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HYDRODYNAMIC LIMIT
FOR AN ACTIVE EXCLUSION PROCESS

Clément Erignoux

Abstract. – Collective dynamics can be observed among many animal species, and
have given rise in the last decades to an active and interdisciplinary field of study. Such
behaviors are often modeled by active matter, in which each individual is self-driven
and tends to update its velocity depending on the one of its neighbors.

In a classical model introduced by Vicsek & al., as well as in numerous related active
matter models, a phase transition between chaotic behavior at high temperature and
global order at low temperature can be observed. Even though ample evidence of these
phase transitions has been obtained for collective dynamics, from a mathematical
standpoint, such active systems are not fully understood yet. Significant progress has
been achieved in the recent years under an assumption of mean-field interactions,
however to this day, few rigorous results have been obtained for models involving
purely local interactions.

In this paper, as a first step towards the mathematical understanding of active
microscopic dynamics, we describe a lattice active particle system, in which particles
interact locally to align their velocities. We obtain rigorously, using the formalism
developed for hydrodynamic limits of lattice gases, the scaling limit of this out-of-
equilibrium system. This article builds on the multi-type exclusion model introduced
by Quastel [35] by detailing his proof and incorporating several generalizations, adding
significant technical and phenomenological difficulties.

Résumé (Limite hydrodynamique pour un processus d’exclusion actif)
L’étude des dynamiques collectives, observables chez de nombreuses espèces ani-

males, a motivé dans les dernières décennies un champ de recherche actif et trans-
disciplinaire. De tels comportements sont souvent modélisés par de la matière active,
c’est-à-dire par des modèles dans lesquels chaque individu est caractérisé par une
vitesse propre qui tend à s’ajuster selon celle de ses voisins.

De nombreux modèles de matière active sont liés à un modèle fondateur proposé en
1995 par Vicsek & al.. Ce dernier, ainsi que de nombreux modèles proches, présentent
une transition de phase entre un comportement chaotique à haute température, et un
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comportement global et cohérent à faible température. De nombreuses preuves numé-
riques de telles transitions de phase ont été obtenues dans le cadre des dynamiques
collectives. D’un point de vue mathématique, toutefois, ces systèmes actifs sont encore
mal compris. Plusieurs résultats ont été obtenus récemment sous une approximation
de champ moyen, mais il n’y a encore à ce jour que peu d’études mathématiques de
modèles actifs faisant intervenir des interactions purement microscopiques.

Dans cet article, nous décrivons un système de particules actives sur réseau inter-
agissant localement pour aligner leurs vitesses. Comme première étape afin d’atteindre
une meilleure compréhension des modèles microscopiques de matière active, nous ob-
tenons rigoureusement, à l’aide du formalisme des limites hydrodynamiques pour les
gaz sur réseau, la limite macroscopique de ce système hors-équilibre. Nous dévelop-
pons le travail réalisé par Quastel [35], en apportant une preuve plus détaillée et en
incorporant plusieurs généralisations posant de nombreuses difficultés techniques et
phénoménologiques.
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CHAPTER 1

INTRODUCTION

1.1. Active matter and active exclusion process

Active matter systems, i.e., microscopic interacting particles models in which each
particle consumes energy to self-propel, have been the subject of intense scrutiny in
physics in the recent years. As explained thoroughly in Appendix A, active matter
exhibits a rich phenomenology. Its two most studied features are the emergence of
global polarization, first discovered with Vicsek’s seminal model [50], and the so-called
Motility Induced Phase Separation (MIPS, cf. [11]), which can be roughly described
as the particle’s tendency to cluster where they move more slowly. As detailed in
Appendix A, these two phenomena have been extensively studied by the physics
community in the last decade (e.g., [41] [42] [43] for alignment phase transition, [10]
[11] for MIPS).

By essence, active matter models are driven out-of-equilibrium at a microscopic
level, and although many are now well-understood from a physics standpoint, their
mathematical understanding to this day remains partial. Inspired by Vicsek’s original
model [50], significant mathematical progress has been achieved using analytical tools
for active alignment models submitted to mean-field or local-field interactions, i.e., for
which the particle’s interactions are locally averaged out over a large number of their
neighbors (e.g., [5], [16], [19]). However, in some cases, the local-field approximation
is not mathematically justified, and deriving exact results on models with purely
microscopic interactions can provide welcome insight for their phenomenological study
[31].

Let us start by briefly describing a simplified version of the active exclusion process
studied in this article before giving some mathematical context. On a two-dimensional
periodic lattice, consider two-types of particles, denoted “+” and “−,” which move and
update their type according to their neighbors.
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2 CHAPTER 1. INTRODUCTION

— Each particle’s type is randomly updated by a Glauber dynamics depending on
its nearest neighbors.

— The motion of any particle is a random walk, weakly biased in one direction
depending on its type: the “+” particles will tend to move to the right, whereas
the “−” particles will tend to move to the left.

— The vertical displacement is symmetric regardless of the particle’s type.

To model hard-core interactions, an exclusion rule is imposed, i.e., two particles can-
not be present on the same site: a particle jump towards an occupied site will be can-
celed. This induces the congestion effects which can lead to MIPS, and one can there-
fore hope that this model encompasses both the alignment phase transition and MIPS
which are characteristic of many of the active models described in Appendix A. How-
ever, mathematically proving such phenomenology for our microscopic active model
is still out of reach.

In this article, as a first step towards this goal, we derive the hydrodynamic limit
for an extension of the model briefly described above. From a mathematical stand-
point, a first microscopic dynamics combining alignment and stirring was introduced
in [15], where De Masi et al. considered a lattice gas with two types of particles, in
which two neighboring particles can swap their positions, and can change type ac-
cording to the neighboring particles. They derived the hydrodynamic limit, as well
as the fluctuations, when the stirring dynamics is accelerated by a diffusive scaling,
w.r.t. the alignment dynamics. This scale separation is crucial to have both alignment
and stirring present in the hydrodynamic limit. Generally, the strategy to obtain the
hydrodynamic limit for a lattice gas depends significantly on the microscopic fea-
tures of the model, and must be adapted on a case-by-case basis to the considered
dynamics. For example, the exclusion rule in the active exclusion process makes it
non-gradient, thus the proof of its hydrodynamic limit is significantly more elaborate.
The end of this introduction is dedicated to putting in context the mathematical con-
tributions of this article and describing the difficulties occurring in the derivation of
the hydrodynamic limit of our model.

1.2. Hydrodynamics limits for non-gradients systems

The active exclusion process presented above belongs to a broad class of micro-
scopic lattice dynamics for which the instantaneous particle currents along any edge
cannot be written as a discrete gradient. This difficulty appears naturally in exclu-
sion systems, in particular for systems with multiple particle types, or for generalized
exclusion processes where only a fixed number κ (κ ≥ 2) of particles can be present
at the same site. Such systems are called non-gradients. A considerable part of this
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1.3. MULTI-TYPE LATTICE GASES, AND CONTRIBUTIONS OF THIS ARTICLE 3

article is dedicated to solving the difficulties posed by the non-gradient nature the
active exclusion process.

The first proof for a non-gradient hydrodynamic limit was obtained by Varadhan in
[48], and Quastel [35] (cf. below). To illustrate the difficulty let us consider a general
diffusive particle system of size N in 1 dimension, evolving according to a Markov
generator LN . Such a diffusive system must be rescaled in time by a factor N2,
therefore each jump in LN should occur at rate N2. Denoting by ηx the state of
the system at the site x (e.g., number of particles, energy of the site), LNηx is a
microscopic gradient,

LNηx = N2(jx−1,x − jx,x+1),

where jx,x+1 is the instantaneous current along the edge (x, x+1), and the N2 comes
from the time-rescaling. This microscopic gradient balances out a first factor N , and
acts as a spatial derivative on a macroscopic level. In order to obtain a diffusive equa-
tion similar to the heat equation, one needs to absorb the second factor N in a second
spatial derivative. This is the main difficulty for non-gradient systems, for which the
instantaneous current jx,x+1 does not take the form of a microscopic gradient. The
purpose of the non-gradient method developed by Varadhan is to establish a so-called
microscopic fluctuation-dissipation relation

jx,x+1 ' −D(ηx+1 − ηx) + LNgx,

where LNgx is a small fluctuation which usually disappears in the macroscopic limit
according to Fick’s law for diffusive systems. Although the link to the macroscopic
fluctuation-dissipation relation (cf. Section 8.8, p. 140–141 in [45] for more detail on
this relation) is not apparent, the latter is indeed a consequence of the microscopic
identification above.

1.3. Multi-type lattice gases, and contributions of this article

The difficulties to derive the hydrodynamic limit of multi-type particle models
vary significantly depending on the specificities of each microscopic dynamics. Active
matter provides natural examples of multi-type particle systems, since each possible
velocity can be interpreted as a different type. When the particles evolve in a contin-
uous space domains, (e.g., [16], [17]) and in the absence of hard-core interactions, the
density of each type of particles can essentially be considered independently regard-
ing displacement, and the scaling limit usually decouples the velocity variable and the
space variable.

In the case of lattice gases, however, it becomes necessary to specify the way parti-
cles interact when they are on the same site. Dynamically speaking, multi-type models
often allow either
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4 CHAPTER 1. INTRODUCTION

— swapping particles with different types, as in [38] for a totally asymmetric system
with velocity flips.

— The coexistence on a same site of particles with different velocities, as in [13] or
[39] for a model closely related to the one investigated in this article with weak
driving forces, or in [21] for a zero-range model exhibiting MIPS-like behavior.

These simplifications allow to bypass the specific issues arising for diffusive systems
with complete exclusion between particles, since the latter often require the non-
gradient tools mentioned previously.

The first hydrodynamic limits for non-gradient microscopic systems were studied
by Varadhan and Quastel. They developed in [48] and [35] a general method to derive
the hydrodynamic limit for non-gradient systems with main requirement a sharp
estimate for the Markov generator’s spectral gap. Quastel also notably obtained in
[35] an explicit expression for the diffusion and conductivity matrices for the multi-
type exclusion process, as a function of the various particle densities and of the self-
diffusion coefficient ds(ρ) of a tagged particle for the equilibrium symmetric simple
exclusion process with density ρ. This result was then partially extended to the weakly
asymmetric case (in [36] as a step to obtain a large deviation principle for the empirical
measure of the symmetric simple exclusion process, and where the asymmetry does
not depend on the configuration, and in [25] for a weak asymmetry with a mean-field
dependency in the configuration), as well as a more elaborate dynamics with creation
and annihilation of particles [37].

In this article, we derive the hydrodynamic limit for an active matter lattice gas
with purely microscopic interactions. To do so, we generalize the results obtained by
Quastel [35] by incorporating many natural extensions, and apply in great detail the
non-gradient method for multi-type exclusion with a weak drift.

There are several reasons behind our choice to detail this difficult proof. First,
Quastel’s original article suffers from typos which are fixed in this paper, in particular
the spectral gap for the multi-type exclusion process is not uniform with respect to
the density and this required an adaptation of the original proof. Second, Quastel’s
proof relied significantly on the structure of the microscopic dynamics which could
be controlled by the symmetric exclusion. This played a crucial role in [35] to ensure
that the particle density does not reach 1, because when this is the case, the system
loses its mixing properties as represented by the decay of the spectral gap. When the
considered dynamics is a multi-type symmetric exclusion (identical for any particle
type, as in [35]), the macroscopic density for the total number of particles evolves
according to the heat equation, and density control at any given time is ensured by
the maximum principle. In our case, the limiting equation is not diffusive and a priori
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1.4. ACTIVE EXCLUSION PROCESS AND MAIN RESULT 5

estimates on the density are much harder to derive. Finally, [35] was one of the first
examples of hydrodynamic limit for non-gradient systems, and to make the proof
more accessible, we used the more recent formalism developed in [28], in which an
important upside is the clear identification of the orders of the estimates in the scaling
parameter N .

We extend the proof of the hydrodynamic limit for the multi-type exclusion process
[35] to the weakly asymmetric case when the particle types depend on a continuous
parameter. The hydrodynamic limit for lattice gases with K particle types takes the
form of K coupled partial differential equations. Extending it to a continuum of par-
ticle types therefore poses the issue of the well-posedness of the system. To solve this
issue, we therefore introduce an angular variable joint to the space variable. Although
the global outline of the proof remains similar, this induced numerous technical dif-
ficulties. In particular, as opposed to the previous examples, local equilibrium is not
characterized by a finite number of real-valued parameters (e.g., density, local mag-
netization), which required significant adaptation of the proof of the hydrodynamic
limit.

1.4. Active exclusion process and main result

The remainder of this section is dedicated to a short description of our model
and its hydrodynamic limit. For clarity’s sake, we first describe in more details the
simplified model with only two types of particles briefly presented above, and then
introduce the more general active exclusion process studied in this article. Precisely
describing the complete model, and rigorously stating its hydrodynamic limit, will be
the purpose of Section 2.

Description of a simplified process with two particle types. – For the clarity of nota-
tions, we describe and study our model in dimension d = 2. The simplified version
of the model can be considered as an active Ising model [43] with an exclusion rule:
each site x of the periodic lattice T2

N of size N is either

— occupied by a particle of type “+” (η+
x = 1),

— occupied by a particle of type “−” (η−x = 1),

— empty if η+
x = η−x = 0.

Each site contains at most one particle, thus the pair (η+
x , η

−
x ) entirely determines the

state of any site x, and is either (1, 0), (0, 1) or (0, 0). The initial configuration for
our particle system is chosen at local equilibrium and close to a smooth macroscopic
profile ζ0 = ζ+

0 + ζ−0 : T2 → [0, 1], where T2 is the continuous domain [0, 1]2 with
periodic boundary conditions, and ζ+

0 (x/N) (resp. ζ−0 (x/N)) is the initial probability
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6 CHAPTER 1. INTRODUCTION

that the site x contains a “+” particle (resp. “−”). We denote by η̂ the collection
((η+

x , η
−
x ))x∈T2

N
.

Each particle performs a random walk, which is symmetric in the direction i = 2,
and weakly asymmetric in the direction i = 1. The asymmetry is tuned via a positive
parameter λ, thus a “+” (resp. “−”) particle at site x jumps towards x + e1 at rate
1 + λ/N (resp. 1 − λ/N) and towards x − e1 at rate 1 − λ/N (resp. 1 + λ/N). If a
particle tries to jumps to an occupied site, the jump is canceled. In order to obtain a
macroscopic contribution of this displacement dynamics, it must be accelerated by a
factor N2.

Moreover, the type of the particle at site x is updated at random times, depending
on its nearest neighbors. Typically, to model collective motion, a “−” particle sur-
rounded by “+” particles will change type quickly, whereas a “−” particle surrounded
by “−” particles will change type slowly, to model the tendency of each individual to
mimic the behavior of its neighbors. Although they determine the shape of the last
term of the hydrodynamic limit, the microscopic details of this update dynamics are
technically not crucial to the proof of the hydrodynamic limit (in the scaling consid-
ered here), we therefore choose general, bounded flip rates cx,β(η̂) parametrized by an
inverse temperature β ≥ 0 and depending only on the local configuration around x.

The complete dynamics can be split into three parts, namely the symmetric and
asymmetric contributions of the exclusion process, and the Glauber dynamics, evolv-
ing on different time scales. For this reason, each corresponding part in the Markov
generator has a different scaling in the parameter N : the two-type process is driven
by the generator

LN = N2

[
L +

1

N
L

WA
]

+ L
G
,

whose three elements we now define. Fix a function f of the configuration, we denote
by

ηx = η+
x + η−x ∈ {0, 1}

the total occupation state of the site x. The nearest-neighbor simple symmetric ex-
clusion process generator L is

Lf(η̂) =
∑
x∈T2

N

∑
|z|=1

ηx (1− ηx+z)
(
f(η̂x,x+z)− f(η̂)

)
,

L
WA encompasses the weakly asymmetric part of the displacement process,

L
WA
f(η̂) =

∑
x∈T2

N

∑
δ=±1

δλ(η+
x − η−x ) (1− ηx+δe1)

(
f(η̂x,x+δe1)− f(η̂)

)
,
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1.4. ACTIVE EXCLUSION PROCESS AND MAIN RESULT 7

which is not a Markov generator because of its negative jump rates, but is well-defined
once added to the symmetric part of the exclusion process. Finally, L

G is the generator
which rules the local alignment of the angles

L
G
f(η̂) =

∑
x∈T2

N

ηxcx,β(η̂) (f(η̂x)− f(η̂)) .

In the identities above, η̂x,x+z is the configuration where the states of x and x + z

have been swapped in η̂, and η̂x is the configuration where the type of the particle at
site x has been changed.

Hydrodynamic limit. – Let us denote by ρ+
t (u) (resp. ρ−t (u)) the macroscopic density

of “+” (resp.“−”) particles, and by ρt(u) = ρ+
t (u)+ρ−t (u) the total density at any point

u in T2. Let us also denote by mt(u) = ρ+
t (u)− ρ−t (u) the local average asymmetry.

Then, as a special case of our main result the pair (ρ+
t , ρ

−
t ) is solution, in a weak

sense, to the partial differential system
(1.1){

∂tρ
+
t = ∇ ·

[
d(ρt, ρ

+
t )∇ρt + ds(ρt)∇ρ+

t

]
− 2λ∂u1

[
mts(ρt, ρ

+
t ) + ds(ρt)ρ

+
t

]
+ Γt,

∂tρ
−
t = ∇ ·

[
d(ρt, ρ

−
t )∇ρt + ds(ρt)∇ρ−t

]
+ 2λ∂u1

[
mts(ρt, ρ

−
t )− ds(ρt)ρ−t

]
− Γt

with initial profile

(1.2) ρ±0 (u) = ζ±(u).

In the PDE (1.4), ∂u1 denotes the partial derivative in the first space variable, ds is the
self-diffusion coefficient for the SSEP in dimension 2 mentioned in the introduction,
the coefficients d and s are given by

(1.3) d(ρ, ρ∗) =
ρ∗

ρ
(1− ds(ρ)) and s(ρ, ρ∗) =

ρ∗

ρ
(1− ρ− ds(ρ)),

and Γt is the local creation rate of particles with type “+,” which can be written as
the expectation under a product measure of the microscopic creation rate. Although
it is not apparent, the coefficients d, s, and ds satisfy a Stokes-Einstein relation in a
matrix form when the differential equation is written for the vector (ρ+

t , ρ
−
t ), in the

sense that(
d(ρ, ρ+) + ds(ρ) d(ρ, ρ+)

d(ρ, ρ−) d(ρ, ρ−) + ds(ρ)

)(
ρ+(1− ρ+) −ρ+ρ−

−ρ+ρ− ρ−(1− ρ−)

)

=

(
ρ+[s(ρ, ρ+) + ds(ρ)] ρ−s(ρ, ρ+)

ρ+s(ρ, ρ−) ρ−[s(ρ, ρ−) + ds(ρ)]

)
.

The second matrix above is the compressibility matrix, whose components are
Covρ+,ρ−(ηs10 , η

s2
0 ), where both s1 and s2 take value in {+,−}.
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This simplified model is very close to the active Ising model (cf. Appendix A, and
[43]) with a weak driving force. The main difference is the exclusion rule: in the active
Ising model, there is no limit to the number of particles per site, and each particle’s
type is updated depending on the other particles present at the same site. In our
two-type model, the exclusion rule creates a strong constraint on the displacement
and therefore changes the form of the hydrodynamic limit, which is no longer the one
derived in [43].

Description of the active exclusion process. – We now describe the active exclusion
process considered in this article, which is in some form a generalization of the model
presented above. Indeed, although for technical reasons the proof of our main result
cannot be applied verbatim to a finite number of particle types, the overwhole scheme
is exremely similar, and under suitable assumptions on the initial profile, one can state
an analogous result in the case of a finite number of particle types as well. Since the
active exclusion process is thoroughly introduced in Section 2, we briefly describe it
here, and only give a heuristic formulation for our main result. Denoting

S := [0, 2π[,

the periodic set of possible angles, the type of any particle is now a parameter θ ∈ S
representing the angular direction of its weak driving force. To compare with the
simplified model, the “+” particles correspond to the angle θ = 0, whereas the “−”
particles correspond to the angular direction θ = π.

Any site is now either occupied by a particle with angle θ (ηx = 1, θx = θ), or
empty (ηx = 0, θx = 0 by default). The initial configuration η̂(0) of the system is
chosen at local equilibrium, close to a smooth macroscopic profile ζ̂ : T2 × S → R+,
where each site x is occupied by a particle with angle θx ∈ [θ, θ+dθ[ with probability
ζ̂(x/N, θ)dθ, and the site remains empty w.p. 1−

∫
S
ζ̂(x/N, θ)dθ.

Our active exclusion process is driven by the Markov generator

LN = N2

[
L +

1

N
L

WA
]

+ L
G
,

with three parts described below. Fix a function f of the configuration. The nearest-
neighbor simple symmetric exclusion process generator L is unchanged with respect
to the two-type case, whereas L

WA is now given by

L
WA
f(η̂) =

∑
x∈T2

N

∑
|z|=1
z=δei

δλi(θx)ηx (1− ηx+δei)
(
f(η̂x,x+δei)− f(η̂)

)
,

where the asymmetry in the direction i for a particle with angle θ is encoded by the
functions λi(θ),

λ1(θ) = λ cos(θ) and λ2(θ) = λ sin(θ).
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To fix ideas, the Glauber generator will be taken of the form

L
G
f(η̂) =

∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)
(
f(η̂x,θ)− f(η̂)

)
dθ,

where η̂x,θ is the configuration where θx has been set to θ, and we choose alignment
rates similar to the Glauber dynamics of the XY model (cf. Appendix A). More
precisely, we consider

cx,β(θ, η̂) =
exp

(
β
∑
y∼x ηy cos(θy − θ)

)
∫
S

exp
(
β
∑
y∼x ηy cos(θy − θ′)

)
dθ′

,

which tends to align θx with the θy’s, for y a neighbor site of x. In the jump rates
above, we take the value in [−π, π] of the angle θy−θ. The intensity λ and the inverse
temperature β ≥ 0 still tune the strength of the drift and the alignment.

