).

Let Lex
N be the generator given by Lex

N = LS+L0,1+Lb,N . A straightforward computation
yields that for ( j, k) ∈ DN ,

EμN

[
Lex
N {η j − ρN ( j)} {ηk − ρN (k)} ] = (Lrw

N ϕN )(1, j, k) + FN (1, j, k),

where it is understood that the generator Lrw
N acts on the last two coordinates keeping the

first one fixed, and

FN (σ, j, k) = − σ [ρN ( j + 1) − ρN ( j)]2 1{k = j + 1}. (4.2)

Similarly,

EμN

[
Lex
N {η̄ j − ρ̄N ( j)} {ηk − ρN (k)} ] = (Lrw

N ϕN )(−1, j, k) + FN (−1, j, k).

For the next generators, we do not repeat the computation of the action of the generator
on the product {η̄ j − ρ̄N ( j)} {ηk − ρN (k)} because it can be inferred from the action on
{η j − ρN ( j)} {ηk − ρN (k)}.

We turn to the remaining generators. Extend the definition of the rates r j , c j,k and a j,k to
�N ,p by setting

r j = c j,k = a j,k = 0 if j /∈ �∗
p or k /∈ �∗

p.

Topresent simple expressions for the equations satisfied by the two-point correlation function,
we add cemetery points to the state space �N . Let �N = �N ∪ ∂ �N , where

∂ �N = {
(σ, k) : σ = ± 1, −p ≤ k < N

} ∪ {
(σ, k, k) : σ = ± 1, −p ≤ k ≤ 0

}

∪ {(σ, k, N ) : σ = ± 1, −p ≤ k < N − 1
}

(4.3)

is the set of absorbing points.
A straightforward computation yields that for ( j, k) ∈ DN ,

EμN

[
LR {η j − ρN ( j)} {ηk − ρN (k)} ] = (L

†
R ϕN )(1, j, k),

where

(L
†
R φ)(σ, j, k) = r j [ϕN (σ, k) − ϕN (σ, j, k)] + rk [ϕN (σ, j) − ϕN (σ, j, k)]

provided we set

ϕN (σ,m) = bN (σ,m) := 0, −p ≤ m < N , σ = ± 1. (4.4)

Similarly, an elementary computation yields that for ( j, k) ∈ DN ,

EμN

[
Lr,N {η j − ρN ( j)} {ηk − ρN (k)} ] = (L

†
r,N ϕN )(1, j, k),

where
(L

†
r,N ϕN )(σ, j, k) = 1{k = N − 1} [ϕN (σ, j, N ) − ϕN (σ, j, k)],

provided we set

ϕN (σ,m, N ) = bN (σ,m, N ) := 0, −p ≤ m ≤ N − 2, σ = ± 1. (4.5)

We turn to the generator LC . An elementary computation yields that for ( j, k) ∈ DN ,

EμN

[
LC {η j − ρN ( j)} {ηk − ρN (k)} ] = (L

†
C ϕN )(1, j, k),
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where

(L
†
Cφ)(σ, j, k) =

∑

m:m �= j

c j,m{φ(σ,m, k) − φ(σ, j, k)}

+
∑

m:m �=k

ck,m{φ(σ, j,m) − φ(σ, j, k)},

provided we set

ϕN (σ,m,m) = bN (σ,m,m) := σ ρN (m) [1 − ρN (m)], −p ≤ m ≤ 0. (4.6)

Finally, we claim that for ( j, k) ∈ DN ,

EμN

[
L A {η j − ρN ( j)} {ηk − ρN (k)} ] = (L

†
A ϕN )(1, j, k),

where

(L
†
Aφ)(σ, j, k) =

∑

m:m �= j

a j,m{φ(−σ,m, k) − φ(σ, j, k)}

+
∑

m:m �=k

ak,m{φ(−σ, j,m) − φ(σ, j, k)},

and ϕN (σ, k, k) is given by (4.6). Hence, the generator L†
A acts exactly as L†

C , but it flips the
value of the first coordinate. Note that it is the only generator which changes the value of the
first coordinate.

Let L†
N be the generator on �N given by

L
†
N = Lrw

N + L
†
R + L

†
r,N + L

†
C + L

†
A.

If
∑

j
∑

j,k a j,k = 0, the generator L†
A vanishes, the first coordinate is kept constant by the

dynamics and we do not need to introduce the variable σ . Note that the points in ∂ �N are
absorbing points.

As EμN [LN {η j − ρN ( j)} {ηk − ρN (k)}] = 0, the previous computations yield that the
two-point correlation function ϕN introduced in (4.1) solves

⎧
⎨

⎩
(L

†
NψN )(σ, j, k) + FN (σ, j, k) = 0, (σ, j, k) ∈ �N ,

ψN (σ, j, k) = bN (σ, j, k), (σ, j, k) ∈ ∂ �N ,
(4.7)

where FN and bN are the functions defined in (4.2), (4.4), (4.5), (4.6).
As L†

N is a generator, (4.7) admits a unique solution [on the set {(1, j, k) : ( j, k) ∈ DN }
if L†

A vanishes]. This solution can be represented in terms of the Markov chain induced by

the generator L†
N .

Denote by ϕ
(1)
N , resp. ϕ(2)

N , the solution of (4.7) with bN = 0, resp. FN = 0. It is clear that

ϕN = ϕ
(1)
N + ϕ

(2)
N . Denote by XN (t) the continuous-time Markov chain on �N associated

to the generator L†
N . Let P (σ, j,k) be the distribution of the chain XN starting from (σ, j, k).

Expectation with respect to P (σ, j,k) is represented by E(σ, j,k).
Let HN be the hitting time of the boundary ∂ �N :

HN = inf
{
t ≥ 0 : XN (t) ∈ ∂ �N

}
.
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Fig. 1 Lemma 4.1 states that a
random walk (red trajectory)
started from the green segment
has a probability at most of order
1/n of hitting L in the red
half-line (Color figure online)

p′

m− p′n

m

It is well known (cf. [7, Theorem 6.5.1] in the continuous case) that

ϕ
(1)
N (σ, j, k) = E(σ, j,k)

[∫ HN

0
FN (XN (s)) ds

]
.

It is also well known that

ϕ
(2)
N (σ, j, k) = E(σ, j,k)

[
bN (XN (HN ))

]
.

To estimate ϕ
(1)
N and ϕ

(2)
N we need to show that the process XN (t) attains the boundary

∂ �N at the set {(σ, k, k) : σ = ± 1, −p ≤ k ≤ 0}with small probability. This is the content
of the next two lemmata.

For a subset A of �N , denote by H(A), resp. H+(A), the hitting time of the set A, resp.
the return time to the set A:

H(A) = inf
{
t ≥ 0 : XN (t) ∈ A

}
, H+(A) = inf

{
t ≥ τ1 : XN (t) ∈ A

}
,

where τ1 represents the time of the first jump: τ1 = inf{s > 0 : XN (s) �= XN (0)}.
The next lemma, illustrated in Fig. 1, translates to the present model the fact that starting

from (1, 0) the two-dimensional, nearest-neighbor, symmetric random walk hits the line
{(0, k) : k ∈ Z} at a distance n or more from the origin with a probability less than C/n.

Let Q̂(l,m) be the law of such a random walk evolving on Z
2 starting from (l,m). Denote

by Br (l,m) the ball of radius r > 0 and center (l,m) ∈ Z
2, and by L the segment {(σ, 0, a) :

σ = ± 1, 1 ≤ a < N }. Represent the coordinates of XN (t) by (σN (t), X1
N (t), X2

N (t)).

