Hydrodynamic behavior near dynamical criticality
of a facilitated conservative lattice gas
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We investigate a 2d-conservative lattice gas exhibiting a dynamical active-absorbing phase tran-
sition with critical density p.. We derive the hydrodynamic equation for this model, showing that
all critical exponents governing the large scale behavior near criticality can be obtained from two
independent ones. We show that as the supercritical density approaches criticality, distinct length
scales naturally appear. Remarkably, this behavior is different from the subcritical one. Numerical

simulations support the critical relations and the scale separation.

Models displaying dynamical phase transitions have at-
tracted increasing scrutiny in recent years. Such models
are tightly related to “self-organized criticality”, and may
also illustrate how hyperuniform structures [1] emerge in
nature [2, 3]. Their complexity prevents from building a
universal framework, this is why some paradigmatic mod-
els are currently under deep mathematical and physical
investigation (as for instance sandpiles [4], or random or-
ganization models [5]). Open systems dynamically adjust
their density in order to reach a critical state at density
pe, often displaying non-trivial scaling properties. This
phenomenon manifests itself, in a closed system, as a dy-
namical phase transition: below p., the system reaches
an absorbing state, while above p,, it remains in a quasi-
stationary active state.

A fundamental example of such a model is the con-
strained conservative lattice gas (CLG) [6], also referred
to as facilitated exclusion process in the recent literature.
It is defined as an exclusion particle system (i.e. any sys-
tem site cannot contain more than one particle) on a d-
dimensional lattice, where so-called active particles jump
randomly at rate 1 to each empty nearest neighbor [7]. A
particle is considered active if at least one of its neighbor-
ing sites is also occupied, and the total number of parti-
cles is conserved. Related models featuring an absorbing
phase transition have generated an intense research activ-
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FIG. 1. Blue circle particles are active, red square particles
are frozen. As an example, the active particle highlighted
with O can jump to one of its three neighbours indicated
with X. The dashed region corresponds to the frozen phase.

ity, like for instance the paradigm Manna sandpile model
[8-11]. In particular many of these models, including the
CLG, exhibit a hyperuniform critical state [12, 13], for
which we still have a limited knowledge. The CLG has
been investigated numerically in [6, 12-14] when d > 2
and theoretically in [15-21] when d = 1. We focus here
on the 2-dimensional case, and recall some previous re-
sults already obtained in the 1-dimensional case. While
we expect to see the same general picture in higher di-
mensions, numerical studies of the model become more
complicated. Some critical exponents in d = 3 are found
in [12], and we expect the critical relations laid out in this
paper to hold (though we do not provide verification).

Clearly, this system remains active whenever p > 1/2,
and could reach an absorbing state whenever p < 1/2. Tt
appears, however, that in dimension d > 2, the dynami-
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FIG. 2. Median absorption time in a closed box, of size chang-
ing from 5 to 100. In the subcritical phase (a) the absorption
time grows sub-linearly with the system size. In the supercrit-
ical phase (b) it grows exponentially fast at large L. In fact,
the figure illustrates nicely that at p = 0.334 the geometric
correlation length, which separates the absorbing regime from
the quasi-stationary regime, is roughly & ~ 20, which is the
approximative point where the exponential growth begins.

cal critical density p, is strictly smaller than 1/2. That
is, in the regime (p., 1/2], even though an absorbing state
will be ultimately reached in any finite system, on physi-
cally relevant timescales a quasi-stationary active state is
observed. In order to illustrate this phenomenon, the av-
erage absorption time is numerically represented in Fig. 2
in both subcritical and supercritical regimes.