As mentioned before, we settle for now for a heuristic formulation of the hydrody-
namic limit. Let us denote by ρθt (u) the macroscopic density of particles with angle θ,
and by ρt(u) =

∫
θ
ρθt (u)dθ the total density at any point u in the periodic domain

T2 := [0, 1]2. Let us also denote by
→
Ωt the direction of the local average asymmetry

→
Ωt(u) =

∫
S

ρθt (u)

(
cos(θ)

sin(θ)

)
dθ.

As expected from (1.1), the main result (cf. Theorem 2.3.3) of this article is that ρθt is
solution, in a weak sense, to the partial differential equation
(1.4)

∂tρ
θ
t = ∇·

[
d(ρt, ρ

θ
t )∇ρt + ds(ρt)∇ρθt

]
− 2∇·

[
s(ρt, ρ

θ
t )λ
→
Ωt + ds(ρt)ρ

θ
t

(
λ1(θ)

λ2(θ)

)]
+ Γt,

with initial profile

ρθ0(u) = ζ̂(u, θ).

In the PDE (1.4), ds is the self-diffusion coefficient for the SSEP in dimension 2

mentioned previously, the coefficients d and s are given by (1.3) as in the two-type
case, and Γt is the local creation rate of particles with angles θ, which can be written
as the expectation under a product measure of the microscopic creation rate.

Before properly stating the hydrodynamic limit, let us recall the major difficulties
of the proof. The main challenge is the non-gradient nature of the model: the instan-
taneous current of particles with angle θ between two neighboring sites x and x+ ei
can be written

jθx,x+ei = 1{θx=θ}ηx(1− ηx+ei)− 1{θx+ei
=θ}ηx+ei(1− ηx),
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which is not a discrete gradient. One also has to deal with the loss of ergodicity
at high densities, and with the asymmetry affecting the displacement of each par-
ticle, which drives the system out-of-equilibrium, and complicates the non-gradient
method. Finally, the non-linearity of the limiting equation also induces several diffi-
culties throughout the proof.

Model extensions. – Several design choices for the model have been made either to
simplify the notations, or to be coherent with the collective dynamics motivations (cf.
Appendix A). However, we present now some of the possible changes for which our
proof still holds with minimal adaptations.

— The model can easily be adapted to dimensions d ≥ 2. The dimension 1, however,
exhibits very different behavior, since neighboring particles with opposite drifts
have pathological behavior and freeze the system due to the exclusion rule.

— The nearest neighbor jumps dynamics can be replaced by one with local and
irreducible transition function p(.). This involves minor adjustments of the lim-
iting equation, as solved by Quastel [35]. In this case, the total jump generator
must be split between a symmetric part scaled as N2, and an asymmetric part
scaled as N whose jumps can be decomposed as a succession of jumps from the
symmetric part. However, providing exact criteria for the validity of the exten-
sion to a more general jump kernel would be rather difficult, and such extensions
are best checked on a case-by-case basis. In the case of nearest-neighbor exclu-
sion, the drift functions can be replaced by any bounded function, and can also
involve a spatial dependency, as soon as λi(u, θ) is a smooth C1,1 function of its
two variables u and θ.

— We chose for our alignment dynamics a jump process, however analogous re-
sults would hold for diffusive alignment. The jump rates can also be changed
to any local and bounded rates, provided they are smooth in the θx’s, and that
the overall realignment rate

∫
S
cx,β(θ, η̂)dθ only depends on the configuration η̂

through the occupational variable ηx. The smoothness assumption in the last
two comments is there to make sure that the expectation of their microscopic
contribution under the grand-canonical measures is a Lipschitz-continuous func-
tion in the grand-canonical parameter.

1.5. Structure of the article

Section 2 is dedicated to the full description of the model, to introducing the
main notations, and the proper formulation of the hydrodynamic limit for the active
exclusion process.
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Section 3 is composed of three distinct parts. In Subsection 3.1 we characterize
local equilibrium for our process by introducing the set M 1(S) of parameters for the
grand-canonical measures of our process. We also give a topological setup for M 1(S),
for which some elementary properties are given in Appendix C. In Subsection 3.2,
we prove using classical tools that the entropy of the measure of our process with
respect to a reference product measure is of order N2. The last Subsection 3.3 tackles
the problem of irreducibility, which is specific to our model and is one of its major
difficulties. Its main result, Proposition 3.3.2, relies on a-priori density estimates, and
states that on a microscopic scale, large local clusters are seldom completely full,
which is necessary to ensure irreducibility on a microscopic level.

Section 4 proves a law of large numbers for our process. The so-called Replacement
Lemma stated in Subsection 4.1 relies on the usual one block (Subsection 4.2.1) and
two blocks (Subsection 4.4) estimates. However, even though we use the classical
strategy to prove both estimates, some technical adaptations are necessary to account
for the specificities of our model.

Section 5 acts as a preliminary to the non-gradient method. The first result of
this section is the comparison of the active exclusion process’s measure to that of
an equilibrium process without drift nor alignment (Subsection 5.1). We also prove,
adapting the classical methods, a compactness result for the sequence of measures of
our process, (Subsection 5.2) as well as an energy estimate (Subsection 5.3) necessary
to prove our main result.

The non-gradient estimates are obtained in Section 6. It is composed of a large
number of intermediate results which we do not describe in this introduction. The
application of the non-gradient method to the active exclusion process, however, re-
quires to overcome several issues which are specific to our model. One such difficulty
is solved in Subsection 6.3, where we estimate the contributions of microscopic full
clusters. In Subsections 6.6 and 6.7, we prove that for our well chosen diffusion and
conductivity coefficients, the total displacement currents can be replaced by the sum
of a gradient quantity and the drift term. For the sake of clarity, we use to do so
the modern formalism for hydrodynamic limits as presented in [28] rather than the
one used in [35]. We state in this section a convergence result at the core of the non-
gradient method (Theorem 6.6.4) whose proof is intricate and is postponed to the last
section.

All these results come together in Section 7, where we conclude the proof of the
hydrodynamic limit for our process. Some more specific work is necessary in order
to perform the second integration by parts, due to the delicate shape of the diffusive
part of our limiting differential equation.

Finally, Section 8 is dedicated to proving Theorem 6.6.4, following similar steps
as in [28]. To do so, we estimate in Subsection 8.1 the spectral gap of the active
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exclusion process on a subclass of functions. We then describe in Subsection 8.2 the
notion of germs of closed forms for the active exclusion process, and prove using
the spectral gap estimate a decomposition theorem for the set of germs of closed
forms. A difficulty of this model is that the spectral gap is not uniform in the density,
and decays faster as the density goes to 1. This issue is solved by cutting off large
densities (cf. Equation (8.2) and Lemma 8.2.9). Using the decomposition of closed
forms, Theorem 6.6.4 is derived in Subsection 8.5.
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CHAPTER 2

NOTATIONS AND MAIN THEOREM

We describe an interacting particle system, where a particle follows an exclusion
dynamics with a weak bias depending on an angle associated with this particle. At the
same time, each particle updates its angle according to the angles of the neighboring
particle. We study the macroscopic behavior of the corresponding 2-dimensional system
with a periodic boundary condition.

2.1. Main notations and introduction of the Markov generator

On the two dimensional discrete set

T2
N = {1, . . . , N}2

with periodic boundary conditions, we define the occupation configuration η =

(ηx)x∈T2
N
∈ {0, 1}T2

N where ηx ∈ {0, 1} is the number of particles at site x. With any
occupied site x ∈ T2

N , we associate an angle θx ∈ S representing the mean direction
of the velocity in the plane of the particle occupying the site. When the site x is
empty, we set the angle of the site to θx = 0 by default.

Definition 2.1.1 (Configurations, cylinder & angle-blind functions). – For any site
x ∈ T2

N , we denote by η̂x the pair (ηx, θx), and by η̂ = (η̂x)x∈T2
N

the complete
configuration. The set of all configurations will be denoted by

ΣN =
{

(ηx, θx)x∈T2
N
∈ ({0, 1} × S)

T2
N

∣∣∣ θx = 0 if ηx = 0
}
.

Denote by Σ∞ the set of infinite configurations above, where T2
N is replaced by Z2.

We will call cylinder function any function f depending on the configuration only
through a finite set of vertices Bf ⊂ Z2, and C1 w.r.t. each θx, for any x ∈ Bf . The
set of cylinder functions on Z2 will be denoted by C . Note that a cylinder function is
always bounded, and that any function f ∈ C admits a natural image as a function
on ΣN for any N large enough. This is always the latter that we will consider, and we
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14 CHAPTER 2. NOTATIONS AND MAIN THEOREM

therefore abuse the notation and denote in the same way both f and its counterpart
on ΣN .

We will call angle-blind function any function depending on η̂ only through the
occupation variables η = (ηx)x∈T2

N
. In other words, an angle-blind function depends

on the position of particles, but not on their angles. We denote by S the set of
angle-blind functions.

We will use on the discrete torus the notations | · | for the norm |x | =
∑2
i=1|xi |.

Let T be a fixed time, we now introduce the process (η̂(t))t∈[0,T ] on ΣN which is
central to our work. Our goal is to combine the two dynamics present in Viscek’s
model [50]: The first part of the process is the displacement dynamics, which rules the
motion of each particle. The moves occur at rates biased by the angle of the particle,
and follows the exclusion rule. Thus, for δ = ±1 the rate px(δei, η̂) at which the
particle at site x moves to an empty site x+ δei, letting e1 = (1, 0), e2 = (0, 1) be the
canonical basis in Z2, is given by

px(δei, η̂) =

{
1 + λδ cos(θx)/N if i = 1,

1 + λδ sin(θx)/N if i = 2,

where λ ∈ R is a positive parameter which characterizes the strength of the asymme-
try. For convenience, we will denote throughout the proof

(2.1) λ1(θ) = λ cos(θ) and λ2(θ) = λ sin(θ).

The previous rates indicate that the motion of each particle is biased in a direction
given by its angle. The motion follows an exclusion rule, which means that if the
target site is already occupied, the jump is canceled. Note that in order to see the
symmetric and asymmetric contributions in the diffusive scaling limit, we must indeed
choose an asymmetry scaling as 1/N . Furthermore, in order for the system to exhibit
a macroscopic behavior in the limit N →∞, we need to accelerate the whole exclusion
process by N2, as discussed further later on.

The second part of the dynamic is the angle update process, which will be from now
on referred to as theGlauber part of the dynamics. A wide variety of choices is available
among discontinuous angle dynamics (jump process) and continuous angle dynamics
(diffusion). We choose here a Glauber jump process with inverse temperature β ≥ 0

described more precisely below.
The generator of the complete Markov process is given by

(2.2) LN = N2 L
D

+ L
G
,

where

(2.3) L
D

= L +
1

N
L

WA
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is the generator for the displacement process (which two parts are defined below) and
L

G is the generator of the Glauber dynamics. The process can therefore be decom-
posed into three distinct parts, with different scalings in N , namely the symmetric
part of the motion, with generator N2 L , the asymmetric contribution to the displace-
ment generator N L

WA with parameter λ ≥ 0, and finally the angle-alignment with
generator L

G and inverse temperature β ≥ 0, which are defined for any cylinder (and
therefore C1 in the angular variables, cf. Definition 2.1.1) function f : ΣN → R, by

Lf(η̂) =
∑
x∈T2

N

∑
|z|=1

ηx (1− ηx+z)
(
f(η̂x,x+z)− f(η̂)

)
,(2.4)

L
WA
f(η̂) =

∑
x∈T2

N

∑
δ=±1
i=1,2

δλi(θx)ηx (1− ηx+δei)
(
f(η̂x,x+δei)− f(η̂)

)
,

L
G
f(η̂) =

∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)
(
f(η̂x,θ)− f(η̂)

)
dθ.(2.5)

Note that L
WA alone is not a Markov generator due to the negative jump rates, but

considering the complete displacement generator L + N−1 L
WA solves this issue for

any N large enough. In the expressions above, we denoted η̂x,x+z the configuration
where the occupation variables η̂x and η̂x+z at sites x and x+ z have been exchanged
in η̂

η̂x,x+z
y =


η̂x+z if y = x,

η̂x if y = x+ z,

η̂y otherwise,

and η̂x,θ the configuration where the angle θx in η̂ has been updated to θ

η̂x,θy =

{
(ηy, θ) if y = x,

η̂y otherwise.

For x, y ∈ T2
N , we write x ∼ y iff |x− y| = 1. We choose for cx,β the jump rates

cx,β(θ, η̂) =
exp

(
β
∑
y∼x ηy cos(θy − θ)

)
∫
S

exp
(
β
∑
y∼x ηy cos(θy − θ′)

)
dθ′

,

which tend to align the angle in x with the neighboring particles according to XY-like
jump rates (cf. Appendix A) with inverse temperature β ≥ 0. Note that by construc-
tion, for any non-negative β,

∫
S
cx,β(θ, η̂)dθ = 1 and that the jump rates cx,β(θ, η̂)

can be uniformly bounded from above and below by two positive constants depending
only on β.

The process defined above will be referred to as active exclusion process.
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2.2. Measures associated with a smooth profile and definition of the Markov process

We now introduce the important measures and macroscopic quantities appearing
in the expression of the hydrodynamic limit. Let us denote by T2 the continuous
periodic domain in dimension 2,

T2 = [0, 1)
2
.

Definition 2.2.1 (Density profile on T2). – We denote by M 1(S) the set of non-
negative measures α̂ on S with total mass α̂(S) in [0, 1]. We call density profile on the
torus any function

ρ̂ : (u, dθ) 7→ ρ̂(u, dθ)

such that ρ̂(u, .) ∈ M 1(S) ∀u ∈ T2. For any density profile ρ̂ on the torus, ρ̂(u, dθ)

represents the local density in u of particles with angle in dθ, and ρ(u) represents the
total density of particles in u.

Definition 2.2.2 (Measure associated with a density profile on the torus). – To any
density profile on the torus ρ̂, we associate µNρ̂ , the product measure on ΣN such that
the distribution of η̂x is given for any x ∈ T2

N by

(2.6)


µNρ̂ (ηx = 0) = 1− ρ(x/N),

µNρ̂ (ηx = 1) = ρ(x/N),

µNρ̂ (θx ∈ dθ | ηx = 1) = ρ̂(x/N, dθ)/ρ(x/N),

and such that η̂x, η̂y are independent as soon as x 6= y.

In other words, under µNρ̂ , the probability that a site x ∈ T2
N is occupied is

ρ(x/N) =
∫
S
ρ̂(x/N, θ)dθ ∈ [0, 1]. Furthermore, the angle of an empty site is set

to 0 by default, and the angle of an occupied site x is distributed according to the
probability distribution ρ̂(x/N, ·)/ρ(x/N).

2.2.1. Definition of the process. – Let Σ
[0,T ]
N := D([0, T ],ΣN ) denote the space of

right-continuous and left-limited (càdlàg) trajectories η̂ : t → η̂(t). We will denote
by η̂[0,T ] the elements of Σ

[0,T ]
N . For any initial measure ν on ΣN , any non-negative

drift λ ≤ N (to make the displacement operator L +N−1 L
WA a Markov generator),

and any β ≥ 0, we write Pλ,βν for the measure on Σ
[0,T ]
N starting from the measure

η̂(0) ∼ ν, and driven by the Markov generator LN = LN (λ, β) described earlier. We
denote by Eλ,βν the expectation w.r.t. Pλ,βν . In the case λ = β = 0, there is no drift and
the angle of the particles are chosen uniformly in S. In this case, we will omit λ and β
in the previous notation and write Pν for the measure and Eν for the corresponding
expectation. Let us now define the initial measure from which we start our process.
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Let ζ̂ ∈ C(T2×S) be a continuous non-negative function on T2×S, which will define
the initial macroscopic state of our particle system. We assume that for any u ∈ T2,

(2.7) ζ(u) :=

∫
S

ζ̂(u, θ)dθ < 1,

i.e., that the initial density is less than one initially everywhere on T2. This assumption
is crucial, because when the local density hits one, because of the exclusion rule, the
system loses most of its mixing properties. At density 1, mixing only comes from the
(slow, because of the scaling) Glauber dynamics, which is not sufficient to ensure that
local equilibrium is preserved.

We can now define the initial density profile on the torus ρ̂0 by

(2.8) ρ̂0(u, dθ) = ζ̂(u, θ)dθ.

We start our process from a random configuration

(2.9) η̂(0) ∼ µN := µNρ̂0

fitting the profile ρ̂0, according to Definition 2.2.2. Given this initial configuration,
we define the Markov process η̂[0,T ] ∈ Σ

[0,T ]
N ∼ Pλ,β

µN
driven by the generator LN

introduced in (2.2), starting from µN .

Topological setup. – Let us denote by M (T2×S) the space of non-negative measures
on the continuous configuration space endowed with the weak topology, and

(2.10) M
[0,T ] = D

(
[0, T ], M (T2 × S)

)
the space of right-continuous and left-limited trajectories of measures on T2×S. Each
trajectory η̂[0,T ] of the process admits a natural image in M

[0,T ] through its empirical
measure

πNt

(
η̂[0,T ]

)
=

1

N2

∑
x∈T2

N

ηx(t)δx/N,θx(t).

We further define the projection πN , which associates to η̂[0,T ] the trajectory t 7→
πNt
(
η̂[0,T ]

)
. We endow M

[0,T ] with Skorohod’s metric defined in Appendix B.1, and
the set P( M

[0,T ]) of probability measures on M
[0,T ] with the weak topology. We

now define QN ∈ P( M
[0,T ]) the distribution of the trajectory of the empirical

measure πN
(
η̂[0,T ]

)
of our process η̂[0,T ] ∼ Pλ,β

µN
.

2.3. Hydrodynamic limit

2.3.1. Self-diffusion coefficient. – The hydrodynamic limit for our system involves the
diffusion coefficient of a tagged particle for symmetric simple exclusion process (SSEP)
in dimension 2. Let us briefly remind here its definition. On Z2, consider an infinite
equilibrium SSEP with density ρ and a tagged particle placed at time 0 at the origin.
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We keep track of the position X(t) = (X1(t), X2(t)) ∈ Z2 of the tracer particle
at time t and denote by Q∗ρ the measure of the process starting with measure µρ
on Z2 \ {0} and a particle at the origin.

Definition 2.3.1 (Self-Diffusion coefficient). – The self-diffusion coefficient ds(ρ) is
defined as the limiting variance of the tagged particle

ds(ρ) := lim
t→∞

EQ∗ρ(X1(t)2)

t
.

The existence of this limit is a consequence of [29]. A variational formula for ds has
been obtained later by Spohn [44]. The regularity of the self-diffusion coefficient
was first investigated in [49], where Varadhan shows that the self-diffusion matrix is
Lipschitz-continuous in any dimension d ≥ 3. Landim, Olla and Varadhan since then
proved in [32] that the self-diffusion coefficient is in fact of class C∞ in any dimension.
The matter of self-diffusion being treated in full detail in Section 6, p. 199–240 of [30],
we do not develop it further here. We summarize in Appendix B.2 some useful results
on the matter.

Diffusion, conductivity and alignment coefficients. – Given a density profile on the
torus ρ̂(u, dθ), recall from Definition 2.2.1 that ρ(u) =

∫
S
ρ̂(u, dθ) is the local density.

We introduce the coefficients

d̂(ρ, ρ̂)(u, dθ) =
ρ̂(u, dθ)

ρ(u)
(1− ds(ρ(u)))1{ρ(u)>0},

ŝ(ρ, ρ̂)(u, dθ) = (1− ρ(u)− ds(ρ(u)))
ρ̂(u, dθ)

ρ(u)
1{ρ(u)>0},

where ds is the self-diffusion coefficient described in the previous paragraph. We also
define

→
Ω(ρ̂), the vector representing the mean direction of the asymmetry under ρ̂,

→
Ω(ρ̂)(u) =

∫
S

ρ̂(u, dθ′)

(
cos(θ′)

sin(θ′)

)
,

as well as Γ(ρ̂) the local creation and annihilation rate of particles with angle θ

Γ(ρ̂)(u, dθ) = ρ(u)Eρ̂(u,·) [c0,β(θ, η̂)] dθ − ρ̂(u, dθ),

where under Eρ̂(u,·), each site is occupied independently w.p. ρ(u), and the angle
of each particle is chosen according to the probability distribution ρ̂(u, ·)/ρ(u). The
precise definition of Eρ̂(u,·) is given just below in Definition 3.1.4.
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Weak solutions of the PDE. – In order to state the hydrodynamic limit of our system,
we need to describe the notion of weak solutions in our case, which is quite delicate
because of the angles. For any measure π ∈ M (T2×S) and any functionH : T2×S →
R integrable w.r.t. π, we shorten <π,H> =

∫
T2×S H(u, θ)dπ(du, dθ).