Lemma 4.1 Let p′ = p + 1. There exists a finite constant C0 such that for all n,

max
σ=± 1

max
l,m

P (σ,l,m)

[
H(L) = ∞ or X2

N (H(L)) ≤ m − p′n
] ≤ C0

n
,

where the maximum is carried over all pairs (l,m) such that 1 ≤ l ≤ p′, {(a, b) ∈
Bp′n(0,m) : a ≥ 0} ⊂ D

0
N = {(a, b) ∈ DN : a ≥ 0}.

Proof Let Lr = {(0, l) : −r ≤ l ≤ r}. By [10, Proposition 2.4.5], there exists a finite
constant C0 such that for all n ≥ 1,

Q̂(1,0)
[
H(Bn(0, 0)

�) < H(Ln)
] ≤ C0

n
·

Let Lr (l,m) = {(σ, l, a) : σ = ± 1, m − r ≤ a ≤ m + r}. By the previous displayed
equation, if Ln(l,m) is contained in D

0
N ,

P (σ,l+1,m)

[
H(Bn(l,m)�) < H(Ln(l,m))

] ≤ C0

n
·
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Iterating this estimate i times yields that

P (σ,l+i,m)

[
H(Bin(l,m)�) < H(Lin(l,m))

] ≤ C0 i

n

provided all sets appearing in this formula are contained in D
0
N . The assertion of the lemma

follows from this estimate and the following observation:

{ H(L) = ∞ or X2
N (H(L)) ≤ m − p′n } ⊆ { H(Bp′n(0,m)�) < H(Lp′n(0,m)) }.


�
The next lemma presents the main estimate needed in the proof of the bounds of the

two-point correlation functions. Recall from (4.3) that we denote by (σ, k), (σ, k, N ) some
cemitery points. Let

� = {(σ, l, 0) : σ = ± 1, −p ≤ l < 0},
∂N = {

(σ, k) : σ = ± 1, −p ≤ k < N
} ∪ {

(σ, k, N ) : σ = ± 1, −p ≤ k < N − 1
}
.

Lemma 4.2 For all δ > 0,

lim
N→∞ max

( j,k)∈DN
j>δN

P (1, j,k)
[
H(�) < H(∂N )

] = 0.

Proof Fix δ > 0 and ( j, k) ∈ DN such that j > δN . Let

∂0N = {(σ, 0,m) : σ = ± 1, 0 < m < N } ∪ {
(σ, k, N ) : σ = ± 1, −p ≤ k < N − 1

}
,

and set τ = H(∂0N ). Clearly, τ < H(�). Hence, by the strong Markov property, the proba-
bility appearing in the statement of the lemma is equal to

E(1, j,k)

[
P XN (τ )

[
H(�) < H(∂N )

] ]
. (4.8)

Up to time τ , the process XN evolves as a symmetric random walk on DN

Let �N be a sequence such that �N � N . We claim that for all δ > 0,

lim
N→∞max

(l,m)
P (1,l,m)

[
X2
N (τ ) ≤ �N

] = 0, (4.9)

where the maximum is carried out over all pairs (l,m) ∈ DN such that l > δN . The proof
of this statement relies on the explicit form of the harmonic function for a 2-dimensional
Brownian motion.

Up to time τ , the process YN (t) = (X1
N (t), X2

N (t)) evolves on the set�N = {(a, b) : 0 ≤
a < b ≤ N }. Let �N = {0, . . . , N − 1} × {1, . . . , N }. Denote by ZN (t) = (Z1

N (t), Z2
N (t))

the random walk on �N which jumps from a point to any of its neighbors at rate 1. Let �N :
�N → �N the projection defined by �N (a, b) = (a, b) if (a, b) ∈ �N , and �N (a, b) =
(b − 1, a + 1) otherwise. The process �N (ZN (t)) does not evolve as YN (t) because the
jumps of �N (ZN (t)) on the diagonal {(d, d + 1) : 0 ≤ d < N } are speeded-up by 2, but the
sequence of sites visited by both processes has the same law. Therefore,

P (1,l,m)

[
X2
N (τ ) ≤ �N

] = Q(l,m)

[
ZN (̂τ ) ∈ � N

]
,

where Q(l,m) represents the law of the process ZN starting from (l,m), τ̂ the hitting time of
the boundary of �N and � N the set {(0, a) : 1 ≤ a ≤ �N } ∪ {(b, 1) : 0 ≤ b ≤ �N − 1}.

Denote by B(r) ⊂ R
2, r > 0, the ball of radius r centered at the origin. In the event

{ZN (̂τ ) ∈ � N }, the process ZN hits the ball of radius �N centered at the origin before reaching
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the ball of radius 2N centered at the origin: {ZN (̂τ ) ∈ � N } ⊂ {H(B(�N )) < H(B(2N ))},
so that

Q(l,m)

[
ZN (̂τ ) ∈ � N

] ≤ Q̂(l,m)

[
H(B(�N )) < H(B(2N ))

]
.

By [10, Exercise 1.6.8], this later quantity is bounded by

log 2N − log |(l,m)| + C�−1
N

log 2N − log �N

for some finite constant independent of N . This proves (4.9) because |(l,m)| ≥ δN and
�N � N .

We return to (4.8). If XN (τ ) ∈ ∂N , the probability vanishes. We may therefore insert
inside the expectation the indicator of the set XN (τ ) /∈ ∂N It is also clear that σN (t) does not
change before time τ . Hence, by (4.9), (4.8) is bounded by

E(1, j,k)

[
1{XN (τ ) ∈ L

+(�N )} P XN (τ )

[
H(�) < H(∂N )

] ]+ oN (1)

≤ max
m≥�N

P (1,0,m)

[
H(�) < H(∂N )

]+ oN (1),

where L
+(r) = {(σ, 0, l) : σ = ± 1, l ≥ r}, oN (1) converges to 0 as N → ∞, uniformly

over all ( j, k) ∈ DN , j > δN , and �N is a sequence such that �N � N . Hence, up to this
point, we proved that

max
( j,k)∈DN
j>δN

P (1, j,k)
[
H(�) < H(∂N )

] ≤ max
m≥�N

P (1,0,m)

[
H(�) < H(∂N )

]+ oN (1), (4.10)

where oN (1) converges to 0 as N → ∞, and �N is a sequence such that �N � N .

It remains to estimate the probability appearing in the previous formula. Ifm > p′, starting
from (1, 0,m), in p′ jumps the process XN (t) can not hit �. Hence, if τ(k) stands for the
time of the k-th jump, by the strong Markov property,

P (1,0,m)

[
H(�) < H(∂N )

] = P (1,0,m)

[
H(∂N ) > τ(p′), H(�) < H(∂N )

]

= E(1,0,m)

[
1{H(∂N ) > τ(p′)} P XN (τ (p′))

[
H(�) < H(∂N )

] ]
.

Let � = P (1,0,m)[H(∂N ) > τ(p′)] = P (−1,0,m)[H(∂N ) > τ(p′)]. Note that this quantity
does not depend on m in the set {(σ, 0, b) : σ = ± 1, b > p′}. Moreover, as

∑
j r j > 0,

� < 1. With this notation, the previous expression is less than or equal to

� max
σ=± 1

max
a,b

P (σ,a,b)
[
H(�) < H(∂N )

]
,

where the maximum is carried over all (a, b) which can be attained in p′ jumps from (0,m).
This set is contained in the set {(c, d) : −p ≤ c ≤ p′, m − p′ ≤ d ≤ m + p′}.

Recall the definition of the set L introduced just before the statement of Lemma 4.1. If
a ≥ 1, the process XN (t) hits the set L before the set �. Hence, by Lemma 4.1, if qN is
an increasing sequence to be defined later, by the strong Markov property, for 1 ≤ a ≤ p′,
b � qN ,

P (σ,a,b)
[
H(�) < H(∂N )

]

≤ C0

qN
+ P (σ,a,b)

[
X2
N (H(L)) ≥ b − p′qN , H(�) < H(∂N )

]

≤ C0

qN
+ max

b′≥b−p′qN
P (σ,0,b′)

[
H(�) < H(∂N )

]
.
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On the other hand, if a ≤ −1, let Cd = {(σ, c, d) : σ = ± 1, −p ≤ c < 0}. In this case,
starting from (a, b), in p′ jumps the process XN (t) may hit the set L. Hence, by the strong
Markov property, for a < 0, b > np′, P (σ,a,b)

[
H(Cb−np′) < H(L) ∧ H(∂N )

] ≤ �n
1 for

some �1 < 1. Therefore, by the strong Markov property, for a < 0 and b � qN ,

P (σ,a,b)
[
H(�) < H(∂N )

]

≤ P (σ,a,b)
[
H(L) ∧ H(∂N ) < H(Cb−p′qN ), H(�) < H(∂N )

] + �
qN
1

≤ max
σ ′=± 1

max
b′≥b−p′qN

P (σ ′,0,b′)
[
H(�) < H(∂N )

] + �
qN
1 .