The CLG is reflection symmetric and isotropic, and
therefore its macroscopic density profile p, taken in the
diffusive space-time scaling limit, is expected to be a
solution to the parabolic equation d;p = div(D(p)Vp)
with scalar diffusion coefficient D(p). In the subcritical
regime p < p. the particles become blocked in subdiffu-
sive time scales (see Fig. 2a), therefore D(p) = 0. When
the initial profile has both subcritical and supercritical
regions, the supercritical phase progressively invades the
subcritical “frozen” areas. That is, one should interpret
the above hydrodynamic equation as a Stefan problem.
In dimension 1 this result is established mathematically
in [19], and exploits the explicit expression of the station-

ary states, a feature that is lost in higher dimensions.

In this letter we explore the scaling properties of the
two-dimensional model, with a particular focus on the
active phase. We study the critical exponents for all
relevant macroscopic quantities, both theoretically and
numerically, as it has been done for other models, for
instance in [22]. We are able to deduce relationships be-
tween those critical exponents, which are of independent
interest, and check them by simulations.

Macroscopic observables. Of particular interest are
the critical and near criticality behavior of the model.
It has been noted in [12] that the CLG could have two
separate length scales near criticality. While in their sim-
ulations these two scales seem to coincide, we will see here
that in the supercritical phase they differ. Let us define:

e The geometric correlation length &,: this is the
scale which is mostly used in the literature [23,
Section 3.3|, and is the one discussed in [6]. It
describes the spread of activity. More precisely, to
sustain activity, particle clusters must self-activate,
i.e., a particle activates its neighbor, which further
activates its neighbors, until closing a cycle and re-
activating the particle we started with. The diam-
eter of this self-activated structure is described by
the geometric correlation length & .

This means that, for a finite system of size L, if
L <« &, then there is no quasi-stationary state,
and in that case activity will decay until dying out.
On the other hand, if L > &, then the activity
behaves in the same manner as L = oc.

e The 2-point correlation length &« (p): This is the
length over which the 2-point correlation function
decays. This scale is referred to as the crossover
length in [12], where the authors show, in the sub-
critical phase, that: below £, the absorbing state
is hyperuniform [1, 24]; above £ it is Poisson-like.

Both length scales diverge when approaching critical-
ity, as €1 ~ (p— pe) "+ and £x ~ (p— p.)~**, for some
critical exponents v, and vy, which we now investigate.

In [6, 12], several other critical exponents are deter-
mined. Notably, in the latter the authors show that the
CLG’s absorbing state is hyperuniform, i.e. the number
of particles IV in a ball or radius R has standard devia-
tions of order RS, for ¢ smaller than d/2.

We are interested in the hydrodynamic behavior of the
CLG, whose diffusion coefficient D(p) behaves, close to
Pe, as (p— pe)® for some exponent . In order to under-
stand the noise’s amplitude, we also consider the com-
pressibility x(p) ~ (p — pe)?, defined as the sum of the
two-point correlation function over the infinite lattice.
For the CLG, the dominant parameter for the system is
the density of active particles, pa(p). However, the no-
tion of active particles is in fact ambiguous, since one may
or may not count as active particles who are fully sur-
rounded by other particles (and therefore cannot move).



For this reason, we distinguish between p,(p) ~ (p—pc)?,
the density of particles having at least one occupied
neighbor (which is the one considered in [6]), and the
activity a(p) ~ (p — pe)® < 3pa, which counts the lo-
cal number of possible jumps. We will see further that
in fact both exponents 8 and b coincide (Fig. 4). This
means that the perimeter of clusters of active particles is
of the same order as their volume.

Relations between critical exponents. By numerical
simulations we are able to get all the critical exponents
in the case d = 2. In dimension d = 1, we have exact
values, as discussed below.

A number of relations can be derived between the rel-
evant critical exponents [23]. Most of them are standard,
a detailed derivation will be given in a companion article
[25]. The first one ties the compressibility to the particle
fluctuations and the activity correlation length, as

¥ = v(d - 20). (1)

This relation can be obtained by considering the struc-
ture factor S,(k) (see [26, Section II1.2.1]), which en-
capsulates the 2-point statistics of the distribution at a
fixed time [24]. By the scaling hypothesis, S,(k) can
only depend on k via the combination {4 k. Moreover,
S,(0) = x(p), and at criticality S, (k) ~ C|k|4=2¢ when
|k| is small. These three facts impose the form

5,0 =x (14—l ), @)
XEx

and hence Xfi_% remains of order 1 as p — p.. This
implies equation (1).