Definition 2.3.2 (Weak solution of the differential equation). – Any trajectory of
measures (πt)t∈[0,T ] ∈ M

[0,T ] will be called a weak solution of the differential system

(2.11)


∂tρ̂t = ∇ ·

[
d̂(ρt, ρ̂t)∇ρt + ds(ρt)∇ρ̂t

]
−2λ∇ ·

[
ŝ(ρt, ρ̂t)

→
Ωt + ρ̂tds(ρt)

(
cos(θ)

sin(θ)

)]
+ Γ(ρ̂t),

ρ̂0(u, dθ) = ζ̂(u, θ)dθ,

if the following four conditions are satisfied:

(i) π0(du, dθ) = ζ̂(u, θ)dudθ

(ii) for any fixed time t ∈ [0, T ], the measure πt is absolutely continuous in space
w.r.t. the Lebesgue measure on T2, i.e., there exists a density profile on the
torus (in the sense of Definition 2.2.1) ρ̂t, such that

πt(du, dθ) = ρ̂t(u, dθ)du,

(iii) letting ρt(u) =
∫
S
ρ̂t(u, dθ), ρ is in H1([0, T ] × T2), i.e., there exists a fam-

ily of functions ∂uiρt in L2([0, T ] × T2) such that for any smooth function
G ∈ C0,1([0, T ]× T2),∫

[0,T ]×T2

ρt(u)∂uiGt(u)dtdu = −
∫

[0,T ]×T2

Gt(u)∂uiρt(u)dtdu

(iv) for any function H ∈ C1,2,1([0, T ]× T2 × S),

<πT , HT>−<π0, H0> =

∫ T

0

<πt, ∂tHt>dt

+

∫ T

0

∫
T2×S

[
2∑
i=1

(
− ∂uiHt(u, θ)

[
d̂(ρt, ρ̂t)− d′s(ρt)ρ̂t

]
(u, dθ)∂uiρt(u)

+ ∂2
uiHt(u, θ)ds(ρt)ρ̂t(u, dθ)

+∂uiHt(u, θ) [2λŝ(ρt, ρ̂t)Ωi(ρ̂t) + 2λi(θ)ds(ρt)ρ̂t] (u, dθ)

)
+Ht(u, θ)Γ(ρ̂t)(u, dθ)

]
dudt,

where the various coefficients are those defined just before, and the functions λi
are defined in (2.1).
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Note that in this definition, the only quantity required to be in H1 is the total
density ρ: indeed, the term ds(ρt)∇ρ̂t is rewritten as

ds(ρt)∇ρ̂t = ∇(ds(ρt)ρ̂t)− d′s(ρt)ρ̂t∇ρt,

and the first term in the right-hand side above allows another derivative to be applied
to the test function H, whereas the second term only involves the derivative of ρ as
wanted.

We are now ready to state our main theorem:

Theorem 2.3.3. – The sequence (QN )N∈N defined at the end of Section 2.2 is weakly
relatively compact, and any of its limit points Q∗ is concentrated on trajectories
(πt)t∈[0,T ] which are solution of (2.11) in the sense of Definition 2.3.2.

Remark 2.3.4 (Uniqueness of the weak solutions of Equation (2.11)). – One of the
reasons for our weak formulation of the scaling limit of the active exclusion process is
the lack of proof for the uniqueness of weak solutions of Equation (2.11). Several fea-
tures of Equation (2.11) make the uniqueness difficult to obtain: First, our differential
equation does not take the form of an autonomous differential equation: the variation
of ρ̂t(u, θ) involves the total density ρ, therefore the differential equation is in fact
a differential system operating on the vector (ρ̂t(u, θ), ρt(u)). Cross-diffusive systems
can exhibit pathological behavior when the diffusion matrix has negative eigenvalues,
but in our case, both eigenvalues are non-negative and this issue does not appear.

However, although cross-diffusive systems are quite well understood (cf. for example

[1]), our equation involves a drift term which factors in via the vector
→
Ω(ρ̂t) the

whole profile (ρ̂t(u, θ))θ∈S . One of the consequences of this drift term, which is the
main obstacle to prove uniqueness, is that even the uniqueness of the total density
ρt(u) is not well established. Indeed, contrary to [35], in which the total density
evolves according to the heat equation, the total density in our case is driven by the
Burgers-like equation

∂tρt(u) = ∆ρt(u)− λ∇ · (mt(u)(1− ρt(u))),

where m is a quantity which depends on the whole profile (ρ̂t(u, θ))θ∈S , and for which
uniqueness is hard to obtain.

2.4. Instantaneous currents

In order to get a grasp on the delicate points of the proof, and to introduce the
particle currents on which rely the proof of Theorem 2.3.3, we need a few more
notations.
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Throughout the proof, for any function ϕ : ΣN → R and x ∈ T2
N , we will denote

by τxϕ : ΣN → R the function which associates to a configuration η̂ the value ϕ(τxη̂),
where τxη̂ ∈ ΣN is the translation of the configuration η̂ by a vector x:

(τxη̂)y = η̂x+y, ∀y ∈ T2
N .

For any function

H : [0, T ]× T2 × S → R

(t, u, θ) 7→ Ht(u, θ),

in C1,2,1([0, T ]× T2 × S), and any measure π on T2 × S, let us denote

<π,Ht> =
∫
T2×S Ht(u, θ)dπ(u, θ)

the integral of H with respect to the measure π. We consider the martingale MH,N
t

(2.12) MH,N
t = <πNt , Ht>−<πN0 , H0>−

∫ t

0

(∂s + LN )<πNs , Hs>ds,

where πNs is the empirical measure of the process

πNs =
1

N2

∑
x∈T2

N

ηx(s)δx/N,θx(s).

The quadratic variation of this martingale can be explicitely computed, and is equal
to (cf. Appendix 1.5 of [28])

[MH,N ]t =

∫ t

0

LN (<πNs , Hs>
2)− 2<πNs , Hs>LN<π

N
s , Hs>ds

=
2

N4

∑
x∈T2

N

[ ∫ t

0

LN [ηx(s)ηx+1(s)Hs(x/N, θx(s))Hs((x+ 1)/N, θx+1(s))]

− ηx+1(s)Hs((x+ 1)/N, θx+1(s))LN [ηx(s)Hs(x/N, θx(s))]

− ηx(s)Hs(x/N, θx(s))LN [ηx+1(s)Hs((x+ 1)/N, θx+1(s))] ds

]
.

Because of the initial factor N−4, the contributions of the asymmetric and Glauber
parts of the dynamic can be crudely bounded respectively by CN−1 and CN−2. By
computing the symmetric part, we finally obtain

[MH,N ]t = O(1/N) +
1

N2

∑
x∈T2

N

[ ∫ t

0

ηx(s)
[
H2
s (x+ 1/N, θx(s)) +H2

s (x− 1/N, θx(s))

− 2H2
s (x/N, θx(s))

+ 2ηx(s)(1− ηx+1(s))Hs(x/N, θx(s))
[
Hs((x+ 1)/N, θx(s))−Hs(x/N, θx(s))

]
+ 2ηx+1(s)(1− ηx(s))Hs((x+ 1)/N, θx+1(s))

[
Hs((x+ 1)/N, θx+1(s))

−Hs(x/N, θx+1(s))
]
.
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Because we assumed that H is a smooth function, the three lines above are of order
at most N−1, and therefore [MH,N

t ]t vanishes as N goes to infinity. The martingale
thus vanishes uniformly in time, in probability under Pλ,β

µN
.

Assume now that the function H takes the form

(2.13) Hs(u, θ) = Gs(u)ω(θ),

where G and ω are respectively functions on [0, T ]×T2 and S. From now on, for any
function Φ : S → R, any configuration η̂ and any x ∈ T2

N we will shorten

ηΦ
x = Φ(θx)ηx.

With these notations, recalling that

LN = N2
(

L +N−1 L
WA
)

+ L
G
,

we can write the generator part of the integral term of (2.12) as
(2.14)∫ T

0

LN<π
N
s , Hs>ds =

1

N2

∫ T

0

∑
x∈T2

N

Gs(x/N)
(
N2[ Lηωx (s) +N−1 L

WA
ηωx (s)

)
+ L

G
ηωx (s)]ds.

Let us introduce accordingly the three instantaneous currents in our active exclusion
process. Recall that τx represents the translation of a function by x.

Definition 2.4.1. – Given a site x ∈ T2
N , each part of the generator LN ’s action

over ηωx can be written

Lηωx =

2∑
i=1

(τx−eij
ω
i − τxjωi ) with jωi (η̂) = ηω0 (1− ηei)− ηωei (1− η0) ,(2.15)

L
WA
ηωx =

2∑
i=1

(τx−eir
ω
i − τxrωi ) with rωi (η̂) = ηωλi0 (1− ηe1) + ηωλiei (1− η0),

(2.16)

(2.17)

and

L
G
ηωx = τxγ

ω with γω(η̂) = η0

∫
S

c0,β(θ, η̂)(ω(θ)− ω(θ0))dθ.

(2.18)

For i ∈ {1, 2} we will at times write jωx,x+ei = τxj
ω
i (resp. rωx,x+ei = τxr

ω
i ), which is

interpreted as the instantaneous current with intensity ω in the direction i along the
edge (x, x+ ei) of the symmetric (resp. weakly asymmetric) part of the process. The
last quantity τxγω is the local alignment rate.
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When considering the time process (η̂(t))t∈[0,T ] we will, for the sake of concision,
write jωi (t) for jωi (η̂(t)), and in the same fashion rωi (t) instead of rωi (η̂(t)), and γω(t)

instead of γω(η̂(t)). Finally, in the case where ω ≡ 1, we will denote by

ji := j1
i = η0 − ηei .

Performing a first integration by parts on the exclusion part of the right-hand side
of (2.14), we obtain thanks to Equations (2.15), (2.16) and (2.18)

(2.19)
∫ T

0

LN<π
N
s , Hs>ds

=
1

N2

∫ T

0

∑
x∈T2

N

τx

[
2∑
i=1

(
Njωi (s) + rωi (s)

)
∂ui,NGs(x/N) +Gs(x/N)γω(s)

]
ds,

where ∂ui,N is the discrete partial derivative

(∂ui,NG)(x/N) = N [G((x+ ei)/N)−G(x/N)] .

The spatial averaging is of great importance throughout the proof of the hydrody-
namic limit, we need some convenient notation to represent this operation. For any
site x ∈ T2

N and any integer l, we denote by

Bl(x) =
{
y ∈ T2

N

∣∣ ||y − x||∞ ≤ l }
the box of side length 2l + 1 around x. In the case where x = 0 is the origin, we will
simply write Bl := Bl(0). For any finite subset B ⊂ T2

N , |B| denotes the number of
sites in B. Given ϕ a function on ΣN , we denote by

(2.20) 〈ϕ〉lx =
1

|Bl(x) |
∑

y∈Bl(x)

τyϕ

the average of the function ϕ over Bl(x). In the case where ϕ(η̂) = ηω0 , (resp.
ϕ(η̂) = η0), we will write τxρωl = 〈ϕ〉lx (resp. τxρl) for the empirical average of ηω

(resp. η) over the box centered in x of side length 2l + 1.
We will also denote for any integer l by ρ̂l the empirical angular density defined by

(2.21) ρ̂l =
1

|Bl |
∑
x∈Bl

ηxδθx ∈ M 1(S),

where M 1(S) is the set of non-negative measures on S with total mass in [0, 1] (cf.
Definition 3.1.1 below). Finally, to simplify notations throughout the proof, we will
write εN instead of the integer part bεNc.
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CHAPTER 3

CANONICAL MEASURES, ENTROPY AND IRREDUCIBILITY

3.1. Definition of the canonical measures

Due to the presence of angles, the canonical product measures for the active exclu-
sion process are not parameterized by the local density α ∈ [0, 1] like the SSEP, but
rather by a measure α̂ on [0, 2π] whose total mass

∫
S
α̂(dθ) is the local density.

Definition 3.1.1 (Grand-canonical parameters). – Recall that T2 is the 2-
dimensional continuous torus (R/Z)2, and let M (S) be the set of non-negative
measures on S. We will call grand-canonical parameter any measure α̂ ∈ M (S)

with total mass α :=
∫
S
α̂(dθ) ≤ 1. We denote by

(3.1) M 1(S) = { α̂ ∈ M (S) | α ∈ [0, 1] } ,

the set of grand-canonical parameters.

We now define a topological setup on M 1(S). Let us consider on C1(S), the set of
continuously differentiable functions, the norm ||g||∗ = max(||g||∞ , ||g′||∞), and let
B∗ be the unit ball in (C1(S), ||·||∗).

Definition 3.1.2. – We endow M (S), the vector space of finite mass signed mea-
sures on S, with the norm

||| α̂ ||| = sup
g∈B∗

{∫
g(θ)dα̂(θ)

}
,

and with the corresponding distance

d(α̂, α̂′) := sup
g∈B∗

{∫
S

g(θ)dα̂(θ)−
∫
S

g(θ)dα̂′(θ)

}
.

We then endow M 1(S) with the topology induced by ||| . |||. This distance is a gener-
alization of the Wasserstein distance to measures which are not probability measures.

Remark 3.1.3. – As checked in Appendix C, this topology satisfies
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— for any cylinder function ψ, the application α̂ 7→ Eα̂(ψ) is Lipschitz-continuous
(cf. Proposition C.2.1),

— any α̂ ∈ M (S) is the limit of combinations of Dirac measures,

— if θk → θ, then ||| δθk − δθ ||| → 0.

It is therefore the natural choice for our problem.

We now introduce the canonical measures of our process, which are translation-
invariant particular cases of measures associated with a density profile, introduced in
Definition 2.2.2.

Definition 3.1.4 (Grand canonical measures). – Consider a translation invariant
density profile on the torus ρ̂, i.e., such that for any u ∈ T2,

ρ̂(u, dθ) = α̂(dθ)

for some grand-canonical parameter α̂ ∈ M 1(S) independent of u. We will write µα̂
for the product measure µNρ̂ , and Eα̂ will denote the corresponding expectation. This
class of measures will be referred to as grand-canonical measures. Furthermore, for
any α ∈ [0, 1], the measure µα̂ associated with the uniform density profile on the torus

ρ̂(u, dθ) ≡ αdθ/2π,

where the angle of each particle is chosen uniformly in S, will be denoted by µ∗α, and
the corresponding expectation will be denoted by E∗α.

Note that these measures are dependent onN , but due to their translation invariant
nature, we will omit this in our notation.

Remark 3.1.5. – For any density α ∈ [0, 1], the measure µ∗α on ΣN is not invariant for
our dynamic, because although it is invariant for the symmetric part of the exclusion,
the weakly asymmetric part (as well as the Glauber part as soon as β 6= 0) breaks
this property. We will however prove in Section 3.2 that due to the scaling in N , the
stationary distribution of our dynamics is locally close to µ∗α.

Definition 3.1.6 (Canonical measures). – Fix a positive integer l, an integer
K ≤ (2l + 1)2 and ΘK = (θ1, . . . , θK) a family of K angles, taken up to reordering
of its coordinates, we shorten by K̂ the pairs (K,ΘK), which we will refer to as
canonical states on Bl. We will denote by Kl the set of canonical states K̂ on Bl,

Kl = {K̂ = (K,ΘK) | K ≤ (2l + 1)2}.

Since our process loses its fast mixing properties when there is only one or less empty
site (In which case mixing mainly comes from the Glauber dynamics, which is very
slow w.r.t. the displacement dynamics, cf. Section 3.3 below), we also introduce

(3.2) K̃l = {K̂ ∈ Kl | K ≤ (2l + 1)2 − 2},
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the set of K̂ for which the exclusion process on Bl is irreducible. Furthermore, for any
fixed K̂ ∈ Kl, we denote by

(3.3) ΣK̂l =

{
η̂ config. on Bl

∣∣∣∣∣ ∑
x∈Bl

ηxδθx =

K∑
k=1

δθk

}
,

the set of configurations on Bl with canonical state K̂ in Bl.

Let µ∗α,l denote the measure µ∗α on Bl, for any density α ∈ ]0, 1[, we will denote
by µl,K̂ the conditioning of µ∗α,l to ΣK̂l (which is therefore a measure on the set of
local configurations η̂ ∈ ({0, 1} × S)Bl), and by El,K̂ the corresponding expectation

El,K̂(g) = E∗α,l
(
g
∣∣∣ η̂ ∈ ΣK̂l

)
.

These measures will be referred to as canonical measures of the process.

Definition 3.1.7. – Fix l ∈ N, we associate to any K̂ ∈ Kl the grand-canonical
parameter

α̂K̂,l =
1

(2l + 1)2

K∑
k=1

δθk .

When there is no ambiguity, we will drop the dependency in l and simply write
α̂K̂ = α̂K̂,l.

The pertinent results regarding the metric space ( M 1(S), ||| . |||) are regrouped in
Appendix C: The equivalence of ensembles is proved in Section C.1, the Lipschitz-
continuity of the expectation w.r.t. µα̂ in the parameter α̂ is proved in Section C.2,
and finally, the compactness of the set ( M 1(S), ||| . |||) is proved in Section C.3.

3.2. Entropy production and local equilibrium

The proof of the replacement lemma is based on the control of the entropy production
of the process. The difficulty here is that the invariant measures of the process are not
known, and the decay of the relative entropy w.r.t. these measures cannot be computed
directly. Thus we consider approximations of these measures, and for a fixed non-
trivial density α ∈ ]0, 1[, our goal is to get an estimate of the entropy of the process’s
time average with respect to the reference measure µ∗α introduced in Definition 3.1.4.

Let us fix α ∈ ]0, 1[, we are going to prove that regardless of the initial density
profile, the entropy of the active exclusion process w.r.t. the measure of a process
started from µ∗α and following a symmetric simple exclusion process can be controlled
by CN2 for some constant C.
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The choice of µ∗α among the µ∗α′ , α
′ ∈ ]0, 1[ is not important, since for any different

angle density α′ ∈ ]0, 1[, the relative entropy between the two product measures µ∗α
and µ∗α′ is of order N

2 as well.
For some cylinder function h ∈ C , and some edge a = (a1, a2) in T2

N or Z2, we
denote by ∇a the gradient representing the transfer of a particle from site a1 to site
a2 under the exclusion process

(3.4) ∇af(η̂) = ηa1 (1− ηa2) (f (η̂a1,a2)− f(η̂)) .

We will shorten this notation in the case where a = (0, ej) by writing ∇j := ∇(0,ej).
Before turning to the control of the entropy itself, we introduce an important quantity
in the context of hydrodynamic limits.

Definition 3.2.1 (Dirichlet form of the symmetric dynamics). – Let h be a cylinder
function, we introduce the Dirichlet form of the process

(3.5) Dα̂(h) = −Eα̂(h Lh),

where L is the symmetric exclusion generator defined in Equation (2.4). It can be
rewritten thanks to the invariance of µα̂ w.r.t. the symmetric exclusion process as

Dα̂(h) =
1

2
Eα̂

∑
x∈T2

N

∑
|z|=1

(∇x,x+zh)
2

 .

If there is no ambiguity, we will omit the dependency in α̂ of the Dirichlet form, and
simply denote it by D. The Dirichlet form is convex and non-negative. Furthermore,
any function f in its kernel is such that f(η̂) = f(η̂′) for any pair (η̂, η̂′) of configura-
tions with the same number of particles K ≤ N2 − 2 and the same family of angles.
For any non-negative function h, we also introduce the Dirichlet form

(3.6) D(h) = D(
√
h),

which has the same properties as D.

We now investigate the entropy production of the active exclusion process. Let
PN,λ,βt be the semi-group of the active exclusion process associated with the complete
generator LN introduced in Equation (2.2), and µNt = µNPN,λ,βt the measure of
the configuration at time t. Because we assume the initial profile to be continuous
(and therefore bounded), µN is absolutely continuous with respect to the product
measure µ∗α, with density

(3.7)
dµN

dµ∗α
(η̂) =

∏
x∈T2

N

[
(1− ηx)

1− ζ(x/N)

1− α
+ ηx

2πζ̂(x/N, θx)

α

]
.

This, and the fact that the alignment rates cx,β are bounded from above and be-
low uniformly in θ, guarantee that for any time t, µNt is also absolutely continuous
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w.r.t. µ∗α. We therefore denote by fNt = dµNt /µ
∗
α the density of the measure at time t

w.r.t. the reference measure µ∗α. We now prove the following estimate on the entropy
of the function fNt .

Proposition 3.2.2 (Control on the entropy and the Dirichlet form of fNt ). – For
any density f w.r.t. µ∗α, we denote by H(f) = E∗α(f log f) the entropy of the density f .
Then, for any time t > 0, there exists a constant K0 = K0(t, λ, β, ζ̂) such that

H

(
1

t

∫ t

0

fNs ds

)
≤ K0N

2 and D

(
1

t

∫ t

0

fNs ds

)
≤ K0.

Proof of Proposition 3.2.2. – The density fNt is solution to

(3.8)

{
∂tf

N
t = L∗Nf

N
t

fN0 = dµN/dµ∗α,

where L∗N is the adjoint of LN in L2(µ∗α). To clarify the proof, we divide it in a series
of steps.

3.2.1. Expression of the entropy production of the system. – The relative entropy of µNt
with respect to the reference measure µ∗α is given by

H(µNt | µ∗α) = H(fNt ) = E∗α
(
fNt log fNt

)
,

which is non-negative due to the convexity on [0,+∞[ of x 7→ x log x. According to
Equation (3.8), its time derivative is

(3.9) ∂tH(fNt ) = E∗α
(
log fNt L

∗
Nf

N
t

)
+ E∗α

(
L∗Nf

N
t

)
.

The second term on the right-hand side is equal to

E∗α
(
L∗Nf

N
t

)
= E∗α

(
fNt LN 1̃

)
= 0,

since all constant functions are in the kernel of LN . Equation (3.9) can be rewritten,
since L∗N is the adjoint of LN in L2(µ∗α), as

∂tH(fNt ) = E∗α
(
fNt LN log fNt

)
.