Let
TN (b) = max

σ=± 1
max
c≥b

P (σ,0,c)
[
H(�) < H(∂N )

]
.

Note that the first term appearing on the right-hand side of (4.10) is TN (�N ) because the
probability does not depend on the value of σ . By the previous arguments, there exists a
finite constant C0 such that for all b � qN ,

TN (b) ≤ �
{
TN (b − p′qN ) + C0

qN

}

because �
q
1 ≤ 1/q for all q large enough. Iterating this inequality rN times, we get that for

all b � qNrN ,

TN (b) ≤ C0

qN
{� + · · · + �rN } + �rN ≤ �

1 − �

C0

qN
+ �rN .

In view of (4.10) and of the previous estimate, to complete the proof of the lemma, it remains
to choose sequences qN , rN such that qN → ∞, rN → ∞, rN qN � �N . 
�
Lemma 4.3 Assume that

∑
j r j > 0. Then, for every δ > 0,

lim
N→∞ max

( j,k)∈DN
j>δN

∣∣ϕ(1)
N (1, j, k)

∣∣ = 0.

Proof Fix ( j, k) ∈ DN such that 0 < j < k. Denote by DN the diagonal, DN = {(σ, l, l+1) :
σ = ± 1, −p ≤ l < N − 1}, and by DN ,p its restriction to �∗

p , DN ,p = {(σ, l, l + 1) :
σ = ± 1, −p ≤ l ≤ 0}. By Lemma 3.5, there exists a finite constant C0 such that for all
(l,m) ∈ DN ,

|FN (σ, l.m)| ≤ C0

N 2 1{DN }(σ, l,m) + C0 1{DN ,p}(σ, l,m).

Therefore, recalling that HN was defined as the hitting time of the boundary ∂�N ,

∣∣ϕ(1)
N (1, j, k)

∣∣ ≤ C0

N 2 E(1, j,k)

[∫ HN

0
1{DN \ DN ,p}(XN (s)) ds

]

+ C0 E(1, j,k)

[∫ HN

0
1{DN ,p}(XN (s)) ds

]
.

(4.11)

We claim that there exists a finite constant C0 such that

max
σ=± 1

max
( j,k)∈DN
0< j<k

E(σ, j,k)

[∫ HN

0
1{DN \ DN ,p}(XN (s)) ds

]
≤ C0 N . (4.12)
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To bound this expectation, let RN = {(σ, 0,m) : σ = ± 1, 2 ≤ m ≤ N − 1}, and denote by
GN the hitting time of the set RN ∪ ∂ �N . Note that starting from ( j, k), 0 < j < k, only
the component

{
(σ, l, N ) : −p ≤ l < N − 1

}
of the set ∂ �N can be attained before the set

RN . Moreover, before GN the process XN (t) behaves as a symmetric random walk.
Rewrite the expectation in (4.12) as

E(σ, j,k)

[∫ GN

0
1{DN \ DN ,p}(XN (s)) ds

]
+ E(σ, j,k)

[∫ HN

GN

1{DN \ DN ,p}(XN (s)) ds

]
.

(4.13)
Since before time GN the process XN (t) evolves as a symmetric random walk, the first
expectation can be computed. It is equal to j (N − k)/(N − 1) ≤ C0 N . By the strong
Markov property, the second expectation is bounded above by

max
2≤m<N

E(σ,0,m)

[∫ HN

0
1{DN \ DN ,p}(XN (s)) ds

]
.

Denote by ϒN the previous expression and by G+
N the return time to RN ∪ ∂ �N . By the

strong Markov property, the previous expectation is bounded above by

E(σ,0,m)

[∫ G+
N

0
1{DN \ DN ,p}(XN (s)) ds

]
+ ϒN max

0≤m′<N−1
P (σ,0,m′)

[
G+

N < HN
]
.

The first term vanishes unless the first jump of XN (s) is to (σ, 1,m). Suppose that this
happens. Starting from (σ, 1,m), up to time G+

N , XN (s) behaves as a symmetric random
walk. Hence, by explicit formula for the first term in (4.13), the expectation is equal to
(N − m)/(N − 1) ≤ 1. Hence,

ϒN ≤ max
0≤m′<N−1

1

P (σ,0,m′)
[
HN < G+

N

] ·

As
∑

j r j > 0, P(σ,0,m′)[ HN < G+
N ] is bounded below by the probability that the process

jumps to a site (σ, l,m′) such that rl > 0 and then hits the set ∂ �N . Hence, there exists a
positive constant c0 such that P(σ,0,m′)[ HN < G+

N ] ≥ c0 for all 2 ≤ m′ ≤ N − 1. This
proves that ϒN ≤ C0. Assertion (4.12) follows from this bound and the estimate for the first
term in (4.13).

We turn to the second term in (4.11). Recall the notation introduced just before Lemma
4.2. Since the integrand vanishes before hitting the set DN ,p and since the set � is attained
before DN ,p , for j > δN

E(1, j,k)

[ ∫ HN

0
1{DN ,p}(XN (s)) ds

]

= E(1, j,k)

[
1{H(�) < H(∂N )}

∫ HN

H(DN ,p)

1{DN ,p}(XN (s)) ds
]
.

Applying the strong Markov property twice, we bound this expression by

P (1, j,k) [H(�) < H(∂N ) ] max
(σ,a,b)∈DN ,p

E(σ,a,b)

[∫ HN

0
1{DN ,p}(XN (s)) ds

]
.

By Lemma 4.2 the first term vanishes as N → ∞, uniformly over ( j, k) ∈ DN , j > δN .

123



618 C. Erignoux et al.

It remains to show that there exists a finite constant C0 such that

max
(σ, j,k)∈DN ,p

E(σ, j,k)

[∫ HN

0
1{DN ,p}(XN (s)) ds

]
≤ C0. (4.14)

Denote this expression by ϒN , and by J+
N the return time to DN ,p . For (σ, j, k) ∈ DN ,p , the

previous expectation is less than or equal to

C0 + ϒN P (σ, j,k)
[
J+
N < HN

]
.

As in the first part of the proof, since
∑

j r j > 0, the process hits ∂ �N before returning
to DN ,p with a probability bounded below by a strictly positive constant independent of N :
min(σ, j,k)∈DN ,p P (σ, j,k)[ HN < J+

N ] ≥ c0 > 0. Therefore, ϒN ≤ C0. This completes the
proof of assertion (4.14) and the one of the lemma. 
�

Lemma 4.4 Assume that
∑

j r j > 0. Then, for every δ > 0,

lim
N→∞ max

( j,k)∈DN
j>δN

∣∣ϕ(2)
N (1, j, k)

∣∣ = 0.

Proof Fix δ > 0 and ( j, k) ∈ DN such that j > δN . Recall the notation introduced just
before Lemma 4.2. In view of the definition of bN , given in (4.4), (4.5), (4.6),

|ϕ(2)
N (1, j, k)| ≤ P (1, j,k)

[
H(�) < H(∂N )

]
.

The assertion of the lemma follows from Lemma 4.2. 
�

Proof of Theorem 2.1 The proof is straightforward. It is enough to prove the result for con-
tinuous functions with compact support in (0, 1). Fix such a function G and let δ > 0 such
that the support ofG is contained in [δ, 1−δ]. By Schwarz inequality and by (4.1), the square
of the expectation appearing in the statement of the theorem is bounded above by

C(G)

(
1

N

N−1∑

k=1

∣∣ ρN (k) − ū(k/N )
∣∣
)2

+ C(G)

N 2

N−1∑

j,k=1

G( j/N )G(k/N ) ϕN (1, j, k),

where ϕN has been introduced in (4.1) and C(G) a finite constant which depends only on G.
By Lemmata 3.5, 4.3 and 4.4 this expression vanishes as N → ∞. 
�

Remark 4.5 Assume that
∑

j∈�∗
p
r j = 0 and

∑
j,k∈�∗

p
a j,k > 0. The proof that the corre-

lations vanish, presented in Lemmata 4.3 and 4.4, requires a new argument based on the
following observation. Under the conditions of this remark, the boundary ∂ �N of the set
�N is reduced to the set

{
(σ, k, k) : σ = ± 1, −p ≤ k ≤ 0

} ∪ {
(σ, k, N ) : σ = ± 1, −p ≤ k < N − 1

}
.