A similar scaling relation can be obtained for the geo-
metric correlation length. Indeed, at scales smaller than
&) the system looks critical, so that the critical density
fluctuations are larger than p — p., and “hide” the off-
criticality. The scale &, is therefore characterized by the
relation 53701 ~ p— p.. This yields the following relation:

vi(d—¢) = 1. 3)

The next relation stems from Einstein’s relation D = o /x
(see [26, (2.72), Section II.2.5]) and the fact that the
noise amplitude is determined by the number of possible
particle jumps o = a (see [26, Section II.2] for instance):
this leads to

a=b-1. (4)

Finally, the following relation is a consequence of a par-
ticular property of the CLG, called gradient condition
[26, 27], which relies on well-chosen jump rates for the
system. Under this condition,

Or(ni) = 3 { (na) = (nas) (5)

irvi

where (n;) (resp. (n,;)) denotes the average number of
particles (resp. active particles) at site 4. At the macro-
scopic level, this identity translates as

A = A(pa(p)), (6)

and yields in turn that D(p) = p,(p).
this implies

Near criticality,

a=p-1 (7)

Note that equations (4) and (7) give 8 —b=1— 1. As
an interesting consequence, the fact that 8 = b, i.e. that
clusters of active particles have volume and perimeter of
the same order, implies v = 1. In Table I we give all
exponents in both d = 1 and d = 2 cases. The former are
exact values, while the latter are numerically computed.

Hydrodynamics and scale invariance. Near criti-
cality, we are interested in the macroscopic evolution of
u = p — p.. It evolves according to the fluctuating hy-
drodynamic equation (e.g. [26, I1.2.9])

dyu = div(DVu + /2DxW). (8)

The noise W depends on the scale at which we look: at
distances above {4 correlations are small and W is white
noise, while for distances smaller than £y the noise W
will have non-trivial correlations:

5(t)d(x),
Ok

|x| > §><7
|$| < §><7

(W(0,0)- W(z,t)) = { 9)

for some exponent . In the regime below £, the density
fluctuations are proportional to £<~¢, hence equation (8)
must be invariant under the parameter rescaling

u ozt
(U,$7t) — (W,€7€Z) (10)

This forces ¥ to be equal 1 — (/d, and

z=(C—d)(1-p)+2. (11)

We emphasize that on a length above £, the scale in-
variance is not the same, and in particular the dynamic
exponent z will change (see [25]). This scale separation
has been noted qualitatively in [6].

One-dimensional case. The one-dimensional case d =
1 has been recently under scrutiny, and its macroscopic
evolution is now quite well understood. It has been
proved rigorously [18, 19] that the critical density is given
by p. = 1/2, and the diffusive supercritical phase progres-
sively invades the subcritical phase via flat interfaces,
until either one of the phases disappears. In this re-
spect, a crucial feature of the one-dimensional case lies in
its explicit supercritical grand canonical states 7, either
parametrized by the density p > 1/2 or the active den-
sity pa(p) = (2p—1)/p. These grand canonical states can
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TABLE I. Critical exponents related to observables, in d =
1 and d = 2. The 1-dimensional exponents are exact, see
below. In the 2-dimensional case, the first line is obtained
either directly from our simulation results, or extracted from
scaling relations. The second line contains simulation results
taken from previous articles. In our case, the exponents (8
and b are taken from the simulation of Fig. 4a. The exponent
v is simulated twice: the value 1 obtained from Fig. 4 and
equation (4) ; the value 1.07 is obtained from Fig. 5. The
exponent vy is extracted from the simulation of Fig. 5 and
then ¢ is computed using (1) with v = 1. The exponent «
is calculated using equation (7), v, from equation (3) and z
from (11).

be defined sequentially, by filling an arbitrary site with
probability p, and then following each empty site by a
particle with probability 1, but each particle by another
particle with probability p.(p).