Now thanks to the elementary inequality

log b− log a ≤ 2√
a

(
√
b−
√
a),

we can control LN log fNt by
2√
fNt

LN

√
fNt ,

therefore, the definition of LN yields

∂tH(fNt ) ≤ −2N2D
(
fNt
)

+ 2NE∗α
(√

fNt L
WA
√
fNt

)
+ 2E∗α

(√
fNt L

G
√
fNt

)
,
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where D is the Dirichlet form defined in Definition 3.2.1.
Integrating between the times 0 and t, we get

(3.10)

H(µNt | µ∗α)+2N2

∫ t

0

D
(
fNs
)
≤ H(µN | µ∗α)+2

∫ t

0

E∗α
(√

fNs (N L
WA

+ L
G

)
√
fNs

)
ds

Since the Dirichlet form of the symmetric exclusion process is non-negative, we now
focus on showing that the part of the entropy due to the weakly asymmetric part
and Glauber part do not grow too much in N , in order to get an upper bound on
the Dirichlet form D(f) and on the entropy H(µNt | µ∗α). From here, control over
the initial relative entropy should suffice to ensure that the measure of the active
exclusion process remains close to a product measure.

Bound on the entropy production of the asymmetric part of the dynamics. – by defi-
nition of the asymmetric dynamic,

E∗α
(√

fNs L
WA
√
fNs

)

= E∗α

 ∑
x,i,δ=±1

λi(θx)δηx(1− ηδei)
√
fNs (η̂)

(√
fNs (η̂x,x+δei)−

√
fNs (η̂)

) .

Despite the extra factor N , the jump rates of the weakly asymmetric dynamics are
not very different from symmetric exclusion process jump rates, which allows us to
estimate the quantity above in terms of the Dirichlet form. More precisely, thanks to
the elementary inequality

E(ϕψ) ≤ γE(ϕ2)/2 + E(ψ2)/2γ,

which holds for any positive constant γ, we can write with

ϕ = ηx(1− ηδei)
(√

fNs (η̂x,x+δei)−
√
fNs (η̂)

)
,

and

ψ = λi(θx)δ
√
fNs (η̂)

that

E∗α
(√

fNs L
WA
√
fNs

)
≤

∑
x,i,δ=±1

[
E∗α
(
λi(θx)2fNs

)
2γ

+
γ

2
E∗α

(
ηx(1− ηδei)

(√
fNs (η̂x,x+δei)−

√
fNs (η̂)

)2
)]

.

In right-hand side above, letting Cλ = 4λ2 the first term can be bounded by CλN2/2γ,
since the number of terms in the sum is 4N2, whereas the second sum of terms is
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γD(fNs ). We then let γ = N to obtain the upper bound

(3.11) 2NE∗α
(√

fNs L
WA
√
fNs

)
≤ CλN2 +N2D(fNs ).

Bound on the entropy production of the Glauber part of the dynamics. – thanks to
the elementary inequality ab ≤ (a2 + b2)/2, and since the jump rates cx,β are less
than e8β/2π, and ηx by 1

E∗α
(√

fNs L
G
√
fNs

)
= E∗α

√fNs ∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)

(√
fNs (η̂x,θ)−

√
fNs (η̂)

)
dθ


≤ e8β

2π

∑
x∈T2

N

E∗α
(

1

2

∫
S

fNs (η̂x,θ)dθ +
3

2
fNs (η̂)

)
.

Since E∗α
(

1
2π

∫
S
fNs (η̂x,θ)dθ

)
= E∗α

(
fNs
)
, the expectation can be bounded from above

by 2, and we can therefore write, letting Cβ = 2e8β/π

(3.12) 2E∗α
(√

fNs L
G
√
fNs

)
≤ CβN2.

Bound on the Dirichlet form and on the entropy production. – at this point, we obtain
from (3.10), (3.11) and (3.12)

H(µNt | µ∗α) +N2

∫ t

0

D
(
fNs
)
ds ≤ H(µN | µ∗α) + t(Cλ + Cβ)N2.

By (3.7), there exists a constant K = K(ζ̂, α), such that for any N ∈ N,∣∣∣∣log dµN/dµ∗α
∣∣∣∣
∞ ≤ KN2, and we can therefore estimate the relative entropy

of the initial measure µN w.r.t. µ∗α by

(3.13) H(µN | µ∗α) ≤ KN2.

We can therefore write

(3.14) H(µNt | µ∗α) +

∫ t

0

N2D
(
fNs
)
≤ K(t)N2.

where K(t) = K + t(Cλ + Cβ) is a positive constant. Since H(f) = E∗α(f log f) and
D(f) are both non-negative and convex, we can deduce from (3.14), that for some
time-dependent constant K0 =

∫ t
0
K(s)ds, we have

(3.15) H

(
1

t

∫ t

0

fNs

)
≤ K0N

2 and D

(
1

t

∫ t

0

fNs ds

)
≤ K0.

This upper bound proves Proposition 3.2.2, and will be necessary in the next section
to apply the replacement Lemma 4.1.1 to the active exclusion process.
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Before taking on the problem of irreducibility, we give a result that will be needed
several times throughout the proof, and comes from the entropy inequality. Let us
denote by L

G,β=0 the modified Glauber generator with uniform update of the angle
in S, (i.e., β = 0)

L
G,β=0

f(η̂) =
∑
x∈T2

N

ηx
1

2π

∫
S

(f(η̂x,θ)− f(η̂))dθ

and denote in a similar fashion

(3.16) Lβ=0
N = N2 L

D
+ L

G,β=0
,

which is the complete generator of the active exclusion process with random update
of the angles. Then, accordingly to our previous notations, Pλ,0µ∗α is the measure on the
trajectories started from µ∗α and driven by the generator Lβ=0

N . We can now state the
following result.

Proposition 3.2.3 (Comparison of Pλ,β
µN

and Pλ,0µ∗α ). – We endow ΣN (resp. Σ
[0,T ]
N )

with the topology induced by the mapping πN and the topology on M (T2 × S) (resp.
M

[0,T ], cf. topological setup just before Section 2.3). There exists a constant K0 =

K0(T, β, ζ̂) > 0 such that for any bounded and measurable function X : Σ
[0,T ]
N → R

and any A > 0,

Eλ,β
µN

[
X
(
η̂[0,T ]

)]
≤ 1

A

(
K0N

2 + logEλ,0µ∗α
[
exp

(
AX

(
η̂[0,T ]

))])
,

where η̂[0,T ] is the notation already introduced at the end of Section 2.2 for a trajectory
(η̂(t))t∈[0,T ].

Proof of Proposition 3.2.3. – The proof of this proposition is rather straightforward
thanks to the entropy inequality. In a first step, we compare the same process starting
from µ∗α. First note that for any function X : Σ

[0,T ]
N → R, we can write

Eλ,β
µN

[
X
(
η̂[0,T ]

)]
= Eλ,βµ∗α

(
dµN

dµ∗α
(η̂(0))X

(
η̂[0,T ]

))
.

This yields that

Eλ,β
µN

[
X
(
η̂[0,T ]

)]
≤ 1

A

(
H(µN | µ∗α) + logEλ,βµ∗α

[
exp

(
AX

(
η̂[0,T ]

))])
.(3.17)

In the entropy inequality above, Eλ,β
µN

is the expectation under the measure of the
process started from µN , whereas Eλ,βµ∗α is that of the process started from the stationary
measure µ∗α.

By (3.13), the first term in the right-hand side above is less than KN2/A for some
fixed constant K = K(ζ̂). Furthermore, the Radon-Nikodym derivative of the process
with alignment (β > 0) w.r.t. the one without alignment (β = 0) can be explicitly
computed. Given a càdlàg trajectory η̂[0,T ] ∈ Σ

[0,T ]
N , consider τ1, . . . , τR the set of
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angle jumps between times 0 and T , let us denote by xi the site at which the angle
changed at time τi, and by θi = θxi(τi) the new angle at site xi. Then, the density
between the measures with and without alignment is given by

dPλ,βν
dPλ,0ν

(η̂[0,T ]) =

R∏
i=1

cxi,β(θi, η̂(τi))

cxi,0(θi, η̂(τi))
≤ e8βR,

where R is the number of angle updates between times 0 and T . To establish the esti-
mate above, we used that cx,β(θ, η̂) can be uniformly bounded from above by e8β/2π,
that cx,0(θ, η̂) = 1/2π, and that regardless of the configuration and the inverse tem-
perature β, each site updates its angle at rate 1(i.e.,

∫
θ
cx,β(θ, η̂) = 1). We can now

estimate the second term in the right-hand side of Equation (3.17) by
1

A
logEλ,0µ∗α

[
e8βR exp

(
AX

(
η̂[0,T ]

))]
.

Applying the Cauchy-Schwarz inequality yields that the quantity above is less than
1

2A

(
logEλ,0µ∗α

[
e16βR

]
+ logEλ,0µ∗α

[
exp

(
2AX

(
η̂[0,T ]

))])
.

Since the angle updates happen in each site at rate 1 except when the site is empty, we
can define on the same probability space as our process a family Px of i.i.d. Poisson
variable with mean T , and such that R ≤

∑
x∈T2

N
Px. Thanks to the elementary

inequality
logE

[
e

16β
∑
x∈T2

N
Px
]

= T (e16β − 1)N2,

we now only have to let

K0(T, β, ζ̂) = 2K(ζ̂) + T (e16β − 1)

and replace A by 2A to conclude the proof of Proposition 3.2.3.

3.3. Irreducibility and control on full clusters

Unlike the exclusion process with one type of particles, the multi-type exclusion
process is not irreducible when the number of particles is too large, namely when the
domain has less than one empty site. When all the sites are occupied for example, the
process is stuck in its current configuration, up to realignment, due to the exclusion
rule. At high density, we therefore lose the mixing properties we need to reach local
equilibrium. To illustrate this statement, consider a square macroscopic domain of
size εN , and on it a configuration with the bottom half filled with particles with angle θ,
and the top half filled with particles with angle θ′ 6= θ, and letting a finite number of
sites be empty, the mixing time of this setup is of order larger than N2 due to the
rigidity of the configuration. In order to reach equilibrium, an empty site needs to
“fetch” a particle and transport it in the other cluster, and so on, until the density is
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homogeneous for both types of particles. The scaling of our alignment dynamics, is,
furthermore, not sufficient to ensure sufficiently frequent realignment of the particles
to solve this issue.

In order to prove the scaling limit of a multi-type exclusion process, it is therefore
critical to bound the particle density away from 1. This issue was solved in [35] by
using the fact that the total density of the multi-type SSEP (the angle blind model)
follows the standard SSEP dynamics (with one specie). Thus the total density could be
controlled by the classical argument on the hydrodynamic limit for SSEP. In our case,
however, the total density does not follow the SSEP dynamics. In fact, it is not even
a Markov chain due to the asymmetric parts which depend on the angles. A different
argument is required to control the evolution of the total density, which is the purpose
of the subsection.

In the general setup where the number of types of particles in a domain B can
reach |B| (which will often be the case when particles take their angles in S), it is
known that the exclusion process with |B| − 1 particles is no longer irreducible, as a
consequence of a generalization of the n-puzzle (cf. Johnson & Story, 1879, see [27]).
We therefore need to consider only the local configurations with two empty sites, on
which the exclusion process is irreducible regardless of the number of types of particles,
as stated in the following lemma. For any integers a, b ∈ Z, [[a, b]] = {a, . . . , b} denotes
the segment of integers between a and b.

Lemma 3.3.1 (Irreducibility of the displacement process with two empty sites). –
Consider a square domain B = Bp(x), and two configurations η̂, η̂′ two configurations
with the same types and number of particles in B, i.e., such that∑

x∈B
ηxδθx =

∑
x∈B

η′xδθ′x .

Further assume that the number of empty sites in η and η′ is at least 2. Then, there
exists a sequence of configurations η̂0, . . . , η̂n, such that η̂0 = η̂, η̂n = η̂′, and such
that for any k ∈ [[0, n−1]], η̂k+1 is reached from η̂k by one allowed particle jump, i.e.,

η̂k+1 =
(
η̂k
)xk,xk+zk

, and ηkxk+zk
= 1− ηkxk = 0 and | zk | = 1.

Furthermore, there exists a constant C such that n ≤ Cp4.

Proof of Lemma 3.3.1. – The proof of this statement is quite elementary. Fix a con-
figuration η̂ ∈ ΣN on a rectangular domain B with two empty sites, and let a =

(a1, a2) be an edge in T2
N . We are first going to prove that η̂a1,a2 can be reached from

η̂ using allowed particles jumps. Notice that according to the exclusion rule, we can
consider that any empty site is allowed to move freely by exchanging their place with
any site next to it.

MÉMOIRES DE LA SMF 169



3.3. IRREDUCIBILITY AND CONTROL ON FULL CLUSTERS 35

Initial positions of the two empty sites

New position of the two empty sites

a2a1

Figure 1. Reaching η̂a1,a2 from η .

We first bring ourselves back to a configuration described in Fig. 1, where the
two closest empty sites are brought next to the edge a. More precisely, we reach a
configuration where the two empty sites and the two sites a1 and a2 are at the vertices
of a side-1 square. From here, we are able to invert the two particles in a1 and a2 by a
circular motion of the four empty sites along the edges of the square, and then bring
back the empty sites along the paths that brought them next to a to their original
location. Doing so, one reaches exactly the configuration η̂a1,a2 from η̂ with allowed
particle jumps in B.

We deduce from this last statement that for any pair of configurations η̂, η̂′ with the
same particles in B, η̂′ can be reached from η̂ with jumps in B since the transition can
be decomposed along switches of nearest neighbor sites. The process is thus irreducible
on the sets with fixed numbers K̂ of particles, as soon as K is smaller than |B| − 2.
Furthermore, this construction ensures that any two neighboring particles can be
switched with a number of particle exchanges of order p where we denoted by p the
size of the box. Since one needs to invert 2p pairs of particles at most to move one
particle to its final position in η̂′, this proves the last statement.
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We now prove that large microscopic boxes are rarely fully occupied under the
dynamics. Let us denote by Ep,x the event

(3.18) Ep,x =

 ∑
y∈Bp(x)

ηy ≤ |Bp(x) | − 2

 ,

on which the box of size p around x contains at least two empty sites. When the site
x is the origin, we will simply write Ep instead of Ep,0. In order to ensure that full
clusters very rarely appear in the dynamics, we need the following lemma.

Proposition 3.3.2 (Control on full clusters). – For any positive time T ,

(3.19) lim
p→∞

lim
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

1Ecp,x(t)dt

 = 0.

Remark 3.3.3 (Scheme of the proof). – We first sketch the proof in a continuous
idealized setup to explain the general ideas before giving the rigorous proof. To prove
that the box of microscopic size p is not full, setting p′ = (2p+ 1)2 the cardinal of Bp,
it is enough to prove thanks to the microscopic setting that∫∫

[0,T ]×T2

ρp
′

t (u)dudt →
p′→∞

0,

where ρt(u) denotes the macroscopic density in u at time t.

We expect the total density ρ to follow the partial differential equation

(3.20) ∂tρ = ∆ρ−∇ · (m(1− ρ)),

where m is an a priori random quantity representing the local direction of the asym-
metry, which can be represented as the vector field which would satisfy at any time t
and for any smooth function H : T2 → R

∫
T2

H(u)mt(u)du = lim
N→∞

1

N2

∑
x∈T2

N

H(x)ηx(t)

(
cos(θx(t))

sin(θx(t))

)
.

Naturally, making sense of this quantity is not obvious, and it is not our purpose in
this paragraph. For now, we carry on with our heuristic presentation, and therefore
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assume that (3.20) holds true. We can therefore formally write, letting φ(ρ) = 1/(1−ρ)

∂t

∫
T2

φ(ρt)du =

∫
T2

φ′(ρt) [∆ρt −∇ · (mt(1− ρt))] du

=

∫
T2

φ′′(ρt)
[
−(∇ρt)2 +mt(1− ρt)∇ρt

]
du

≤
∫
T2

φ′′(ρt)

[
−(∇ρt)2 +

(∇ρt)2

2
+ ||mt||2∞ (1− ρt)2

]
du(3.21)

≤
∫
T2

φ′′(ρt)||mt||2∞ (1− ρt)2du = 2 ||mt||2∞
∫
T2

φ(ρt)du.

One could then apply Gronwall’s Lemma to obtain that for any time t,∫
T2

φ(ρt)du ≤ e2||m||2∞t
∫
T2

φ(ρ0)du.

Furthermore, for any time t,∫
T2

φ(ρt)du ≥
1

δ

∫
T2

1{ρt≥1−δ} +

∫
T2

1{ρt≤1−δ} =
1− δ
δ

∫
T2

1{ρt≥1−δ} + 1,

therefore, for any time t,

(3.22)
∫
T2

1{ρt≥1−δ} ≤
δ

1− δ

[
e2||m||2∞t

∫
T2

φ(ρ0)du− 1

]
→
δ→0

0.

As a consequence, for any time t, we could therefore write

(3.23)
∫∫

[0,T ]×T2

ρp
′

t (u)dudt ≤ T (1− δ)p
′
+

∫∫
[0,T ]×T2

1{ρt≥1−δ}.

The first term in the right-hand side vanishes for any fixed δ as p′ →∞, whereas the
second becomes as small as needed letting δ → 0.

Since our macroscopic density does not verify Equation (3.20), however, the oper-
ations above need to be performed in a microscopic setup. The derivation of Equa-
tion (3.22) is the purpose of Proposition 3.3.4. Two intermediate Lemmas 3.3.5 and
3.3.6 prove the microscopic equivalent of Equation (3.21).

Before giving the proof of Proposition 3.3.2, which is postponed to the end of the
subsection, we give first the following estimate.

Proposition 3.3.4 (High density estimate). – Denote

ρεN =
1

2εN + 1

∑
|y|≤εN

ηy

the average density in a small mesoscopic box centered at 0. For any positive 0 < δ′ <

1/2, and any time t > 0, we have the bound

(3.24) lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−δ′/2}

 ≤ δ′C,
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where C is a finite constant depending continuously on t, and also depending on the
asymmetry λ, and the initial profile ζ̂.

Proof of Proposition 3.3.4. – For any small δ > 0, let us denote by φδ the application

φδ : [0, 1 + δ/2]→ R+

ρ 7→ 1

1 + δ − ρ
.

Note that all successive derivatives of order less than k of φδ are positive (and in-
creasing) functions, and all are bounded by Ck/δ

k+1 for some family of universal
constants (Ck)k>0.

We now fix a C1 function H : T2 → R+, and assume that
∫
T2 H(u)du = 1. For any

u ∈ T2, we denote by Hu the function

Hu : v 7→ H(u− v).

In order to simplify the notations, for any configuration η̂ ∈ ΣN , and given its empir-
ical measure πN , we shorten

(3.25) ρN,Hx (η̂) := <πN , Hx/N> =
1

N2

∑
y∈T2

N

H

(
x− y
N

)
ηy.

In some cases, this quantity could be larger than 1, so that we need to take further
precautions. For any fixed δ we will therefore assume that N is large enough for the
condition

1

N2

∑
x∈T2

N

H(x/N) ≤ 1 +
δ

2
,

to hold, which is possible because we assumed that H is smooth and
∫
T2 H(u)du = 1.

Note that this restriction to N large enough is not an issue, because in all what
follows, H will be fixed and N will go to ∞.

For N large enough, the density ρN,Hx (η̂) is now in the domain of φδ, we now write

(3.26) ∂tEλ,βµN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (η̂)

) = Eλ,β
µN

 1

N2

∑
x∈T2

N

LNφδ
(
ρN,Hx (η̂)

) ,

where LN is the generator of the complete process LN = N2 L + N L
WA

+ L
G. Our

goal is to apply Gronwall’s Lemma to the expectation in the left-hand side, therefore
we now need to estimate the right-hand side.

Since ρN,Hx does not depend on the angles of the particles, neither does φδ
(
ρN,Hx

)
,

and the contribution of the Glauber part L
G of the generator LN in the right-hand

side above vanishes. The two other parts of the generator together yield the wanted
bound, and are treated in separate lemmas for the sake of clarity. As mentioned earlier,
these two lemmas are the microscopic equivalent of Equation (3.21).
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Lemma 3.3.5 (Contribution of the symmetric part). – There exists a sequence
(cN (δ,H))N∈N depending only on δ and H, vanishing as N → ∞, and such that for
any configuration η̂ ∈ ΣN
(3.27)∑
x∈T2

N

Lφδ
(
ρN,Hx

)
(η̂) ≤ −

∑
x∈T2

N
i=1,2

φ′′δ

(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

(η̂) + cN (δ,H).

Lemma 3.3.6 (Contribution of the asymmetric part). – There exists a sequence
(c̃N (δ,H))N∈N depending only on δ and H, vanishing as N → ∞, and such that
for any configuration η̂ ∈ ΣN

(3.28)
1

N

∑
x∈T2

N

L
WA
φδ
(
ρN,Hx

)
(η̂)

≤
∑
x∈T2

N

 2∑
i=1

φ′′δ

(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
4λ2φδ

(
ρN,Hx

)
N2

 (η̂) + c̃N (δ,H).

Proof of Lemma 3.3.5. – By definition of the symmetric part of the generator L ,

∑
x∈T2

N

Lφδ
(
ρN,Hx (η̂)

)
=

∑
x,y∈T2

N

2∑
i=1

1{ηyηy+ei
=0}

[
φδ
(
ρN,Hx (η̂y,y+ei)

)
− φδ

(
ρN,Hx (η̂)

)]
.

We now develop the gradient of φδ to the second order, to obtain that the right-hand
side above is equal to

∑
x,y∈T2

N

2∑
i=1

1{ηyηy+ei
=0}

[
φ′δ
(
ρN,Hx (η̂)

) (
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
+
φ′′δ
(
ρN,Hx (η̂)

)
2

(
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)2
+ o

((
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)2)]
.