To prove that the correlations vanish, one has to show that by the time the process XN (t) hits
the set {(σ, k, k) : σ = ± 1, −p ≤ k ≤ 0} its coordinate σ has equilibrated and takes the
value ± 1 with probability close to 1/2.
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5 Proof of Theorem 2.4

The proof of Theorem 2.4 is based on a graphical construction of the dynamics through
independent Poisson point processes.

Recall the definition of the rates A, B introduced in (2.12), that�p = {0, 1}{1,...,p−1}, and
that λ(0, ξ) = c(0, ξ) − A, λ(1, ξ) = c(1, ξ) − B, ξ ∈ �p . Further, recall that we assume

(p − 1)
∑

ξ∈�p

{ λ(0, ξ) + λ(1, ξ) } < A + B.

The left boundary generator can be rewritten as

(Ll f )(η) = A [ f (T 1η) − f (η)] + B [ f (T 0η) − f (η)]

+
1∑

a=0

∑

ξ∈�p

λ(a, ξ) 1{�pη = (a, ξ)} [ f (T 1−aη) − f (η)],

provided �p : �N → ��
p := {0, 1}{1,...,p} represents the projection on the first p coordi-

nates: (�pη)k = ηk , 1 ≤ k ≤ p. Similarly, the right boundary generator can be expressed
as

(Lr,N f )(η) = β [ f (S1η) − f (η)] + (1 − β) [ f (S0η) − f (η)],
where

(Saη)k =
{
a if k = N − 1,

ηk otherwise.

5.1 Graphical Construction

Let P := 2p−1 = ∣∣�p
∣∣. We present in this subsection a graphical construction of the

dynamics based on N + 2P + 2 independent Poisson point processes defined on R.

– (N − 2) processesNi,i+1(t), 1 ≤ i ≤ N − 2, with rate 1.
– 2 processes N+,l(t), N−,l(t) with rates A, B, respectively, representing creation and

annihilation of particles at site 1, regardless of the boundary condition.
– 2P processes N(a,ξ)(t), a = 0, 1, ξ ∈ �p , with rates λ(a, ξ) to take into account the

influence of the boundary in the creation and annihilation of particles at site 1.
– 2 processesN+,r (t), N−,r (t), with respective rates β and 1− β, to trigger creation and

annihilation of particles at site N − 1.

Place arrows anddaggers on {1, . . . , N−1}×R as follows.Whenever the processNi,i+1(t)
jumps, place a two-sided arrow over the edge (i, i + 1) at the time of the jump to indicate
that at this time the occupation variables ηi , ηi+1 are exchanged. Analogously, each time the
process N(a,ξ)(t) jumps, place a dagger labeled (a, ξ) over the vertex 1. Each time N±,l(t)
jumps, place a dagger labeled ± over the vertex 1. Finally, each time N±,r (t) jumps, place
a dagger labeled ± over the vertex N − 1.

Fix a configuration ζ ∈ �N and a time t0 ∈ R. Define a path η(t), t ≥ t0, based on the
configuration ζ and on the arrows and daggers as follows. By independence, we may exclude
the event that two of those processes jump simultaneously. Let τ1 > t0 be the first time amark
(arrow or dagger) is found after time t0. Set η(t) = ζ for any t ∈ [t0, τ1). If the first mark is
an arrow labeled (i, i + 1), set η(τ1) = σ i,i+1η(τ1−). If the mark is a dagger labeled (a, ξ),
set η(τ1) = T aη(τ1−) if �pη(τ1−) = (a, ξ). Otherwise, let η(τ1) = η(τ1−). Finally, if
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the mark is a dagger on site 1, resp. N − 1, labeled ±, set η(τ1) = T [1± 1]/2η(τ1−), resp.
η(τ1) = S[1± 1]/2η(τ1−).

At this point, the path η is defined on the segment [t0, τ1]. By repeating the previous
construction on each time-interval between two consecutive jumps of the Poisson point
processes, we produce a trajectory (η(t) : t ≥ t0). We leave the reader to check that η(t)
evolves as a continuous-time Markov chain, started from ζ , whose generator is the operator
LN introduced in (2.11).

5.2 Dual Process

To determine whether site 1 is occupied or not at time t = 0 we have to examine the evolution
backward in time. This investigation, called the revealment process, evolves as follows.

Let mark mean an arrow or a dagger. To know the value of η1(0) we have to examine the
past evolution. Denote by τ1 < 0 the time of the last mark involving site 1 before t = 0. By
the graphical construction, the value of η1 does not change in the time interval [τ1, 0].

Suppose that the mark at time τ1 is an arrow between 1 and 2. In order to determine if site
1 is occupied at time 0 we need to know if site 2 is occupied at time τ1−. The arrows are
thus acting as a stirring dynamics in the revealment process. Each time an arrow is found,
the site whose value has to be determined changes.

If the mark at time τ1 is a dagger labeled + at site 1, η1(0) = η1(τ1) = 1, and we do not
need to proceed further. Analogously, daggers labeled − or + at sites 1, N − 1 reveal the
value of the occupation variables at these sites at the time the mark appears. Hence, these
marks act an annihilation mechanism.

Suppose that the mark at time τ1 is a dagger labeled (a, ξ). To determine whether site
1 is occupied at time 0 we need to know the values of η1(τ1−), . . . , ηp(τ1−). Indeed, if
�pη(τ1−) = (a, ξ), η1(0) = η1(τ1) = 1 − a, otherwise, η1(0) = η1(τ1) = η1(τ1−).
Hence, marks labeled (a, ξ) act as branching events in the revealment process.

It follows from this informal description that to determine the value at time 0 of site 1, we
may be forced to find the values of the occupation variables of a larger subset A of �N at a
certain time t < 0.

Suppose that we need to determine the values of the occupation variables of the set
A ⊂ �N at time t < 0. Let τ < t be the first [backward in time] mark of one of the Poisson
processes: there is a mark at time τ and there are no marks in the time interval (τ, t]. Suppose
that the mark at time τ is

(a) an arrow between i and i + 1;
(b) a dagger labeled ± at site 1;
(c) a dagger labeled ± at site N − 1;
(d) a dagger labeled (a, ξ) at site 1.

Then, to determine the values of the occupation variables in the set A at time τ (and thus at
time t), we need to find the values of the occupation variables in the set

(a) σ i,i+1A, defined below in (5.1);
(b) A \ {1};
(c) A \ {N − 1};
(d) A ∪ {1, . . . , p} if 1 ∈ A, and A otherwise

at time τ−. Since independent Poisson processes run backward in time are still independent
Poisson processes, this evolution corresponds to a Markov process taking values in �N , the
set of subsets of �N , whose generator LN is given by
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LN = Ll + L0,N + Lr,N ,

where

(L0,N f )(A) =
N−2∑

i=1

[ f (σ i,i+1A) − f (A)];

(Ll f )(A) = (A + B) 1{1 ∈ A} ( f (A \ {1}) − f (A))

+
∑

ξ∈�p

λ(ξ) 1{1 ∈ A} ( f (A ∪ {1, . . . , p}) − f (A)) ;

(Lr,N f )(A) = f (A \ {N − 1}) − f (A).

In these formulae, λ(ξ) = λ(0, ξ) + λ(1, ξ), and

σ i,i+1A =

⎧
⎪⎨

⎪⎩

A ∪ {i + 1} \ {i} if i ∈ A, i + 1 /∈ A

A ∪ {i} \ {i + 1} if i /∈ A, i + 1 ∈ A

A otherwise.

(5.1)

Denote byA(s) the �N -valued process whose generator is LN and which starts from {1}.
If A(s) hits the empty set at some time T > 0 due to the annihilations, this means that we
can reconstruct the value of site 1 at time 0 only from the Poisson point processes in the time
interval [− T, 0], and with no information on the configuration at time − T , η(− T ).

On the other hand, it should be verisimilar that if the number of daggers labeled± is much
larger that the number of daggers labeled (a, ξ), that is, if the rates λ(a, ξ) are much smaller
than A + B, the process A(s) should attain the empty set. The next lemmata show that this
is indeed the case.

Let
T = inf{s > 0 : A(s) = ∅}.