Precisely, the hydrodynamic limit in d = 1 is given by
Oip = 05(D(p)0yp), with diffusion coefficient

D(p) = pl(p) = p *1p>py (12)

and critical exponent a = 0. The explicit construction
of the grand-canonical state 7, yields the other observ-
ables for p > p., as well as their critical exponent (see
[20]): namely the activity a(p) = p~1(1 —p)(2p — 1) with
b = 1, and the compressibility x(p) = p(1 — p)(2p — 1),
with v = 1. Moreover, the stationary measure can be
seen as a nearest-neighbor spin system with chemical po-
tential p, and an interaction which gives infinite costs to
two neighboring empty sites. This can be solved using
standard methods involving the transfer matrix (see [28,
Chapter 6]), which here is given by

0 e H
1 e )"

All the relevant quantities and exponents for the one-
dimensional model are listed in Table I.

Numerical simulations. We note that in finite sys-
tems the critical density depends slightly on the geome-
try, so that in the analysis of the simulated data we do
not enforce a single critical density for systems of differ-
ent sizes or boundary conditions. Rather, we leave p. as
a parameter for the regression. Since L equals 300 in one
simulation and 100 in the other, it is not surprising that
we obtain values of p, who differ by O(1/L).

In order to numerically derive the diffusion coefficient
and verify relation (7), we simulate a cylindrical sys-
tem, i.e. periodic in the vertical direction, of size L put
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FIG. 3. N, as a function of ¢ for different reservoir densities.
See equation (13).

in contact at the left and right boundaries with parti-
cle reservoirs with respective densities A; and A,.. More
specifically, at the boundary, particles are removed at
rate 1 — A\;, 1 — )\, and empty sites are filled at rate A,
Ar. In our simulations, boundary particles are always
considered active.

When A\; = A, = X the system reaches a quasi-
stationary state with density p(\). For our particular
choice of boundary interactions, p,(p(A)) = A, meaning
that the reservoirs enforce the density of active particles
and not the total density of particles. This relation is,
however, not universal, and depends on the exact bound-
ary dynamics considered.

In order to estimate the diffusion coefficient, we fix
A = Aand A\, = XA+ ¢ with small ¢ > 0. We measure
the total net number of particles N; crossing the system
up to time t. In general, we expect the current to be
proportional to

St K (e, (13)

where K(A) = D(p)p’(\). Since our system is gradient
and for our specific choice of reservoirs, we should obtain
K = 1. which is verified by our simulation, see Fig. 3. In
particular this shows that o = 5 — 1.

In more general models (for instance when the gradient
property is not satisfied) we do not necessarily expect
K to be constant, but still of order 1 (namely, neither
diverging nor decaying as p — p.).

The scaling exponents 5 and b can be found by simu-
lating the system with cylindrical geometry, maintaining
one reservoir at density A; = 0 and the other one at den-
sity A\, = 1. We then measure, at each section = of the
cylinder, p(x), po(x) and a(z). See Fig. 4.

Thanks to the gradient property of the model and our
choice of reservoirs, p, grows linearly with the horizontal
distance, from A\; at = 0 to A, at x = 1. This is verified
in our simulation (Fig. 4a). Thanks to this result, the
relation p, o (p — p.)? can then be written as p ~ p. +
z'/8. By fitting p(x) in Fig. 4a we obtain § = 1.60~" =
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FIG. 4. Simulating p(x), pe(z) and a(z) in a system with
reservoirs \; = 0, A\, = 1.