Note that since the successive derivatives of order less than k of φδ are uniformly
bounded on [0, 1] by Ck/δk, the vanishing quantity o

((
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)2)
can be bounded uniformly in η̂, x, y and i (but not uniformly in δ). Since H is a
smooth function,

∣∣ ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)
∣∣ =

1

N2

∣∣∣∣Hx/N

(
y + ei
N

)
−Hx/N

( y
N

) ∣∣∣∣
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is of order N−3, the contributions of the second line above are therefore at most of
order N−2 and vanish in the limit N →∞. This yields

(3.29)
∑
x∈T2

N

Lφδ
(
ρN,Hx

)
=
∑
x∈T2

N

φ′δ
(
ρN,Hx (η̂)

) ∑
y∈T2

N

2∑
i=1

1{ηyηy+ei
=0}

(
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
+ oN (1),

where oN (1) is less than a vanishing sequence (c1N )N∈N depending on δ and H only.

Since for any z ∈ T2, Hu(v + z) = Hu−z(v), the definition of ρN,Hx yields

1{ηyηy+ei
=0}

(
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
=

1

N2
(ηy − ηy+ei)

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
=

1

N2
ηy

(
Hx−ei/N

( y
N

)
−Hx/N

( y
N

))
− 1

N2
ηy+ei

(
Hx/N

(
y + ei
N

)
−Hx+ei/N

(
y + ei
N

))
.

Summing the quantity above over y, one obtains exactly ρN,Hx−ei + ρN,Hx+ei − 2ρN,Hx . This
is the discrete Laplacian in the variable x of ρN,Hx , and a discrete integration by parts
allows us to rewrite the first term on the right-hand side of Equation (3.29) as

−
∑
x∈T2

N

2∑
i=1

(
φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

))(
ρN,Hx+ei − ρ

N,H
x

)
.

We now write(
φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

))
=

(φ′′δ

(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
)

2

(
ρN,Hx+ei − ρ

N,H
x

)
+ o

(
ρN,Hx+ei − ρ

N,H
x

)
,

in which ρN,Hx+ei − ρN,Hx is of order 1/N because H is a smooth function, to finally
obtain that
(3.30)∑
x∈T2

N

Lφδ
(
ρN,Hx

)
= −

∑
x∈T2

N

2∑
i=1

φ′′δ

(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+ oN (1),

where once again, the oN can be bounded by a vanishing sequence (cN )N depending
only on δ, which completes the proof of Lemma 3.3.5
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Proof of Lemma 3.3.6. – This proof follows the exact same steps as for the previous
one. We first obtain by definition of L

WA and developing the discrete gradient of φ
that

(3.31)
1

N

∑
x∈T2

N

L
WA
φδ
(
ρN,Hx

)
= oN (1) +

1

N

∑
x,y∈T2

N

2∑
i=1

(τyj
λi
i )φ′δ

(
ρN,Hx (η̂)

) (
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
,

where jλii is defined according to Equation (2.15) as

jλii (η̂) = λi(θ0)η0(1− ηei)− λi(θei)ηei(1− η0),

and oN (1) is less than a vanishing sequence depending only on δ and H. Once again,
similar steps as in the previous case allow us to rewrite

(τyj
λi
i )
(
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
=

1

N2
[λi(θy)ηy(1− ηy+ei) + λi(θy+ei)ηy+ei(1− ηy)]

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
=

1

N2
λi(θy)ηy(1− ηy+ei)

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
+

1

N2
λi(θy+ei)ηy+ei(1− ηy)

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
=

1

N2
λi(θy)ηy(1− ηy+ei)

(
Hx/N

(
y + ei
N

)
−Hx+ei/N

(
y + ei
N

))
+

1

N2
λi(θy+ei)ηy+ei(1− ηy)

(
Hx−ei/N

( y
N

)
−Hx/N

( y
N

))
.

Summing once again by parts in x, we obtain that the second term in the right-hand
side of Equation (3.31) is

1

N

∑
x,y∈T2

N

2∑
i=1

(τyj
λi
i )φ′δ

(
ρN,Hx (η̂)

) (
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
=

1

N3

∑
x∈T2

N

2∑
i=1

[
φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)]
×
∑
y∈T2

N

[
λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)
+ λi(θy+ei)ηy+ei(1− ηy)Hx/N

( y
N

)]

:= S1 + S2,

(3.32)
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where

S1 =
1

N3

∑
x∈T2

N

2∑
i=1

[
φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)] ∑
y∈T2

N

[
λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)]
and

S2 =
1

N3

∑
x∈T2

N

2∑
i=1

[
φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)] ∑
y∈T2

N

[
λi(θy+ei)ηy+ei(1− ηy)Hx/N

( y
N

)]
.

These two terms are treated in the exact same fashion, we therefore only treat in full
detail the case of S1, S2 will follow straightforwardly. First, we develop the difference
φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)
to the first order,

φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

)
= φ′′δ

(
ρN,Hx+ei

)(
ρN,Hx+ei − ρ

N,H
x

)
+ o

(
ρN,Hx+ei − ρ

N,H
x

)
.

Once again, H being a smooth function, ρN,Hx+ei − ρN,Hx is of order 1/N , therefore

the o
(
ρN,Hx+ei − ρ

N,H
x

)
is also a oN (1/N), and the corresponding contribution in S1

vanishes in the limit N → ∞. Recall that φ′′δ is a positive function, we now apply
in S1 the elementary inequality ab ≤ a2/2 + b2/2 to

a =
√
φ′′δ

(
ρN,Hx+ei

)(
ρN,Hx+ei − ρ

N,H
x

)
and

b =
1

N3

√
φ′′δ

(
ρN,Hx+ei

) ∑
y∈T2

N

[
λi(θy+ei)ηy+ei(1− ηy)Hx/N

( y
N

)]
.

This yields

|S1 | ≤ oN (1) +
∑
x∈T2

N
i=1,2

φ′′δ
(
ρN,Hx+ei

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
φ′′δ

(
ρN,Hx+ei

)
2N6

∑
y∈T2

N

λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)2
 .

The function H being non-negative, for any y, we can write

λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)
≤ λ(1− ηy+ei)Hx+ei/N

(
y + ei
N

)
.

Furthermore, since we assumed that
∫
T2 H = 1, and since H is smooth, we get that

1

N2

∑
y∈T2

N

Hx/N (y/N) = 1 + oN (1),
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which yields∣∣∣∣∣∣ 1

N2

∑
y∈T2

N

λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

) ∣∣∣∣∣∣ ≤ λ(1− ρN,Hx+ei) + oN (1)

This, combined with the previous bound, yields that

|S1 | ≤ oN (1) +
∑
x∈T2

N
i=1,2

φ′′δ
(
ρN,Hx+ei

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
λ2φ′′δ

(
ρN,Hx+ei

)
2N2

(1− ρN,Hx+ei)
2

 .
A similar bound can be achieved for S2, this time developing the difference
φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

)
in ρN,Hx instead of ρN,Hx+ei ,

|S2 | ≤ oN (1) +
∑
x∈T2

N
i=1,2

[
φ′′δ
(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
λ2φ′′δ

(
ρN,Hx

)
2N2

(1− ρN,Hx )2

]
.

Combining these two bounds with identities (3.31) and (3.32), we obtain that

1

N

∑
x∈T2

N

L
WA
φδ
(
ρN,Hx

)

≤
∑
x∈T2

N
i=1,2

φ′′δ
(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
λ2φ′′δ

(
ρN,Hx

)
N2

(1− ρN,Hx )2

+ oN (1),

where the oN (1) can be bounded by a vanishing sequence (c̃N )N depending only on H
and δ. One easily obtains that for any non-negative δ and any ρ ∈ [0, 1 + δ/2],

(1− ρ)2φ′′δ (ρ) ≤ 2φδ(ρ),

thus concluding the proof of Lemma 3.3.6.

We are now ready to apply Gronwall’s Lemma and complete the proof of Proposi-
tion 3.3.4. For that purpose, let us define

Φ(t) = Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (t)

) ,

according to the previous Lemmas 3.3.5, 3.3.6 and to Equation (3.26), there exists a
sequence kN = cN + c̃N depending only on δ and H, verifying

kN →
N→∞

0,

and such that
∂tΦ(t) ≤ 4λ2Φ(t) + kN .
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Since φδ is bounded from below by 1/1 + δ, Φ(t) also is, and therefore

∂tΦ(t) ≤ (4λ2 + kN (1 + δ))Φ(t).

Gronwall’s Lemma therefore yields that for any non-negative t,

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (t)

) ≤ Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (0)

) e(4λ2+kN (1+δ))t,

where this time the right-hand side depends on the trajectory only through its initial
state η̂(0).

Fix a small δ′ > 0. φδ being a non-decreasing function bounded from below
by 1/1 + δ, one can write for any ρ ∈ [0, 1 + δ/2]

φδ(ρ) ≥ 1

δ + δ′
1{ρ>1−δ′} + 1{ρ≤1−δ′}

1

1 + δ
=

1− δ′

(1 + δ)(δ + δ′)
1{ρ>1−δ′} +

1

1 + δ
.

We apply this decomposition to the left-hand side of the inequality above, to obtain
that

(3.33) Eλ,β
µN

 1

N2

∑
x∈T2

N

1{ρN,Hx (t)>1−δ′}


≤ (1 + δ)(δ + δ′)

1− δ′

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (0)

) e(4λ2+kN (1+δ))t − 1

1 + δ

 .
Coming back to the Definition (3.25) of ρN,Hx , for any smooth non-negative func-
tion H with integral equal to 1, taking the lim sup N → ∞, we thus obtain from
Equation (3.33)

(3.34) lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{ρN,Hx (t)>1−δ′}


≤ lim sup

N→∞

(1 + δ)(δ + δ′)

1− δ′

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (0)

) e4λ2t − 1

1 + δ

 .
Fix a small ε > 0, and let us denote for any u, v ∈ T2

Hε(v) =
1

(2ε)2
1[−ε,+ε]2(v) and Hε

u(v) =
1

(2ε)2
1[−ε,+ε]2(v − u).

Recalling that ρεN (t) is the empirical density in a box of size εN around the origin
at time t, we can then write

τxρεN (t) =
(2εN)2

(2εN + 1)2
ρN,H

ε

x = ρN,H
ε

x + oN (1).
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At this point, we want to apply Equation (3.34) to H = Hε, which is an indicator
function, and thus need to be smoothed out. For that purpose, consider a sequence
(Hε

l )l∈N of functions such that

— ∀l ∈ N, ∀u ∈ T2, Hε
l (u) ≥ 0 and sup

T2

Hε
l = sup

T2

Hε = 1/(2ε)2 .

— ∀l ∈ N, Hε
l ∈ C1(T2) and

∫
T2 H

ε
l (u)du = 1.

— Hε
l (u) 6= Hε(u)⇒ ε− 1/l < ||u||∞ < ε+ 1/l.

The existence of such a sequence of functions is quite clear and is left to the reader.
In particular, the last condition imposes that

Il :=

∫
T2

1Hεl (u)6=Hε(u)du ≤
16ε

l
,

which is the area of the crown on which the two functions may differ. The sequence Hε
l

converges for any fixed ε towards Hε in L1(T2). Furthermore, notice that for any
x ∈ T2

N , since both the Hε
l ’s and H

ε are bounded by 1/(2ε)2,∣∣∣ ρN,Hεlx − ρN,H
ε

x

∣∣∣ ≤ 1

N2

∑
y∈T2

N

ηy

∣∣∣Hε
l,x/N

( y
N

)
−Hε

x/N

( y
N

) ∣∣∣
≤
(

16ε

l
+ oN (1)

)
(||Hε

l ||∞ + ||Hε||∞) =
8

εl
+ oN (1),

where the last line represents the proportion of sites of the discrete torus in the crown
around u = x/N on which Hε

l,x/N and Hε
x/N can be different. The last observation

yields that for any x ∈ T2
N , we can write∣∣∣ τxρεN (t)− ρN,H

ε
l

x (t)
∣∣∣ ≤ 8

εl
+ oN (1),

where the oN (1) can be chosen independent of η̂ and x. Fix ε > 0 and consider N0

and l0 such that for any N ≥ N0 and any l ≥ l0,∣∣∣ τxρεN (t)− ρN,H
ε
l

x (t)
∣∣∣ ≤ δ′

2
.

For any such pair l, N , we therefore also have

1{τxρεN (t)>1−δ′/2} ≤ 1{
ρ
N,Hε

l
x (t)>1−δ′

}.
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For any l, by our assumptions, Equation (3.34) holds for H = Hε
l for any positive

δ and δ′. For any l ≥ l0, we can therefore write

(3.35) lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−δ′/2}


≤ lim sup

N→∞

(1 + δ)(δ + δ′)

1− δ′

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ

(
ρ
N,Hεl
x (0)

) e4λ2t − 1

1 + δ

 .
Recall that under Pλ,β

µN
, the initial configuration η̂(0) is distributed according to a

product measure fitting the initial profile ζ defined before (2.7). By law of large
number, and since φδ is smooth on [0, 1 + δ/2], we therefore obtain for any v ∈ T2

lim sup
N→∞

Eλ,β
µN

(
φδ

(
ρ
N,Hεl
bNvc (0)

))
= φδ (ζ ∗Hε

l (v)) ,

where bNvc = (bNv1c, bNv2c) ∈ T2
N and “∗” denotes the convolution operator on T2.

By dominated convergence theorem, we thus obtain

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ

(
ρ
N,Hεl
x (0)

) −−−−→
N→∞

∫
T2

φδ (ζ ∗Hε
l (v)) dv.

Since ζ and satisfies (2.7), it is bounded away from 1 uniformly on T2, ζ ∗ Hε
l is

also bounded away from 1 uniformly in ε, and therefore

φδ (ζ ∗Hε
l (v)) ≤ C∗,

where C∗ = C∗(ζ̂) is a constant which does not depend on l, ε, v or δ. Letting now δ

go to 0, we obtain from (3.35) and the limit above that for any ε > 0 and any time t,

lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−δ′/2}

 ≤ δ′

1− δ′
(e4λ2tC∗ − 1),

which concludes the proof of Proposition 3.3.4 since we assumed δ′ < 1/2.

With the estimate stated in Proposition 3.3.4, we are ready to prove Proposi-
tion 3.3.2.

Proof of Proposition 3.3.2. – First notice that in order to prove (3.19), it is sufficient
to prove it both for Fp,x and F ′p,x instead of Ecp,x, where

Fp,x =

 ∑
y∈Bp(x)

ηy = |Bp(x) |

 and F ′p,x =

 ∑
y∈Bp(x)

ηy = |Bp(x) | − 1

 .

We focus on the first case, the second is derived in the exact same fashion.

MÉMOIRES DE LA SMF 169



3.3. IRREDUCIBILITY AND CONTROL ON FULL CLUSTERS 47

Unlike in [35], the angle blind process’s macroscopic density does not evolve ac-
cording to the heat equation because of the weak drift. However, thanks to the bound
(3.15) on the entropy of the measure µNt w.r.t. the reference measure µ∗α and on the
Dirichlet form of the density fNt , local equilibrium holds for the angle-blind process.
As a consequence, the replacement Lemma 4.1.1 holds for functions independent of
the angles (cf. for example [28], p. 77). One therefore obtains that to prove

(3.36) lim
p→∞

lim
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

1Fp,x(s)ds

 = 0,

one can replace 1Fp,x(s) by its expectation under the product measure with parameter
τxρεN (s), namely

EτxρεN (s)(1Fp,x) = [τxρεN (s)]
p′
,

where p′ = (2p+ 1)2 is the number of sites in Bp.
To prove Equation (3.36), it is therefore sufficient to prove that ∀t ∈ [0, T ],

(3.37) lim
p′→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

[τxρεN (t)]
p′

 = 0.

To prove the latter, since ρεN (t) is at most 1, one only has to write, as outlined in
Equation (3.23),

Eλ,β
µN

 1

N2

∑
x∈T2

N

[τxρεN (t)]
p′

 ≤ (1− δ)p
′
+ Eλ,β

µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−δ}

 ,

which holds for any positive δ.
For any fixed δ > 0, the first term on the right-hand side vanishes as p → ∞,

whereas the second does not depend on p and we can therefore let δ → 0 after N →∞,
then ε → 0, then p′ → ∞. Since the right-hand side of Equation (3.24) vanishes
as δ′ = 2δ goes to 0, the left-hand side also does, and (3.37) holds for any t thanks to
Proposition 3.3.4. This proves Equation (3.36), and the equivalent proposition with
F ′p,x instead of Fp,x is proved in the exact same fashion, thus concluding the proof of
Proposition 3.3.2.
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CHAPTER 4

LAW OF LARGE NUMBERS
FOR THE EXCLUSION PROCESS WITH ANGLES

4.1. Replacement Lemma

Our goal in this section is to close the microscopic equations and to replace in the
definition of the martingale MH,N introduced in (2.12) any cylinder (in the sense
of Definition 2.1.1) function g(η̂) by its spatial average Eρ̂εN (g), where ρ̂εN is the
empirical angular density over a small macroscopic box of size εN . We use this section
to introduce new useful notations. The proof of the main result of this section, the
Replacement Lemma 4.1.1, follows closely the usual strategy (c.f. Lemma 1.10 p.77
of [28]), however it requires several technical adaptations due to the nature of our
canonical and grand-canonical measure. In particular, we will need the topological
setup and the various results obtained in Section 3.

Consider a cylinder function g ∈ C , and l a positive integer. Recall from (2.20)
that 〈g〉l0 is the average of the translations of g over a box of side 2l + 1 centered at
the origin. Recall from Equation (2.21) and Definition 3.1.1 that the empirical angular
density ρ̂l over the box Bl of side 2l + 1 is the measure on [0, 2π[

ρ̂l =
1

|Bl |
∑
x∈Bl

ηxδθx .

Define

(4.1) V
l(η̂) = 〈g(η̂)〉l0 − Eρ̂l(g) and W

l(η̂) = g(η̂)− Eρ̂l(g),

and for any smooth function G ∈ C(T2), let

(4.2) X l,N (G, η̂) =
1

N2

∑
x∈T2

N

G(x/N)τx W
l.
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We first state that under the measure of active exclusion process, one can replace
the average of g over a small macroscopic box by its expectation w.r.t. the grand-
canonical measure with grand-canonical parameter ρ̂εN .

Lemma 4.1.1 (Replacement Lemma). – For every δ > 0, we have with the notation
(4.1)

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

τx

∣∣∣ V
εN (η̂(t))

∣∣∣ dt > δ

 = 0.

The proof is postponed to Subsection 4.2, and requires the control of the full clusters
stated in Proposition 3.3.2. For now, we can deduce from this lemma the following
result, which will allow us to replace in (2.19) the currents by their spatial averages.

Corollary 4.1.2. – For every δ > 0, and any continuous function

G : [0, T ]× T2 → R

(t, u) 7→ Gt(u),

we get with the notation (4.2)

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

[∣∣∣∣∣
∫ T

0

XεN,N (Gt, η̂(t))dt

∣∣∣∣∣ > δ

]
= 0.

Proof of Corollary 4.1.2. – Recall that ε → 0 after N → ∞, which means that the
smoothness of G allows us to replace in the limit G(x/N) by its spatial average on a
box of size ε, which is denoted by

GεN (x/N) :=
1

(2εN + 1)2

∑
y∈BεN (x)

G(y/N).

More precisely, we can write, using notation (2.20) for the local averaging, and since
g is a cylinder, hence bounded, function,

lim sup
N→∞

∫ T

0

1

N2

∑
x∈T2

N

Gt(x/N)τxg dt = lim sup
ε→0

lim sup
N→∞

∫ T

0

1

N2

∑
x∈T2

N

GεNt (x/N)τxg dt

= lim sup
ε→0

lim sup
N→∞

∫ T

0

1

N2

∑
y∈T2

N

Gt(y/N)〈g〉εNy dt,(4.3)

where the average 〈g〉εNy is defined in Equation (2.20).

As a consequence, τyg can be replaced by its average 〈g〉εNy . Note that

V
εN (η̂) = W

εN (η̂) + 〈g〉εNy − g,
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and that the replacement Lemma 4.1.1 implies in particular that for any bounded
function G ∈ C([0, T ]× T2)

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

∣∣∣∣∣∣
∫ T

0

1

N2

∑
x∈T2

N

Gt(x/N)τx V
εN (η̂(t))dt

∣∣∣∣∣∣ > δ

 = 0.

Therefore, thanks to equality (4.3), Corollary 4.1.2 follows directly from Lemma 4.1.1.

4.2. Proof of the replacement lemma

In order to prove the replacement Lemma 4.1.1, we will need the two lemmas below.
The first one states that the average of any cylinder function 〈g(η̂)〉l0 over a large
microscopic box (a box of size l which tends to infinity after N) can be replaced by its
expected value w.r.t. the grand-canonical measure whose parameter is the empirical
density Eρ̂l(g).

The second states that the empirical angular density does not vary much between
a large microscopic box and a small macroscopic box. We state these two results,
namely the one and two-blocks estimates, in a quite general setup, because they are
necessary in several steps of the proof of the hydrodynamic limit.

Lemma 4.2.1 (One-block estimate). – Consider α ∈ ]0, 1[ and a density f w.r.t. the
translation invariant measure µ∗α (cf. Definition 3.1.4) satisfying

(i) There exists a constant K0 such that for any N

H(f) ≤ K0N
2 and D (f) ≤ K0.

(ii)

(4.4) lim
p→∞

lim
N→∞

E∗α

f 1

N2

∑
x∈T2

N

1Ecp,x

 = 0.