It is clear that for any s > 0, the value of η1(0) can be recovered from the configuration
η(−s) and from the Poisson marks in the interval [−s, 0]. The next lemma asserts that η1(0)
can be obtained only from the Poisson marks in the interval [− T, 0].
Lemma 5.1 Assume that T < ∞. The value of η1(0) can be recovered from the marks in
the time interval [− T, 0] of the N + 2(P + 1) Poisson point processesN introduced in the
beginning of this section.

Proof Let �′
N = {0, 1, u}�N , where u stands for unknown. Denote by ζ the configurations

of �′
N . We first construct, from the marks of the Poisson point processes N(t) on [− T, 0],

a �′
N -valued evolution ζ(s) on the time interval [(− T )−, 0] in which the set B(s) = {k ∈

�N : ζk(s) �= u} represents the sites whose occupation variables can be determined by the
Poisson point processes only.

Let ζk([− T ]−) = u for all k ∈ �N . By definition of the evolution ofA(s), T corresponds
to a mark of one of the Poisson point processesN±,l ,N±,r . We define ζ(− T ) as follows. If it
is a mark fromN±,l we set ζ1(− T ) = [1 ± 1]/2 and ζk(− T ) = u for k �= 1. Analogously,
if it is a mark from N±,r we set ζN−1(− T ) = [1 ± 1]/2 and ζk(− T ) = u for k �= N − 1.

Denote by − T = τ0 < τ1 < · · · < τM < 0 < τM+1 the successive times at which a
dagger of type ± occurs at site 1 or N − 1. If τ j corresponds to a mark from N±,l we set
ζ1(τ j ) = [1 ± 1]/2 and we leave the other values unchanged. We proceed analogously if τ j
corresponds to a mark from N±,r . There are (almost surely) a finite number of such times
because T < ∞ by assumption.
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In the intervals (τ j , τ j+1), holes, particles and unknowns exchange their positions
according to the marks of Ni,i+1(t). Each time σ a dagger of type λ(a, ξ) is found, if
(ζ1(σ−), . . . , ζp(σ−)) = (a, ξ), we update the configuration accordingly. Otherwise, we
leave the configuration unchanged. This completes the description of the evolution of the
process ζ(s).

We claim that
B(s) ⊃ A([−s]−) for all − T ≤ s ≤ 0. (5.2)

The left limit (−s)− in A([−s]−) appears because by convention the processes ζ(s) and
A(s) are both right-continuous and the latter one is run backwards in time.

We prove this claim by recurrence. By construction, B([− T ]−) = A(T ) = ∅ and
B(− T ) = A(T−) = {1} or {N − 1}, depending on the mark occurring for A at time T . It
is clear that if B(τ−) ⊃ A(−τ), where τ ∈ [− T, 0) is an arrow of type Ni,i+1 or a mark
of type N±,l , N±,r , then B(τ ) ⊃ A([−τ ]−). Observe that the inclusion may be strict. For
example, if τ ∈ [− T, 0) is a mark of typeN+,l andA([−τ ]−) does not contain 1. This mark
permits to determine the value of site 1 at time τ , so that B(τ ) � 1 but A([−τ ]−) �� 1.

Similarly, suppose that B(τ−) ⊃ A(−τ) and that τ ∈ (− T, 0) is a mark of type N(a,ξ).
If 1 belongs to A([−τ ]−), then A(−τ) contains {1, . . . , p} and so does B(τ−) because
B(τ−) ⊃ A(−τ). Hence, all information to update site 1 is available at time τ− and 1 ∈
B(τ ) = B(τ−). SinceA([−τ ]−) is contained inA(−τ) [it can be strictly contained because
some points m ∈ {2, . . . , p} may not belong to A([−τ ]−)], B(τ ) ⊃ A([−τ ]−).

On the other hand, if 1 does not belong to A([−τ ]−), then A([−τ ]−) = A(−τ), while
B(τ ) ⊃ B(τ−). [This relation may be strict because it might happen that 1 /∈ B(τ−)

and there might be enough information to determine the value of site 1 at time τ .] Thus
B(τ ) ⊃ B(τ−) ⊃ A(−τ) = A([−τ ]−). This proves claim (5.2).

Since A(0) = A(0−) = {1}, by (5.2), B(0) � 1, which proves the lemma. 
�

Denote by QN the probability measure on D(R+, �N ) induced by the process A(s)
starting from {1}. Expectation with respect to QN is represented by QN as well.

Denote byC(s) the total number of particles created up to time s. The next lemma provides
a bound for the total number of particles created up to the absorbing time T .

Lemma 5.2 Let λ = ∑
ξ∈�p

{λ(0, ξ) + λ(1, ξ)}. Then,

QN [C(T )] ≤ (p − 1)λ

A + B − (p − 1)λ
·

Proof Let X (t) be a continuous-time random walk on Z which jumps from k to k − 1, resp.
k + p − 1, at rate A + B, resp. λ. Suppose that X (0) = 1, and let T0 be the first time the
random walk hits the origin. As X (t ∧ T0) + [A + B − (p − 1) λ] (t ∧ T0) is an integrable,
mean-1 martingale,

[A + B − (p − 1) λ] E[t ∧ T0
] = 1 − E

[
X (t ∧ T0)

] ≤ 1.

Letting t → ∞ we conclude that E[T0] ≤ 1/(A + B − (p − 1)λ).
Let R(s) be the total number of jumps to the right of the randomwalk X up to time s. R is a

Poisson process of rateλ so that R(s)−λ s is amartingale.Hence, E[R(s∧T0)] = λ E[s∧T0].
Letting s → ∞, we obtain that

E[R(T0)] = λ E[T0] ≤ λ

A + B − (p − 1)λ
·
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Consider the process A(s) associated to the generator LN . Denote the cardinality of a set
B ∈ �N by |B|. |A(s)| only changes when the set A(s) contains 1 or N − 1. The Poisson
daggers at N −1 may only decrease the cardinality of the set. WhenA(s) contains 1, Poisson
daggers of type ± appear at site 1 at rate A + B and they decrease the cardinality of A(s)
by 1. Analogously, the other daggers appear at site 1 at rate λ and increase the cardinality by
at most p − 1. This shows that we may couple |A(s)| with the random walk X (s) in such a
way that |A(s)| ≤ X (s) and that C(s) ≤ (p − 1)R(s) for all 0 ≤ s ≤ T0. The assertion of
the lemma follows from the bound obtained in the first part of the proof. 
�

As the total number of particles created in the process A(s) has finite expectation, and
since these particles are killed at rate A + B when they reach site 1, the life-span T0 of A(s)
can not be large and the set of sites ever visited by a particle in A(s) can not be large. This
is the content of the next two lemmata.

Lemma 5.3 For any sequence �N → ∞,

lim
N→∞ QN

[
T > N �N

] = 0 .

Proof Fix a sequence �N → ∞, let mN = √
�N , and write

QN
[
T > N �N

] ≤ QN
[
T > N �N , C(T ) ≤ mN

] + QN
[
C(T ) > mN

]
.

By the Markov inequality and Lemma 5.2, the second term vanishes as N → ∞.
Denote by T1 the lifespan of the particle initially at 1, and by Tk , 2 ≤ k ≤ C(T ), the

lifespan of the k-th particle created in the processA(s). By lifespan, we mean the difference
τk − σk , where σk , resp. τk , represents the time the k-th particle has been created, resp.
annihilated. Clearly,

T ≤
C(T )∑

k=1

Tk .

Set Tk = 0 for k > C(T ). The first term on the right-hand side of the penultimate formula is
bounded above by

QN

[mN∑

k=1

Tk > N �N

]
≤ mN

N �N
sup
k≥1

QN [Tk].

It remains to show that there exists a finite constant C0 such that for all k ≥ 1,

QN [Tk] ≤ C0 N . (5.3)

Particles are created at one of thefirst p sites.After being created, theyperforma symmetric
random walk at rate 1 on �N . Each time a particle hits site 1, resp. N − 1, it is destroyed
at rate A + B, resp. 1. We overestimate the lifespan by ignoring the annihilation at the right
boundary.

Consider a particle performing a rate 1 randomwalk on�N with reflection at the boundary
N − 1 and annihilated at rate A + B at site 1. Denote by Pk the distribution of this random
walk started from site k, and by Ek the corresponding expectation. Let TY be the time this
particle is killed at site 1, and Yt , t ≤ T its position at time t . By the strong Markov property,
Ek[TY ] increases with k. Hence,

QN [Tk] ≤ E p[TY ].