0.62. Finally, noting that for small = the activity a is
linear in z (Fig. 4b), we conclude 8 = b.

In order to find the remaining exponents, we estimate
the structure factor S, (k) for different values of p. This
is done on a system with periodic boundaries (in both
directions). By fitting the data to equation (2), posing
X =Cy(p—pc)” and £ = Cx (p— pe) ">, we obtain the
values in Table I. See Fig. 5.

All the simulations used in this article are open access,
available at https://github.com/alexandreroget/2D_
FacilitatedExclusionProcess.

Conclusion. In this article, we discussed the critical
scaling for the CLG. We saw that there are three in-
dependent critical exponents, 3, b, and (, that all other
exponents («, v,V ,Vx, z) could be deduced from. More-
over, due to repulsion, active cluster sizes are of order 1,
so their perimeter is proportional to the volume, thus
B = b and all scaling is described by two independent
exponents. In fact, we expect the scaling relations stated
here to hold in a much larger generality than the 2-
dimensional CLG, and that v = 1 should hold as well
in repulsive 2D systems, see [22] for similar relations and
comparison to other models. Note that we have used the
gradient condition in order to derive equations (4) and
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+ p=0.3405
+ p=0.3430
p=0.3455
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FIG. 5. We show here a collapse of S, (k) for different values
of p. The parameters C; = 0.03,C> = 0.71, p. = 0.3361,vx =
1.77,v = 1.07 are adjusted to best fit equation (2). That is,
we find that x(p) = 0.61(p — 0.3361)7'°" and &x = 0.03(p —
0.3361)""77. Indeed, after this rescaling the curves S, (k)
collapse as expressed in equation (2). The fit (black curve) is
given by S,(k) = 0.61(p — 0.3361)"°7 4-0.07|k|°-5°.

(7). This a condition is very sensitive to small changes
in the dynamics, but we believe that scaling exponents
and relations are universal, and depend much less on
perturbations of the dynamics. At the same time, it is
worth noting that some “highly non-gradient” systems
are known not to satisfy these relations (e.g. the Kob-
Andersen model, in which @ = oo [29, 30]), but this
phenomenon is due to the formation of very specific co-
operative structures.

We numerically computed several critical exponents for
the 2d-CLG (see Table I), and confronted them both
with those critical relations, and the numerical values
in [6] and [12] for CLG with simultaneous jumps. We
obtained very good agreement between them; with the
exception of ¢ and vy. While our numerical values fit
the theoretical relations introduced above, they are dif-
ferent from those of [12]. The reason seems to be that
we approach the critical state from p > p., while [12] do
from p < p.. Recently, [13, 31] went further investigat-
ing the approach to hyperuniformity from the subcritical
regime; on the contrary to [12], they find that the criti-
cal exponent vy (which [13] denote 7) is different from
v1. That is, a separation between two different length
scales is also present in the subcritical regime, but with
an exponent vy different from the supercritical one.

We emphasize the existence of two distinct correlation
lengths, one characterizing the size of self-activating clus-
ters, and the other one characterizing the two-points cor-
relation decay. This distinction is a specific feature of
the quasi-stationary regime (p., 1/2), and for this reason
does not exist in one dimension. We conjecture that it is
a common feature of any dimension d > 2, because the
rigid structure necessary to reach a frozen state at density
p =1/2 — € results in the quasi-stationary regime.

Unlike in the one-dimensional case, the diffusion coef-
ficient D(p) has negative exponent (see Table I), and is



therefore discontinuous at p.. We note that the diffusion
term operating in the supercritical phase instantly cre-
ates at the boundary non-zero density gradients. There-
fore, this discontinuity does not create a quantitative dif-
ferent behavior than the 1d—Stefan problem, which has
a finite critical diffusion coefficient (12). That is, sub-
critical regions are frozen while particles in supercritical
regions diffuse; and the interfaces between them move as
the supercritical regions invade the subcritical ones. The
divergence of D is balanced out by small non-zero den-
sity gradients, resulting in a finite current. Hence, as in
dimension one, the interfaces move with finite speed.
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