Then, for any cylinder function g,

lim sup
l→∞

lim sup
N→∞

E∗α

f 1

N2

∑
x∈T2

N

τx V
l

 = 0,

where V
l was defined in (4.1).
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Lemma 4.2.2 (Two-block estimate). – For any α ∈ ]0, 1[ and any density f satisfying
conditions i) and ii) of Lemma 4.2.1,

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
y∈BεN

E∗α

 1

N2

∑
x∈T2

N

||| τx+yρ̂l − τxρ̂εN |||f

 = 0,

where τz ρ̂k is the local empirical angular density in the box of size k centered in z

introduced in (2.21).

The proofs of these two lemmas will be presented resp. in Section 4.3 and 4.4. For
now, let us show that they are sufficient to prove the replacement Lemma 4.1.1.

Proof of Lemma 4.1.1. – Lemma 4.1.1 follows from applying the two previous lemmas
to the density

f
N

T =
1

T

∫ T

0

fNt dt,

where fNt = dµNt /dµ
∗
α, defined in Section 3.2, is the density of the active exclusion pro-

cess at time t started from µN , and prove that Lemma 4.1.1 follows. Proposition (3.2.2)
proved that f

N

T satisfies condition i) of Lemma 4.2.1. Furthermore, f
N

T also satisfies
condition ii)

lim
p→∞

lim
N→∞

E∗α

fNT 1

N2

∑
x∈T2

N

1Ecp,x

 = 0

thanks to Proposition 3.3.2, thus the one-block and two-blocks estimates apply
to f = f

N

T .
Now let us recall that we want to prove for any δ > 0

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

τx

∣∣∣ V
εN (η̂(t))

∣∣∣ dt > δ

 = 0,

where
V
εN (η̂) = 〈g(η̂)〉εN0 − Eρ̂εN (g).

Thanks to the Markov inequality, it is sufficient to prove that

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

τx

∣∣∣ V
εN (η̂(t))

∣∣∣ dt
 = 0.

We can now express the expectation above thanks to the mean density f
N

T . Since T is
fixed, to obtain the replacement lemma it is enough to show that

(4.5) lim sup
ε→0

lim sup
N→∞

E∗α

fNT 1

N2

∑
x∈T2

N

τx

∣∣∣ V
εN (η̂)

∣∣∣
 = 0.
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For any function ϕ(.) on the torus T2
N , recall that we denoted in (2.20) by 〈ϕ(.)〉lx

the average of the function ϕ over a box centered in x of size l, and that τyρ̂l is the
empirical angular density in a box of size l centered in y defined in (2.21). Let us add
and subtract〈

〈g(η̂)〉l0 − Eρ̂l(g)
〉εN

0
=

1

(2εN + 1)2

∑
x∈BεN

 1

(2l + 1)2

∑
| y−x |≤l

τyg − Eτxρ̂l(g)


inside

∣∣∣ V
εN (η̂)

∣∣∣. We can then write thanks to the triangular inequality∣∣∣ V
εN (η̂)

∣∣∣ ≤ ( Z
l,εN
1 + Z

l,εN
2 + Z

l,εN
3 )(η̂),

where

Z
l,εN
1 =

∣∣∣∣∣∣ 1

(2εN + 1)2

∑
x∈BεN

τxg − 1

(2l + 1)2

∑
| y−x |≤l

τyg

∣∣∣∣∣∣
is the difference between g and its local average,

Z
l,εN
2 =

1

(2εN + 1)2

∑
x∈BεN

∣∣∣∣∣∣Eτxρ̂l(g)− 1

(2l + 1)2

∑
| y−x |≤l

τyg

∣∣∣∣∣∣
is the difference between the local average of g and its expectation under the product
measure with parameter the local empirical angular density ρ̂l, and

Z
l,εN
3 =

1

(2εN + 1)2

∑
x∈BεN

|Eτxρ̂l(g)− Eρ̂εN (g) |

is the difference between the expectations of g under the empirical microscopic and
macroscopic empirical angular density ρ̂l and ρ̂εN .

Let us consider the first term, N−2
∑
x τx Z

l,εN
1 . All the terms in Z

l,εN
1 correspond-

ing to the x’s in BεN−l vanish, since they appear exactly once in both parts of the
sum. The number of remaining terms can be crudely bounded by 4εNl, and each term
takes the form τzg/(2εN + 1)2. Hence, we have the upper bound

E∗α

fNT 1

N2

∑
x∈T2

N

τx Z
l,εN
1

 ≤ Kl

εN
E∗α

fNT 1

N2

∑
x∈T2

N

τx| g |

 .

Since g is a bounded function, this expression can be bounded from above by
Kl ||g||∞
εN

E∗α
(
f
N

t

)
= C(l, ε, g)oN (1),

which proves that

lim sup
ε→0

lim sup
N→∞

E∗α

 1

N2

∑
x∈T2

N

τx Z
l,εN
1 f

N

t

 = 0.
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Now since ∑
x∈T2

N

1

(2εN + 1)2

∑
y∈BεN (x)

τyg =
∑
x∈T2

N

τxg,

the two following terms can respectively be rewritten as

E∗α

fNT 1

N2

∑
x∈T2

N

τx Z
l,εN
2

 = E∗α

fNT 1

N2

∑
x∈T2

N

τx
∣∣Eρ̂l(g)− 〈g〉l0

∣∣(4.6)

and

E∗α

fNT 1

N2

∑
x∈T2

N

τx Z
l,εN
3

 = E∗α

fNT 1

N2

∑
x∈T2

N

|Eτxρ̂l(g)− Eρ̂εN (g) |

 .(4.7)

The quantity (4.6) vanishes in the limit N →∞ then l→∞ thanks to the one-block
estimate stated in Lemma 4.2.1.

Finally, according to Definition 3.1.2, (4.7) also vanishes thanks to the two-block
estimate of Lemma 4.2.2 and the Lipschitz-continuity of the application

Ψg : ( M 1(S), ||| . |||)→ R

α̂ 7→ Eα̂ (g) ,

which was proved in Proposition C.2.1. The Replacement Lemma 4.1.1 thus follows
from the one and two-blocks estimates.

In the next two Sections 4.3 and 4.4, we prove the one-block and two-block esti-
mates. The strategy for these proofs follows closely these presented in [28], albeit it
requires some adjustments due to the measure-valued nature of the parameter of the
product measure µα̂ and the necessity to control the full clusters.

4.3. Proof of Lemma 4.2.1: The one-block estimate

The usual strategy to prove the one block estimate is to project the estimated quan-
tity on sets with fixed number of particles, on which the density of f should be constant
thanks to the bound on the Dirichlet form.

To prove the one-block estimate, thanks to the translation invariance of µ∗α, it is
sufficient to control the limit as N goes to ∞, then l→∞ of

E∗α

f. 1

N2

∑
x∈T2

N

τx V
l

 = E∗α( V
lf),
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where f = N−2
∑

T2
N
τxf is the average over the periodic domain of the translations

of the density f . Furthermore, define sg a fixed integer such that g is measurable
w.r.t. (η̂x)x∈Bsg . We introduce for l larger than sg

Ṽ
l

= 〈g(η̂)〉l−sg0 − Eρ̂l(g) = V
l + o1(l),

where the o1(l) vanishes uniformly in η̂ as l → ∞. Proving the one block estimate

for Ṽ
l
instead of V

l is therefore sufficient, and Ṽ
l
depends on the configuration only

through the sites in Bl.
We first eliminate the configurations in which the box Bl is almost full. Notice that

the average Ṽ
l
is bounded because g is a cylinder function. We can therefore write

E∗α( Ṽ
l
f) ≤ E∗α( Ṽ

l
1Elf) + C(g)E∗α(1Ecl f),

where El is the event on which at least two sites are empty in Bl, defined after
Equation (3.18), and Ecl is its complementary event. The second term in the right-
hand side vanishes by definition of f , because f verifies (4.4), and it is therefore
sufficient to prove that

lim sup
l→∞

lim sup
N→∞

E∗α( Ṽ
l
1Elf) = 0.

Furthermore, the convexity of the Dirichlet form and the entropy yield that condi-

tion (i) of the one-block estimate is also satisfied by f . Since Ṽ
l
1El depends on η̂ only

through the η̂x’s in the cube Bl we can replace the density f in the formula above by
its conditional expectation f l, defined, for any configuration η̂′ on Bl by

f l(η̂
′) = E∗α(f | η̂x = η̂′x, x ∈ Bl).

For any function f depending only on sites in Bl let E∗α,l be the expectation with
respect to the product measure µ∗α over Bl. With the previous notations, and in order
to prove the one-block estimate, it is sufficient to prove that

lim sup
l→∞

lim sup
N→∞

E∗α,l
(

Ṽ
l
1Elf l

)
≤ 0.

In order to proceed, we need to estimate the Dirichlet form and the entropy of f l
thanks to that of f , and prove the following lemma

Lemma 4.3.1. – We have the following bounds

(4.8) Dl

(
f l
)
≤ C(l)N−2 and H(f l) ≤ C(l).

Proof of Lemma 4.3.1. – Estimate on the Dirichlet form of f l. – We denote by Lx,y
the symmetric part of the exclusion generator corresponding to the transfer of a
particle between x and y

Lx,yf(η̂) = (ηx − ηy) (f(η̂y,x)− f(η̂)),

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



56 CHAPTER 4. LAW OF LARGE NUMBERS

and by Dx,y the part of the Dirichlet form of the exclusion process corresponding
to Lx,y

Dx,y(f) = −E∗α
(√

f Lx,y
√
f
)
.

With this notation, we have

D(f) =
∑

| x−y |=1

Dx,y(f),

where D is the Dirichlet form introduced in Equation (3.6). We denote in a similar
fashion the Dirichlet form restricted to the box of size l for any function h depending
only on the sites in Bl by

Dx,y
l (h) = −E∗α,l

(√
h Lx,y

√
h
)
.

Since the conditioning f 7→ fl is an expectation, and since the Dirichlet elements Dx,y
l

are convex, the inequality
Dx,y
l (f l) ≤ Dx,y(f)

follows from Jensen’s inequality. We deduce from the previous inequality, by summing
over all edges (x, y) ∈ Bl, thanks to the translation invariance of f , that

Dl(f l) ≤
∑

(x,y)∈Bl

Dx,y(f) = 2l(2l + 1)

2∑
j=1

D0,ej (f) =
(2l + 1)2

N2
D(f),

where Dl is the Dirichlet form of the process restricted to the particle transfers with
both the start and end site in Bl. Up to this point, we have proved that for any
function f such that D(f) ≤ D(f) ≤ K0, we have as wanted

(4.9) Dl(f l) ≤ C1(l)N−2.

Estimate on the entropy of f l. – Recall that we defined the entropy H(f) =

E∗α(f log f) and that we already established H(f) ≤ K0N
2. Let us partition T2

N

in q := bN/(2l + 1)c2 square boxes B1 := Bl(x1), . . . , Bq := Bl(xq), and Bq+1, which
contains all the site that weren’t part of any of the boxes. We can thus write

T2
N =

q+1⊔
i=1

Bi.

We denote by η̂i the configuration restricted to Bi and by ξ̂i the complementary
configuration to η̂i. In other words, for any i ∈ [[1, q + 1]], we split any configuration
on the torus η̂ into η̂i and ξ̂i. We define for any i ∈ [[1, q]] the densities on the η̂i’s

f
i

l(η̂
i) = E∗α

(
f(η̂i, ξ̂i)

∣∣η̂i) .
Let us denote by ϕ the product density w.r.t. µ∗α with the same marginals as f , defined
by

ϕ(η̂) = f
1

l (η̂
1)f

2

l (η̂
2) · · · fq+1

l (η̂q+1),
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elementary entropy computations yield that

H(f) = Hϕ

(
f/ϕ

)
+

q+1∑
i=1

H
(
f
i

l

)
,

where Hϕ(f) = H(fµ∗α | ϕµ∗α). Since by construction f is translation invariant, for
any i = 1, . . . , q, we can write H

(
f
i

l

)
= H

(
f

1

l

)
= H

(
f l
)
, therefore in particular, the

previous bound also yields, thanks to the non-negativity of the entropy, that

H(f) ≥ qH
(
f l
)
.

Since q is of order N2/l2, this rewrites

(4.10) H(f l) ≤
K0N

2

q
≤ C2(l),

and proves Equation (4.8).

Thanks to Lemma (4.3.1) we now reduced the proof of Lemma 4.2.1 to

(4.11) lim sup
l→∞

lim sup
N→∞

sup
Dl(f)≤C1(l)N−2

H(f)≤C2(l)

E∗α,l
(

Ṽ
l
1Elf

)
= 0.

Since the set of measures with density w.r.t. µ∗α such that H(f) ≤ C2(l) is weakly
compact, to prove the one block estimate of Lemma 4.2.1, it is sufficient to show that

lim sup
l→∞

sup
Dl(f)=0

H(f)≤C2(l)

E∗α,l
(

Ṽ
l
1Elf

)
.

Before using the equivalence of ensembles, we need to project the limit above over
all sets with fixed number of particles ΣK̂l defined in Equation (3.3). Recall from
Definition 3.1.6 the projection of the grand-canonical measures on the sets with fixed
number of particles. For any density f w.r.t. µ∗α, such that Dl(f) = 0, thanks to
Section 3.3 and the presence of the indicator function, f is constant on ΣK̂l for any
K̂ ∈ K̃l. We therefore denote, for any such f , by f(K̂) the value of f on the set ΣK̂l .
Shortening

∫
K̂∈Kl for the sum

∑
K≤(2l+1)2

∫
θ1∈S . . .

∫
θK∈S , we can write thanks to the

indicator functions 1El , for any f satisfying Dl(f) = 0,

(4.12) E∗α,l
(

Ṽ
l
1Elf

)
=

∫
K̂∈K̃l

f(K̂)El,K̂( Ṽ
l
)dµ∗α

(
ΣK̂l

)
,

where K̃ was defined in (3.2).

Since
∫
K̂∈Kl f(K̂)dµ∗α

(
ΣK̂l

)
= 1 and El,K̂

(
Ṽ
l
)
≤ supK̂∈K̃l El,K̂

(
Ṽ
l
)
, we obtain

lim sup
l→∞

lim sup
N→∞

sup
Dl(f)≤C2(l)N−2

H(f)≤C2(l)

E∗α,l
(

Ṽ
l
1Elf

)
≤ lim sup

l→∞
sup
K̂∈K̃l

El,K̂

(
Ṽ
l
)
.
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l

B1

Bp

B0

Bl

2k

Figure 1. Construction of the Bi

To conclude the proof of Equation (4.11) and the one-block estimate, it is therefore
sufficient to prove that the right-hand side above vanishes.

For any K̂ ∈ Kl, recall that α̂K̂ ∈ M 1(S) is the grand-canonical parameter

α̂K̂ =
1

(2l + 1)2

K∑
k=1

δθk ∈ M 1(S).

Since the expectation El,K̂ conditions the process to having K particles with an-

gles ΘK in Bl, by definition of Ṽl, letting l′ = l − sg we can write

∣∣∣∣El,K̂ ( Ṽ
l
) ∣∣∣∣ ≤ El,K̂

∣∣∣∣∣∣ 1

(2l′ + 1)2

∑
x∈Bl′

τxg − Eα̂
K̂

(g)

∣∣∣∣∣∣
 .

Let k be an integer that will go to infinity after l, and let us divide Bl according
to Figure 1 into q boxes B1, . . . , Bq, each of size (2k + 1)2, with q = b 2l+1

2k+1c
2. let

k′ = k − sg, B′i denotes the box of size (2k′ + 1) centered inside Bi, and Let B′0 =

Bl′ −
⋃q
i=1B

′i, the number of sites in B0 is bounded for some constant C := C(g)

by Ckl.
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With these notations, the triangular inequality yields

El,K̂

∣∣∣∣∣∣Eα̂K̂ (g)− 1

(2l′ + 1)2

∑
x∈Bl′

τxg

∣∣∣∣∣∣


≤ |B
′1 |

|Bl′ |

q∑
i=0

El,K̂

(∣∣∣∣∣Eα̂K̂ (g)− 1

|B′i |
∑
x∈B′i

τxg

∣∣∣∣∣
)

=
(2k′ + 1)2

(2l′ + 1)2

q∑
i=1

El,K̂

(∣∣∣∣∣Eα̂K̂ (g)− 1

(2k′ + 1)2

∑
x∈B′i

τxg

∣∣∣∣∣
)

+O

(
k

l

)
.

Since the distribution of the quantity inside the expectation does not depend on i,
the quantity above can be rewritten

q
(2k′ + 1)2

(2l′ + 1)2︸ ︷︷ ︸
→1

El,K̂

∣∣∣∣∣∣Eα̂K̂ (g)− 1

(2k′ + 1)2

∑
x∈Bk′

τxg

∣∣∣∣∣∣
+O

(
k

l

)
.

Because g is a cylinder function, and since k goes to ∞ after l, the quantity inside
absolute values is a local function for any fixed k. Letting l go to ∞, the equivalence
of ensembles stated in Proposition C.1.1 allows us to replace the expectation above,
uniformly in K̂, by

Eα̂
K̂

∣∣∣∣∣∣Eα̂K̂ (g)− 1

(2k′ + 1)2

∑
x∈Bk′

τxg

∣∣∣∣∣∣
 .

Finally, since
⋃
l∈N{α̂K̂ , K̂ ∈ K̃l} ⊂ M 1(S), where M 1(S) is the set of angle density

profiles introduced in Definition 3.1.1,

lim sup
l→∞

sup
K̂∈Kl

El,K̂( Ṽ
l
) ≤ sup

α̂∈M 1(S)

Eα̂

∣∣∣∣∣∣Eα̂(g)− 1

(2k′ + 1)2

∑
x∈Bk′

τxg

∣∣∣∣∣∣
 ,

whose right-hand side vanishes as k →∞ by the law of large numbers, thus concluding
the proof of the one-block estimate.

4.4. Proof of Lemma 4.2.2: The two-block estimate

This section follows the usual strategy for the two-block estimate, with small adap-
tations to the topological setup on the space of parameters M 1(S) introduced in Def-
inition 3.1.2.
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Our goal is to show that for any density f satisfying conditions i) and ii) in
Lemma 4.2.1,

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
y∈BεN

E∗α

 1

N2

∑
x∈T2

N

||| τx+yρ̂l − τxρ̂εN |||f

 = 0.

The previous expectation can be bounded from above by triangle inequality by

E∗α

 1

N2

∑
x∈T2

N

1

(2εN + 1)2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
z∈BεN

(τx+yρ̂l − τx+z ρ̂l)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣f
+ o(l/εN).

In this way, we reduce the proof to comparing average densities in two boxes of size l
distant of less than 2εN . Let us extract in the sum inside the integral the terms in z′s
such that | y − z′ | ≤ 2l, the number of such terms is at most (4l + 1)2, and this
quantity is bounded from above by

E∗α

 1

N2

∑
x∈T2

N

1

(2εN + 1)2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∑
z∈BεN
| y−z |>2l

(τx+yρ̂l − τx+z ρ̂l)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣f
+ o(l/εN).

This separation was performed in order to obtain independent empirical measures
τx+yρ̂l and τx+z ρ̂l. Regarding the expectation above, notice that we now only require
to bound each term in the sum in z. In order to prove the two-block estimate, it is
thus sufficient to show that

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
2l<| y |<2εN

E∗α

 1

N2

∑
x∈T2

N

||| τx+yρ̂l − τxρ̂l |||f

 = 0.

As in the proof of the one-block estimate, the expectation above can be rewritten

E∗α
(
||| τyρ̂l − ρ̂l |||f

)
,

where f = N−2
∑
x∈T2

N
τxf is the average of the density f . We can also introduce

the cutoff functions 1El in the expectation above, thanks to f satisfying (4.4) and
||| τyρ̂l − ρ̂l ||| being a bounded quantity.

Let By,l be the set Bl ∪ τyBl, the quantity under the expectation above is mea-
surable with respect to the sites in By,l. Before going further, let us denote, for any
configuration η̂ ∈ ΣN , η̊1 the configuration restricted to Bl and η̊2 the configuration
restricted to y + Bl = τyBl. We also denote by η̊ the configuration (η̊1, η̊2) on By,l.
Let us finally write µy,l for the projection of the product measure µ∗α on By,l, and
Ey,l the expectation with respect to the latter.

With these notations, the expectation above can be replaced by

E∗α
(
||| τyρ̂l − ρ̂l |||1Elfy,l

)
,
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Bl, η̊1

τyBl, η̊2

y

0

2l

Figure 2.

where for any density f , fy,l is its conditional expectation with respect to the sigma-
field generated by (η̂x)x∈By,l ,

fy,l(η̊) = E∗α
(
f | η̂|By,l = η̊

)
,

which is well-defined because the two boxes Bl and τyBl are disjoint, thanks to the
condition | y | > 2l.