123



624 C. Erignoux et al.

Divide the lifespan TY in excursions away from 1. To keep notation simple, assume that
the random walk Y keeps evolving after being killed. Denote by {t j : j ≥ 1} the successive
hitting times of site 1: t0 = 0, and for i ≥ 1,

ti = inf
{
t > ti−1 : Y (t) = 1 and Y (t−) �= 1

}
.

Denote by ui , i ≥ 1, the time the random walk Y (t) leaves site 1 after ti :

ui = inf
{
t > ti : Y (t) �= 1

}
,

and set u0 = 0. Let σi = ui − ti , resp. si = ti − ui−1, be duration of the i-th sojourn at 1,
resp. the duration of the i-th excursion away from 1.

Denote by Ak the event “the particle is annihilated during its k-th sojourn at site 1”. With
this notation we have that

TY ≤ (s1 + σ1) +
∑

i≥2

1{Ac
1 ∩ · · · ∩ Ac

i−1} (si + σi ).

By the strong Markov property at time ui−1,

E p

[
1{Ac

1 ∩ · · · ∩ Ac
i−1} (si + σi )

]
= P p

[
Ac
1 ∩ · · · ∩ Ac

i−1

]
E2
[
s1 + σ1

]
.

Since the particle is annihilated at rate A + B and leaves site 1 at rate 1, each time it hits
site 1 it is killed during its sojourn at 1 with probability (A + B)/(A + B + 1). Thus, by
the strong Markov property, the probability on the right hand side of the previous displayed
equation is equal to αi−1, where α = 1/(A + B + 1), so that

E p
[
TY
] ≤ E p

[
s1 + σ1

] + 1

A + B
E2
[
s1 + σ1

]
.

On the one hand, for any k ∈ �N , Ek[σ1] = 1, On the other hand, E2[s1] ≤ E p[s1]. Since
the random walk is reflected at N − 1, by solving the elliptic difference equation satisfied by
f (k) = Ek[s1], we obtain that E p[s1] ≤ C0N for some finite constant C0 independent of
N . This completes the proof (5.3) and the one of the lemma. 
�

The proof of the previous lemma shows that each new particle performs only a finite
number of excursions, where by excursion we mean the trajectory between the time the
particle leaves site 1 and the time it returns to 1. In each excursion the particle visits only a
finite number of sites. This arguments yields that during its lifespan the process A(s) does
not visit many sites. This is the content of the next result.

Lemma 5.4 For any sequence �N such that �N → ∞, �N ≤ N − 1,

lim
N→∞ QN

[
A(s) � �N for some s ≥ 0

] = 0.

Proof Fix a sequence �N satisfying the assumptions of the lemma. Denote by Xk(s) the
position at time s of the k-th particle created. Before its creation and after its annihilation
we set the position of the particle to be 0. The probability appearing in the statement of the
lemma can be rewritten as

QN

⎡

⎣
C(T )⋃

l=1

{
Xl(s) = �N for some s ≥ 0

}
⎤

⎦ .
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Let mN = √
�N . The previous expression is bounded by

QN

⎡

⎣
C(T )⋃

l=1

{Xl(s) = �N for some s ≥ 0},C(T ) ≤ mN

⎤

⎦+ 1

mN
QN [C(T )].

By Lemma 5.2, the second term vanishes as N → ∞. Set Xl(s) = 0 for any l > C(T ),
s ≥ 0. With this notation, we can replace C(T ) by mN in the union, to bound the first term
in the previous equation by

mN∑

l=1

QN
[
Xl(s) = �N for some s ≥ 0

]
.

It remains to show that there exists a finite constant C0 such that for all l ≥ 1,

QN
[
Xl(s) = �N for some s ≥ 0

] ≤ C0

�N
· (5.4)

To derive (5.4), recall the notation introduced in the proof of the previous lemma. Clearly,
for any l ≥ 1,

QN
[
Xl(s) = �N for some s ≥ 0

] ≤ P p
[
Y (s) = �N for some s ≤ TY

]
.

Note that this is not an identity because the l-th particle may have been created at a site k < p.
Denote byUk the event that the particle Y visits the site �N in the time interval [uk−1, tk].

Hence,
{
Y j (s) = �N for some s ≥ 0

} ⊂ U1 ∪
⋃

i≥2

(
Ac
1 ∩ · · · ∩ Ac

i−1 ∩Ui

)
.

By the strong Markov property applied at time ui−1,

P p
[
Y j (s) = �N for some s ≥ 0

] ≤ P p
[
U1
] +

∑

i≥2

P p
[
Ac
1 ∩ · · · ∩ Ac

i−1

]
P2
[
U1
]
.

If Y (0) = k, the event U1 corresponds to the event that a symmetric random walk starting
from k hits �N before it attains 1, so that Pk[U1] = [k − 1]/[�N − 1]. Since the particle is
annihilated with probability (A + B)/(1 + A + B) in each of its sojourn at site 1, by the
strong Markov property, the previous sum is equal to

p − 1

�N − 1
+ 1

A + B

1

�N − 1
·

This proves assertion (5.4). 
�
We have now all elements to show that the sequence ρN (1) converges.

Proposition 5.5 Suppose that conditions (2.13) are in force. The limit

α := lim
N→∞ ρN (1)

exists, and it does not depend on the boundary conditions at N − 1.

Proof The proof of this proposition is based on coupling a system evolving on �N with a
system evolving on�M , 1 < N < M by using the same Poisson point processes to construct
both evolutions.
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Let {N±,r,b(t) : t ∈ R}, b = 1, 2, be independent Poisson point processes, where N+,r,b

has rate β andN−,r,b rate 1− β. Use the Poisson point processesNi,i+1(t), 1 ≤ i < N − 1,
N±,l(t),N(a,ξ)(t),N±,r,1(t), t ∈ R, to construct trajectories of a Markov chain ηN (t)whose
generator is LN introduced in (2.11). Similarly, use the Poisson point processes Ni,i+1(t),
1 ≤ i < M − 1, N±,l(t), N(a,ξ)(t), N±,r,2(t) to construct trajectories of a Markov chain
ηM (t) whose generator is LM . Note that on the left boundary and on �N the same Poisson
processes are used to construct both chains.

Denote by AN (t), AM (t), t ≥ 0, the dual processes evolving according to the Poisson
marks described at the beginning of Sect. 5.2 with initial condition AN (0) = AM (0) = {1}.
By construction, AN (t) = AM (t) for all t ≥ 0 if N − 1 /∈ AN (t) for all t ≥ 0. Hence, since
the value of ηN (0) can be recovered from the trajectory {AN (t) : t ≥ 0},

{ηN (0) �= ηM (0)} ⊂ {AN (t) � N − 1 for some t ≥ 0}. (5.5)

Denote by P̂N ,M the probability measure associated to the Poisson processes Ni,i+1(t),
1 ≤ i < M−1,N±,l(t),N(a,ξ)(t),N±,r,a(t). Expectationwith respect to P̂N ,M is represented
by ÊN ,M . With this notation, ρN (1) = EμN [η1] = ÊN ,M [ηN

1 (0)]. Hence,
∣∣ ρN (1) − ρM (1)

∣∣ ≤ ÊN ,M
[∣∣ ηN

1 (0) − ηM
1 (0)

∣∣ ].

By (5.5), this expression is less than or equal to

P̂N ,M
[
AN (t) � N − 1 for some t ≥ 0

] = QN
[
A(t) � N − 1 for some t ≥ 0

]
.

By Lemma 5.4 the right-hand side vanishes as N → ∞. This shows that the sequence ρN (1)
is Cauchy and therefore converges.

Since the argument relies on the fact that the dual process AN (t) reaches N − 1 with a
vanishing probability, the same proof works if the process ηM (t) is defined with any other
dynamics at the right boundary, e.g., reflecting boundary condition. 
�

In the next result we derive an explicit expression for the density ρN (k) in terms of β and
ρN (1).

Lemma 5.6 For all k ∈ �N ,

ρN (k) = N − k

N − 1
ρN (1) + k − 1

N − 1
β.

Proof Recall that we denote by �N the discrete Laplacian: (�N f )(k) = f (k − 1) + f (k +
1) − 2 f (k). Since μN is the stationary state, EμN [LN f ] = 0 for all function f : �N → R.
Replacing f by ηk , 2 ≤ k ≤ N − 1, we obtain that

(�NρN )(k) = 0 for 2 ≤ k ≤ N − 1,

provided we define ρN (N ) as β. The assertion of the lemma follows from these equations.

�

Fix k ∈ �N \ {1}, and place a second particle at site k at time 0. This particle moves
according to the stirring dynamics in �N until it reaches site 1, when it is annihilated. This
later specification is not very important in the argument below, any other convention for the
evolution of the particle after the time it hits 1 is fine. Denote by Zk(s) the position of the
extra particle at time s and by d(A, j), A ⊂ �N , j ∈ �N , the distance between j and A.
The next lemma asserts that the processA(s) is extincted before the random walk Zk(s) gets
near to A(s) if k ≥ √

N .

123



Stationary States of Boundary Driven Exclusion Processes... 627

Lemma 5.7 Let �N be a sequence such that �N → ∞, �N
√
N ≤ N − 1. Then,

lim
N→∞ max

�N
√
N≤k<N

QN
[
d(A(s), Zk(s)) = 1 for some s ≥ 0

] = 0.

Proof Recall that we denote by T the extinction time of the process A(s). The probability
appearing in the lemma is bounded above by

QN
[
A(s) � �N

√
N/3 for some s ≥ 0

] + QN
[
sup
s≤T

|Zk(s) − Zk(0)| ≥ �N
√
N/3

]
.

ByLemma5.4, the first term vanishes as N → ∞. LetmN be a sequence such thatmN → ∞,
mN /�2N → 0. By Lemma 5.3, the second term is bounded by

QN

[
sup

s≤NmN

|Zk(s) − Zk(0)| ≥ �N
√
N/3

]
+ oN (1),

where oN (1) → 0 as N → ∞. Since Zk evolves as a symmetric, nearest-neighbor random
walk and mN /�2N → 0, the first term vanishes as N → ∞. 
�

To prove a law of large numbers for the empirical measure under the stationary state, we
examine the correlations under the stationary state. For j , k ∈ �N , j < k, let

ρN (k) = EμN [ηk], ϕN ( j, k) = EμN [η j ηk] − ρN ( j) ρN (k). (5.6)

Lemma 5.8 Let �N be a sequence such that �N → ∞, �N
√
N ≤ N − 1. Then,

lim
N→∞ max

�N
√
N≤k<N

∣∣ϕN (1, k)
∣∣ = 0.

Proof The probability ρN (k) = μN (ηk = 1), k ∈ �N , can be computed by running the
process A(s) starting from A(0) = {k} until it is extincted, exactly as we estimated ρN (1).
Similarly, to compute EμN [η1 ηk], we run a processA(s) starting fromA(0) = {1, k}. In this
case, denote byA1(s),A2(s) the sets at time s formed by all descendants of 1, k, respectively.
Note that A1(s) and A2(s) may have a non-empty intersection. For instance, if a particle in
A1(s) branches and a site k ≤ p is occupied by a particle in A2(s).

To compare EμN [η1 ηk] with EμN [η1] EμN [ηk], we couple a process A(s) starting from
{1, k} with two independent processes Â1(s), Â2(s), starting from {1}, {k}, respectively. We
say that the coupling is successful if Ai (s) = Âi (s), i = 1, 2, for all s ≥ 0. In this case, the
value of the occupation variables η1, ηk coincide for both processes.

Until d(A1(s),A2(s)) = 1, it is possible to couple A(s) and Â(s) in such a way that
Ai (s) = Âi (s), i = 1, 2. Hence, by Lemma 5.7, since k ≥ �N

√
N , the coupling is successful

with a probability which converges to 1 as N → ∞. 
�
Lemma 5.9 For every δ > 0,

lim
N→∞ max

δN≤ j<k<N

∣∣ϕN ( j, k)
∣∣ = 0.

The proof of this lemma is similar to the one Lemmata 4.3, 4.4. As the arguments are
exactly the same, we just present the main steps. Denote by D̂N the discrete simplex defined
by

D̂N = {( j, k) : 2 ≤ j < k ≤ N − 1},
and by ∂ D̂N its boundary: ∂ D̂N = {(1, k) : 3 ≤ k ≤ N − 1} ∪ {( j, N ) : 2 ≤ j ≤ N − 2}.
Note that the points (1, k) belong to the boundary and not to the set.
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Denote byLN the generator of the symmetric, nearest-neighbor randomwalk on D̂N with
absorption at the boundary: For ( j, k) ∈ D̂N ,

(LNφ)( j, k) = (�φ)( j, k), for k − j > 1,

(LNφ)(k, k + 1) = (∇−
1 φ)(k, k + 1) + (∇+

2 φ)(k, k + 1) for 1 < k < N − 2.

In these formulae,∇±
i , resp.�, represent the discrete gradients, resp. Laplacians, introduced

below Eq. (4.1).
As EμN [LN {η j −ρN ( j)} {ηk −ρN (k)}] = 0, straightforward computations yield that the

two-point correlation function ϕN introduced in (5.6) is the unique solution of
⎧
⎨

⎩
(LNψN )( j, k) + FN ( j, k) = 0, ( j, k) ∈ D̂N ,

ψN ( j, k) = bN ( j, k), ( j, k) ∈ ∂ D̂N ,
(5.7)

where FN : D̂N → R and bN : ∂ D̂N → R are given by

FN ( j, k) = −[ρN ( j + 1) − ρN ( j)]2 1{k = j + 1}, bN ( j, k) = ϕN ( j, k) 1{ j = 1}.
Denote by ϕ

(1)
N , resp. ϕ

(2)
N , the solution of (5.7) with bN = 0, resp. FN = 0. It is clear

that ϕN = ϕ
(1)
N + ϕ

(2)
N . Let XN (t) = (X1

N (t), X2
N (t)) be the continuous-time Markov chain

on D̂N ∪ ∂ D̂N associated to the generator LN . Let P ( j,k) be the distribution of the chain XN

starting from ( j, k). Expectation with respect to P ( j,k) is represented by E( j,k).

Proof of Lemma 5.9 The piece ϕ
(1)
N of the covariance has an explicit expression. In view of

Lemma 5.6, for 1 ≤ j < k ≤ N ,

ϕ
(1)
N ( j, k) = − [β − ρN (1)]2

(N − 1)2
( j − 1) (N − k)

N − 2
≤ C0

N

for somefinite constantC0, independent of N . The pieceϕ
(2)
N requires amore careful analysis.

Let HN be the hitting time of the boundary ∂ D̂N :

HN = inf
{
t ≥ 0 : XN (t) ∈ ∂ D̂N

}
.

We have that

ϕ
(2)
N ( j, k) = E( j,k)

[
bN (XN (HN ))

] = E( j,k)
[
ϕN (XN (HN )) 1{X1

N (HN ) = 1} ].
Let kN be a sequence such that kN � N . By (4.9), for all δ > 0,

lim
N→∞ max

δN≤l<m<N
P (l,m)

[
X2
N (HN ) ≤ kN

] = 0.

Therefore, setting kN = �N
√
N , where 1 � �N � √

N , by Lemma 5.8,

lim
N→∞ max

( j,k)∈D̂N
j>δN

∣∣ϕ(2)
N ( j, k)

∣∣ ≤ lim
N→∞ max

�N
√
N≤k<N

∣∣ϕN (1, k)
∣∣ = 0.

This proves the lemma. 
�
Proof of Theorem 2.4 The first assertion of the theorem has been proved in Lemma 5.6. The
proof of the second one is identical to the proof of Theorem 2.1. 
�
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6 Speeded-Up Boundary Conditions

Recall that we denote by μ, resp. μN , the stationary state of the Markov chain on �∗
p , resp.

�N ,p . Fix a smooth profile u : [0, 1] → (0, 1) such that u(0) = ρ(0), u(1) = β, and let
νN ,p be the product measure defined by

νN ,p(ξ, η) = μ(ξ) νN
u (η), ξ ∈ �∗

p, η ∈ �N ,

where νN
u is the product measure on �N with marginals given by νN

u {ηk = 1} = u(k/N ).
Denote by fN the density of μN with respect to νN ,p , and by FN : �∗

p → R+ the density
given by

FN (ξ) =
∫

�N

fN (ξ, η) νN
u (dη).