As in the proof of the one-block estimate, we now need to estimate the Dirichlet
form of fy,l in terms of that of f , on which we have some control. For that purpose,
let us introduce with the notations of the previous section

Dl,y(h) = −Ey,l(h L 0,yh)−
∑

x,z∈Bl
| x−z |=1

Ey,l(h Lx,zh)−
∑

x,z∈y+Bl
| x−z |=1

Ey,l(h Lx,zh)

:= D0
l,y + D1

l,y + D2
l,y(4.13)

the Dirichlet form corresponding to particle transfers inside the two boxes, and al-
lowing a particle to transfer from the center of one box to the center of the other,
according to Figure 2. The work of the previous section allows us to write that

−Ey,l(fy,l Lx,zfy,l) ≤ Dx,z(f),

which implies, if D (f) ≤ C0 that

(4.14) D1
l,y(fy,l) +D2

l,y(fy,l) ≤ 2C0
(2l + 1)2

N2
,

by translation invariance of µα̂ and f . We now only need to estimate the third
term D0

l,y. Let us consider a path x0 = 0, x1, . . . , xk = y of minimal length, such
that |xi − xi+1 | = 1 for any i ∈ {0, . . . , k− 1}. For any such path, we have k ≤ 4εN ,
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since | y | ≤ 2εN , and we can write

D0
l,y(f) ≤ −E∗α(f L 0,yf) =

1

2
E∗α
[
| η0 − ηy | (f(η̂0,y)− f(η̂))2

]
,

where η̂0,y here is the state where the sites in 0 and y are inverted regardless of the
occupation of either site. Since η0 − ηy vanishes whenever both sites 0 and y are
occupied or both are empty, we can for example assume that η0 = 1 and ηy = 0. For
any configuration η̂0 = η̂, we let for any i ∈ {1, . . . , k}

η̂i =
(
η̂i−1

)xi−1,xi

Thanks to the elementary inequality k∑
j=1

aj

2

≤ k
k∑
j=1

a2
j ,

and by definition of the sequence (η̂i)i=0...k (which yields in particular η̂0 = η̂ and
η̂k = η̂0,y), the previous equation yields

E∗α
[
η0(1− ηy)(f(η̂0,y)− f(η̂))2

]
≤ k

k−1∑
i=0

E∗α
[
η0(1− ηy)(f(η̂i+1)− f(η̂i))2

]
= k

k−1∑
i=0

E∗α
[
ηixi(1− η

i
xi+1

)
[
f(
(
η̂i
)xi,xi+1

)− f(η̂i)
]2]

.

Since µ∗α is invariant through any change of variable η̂ → η̂i, and since we can easily
derive the same kind of inequalities with ηy(1 − η0) instead of η0(1 − ηy), we obtain
that

(4.15) D0,y
l (f) ≤ k

k−1∑
i=0

Dxi+1,xi(f) = k2N−2D (f) ≤ 16ε2D (f) ,

thanks to the translation invariance of f . Finally, Equations (4.13), (4.14) and (4.15)
yield

(4.16) Dl,y(fy,l) ≤ 2C0
(2l + 1)2

N2
+ 16C0ε

2,

which vanishes as N →∞ then ε→ 0. A bound on the entropy analogous to (4.8) is
straightforward to obtain. Finally, to prove the two-block estimate, as in the proof of
the one-block estimate, we can get back to proving that
(4.17)
lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
2l<| y |<2εN

sup
Dl,y(f)≤2C0

(2l+1)2

N2 +16C0ε2

Ey,l (||| τyρ̂l − ρ̂l |||1Elf) = 0.

Any density satisfying the boundDl,y(f) ≤ 2C0
(2l+1)2

N2 +16C0ε
2 is ultimately constant

on any set with fixed number of particles and angles in the set By,l with at least two
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empty sites. More precisely, denote

α̂y,`(η̂) =
1

2(2l + 1)2

∑
x∈Bl∪τyBl

ηxδθx

the empirical canonical state of the configuration in Bl∪ τyBl, and denote by f̂(.) the
conditional expectation of f w.r.t. the canonical state of the configuration in Bl∪τyBl,
defined for any K̂ on Bl ∪ τyBl by

f̂(K̂) = E∗α
(
f
∣∣α̂y,`(η̂) = α̂K̂

)
.

We can now write for any |y| > 2l

Ey,l (||| τyρ̂l − ρ̂l |||1Elf)

≤
∫
Ky,l

EK̂,y,l (||| τyρ̂l − ρ̂l |||) f̂(K̂)dK̂ + Ey,l
(

1El

∣∣∣ f − f̂(α̂y,`(η̂))
∣∣∣)

≤ sup
K̂∈Kyl,l

EK̂,yl,l (||| τyl ρ̂l − ρ̂l |||) + Ey,l
(

1El

∣∣∣ f − f̂(α̂y,`(η̂))
∣∣∣) ,

where we shortened yl = (2l + 1)e1, Ky,l denotes the set of canonical parameters
on Bl ∪ τyBl, and EK̂,y,l(.) = E∗α(· | α̂y,`(η̂) = α̂K̂). By compactness of the set of
densities w.r.t. µ∗α on Bl ∪ τyBl, the supremum over all densities satisfying Dl,y(f) ≤
2C0

(2l+1)2

N2 +16C0ε
2 of the second term above vanishes uniformly in |y| > 2l asN →∞

and then ε → 0, whereas the first term does not depend on y. To prove (4.17), it is
therefore sufficient to prove that

lim sup
l→∞

sup
K̂∈Kyl,l

EK̂,yl,l (||| τyl ρ̂l − ρ̂l |||) = 0,

which follows from the equivalence of ensembles.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021





CHAPTER 5

PRELIMINARIES TO THE NON-GRADIENT METHOD

The main focus of Sections 5 and 6 is the symmetric part of the displacement pro-
cess, whose contribution to the hydrodynamic limit requires the non-gradient method.
Before engaging in the proof of the non-gradient estimates, however, we regroup sev-
eral results which will be needed throughout the proof.

5.1. Comparison with an equilibrium measure

In this section, we prove a result that will be used several times throughout the
proof, and which allows to control the exponential moments of a functional X by a
variational formula involving the equilibrium measure µ∗α. This control is analogous
to the so called sector condition for asymmetric processes, which ensures that the
mixing due to the symmetric part of the generator is sufficient to balance out the
shocks provoked by the antisymmetric part.

Remark 5.1.1. – [Non-stationarity of µ∗α for the weakly asymmetric process] It has
already been pointed out that L is self-adjoint w.r.t. any product measure µα̂, which
is not in general the case of L

G,β=0. However, L
G,β=0 is self-adjoint w.r.t. µ∗α due

to the uniformity in θ of that measure. Asymmetric generators are usually “almost”
anti-self-adjoint, in the sense that one could expect L

WA∗
= − L

WA. This identity is
for example true for the TASEP , for which the asymmetry is constant and does not
depend on each particle.

It is not true in our case however, due to the exclusion rule and the dependency of
the asymmetry in the angle of the particle. To clarify this statement, see the adjoint
operator as a time-reversal, and consider a configuration with two columns of particles
wanting to cross each other. This configuration would be stuck under L

WA, however,
under the time-reversed dynamics L

WA∗, it starts to move. This illustrates that in our
model, the asymmetric generator L

WA is not anti-self-adjoint.
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Let us denote accordingly to the previous notation (2.15) and recalling the defini-
tion of the λ′is (2.1), for i = 1, 2

jλii = λi(θ0)η0(1− ηei)− λi(θei)ηei(1− η0).

Elementary computations yield accordingly that the adjoint in L2(µ∗α) of L
WA is in

fact given by

(5.1) L
WA,∗

= − L
WA

+ 2
∑
x∈T2

N

∑
i=1,2

τxj
λi
i .

This identity will be necessary to prove the following result, which compares the
measure of the process with drift to the measure µ∗α.

Lemma 5.1.2. – Recall the topology on ΣN introduced in Proposition 3.2.3, and fix a
bounded measurable function

X : ΣN × [0, T ]→ R

(η̂, t) 7→ Xt(η̂).

For any γ > 0, we have

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Xt(η̂(t))dt

)]

≤ 2Tλ2

γ
+

1

γ

∫ T

0

dt sup
ϕ

{
E∗α (ϕγXt(η̂))− 1

2
D(ϕ)

}
,

where the supremum in the right-hand side is taken on the densities w.r.t. µ∗α.

Proof of Lemma 5.1.2. – Let us denote by Pλ,Xt the modified semi-group

Pλ,Xt = exp

[∫ t

0

Lβ=0
N + γN2Xsds

]
,

where Lβ=0
N is the alignment-free generator introduced in (3.16) and let us denote in

this section by <., .>α the inner product in L2(µ∗α). For any i = 1, 2, and any H,
and T > 0, the Feynman-Kac formula yields

Eλ,0µ∗α

[
exp

(
γN2

∫ T

0

Xt(η̂(t))dt

)]
= <1, Pλ,XT 1>α ≤ <Pλ,XT 1, Pλ,XT 1>1/2

α ,(5.2)

by definition of Pλ,Xt ,

(5.3)
d

dt
<Pλ,Xt 1, Pλ,Xt 1>α = <Pλ,Xt 1, (Lβ=0

N + Lβ=0,∗
N + 2γN2Xt)P

λ,X
t 1>α,

where M∗ stands for the adjoint in L2(µ∗α) of M . By definition of Lβ=0
N , we have

Lβ=0,∗
N = N2 L

∗
+N L

WA,∗
+ L

G,β=0,∗
.
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We now work to control the weakly asymmetric contribution in the right-hand side
of Equation (5.3), which does not vanish in our case, as a consequence of Remark 5.1.1.
For that purpose, consider a function ϕ ∈ L2(µ∗α), identity (5.1) yields

<ϕ, ( L
WA

+ L
WA,∗

)ϕ>α = 2
∑
x∈T2

N

∑
i=1,2

E∗α
[
ϕ2τxj

λi
i

]
.

Recall the definition of ∇af given in Equation (3.4). A change of variable η̂ 7→ η̂x,x+ei

on the second part of τxjλii yields that for any x

E∗α(ϕ2τxj
λi
i ) = −E∗α(λi(θx)∇x,x+eiϕ

2) = −E∗α
[
λi(θx)

(
ϕ(η̂x,x+ei) + ϕ

)
∇x,x+eiϕ

]
,

therefore applying the elementary inequality ab ≤ a2/2 + b2/2, to

a =
√
N∇x,x+eiϕ and b = −λi(θ0)√

N

(
ϕ(η̂x,x+ei) + ϕ

)
,

we obtain (since λi(θ) is either λ cos(θ) or λ sin(θ) and is less than λ)

<ϕ, ( L
WA

+ L
WA,∗

)ϕ>α

≤ N

2

∑
x∈T2

N

∑
i=1,2

E∗α
[
(∇x,x+eiϕ)

2
]

+
λ2

2N

∑
x∈T2

N

∑
i=1,2

E∗α
[
(ϕ(η̂x,x+ei) + ϕ)2

]
.

Since (ϕ(η̂x,x+ei) + ϕ)2 is less than 2ϕ2(η̂x,x+ei) + 2ϕ2, we finally obtain that,

<ϕ,N( L
WA

+ L
WA,∗

)ϕ>α ≤ −N2E∗α [ϕ Lϕ] + 4λ2N2E∗α
[
ϕ2
]
.

In particular, applying this identity to ϕ = Pλ,Xt 1, we deduce from Equation (5.3)
that
d

dt
<Pλ,Xt 1, Pλ,Xt 1>α ≤ <Pλ,Xt 1,

[
2γN2Xt +N2 L + 2 L

G,β=0
+ 4λ2N2

]
Pλ,Xt 1>α

≤
(
νγ(t) + 4λ2N2

)
<Pλ,Xt 1, Pλ,Xt 1>α+ 2<Pλ,Xt 1, L

G,β=0
Pλ,Xt 1>α,

where νγ(t) is the largest eigenvalue of the self-adjoint operator N2 L + 2γN2Xt. It is
not hard to see that the second term above is non-positive. Indeed, for any function
ϕ on ΣN , by definition of L

G,β=0 (cf. Equation (2.5))

<ϕ, L
G,β=0

ϕ>α =
∑
x∈T2

N

E∗α
(
ηxϕ(η̂)

[
1

2π

∫
S

ϕ(η̂x,θ)dθ − ϕ(η̂)

])

= −1

2

∑
x∈T2

N

E∗α

(
ηx

[
1

2π

∫
S

ϕ(η̂x,θ)dθ − ϕ(η̂)

]2
)
≤ 0.

To establish the last identity, we only used that under µ∗α, the angles are chosen
uniformly, and therefore E∗α (ηxϕ(θx)) = E∗α(ηx)(1/2π)

∫
S
ϕ(θ′)dθ′. We thus obtain

that
d

dt
<Pλ,Xt 1, Pλ,Xt 1>α ≤

(
νγ(t) + 4λ2N2

)
<Pλ,Xt 1, Pλ,Xt 1>α,
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and Grönwall’s inequality therefore yields that

<Pλ,XT 1, Pλ,XT 1>α ≤ exp

(
4Tλ2N2 +

∫ T

0

νγ(t)dt

)
.

This, combined with (5.2), allows us to write

(5.4)
1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Xtdt

)]
≤ 2Tλ2

γ
+

∫ T

0

νγ(t)

2γN2
dt.

The variational formula for the largest eigenvalue of the self-adjoint operator
N2( L + 2γXt) yields that

νγ(t) =N2 sup
ψ, E∗α(ψ2)=1

E∗α (ψ( L + 2γXt)ψ) = 2N2 sup
ϕ

{
γE∗α (Xtϕ)− 1

2
D(ϕ)

}
,

where the second supremum is taken over all densities ϕ w.r.t. µ∗α, which together
with (5.4) concludes the proof of Lemma 5.1.2. To prove the last identity, one only
has to note that the supremum must be achieved by functions ψ of constant sign, so
that we can let ϕ =

√
ψ.

5.2. Relative compactness of the sequence of measures

We prove in this section that the sequence (QN )N∈N, defined in Equation (B.4),
is relatively compact for the weak topology. It follows from two properties stated in
Proposition 5.2.1 below. The first one ensures that the fixed-time marginals are con-
trolled, whereas the second ensures that the time-fluctuations of the process’s measure
are not too wide.

Given a functionH : T2×S → R, we already introduced in the outline of Section 2.4
the notation

<π,H> =

∫
T2×S

H(u, θ)π(du, dθ).

The following result yields sufficient conditions for the weak relative compactness of
the sequence (QN )N . Recall from Equation (2.10) the definition of the set of trajec-
tories M

[0,T ].

Proposition 5.2.1 (Characterization of the relative compactness on P( M
[0,T ])). –

Let PN be a sequence of probability measures on the set of trajectories M
[0,T ] defined

in (2.10), such that

(1) There exists some A0 > 0 such that for any A > A0,

lim sup
N→∞

PN

(
sup

s∈[0,T ]

<πs, 1> ≥ A

)
= 0.
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(2) For any H ∈ C2,1(T2 × S), ε > 0,

lim
δ→0

lim sup
N→∞

PN

 sup
| t−t′ |≤δ
0≤t′,t≤T

|<πt′ , H>−<πt, H> | > ε

 = 0.

Then, the sequence (PN )N∈N is relatively compact for the weak topology.

Since this proposition is, with minor adjustments, found in [3] (cf. Theorem 13.2,
page 139), we do not give its proof, and refer the reader to the latter. For now, our
focus is the case of the active exclusion process, for which both of these conditions are
realized. The strategy of the proof follows closely that of Theorem 6.1, page 180 of
[28], but requires two adjustments. First, our system is driven out of equilibrium by
the drift, and we therefore need to use the Lemma 5.1.2 stated in the previous section
to carry out the proof. The second adaptation comes from the presence of the angles,
and since most of the proof is given for a test function H(u, θ) = G(u)ω(θ), we need
to extend it in the general case where H cannot be decomposed in this fashion.

Proposition 5.2.2 (Compactness of (QN )N∈N). – The sequence (QN )N∈N defined
in Equation (B.4) of probabilities on the trajectories of the active exclusion process
satisfies conditions (1) and (2) above, and is therefore relatively compact.

Proof of Proposition 5.2.2. – The first condition does not require any work since the
active exclusion process only allows one particle per site and we can thus choose
A0 = 1. Regarding the second condition, recall that

(5.5) <πNt′ , H>−<πNt , H> =

∫ t

t′
LN<π

N
s , H>ds+MH

t −MH
t′ ,

where MH is a martingale with quadratic variation of order N−2. For more details,
we refer the reader to Appendix A of [28]. First, Doob’s inequality yields uniformly
in δ the crude bound

Eλ,β
µN

(
sup
t′,t≤δ

∣∣MH
t −MH

t′

∣∣) ≤ 2Eλ,β
µN

(
sup

0≤t≤T

∣∣MH
t

∣∣) ≤ C(H)N−1,(5.6)

where Eλ,β
µN

is the expectation w.r.t. the measure Pλ,β
µN

introduced just after Defini-
tion 3.1.4 of the complete process η̂[0,T ] started from the initial measure µN .

Regarding the integral part of (5.5), we first assume like earlier that H takes the
form

H(u, θ) = G(u)ω(θ),
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where G and ω are both C2 functions. When this is not the case, an application of
the periodic Weierstrass Theorem will yield the wanted result. Then, following the
same justification as in Section 2.4 we can write∫ t

t′
LN<π

N
s , H>ds

=
1

N2

∫ t

t′
ds
∑
x∈T2

N

τx

(
2∑
i=1

[Njωi + rωi ] (s)∂ui,NG(x/N) + τxγ
ω(s)G(x/N)

)
,

where the instantaneous currents jω, rω and γω were introduced in Definition 2.4.1.

The weakly asymmetric and Glauber contributions are easy to control, since both
jump rates rω and γω can be bounded by a same constant K, and we can therefore
write∫ t

t′

(
N L

WA
+ L

G
)
<πNs , H>ds ≤ K

∫ t

t′
ds

1

N2

∑
x∈T2

N

|G(x/N) |+
2∑
i=1

| ∂ui,NG(x/N) |

→N→∞ K(t− t′)
∫
T2

|G(u) |+
2∑
i=1

| ∂uiG(u) | du,

which vanishes as soon as | t′ − t | ≤ δ in the limit δ → 0. Finally,

QN

(
sup

| t−t′ |≤δ
0≤t′,t≤T

|<πt′ , H>−<πt, H>| > ε

)

≤ Pλ,β
µN

 sup
| t−t′ |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′
N2 L<πNs , H>ds

∣∣∣∣ > ε/3



+ Pλ,β
µN

 sup
| t−t′ |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′

(
N L

WA
+ L

G
)
<πNs , H>ds

∣∣∣∣ > ε/3



+ Pλ,β
µN

 sup
| t−t′ |≤δ
0≤t′,t≤T

∣∣MH
t −MH

t′

∣∣ > ε/3

 .
The second line of the right-hand side vanishes in the limit N → ∞ then δ → 0

thanks to the computation above, whereas the third line also vanishes thanks to
Markov’s inequality and Equation (5.6). Finally, the first term vanishes accordingly
to Lemma 5.2.3 below and the Markov inequality, thus completing the proof in the
case where H(u, θ) = G(u)ω(θ). The general case is derived just after the proof of
Lemma 5.2.3.
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Lemma 5.2.3. – For any function H(u, θ) = G(u)ω(θ) ∈ C2,0(T2 × S),

(5.7) lim
δ→0

lim sup
N→∞

Eλ,β
µN

 sup
| t′−t |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′
N2 L<πNs , H>ds

∣∣∣∣
 = 0.

Proof of Lemma 5.2.3. – The proof of this lemma follows, with minor adjustments
to account for the drift, the proof given in [28]. First, we get rid of the supremum
and come back to the reference measure with fixed parameter α ∈ ]0, 1[ thanks to
Lemma 5.1.2 of Section 5.1. Let us denote

(5.8) g(t) =

∫ t

0

N2 L<πNs , H>ds.

We now compare the measure of the active exclusion process to that of the process
started from equilibrium (µN = µ∗α), and with no alignment (β = 0), according to
Proposition 3.2.3 with A = RN2 and

X
(
η̂[0,T ]

)
= sup
| t′−t |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′
N2 L<πNs , H>ds

∣∣∣∣ = sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |.

This yields that for some constant K0 > 0, the expectation in Equation (5.7) is
bounded from above for any positive R by

(5.9)
1

RN2

K0N
2 + logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |


 .

We therefore reduce the proof of Lemma 5.2.3 to showing that

(5.10) lim
δ→0

lim sup
N→∞

1

R(δ)N2
logEλ,0µ∗α exp

R(δ)N2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |

 = 0,

where R(δ) goes to ∞ as δ goes to 0.

Let p and ψ be two strictly increasing functions such that ψ(0) = p(0) = 0 and
ψ(+∞) = +∞, with ψ continuous, we denote

I =

∫
[0,T ]×[0,T ]

ψ

(
| g(t)− g(t′) |
p(| t′ − t |)

)
dt′dt,

the Garsia-Rodemich-Rumsey inequality [24] yields that

(5.11) sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) | ≤ 8

∫ δ

0

ψ−1

(
4I

u2

)
p(du).
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Given any positive a, we choose p(u) =
√
u and ψ(u) = exp(u/a)−1, hence ψ−1(u) =

a log(1 + u). An integration by parts yields for any δ < e−2 that

∫ δ

0

ψ−1

(
4I

u2

)
p(du) = a

∫ δ

0

log

(
1 +

4I

u2

)
du

2
√
u

= a
√
δ log

(
1 + 4Iδ−2

)
+ a

∫ δ

0

8I

u3 + 4Iu

√
udu

≤ a
√
δ log

(
1 + 4Iδ−2

)
+ a

∫ δ

0

2√
u
du

= a
√
δ
[
log
(
δ2 + 4I

)
− 2 log δ + 4

]
≤ a
√
δ

[
− log δ

2
log
(
δ2 + 4I

)
− 4 log δ

]
≤ a
√
δ
[
−4 log δ log

(
δ2 + 4I

)
− 4 log δ

]
,(5.12)

since by assumption − log(δ) > 2. From Equations (5.11) and (5.12) we deduce that

logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |


≤ logEλ,0µ∗α exp

(
−32aRN2

√
δ log δ

[
1 + log

(
δ2 + 4I + 1

)])
holds for any a > 0. For δ < 1, Let us choose a = −(32RN2

√
δ log δ)−1 > 0, we can

write for the second term of (5.9) the upper bound

1

RN2
logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |

 ≤ 1

RN2

[
1 + log

(
1 + δ2 + 4Eα̂ (I)

)]
.