Lemma 6.1 There exists a finite constant C0 such that
∣∣ ρN (0) − ρ(0)

∣∣ ≤ C0/
√

�N

for all N ≥ 1.

Proof Fix a function g : �∗
p → R. As μN is the stationary state, and since LN g = �N Llg+

L0,1g
0 = EμN

[
LN g

] = EμN

[
�N Llg + L0,1g

]
,

so that | EμN [Llg] | ≤ 2‖g‖∞/�N . Since

EμN [Llg] =
∫

�N ,p

(Llg)(ξ) fN (ξ, η) νN ,p(dξ, dη) =
∫

�∗
p

(Llg)(ξ) FN (ξ) μ(dξ),

for every g : �∗
p → R,

∣∣∣∣∣

∫

�∗
p

g(ξ) (L∗
l FN )(ξ) μ(dξ)

∣∣∣∣∣ ≤ 2‖g‖∞/�N ,

where L∗
l represents the adjoint of Ll in L2(μ). Since μ is the stationary state, L∗

l is the
generator of a irreducible Markov chain on �∗

p . It follows from the previous identity that
∫

�∗
p

∣∣ (L∗
l FN )(ξ)

∣∣μ(dξ) ≤ C0/�N

for some finite constant C0. Hence, since μ(ξ) > 0 for all ξ ∈ �∗
p , ‖L∗

l FN‖∞ ≤ C0/�N . In
particular,

−
∫

�∗
p

FN (ξ) (L∗
l FN )(ξ) μ(dξ) ≤ (C0/�N )

∫

�∗
p

FN (ξ) μ(dξ) ≤ C0/�N .

Note that the expression on the left hand side is the Dirichlet form. Hence, by its explicit
expression, maxξ,ξ ′ [FN (ξ ′) − FN (ξ)]2 ≤ C0/�N , where the maximum is carried over all
configuration pairs ξ , ξ ′ such that R(ξ, ξ ′)+R(ξ ′, ξ) > 0, R being the jump rate. In particular,
as the chain is irreducible,

∥∥ FN − 1
∥∥∞ =

∥∥∥∥∥ FN −
∫

�∗
p

FN (ξ) μ(dξ)

∥∥∥∥∥∞
≤ C0/

√
�N .
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We are now in a position to prove the lemma. One just needs to observe that

∣∣ ρN (0) − ρ(0)
∣∣ =

∣∣∣ EμN [η0] − Eμ[η0]
∣∣∣ =

∣∣∣
∫

�∗
p

ξ0FN (ξ) μ(dξ) −
∫

�∗
p

ξ0 μ(dξ)

∣∣∣,

and that this expression is bounded by ‖ FN − 1 ‖∞. 
�
Let

ϕN ( j, k) = EμN [η j ηk] − ρN ( j) ρN (k), j, k ∈ �N ,p, j < k.

Lemma 6.2 There exists a finite constant C0 such that |ϕN (0, k)| ≤ C0/
√

�N for all 2 ≤
k < N.

Proof The argument is similar to the one of the previous lemma. Fix 0 < k < N , and denote
by GN = G(k)

N : �∗
p → R+ the non-negative function given by

GN (ξ) =
∫

�N

ηk fN (ξ, η) νN
u (dη).

With this notation,

EμN [η0 ηk] =
∫

�∗
p

ξ0 GN (ξ) μ(dξ). (6.1)

Fix g : �∗
p → R and k ≥ 2. As k ≥ 2, LN (g ηk) = ηk LN g + gLNηk . Thus, since μN is

the stationary state,

0 = EμN

[
LN (g ηk)

] =
∫

�N ,p

(�N Ll + L0,1) g ηk fN dνN ,p + EμN

[
g LNηk

]
.

By definition of GN and since |LNηk | ≤ 2, |L0,1 g| ≤ 2‖g‖∞,
∣∣∣
∫

�∗
p

(Ll g)(ξ)GN (ξ) μ(dξ)

∣∣∣ ≤ (4/�N ) ‖g‖∞.

The argument presented in the proof of the previous lemma yields that
∥∥∥∥∥GN −

∫

�∗
p

GN (ξ) μ(dξ)

∥∥∥∥∥∞
≤ C0/

√
�N .

Therefore, ∣∣∣
∫

�∗
p

ξ0

{
GN (ξ) −

∫

�∗
p

GN (ξ ′) μ(dξ ′)
}

μ(dξ)

∣∣∣ ≤ C0/
√

�N .

By definition of GN and by (6.1), the expression inside the absolute value is equal to

EμN [η0 ηk] − ρ(0) ρN (k).

The assertion of the lemma follows from the penultimate displayed equation and fromLemma
6.1. 
�
Proof of Theorem 2.9 The first assertion of the theorem is the content of Lemma 6.1. The
proof of Lemma 5.9 [with D̂N defined as D̂N = {( j, k) : 1 ≤ j < k ≤ N − 1}] yields that
for every δ > 0,

lim
N→∞ max

δN≤ j<k<N

∣∣ϕN ( j, k)
∣∣ = 0.

A Schwarz inequality, as in the proof of Theorem 2.1, completes the argument because
ρN (k) = (k/N ) β + [1 − (k/N )] ρN (0), 1 ≤ k ≤ N . 
�

123



Stationary States of Boundary Driven Exclusion Processes... 631

Acknowledgements We thank H. Spohn for suggesting the problem and S. Grosskinsky for fruitful dis-
cussions. C. Landim has been partially supported by FAPERJ CNE E-26/201.207/2014, by CNPq Bolsa de
Produtividade em Pesquisa PQ 303538/2014-7, and by ANR-15-CE40-0020-01 LSD of the French National
Research Agency.

References

1. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory for
stationary non-equilibrium states. J. Stat. Phys. 107, 635 (2002)

2. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev.
Mod. Phys. 87, 593–636 (2015)

3. Derrida, B.: Non-equilibrium steady states: Fluctuations and large deviations of the density and of the
current. J. Stat. Mech. Theory Exp. P07023 (2007)

4. Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the
open symmetric simple exclusion process. J. Stat. Phys. 107, 599 (2002)

5. Erignoux, C.: Hydrodynamic limit of boundary exclusion processes with nonreversible boundary dynam-
ics. preprint arXiv:1712.04877 (2017)

6. Eyink, G., Lebowitz, J., Spohn, H.: Hydrodynamics of stationary non-equilibrium states for some stochas-
tic lattice gas models. Commun. Math. Phys. 132, 253–283 (1990)

7. Friedman, A.: Stochastic Differential Equations and Applications, vol. 1. Academic Press, New York
(1975)

8. Kipnis, C., Landim, C., Olla, S.: Macroscopic properties of a stationary nonequilibrium distribution for
a nongradient interacting particle system. Ann. Inst. H. Poincaré, Prob. et Stat. 31, 191221 (1995)

9. Landim, C., Olla, S., Volchan, S.: Driven tracer particle in one-dimensional symmetric simple exclusion.
Commun. Math. Phys. 192, 287–307 (1998)

10. Lawler, G.E.: Intersections of Random Walks. Modern Birkhäuser Classics. Birkhäuser, Basel (1991)
11. Onsager, L.: Reciprocal relations in irreversible processes. I, II. Phys. Rev. 37, 405 (1931)
12. Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505 (1953)
13. Sonigo, N.: Semi-infinite TASEP with a complex boundary mechanism. J. Stat. Phys. 136, 1069–1094

(2009)

123

http://arxiv.org/abs/1712.04877

	Stationary States of Boundary Driven Exclusion Processes with Nonreversible Boundary Dynamics
	Abstract
	1 Introduction
	2 Notation and Results
	2.1 Boundary Dynamics Which Do Not Increase Degrees
	2.2 Small Perturbations of Flipping Dynamics
	2.3 Speeded-Up Boundary Condition

	3 Proof of Theorem 2.1: One Point Functions
	4 Proof of Theorem 2.1: Two Point Functions
	5 Proof of Theorem 2.4
	5.1 Graphical Construction
	5.2 Dual Process

	6 Speeded-Up Boundary Conditions
	Acknowledgements
	References