By definition,

I =

∫
[0,T ]×[0,T ]

exp


∣∣∣ ∫ tt′ N2 L<πNu , H>du

∣∣∣
a
√
| t− t′ |

 dt′dt− T 2.

Let us assume, purely for convenience, that T > 1/2, for δ sufficiently small, we have
4T 2−1−δ2 > 0, and the quantity inside the limit in Equation (5.10) can be estimated
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by

(5.13)
1

RN2
logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |


≤ 1

RN2

1 + log 4Eλ,0µ∗α

∫
[0,T ]×[0,T ]

exp


∣∣∣ ∫ tt′ N2 L<πNs , H>ds

∣∣∣
a
√
| t′ − t |

 dt′dt

 .
If T ≤ 1/2, we simply carry out a constant term in the log above, which does not
alter the proof.

Let us take a look at the two constants a and R. Noting the first bound on
the entropy mentioned earlier, in order to keep the first term of (5.9) in check,
R = R(δ) must simply grow to ∞. Furthermore, we previously obtained that
a = −(RN232

√
δ log δ)−1, we can choose a = N−2, thus R = (−1/32

√
δ log δ)−1,

which is non-negative, and goes to ∞ as δ → 0+. Therefore, the second term above
can be rewritten

1

RN2
log

∫
[0,T ]×[0,T ]

4Eλ,0µ∗α exp


∣∣∣∣∣∣∣∣
∫ t

t′

N

| t′ − t |1/2
∑
x∈T2

N
i=1,2

jωx,x+ei(s)∂ui,NG(x/N)ds

∣∣∣∣∣∣∣∣ dt
′dt

 .
In order to estimate the expectation above, we can get rid of the absolute value, since
e| x | ≤ ex + e−x, and since the function G is taken in a symmetric class of functions.
Furthermore, Lemma 5.1.2, applied with γ = 1 yields that the second term in the
right-hand side of (5.13) is less than

(5.14)
1

RN2
log

∫
[0,T ]×[0,T ]

exp

[
(t− t′)

2

[
4λ2N2 + νN (G,ω)

]]
dtdt′,

where νN (G,ω) is the largest eigenvalue in L2(µ∗α) of the self-adjoint operator

N2 L +
2N

| t′ − t |1/2
∑
x∈T2

N
i=1,2

jωx,x+ei∂ui,NG(x/N),

which can be rewritten as the variational formula

(5.15) νN (G,ω) = sup
f


2N

| t′ − t |1/2
∑
x∈T2

N
i=1,2

∂ui,NG(x/N)E∗α
(
fjωx,x+ei

)
−N2D(f)

 ,
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where the supremum is taken on all densities f w.r.t. µ∗α. In order to prove that the
eigenvalue above is of order N2, we now want to transform

N

| t′ − t |1/2
∑
x∈T2

N

∂ui,NG(x/N)E∗α
(
fjωx,x+ei

)
.

For any density f , and i = 1, 2, since jωx,x+ei(η̂
x,x+ei) = −τxjωi , we can write

E∗α
(
fjωx,x+ei

)
∂ui,NG(x/N) =− 1

2
E∗α
[
(f(η̂x,x+ei)− f)jωx,x+ei

]
∂ui,NG(x/N)

≤ 1

4C
E∗α
(

(jωx,x+ei)
2
(√

f(η̂x,x+ei)−
√
f
)2
)

+
C

4
(∂ui,NG(x/N))2E∗α

((√
f(η̂x,x+ei) +

√
f
)2
)
.

Since (jωx,x+ei)
2 ≤ ||ω||2∞ 1ηxηx+ei

=0, and since
[√
f(η̂x,x+ei) +

√
f
]2 ≤ 2f(η̂x,x+ei) + 2f ,

we obtain the upper bound

N

| t′ − t |1/2
∑
x∈T2

N

∂ui,NG(x/N)E∗α
(
fjωx,x+ei

)
≤

N ||ω||2∞
2C| t′ − t |1/2

D(f) +
N3C

| t′ − t |1/2
||∂uiG||

2
∞ ,

which holds for any positive C. We now set C = | t′ − t |−1/2 ||ω||2∞ /N so that the
Dirichlet form contributions in the variational Formula (5.15) cancel out. We finally
obtain that for some positive constant C1 = C1(G,ω), independent of N ,

νN (G,ω) ≤ C1N
2

| t− t′ |
,

which yields that (5.14) vanishes in the limit N →∞ and δ → 0, since R = R(δ) goes
to ∞ as δ goes to 0. Finally, we have proved thanks to Equation (5.13) that

lim
δ→0

lim sup
N→∞

1

RN2
logEλ,0µ∗α

exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |


 = 0,

which concludes the proof of Lemma (5.2.3).

In order to complete the proof of Proposition 5.2.2, we still have to consider the
case when H does not take a product form G(u)ω(θ). In this case, since H is smooth
it can be approximated by a trigonometric polynomial in u1, u2 and θ. Each term of
the approximation is then of the form G(u)ω(θ), and the previous result can therefore
be applied. More precisely, consider a smooth function H, and for any α > 0, there
exists a finite family (pαijk)0≤i,j,k≤Mα

of coefficients such that

sup
u∈T2,
θ∈S

∣∣∣∣∣∣H(u, θ) −
∑

i,j,k∈[[0,M ]]

pαijku
i
1u
j
2θ
k

∣∣∣∣∣∣ ≤ α.
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Let us now fix an ε > 0, and let us take α = ε/4. Then, considering the corresponding
family Pijk(u, θ) = pαijku

i
1u
j
2θ
k we have that

(5.16)
∣∣<πNt′ , H>−<πNt , H> ∣∣

≤

∣∣∣∣∣∣<πNt′ − πNt , H −
∑

i,j,k≤Mα

Pijk>

∣∣∣∣∣∣+
∑

i,j,j≤Mα

∣∣<πNt′ − πNt , Pijk> ∣∣ .
Since we allow at most 1 particle per site, and since H −

∑
i,j,k≤Mα

Pijk is smaller
than ε/4, the first term of the right-hand side above is less than ε/2. From this,
we deduce that for the left-hand side to be greater than ε, one of the terms∣∣<πNt′ , Pijk>−<πNt , Pijk> ∣∣ must be larger than ε/2M3

α. This yields that

QN

 sup
| s−t |≤δ
0≤t′,t≤T

|<πt′ , H>−<πt, H> | > ε


≤

∑
i,j,k≤Mα

QN

 sup
| t′−t |≤δ
0≤t′,t≤T

|<πt′ , Pijk>−<πt, Pijk> | >
ε

2M3
α

 .

Since α is fixed, we can now take the limit N → ∞ then δ → 0, in which the right-
hand side vanishes since all functions are decorrelated in u and θ. The result thus
holds for any smooth function H, thus completing the proof of Proposition 5.2.2.

We now prove that in the limit, the empirical measure of our process admits at
any fixed time a density w.r.t. the Lebesgue measure on T2.

Lemma 5.2.4. – Any limit point Q∗ of the sequence QN is concentrated on measures
π ∈ M

[0,T ] with time marginals absolutely continuous w.r.t. the Lebesgue measure
on T2,

Q∗ (π, πt(du, dθ) = ρ̂t(u, dθ)du, ∀t ∈ [0, T ]) = 1.

Proof of Lemma 5.2.4. – For any smooth function H ∈ C(T2) configuration η̂ in ΣN
and any corresponding empirical measure πN , we have

∣∣<πN , H> ∣∣ =

∣∣∣∣∣∣ 1

N2

∑
x∈T2

N

H(x/N)ηx

∣∣∣∣∣∣ ≤ 1

N2

∑
x∈T2

N

|H(x/N) |.

The right-hand side above converges as N goes to∞ towards
∫
T2 |H(u) |du. Since for

any fixed function H, the application

π 7→ sup
0≤t≤T

|<πt, H> |
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is continuous, any limit point Q∗ of (QN )N is concentrated on trajectories π such
that

sup
0≤t≤T

|<πt, H> | ≤
∫
T2

|H(u) |du,

for any smooth function H on T2, and therefore is absolutely continuous w.r.t. the
Lebesgue measure on T2.

5.3. Regularity of the density and energy estimate

In this section we prove that the macroscopic particle density is regular enough
for the weak hydrodynamic limit (2.11) to be well defined, i.e., that criterion iii) of
Definition 2.3.2 is satisfied. The proof follows the same strategy as in [28], we give it
for exhaustivity.

Due to the non-constant diffusion coefficients, the second derivative in Equa-
tion (2.11) cannot be applied to the test function, and we need, according to
condition iii) of Definition 2.3.2, to prove that the macroscopic profiles of our particle
system are such that ∇ρ is well-defined. We can now state the following result.

Theorem 5.3.1. – Any limit point Q∗ of the measure sequence (QN )N is concen-
trated on trajectories with ρt(u) ∈ H1 = W 1,2([0, T ] × T2). In other words, Q∗-a.s.,
there exists functions ∂uiρt(u) in L2([0, T ] × T2) such that for any smooth function
H ∈ C0,1([0, T ]× T2)

(5.17)
∫∫

[0,T ]×T2

ρt(u)∂uiHt(u)dudt = −
∫∫

[0,T ]×T2

Ht(u)∂uiρt(u) dudt.

Furthermore, there exists a constant K = K(T, λ, β, ζ̂) such that for any limit point
Q∗ of (QN ), and for any i,

(5.18) EQ∗
(∫∫

[0,T ]×T2

[∂uiρt(u)]2dudt

)
< K.

In particular, any such limit point Q∗ is concentrated on measures satisfying condition
iii) of Definition 2.3.2.

The proof is postponed to the end of this section. The usual argument to prove
this result is Riesz representation theorem, that yields that if∫∫

[0,T ]×T2

ρt(u)∂uiHt(u)dudt ≤ C

(∫
[0,T ]×T2

H2

)1/2

for anyH, there exists a function ∂uiρ ∈ L2([0, T ]×T2) such that (5.17) holds. For that
purpose, we need the estimate given in Lemma 5.3.2 below. Fix a direction i ∈ {1, 2},
for any x ∈ T2

N , shorten xk = x + kei, k ∈ {0, . . . , εN}. Following the strategy of
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the energy estimate of [28], and recalling that τxρδN is the empirical particle density
in BδN (x), we let

WN,i(ε, δ,H, η) =
1

N2

∑
x∈T2

N

H(x/N)

(
1

ε
[τx+εNeiρδN − ρδN ]−H(x/N)

)
.

Note that to emphasize that this quantity does not depend on the angles, we denote
its third variable as η instead of η̂.

Lemma 5.3.2. – Let {H l, l ∈ N} be a dense sequence in the separable algebra
C0,1([0, T ]× T2) endowed with the norm ||H||∞ +

∑2
i=1 ||∂uiH||∞. For any i = 1, 2,

there exists a positive constant K = K(T, λ, β, ζ̂) such that for any k ≥ 1 and ε > 0,

lim sup
δ→0

lim sup
N→∞

Eλ,β
µN

(
max

1≤l≤k

∫ T

0

WN,i(ε, δ,H
l
t , η(t))dt

)
≤ K0.

Proof of Lemma 5.3.2. – By the replacement Lemma 4.1.1, it is sufficient to show the
result above without the limit in δ, and with W̃N,i(ε,H, η) instead of WN,i, where

W̃N,i(ε,H, η) =
1

N2

∑
x∈T2

N

H(x/N)

(
1

ε
[ηx+εNei − ηx]−H(x/N))

)

=
1

N2

∑
x∈T2

N

H(x/N)
1

εN

εN−1∑
k=0

[
N(ηxk+1

− ηxk)−H(x/N)
]
.

Applying Proposition 3.2.3 to A = N2 and

X
(
η̂[0,T ]

)
= max

1≤i≤k

∫ T

0

W̃N,i(ε,H
l
t , η(t))dt,

the contribution of the Glauber dynamics and the initial measure can be compared
to the case β = 0 started from µ∗α,

Eλ,β
µN

(
max

1≤l≤k

∫ T

0

W̃N,i(ε,H
l
t , η(t))dt

)

≤ K0(T, β, ζ̂) +
1

N2

(
logEλ,0µ∗α

[
exp

(
N2 max

1≤l≤k

∫ T

0

W̃N,i(ε,H
l
t , η(t))dt

)])
.

The max can be taken out of the log in the second term because for any finite family
(ul), we have

exp

(
max
l
ul

)
≤
∑

expul

lim sup
N→∞

N−2 log

(∑
l

ul,N

)
≤ max

l
lim sup
N→∞

N−2 log uN,l.
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Furthermore, we apply Lemma 5.1.2 to γ = 1, and Xt = W̃N,i(ε,Ht, η), to obtain
that

1

N2
logEλ,0µ∗α

[
exp

(
N2

∫ T

0

W̃N,i(ε,Ht, η(t))dt

)]

≤ 2Tλ2 +
1

2

∫ T

0

dt sup
ϕ

{
2E∗α

(
ϕW̃N,i(ε,Ht, η)

)
−D (ϕ)

}
,

where the supremum is taken over all densities w.r.t. µ∗α. Letting

K(T, λ, β, ζ̂) = K0(T, β, ζ̂) + 2Tλ2,

to prove Lemma 5.3.2 it is therefore sufficient to show that the second term on the
right-hand side of the inequality above is non-positive in the limit N → ∞. This
will be implied by Lemma 5.3.3 below, since the time integral is now only applied
to H.

Lemma 5.3.3. – For any H ∈ C1(T2), and ε > 0,

lim sup
N→∞

sup
ϕ

{
2E∗α

(
W̃N,i(ε,H, η)ϕ

)
−D(ϕ)

}
≤ 0,

where the supremum is taken over the densities ϕ w.r.t. the product measure µ∗α.

Proof of Lemma 5.3.3. – The proof of this lemma follows the exact same steps as the
treatment of equation (7.3), p.106 in [28], we do not detail it: since ηxk+1

−ηxk appear-
ing in the expression of W̃N,i(ε,H, η) can be rewritten ηxk+1

(1− ηxk)− ηxk(1− ηxk+1
),

the proof of the lemma is just a matter of performing changes of variables
η̂ 7→ η̂xk,xk+1 , and using the elementary inequality

ab(c− d) ≤ a2(c+ d) +
b2

2
(
√
c−
√
d)2,

which holds for any positive c, d, to

a = H(x/N), b = ηxk+1
(1− ηxk), ηxk(1− ηxk+1

), c =
√
ϕ(η̂xk,xk+1), and d =

√
ϕ

in the first term of W̃N,i(ε,H, η).

Lemma 5.3.2 allows us to complete the proof of Theorem 5.3.1.

Proof of Theorem 5.3.1. – Recall that we defined in Section 2.2 Pλ,β
µN

, the measure
on the space D([0, T ],ΣN ) of the active exclusion process η̂(s) started with the mea-
sure µN , and QN is the measure on the corresponding measure space M

[0,T ]. Let us
introduce

ϕδ(u) = (2δ)−21[−δ,δ]2(u).
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Since τxρδN = (2δN)2

(2δN+1)2<πt, ϕδ(x/N − ·)> for any weak limit point Q∗ of (QN ),
Lemma 5.3.2 yields

lim sup
δ→0

EQ∗
(

max
1≤l≤k

∫∫
[0,T ]×T2

H l
t(u)

ε

(
<πt, ϕδ(u+ εei − ·)>−<πt, ϕδ(u− ·)>

)
−H l

t(u)2dudt

)
≤ K.

Since thanks to Lemma 5.2.4 any limit point Q∗ of (QN ) is concentrated on trajec-
tories absolutely continuous w.r.t. the Lebesgue measure on T2, letting δ then ε go
to 0, by dominated convergence, we obtain that

EQ∗
(

max
1≤l≤k

∫∫
[0,T ]×T2

[
∂uiH

l
t(u)ρt(u)−H l

t(u)2
]
dudt

)
≤ K,

where ρt(u) is the density of the measure
∫
S
πt(du, dθ) w.r.t. the Lebesgue mea-

sure on T2. By monotone convergence, and since the sequence (Hl) is dense in
C0,1([0, T ]× T2), we therefore obtain

(5.19) EQ∗
(

sup
H

∫∫
[0,T ]×T2

[
∂uiHt(u)ρt(u)−Ht(u)2

]
dudt

)
≤ K,

where the supremum is taken over all functions H ∈ C0,1([0, T ]× T2). Given a limit
point Q∗, let us denote by E the event on which the quantity inside parenthesis above
is finite:

E =

{
sup
H

∫∫
[0,T ]×T2

[
∂uiHt(u)ρt(u)−Ht(u)2

]
dudt <∞

}
,

and denote by ξ the elements of E . Then, thanks to the L1 bound we just obtained,
we have that Q∗( E ) = 1.

Define on C0,1([0, T ]× T2) the linear operator

fi(H) =

∫∫
[0,T ]×T2

∂uiHt(u)ρt(u)dudt,

then Equation (5.19) yields that for any ξ ∈ E , there exists a constant K(ξ) such
that for any positive constant r, rfi(H)− r2

∫∫
H2 ≤ K(ξ), i.e.,

fi(H) ≤ 1

r
K(ξ) + r

∫∫
H2.

Letting r =
√
K(ξ)/

∫∫
H2, and C0 = 2

√
K(ξ), we obtain that for any function

H ∈ C0,1([0, T ]× T2),

fi(H) ≤ C0(ξ)

(∫∫
[0,T ]×T2

H2

)1/2

.

The functional fi can then be extended to a bounded linear functional in
L2([0, T ]× T2). The conclusion then follows from Riesz’s representation theorem.
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CHAPTER 6

NON-GRADIENT ESTIMATES

6.1. Replacement of the symmetric current by a macroscopic gradient

In this section, we focus on the complete exclusion process, and replace the cur-
rent jωi by a quantity of the form τeih−h+ Lf , with f a function of the configuration
with infinite support. We then show that the perturbation Lf is of the same order
as the weakly asymmetric contribution, and they both contribute to the drift term of
Equation (2.11). To obtain the non gradient estimates, we use the formalism devel-
oped in [28] rather than that of [35]. This changes the proof substantially, with the
upside that the orders in N , as well as the studied quantities, are clearly identified at
any given point of the proof.

One of the challenges in proving the non-gradient hydrodynamic limit is to re-
place the local particle currents jωi by the gradient of a function of the empirical
measure. Recall that we already defined in Equation (2.21) the empirical angular
density ρ̂l ∈ M 1(S),

ρ̂l =
1

(2l + 1)2

∑
x∈Bl

ηxδθx ,

and we denote by ρl the empirical density

ρl =
1

(2l + 1)2

∑
x∈Bl

ηx = ρ̂l(S).

Let
ρωl =

1

(2l + 1)2

∑
x∈Bl

ηωx

be the average of ηω over a box of side 2l+1. Finally, for any function ϕ on ΣN , recall
that δi is the discrete derivative

δiϕ = τeiϕ− ϕ

(for example, δiηω0 = ηωei − η
ω
0 ).
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The usual strategy in the proof of the non-gradient hydrodynamic limit is to show
that for some coefficients dω, d : [0, 1]× R→ R+,

jωi + dω (ρεN , ρ
ω
εN ) δiρ

ω
εN + d (ρεN , ρ

ω
εN ) δiρεN

vanishes as N →∞. More precisely, the quantity above is in the range of the genera-
tor L , which is usually sufficient when the functions of the form Lf are negligible. In
our case, however, due to the addition of a weak drift, the usual martingale estimate
does not yield that Lf is negligible, but that L

D
f = ( L + N−1 L

WA
)f is negligi-

ble, therefore this perturbation can be integrated to the drift part, which is done in
Section 6.7.

For this replacement, we will need further notations similar to the ones introduced
in Section 4.1. In our case, the diffusion coefficient dω(ρ, ρω) is in fact the self-diffusion
coefficient ds(ρ), therefore we will from now on simply write ds(ρ) for the diffusion
coefficient relative to ρω. Note that it depends on the configuration only through the
empirical density, and not on the particle angles. For any positive integer l, and any
cylinder function f , let us thus denote

V
f,εN
i (η̂) = jωi + ds (ρεN ) δiρ

ω
εN + d (ρεN , ρ

ω
εN ) δiρεN − Lf,

where d : [0, 1]× R→ R+ is the diffusion coefficient given in (1.3).
We introduce for any smooth function G ∈ C2(T2)

(6.1) Xf,εN
i,N (G, η̂) =

1

N

∑
x∈T2

N

G(x/N)τx V
f,εN
i .

Our goal throughout this section is to prove that under the measure of our process,
Xf,εN
i,N (G, η̂) vanishes for any smooth function G, i.e., that the microscopic currents

can be replaced by a macroscopic average of the gradients up to a perturbation Lf

that will be dealt with later on.
The sum contains N2 terms, and the normalization is only 1/N , therefore an or-

der N has to be gained, and this is the major difficulty of the non-gradient dynamics.
To prove this statement, we decompose Xf,εN

i,N (G, η̂) into distinct vanishing parts. We
already introduced in Equation (3.18) the set

Ep,x =

 ∑
| y−x |≤p

ηy ≤ |Bp | − 2

 ,

such that at least two sites are empty in a vicinity of x of size p. The cutoff func-
tions 1Ep,x are crucial in order to control the local variations of the measure of the
process with the Dirichlet form.

We set for any integer l

(6.2) ρω,pl =
1

(2l + 1)2

∑
x∈Bl

ηωx1Ep,x and ρω,pl = ρωl − ρ
ω,p
l =

1

(2l + 1)2

∑
x∈Bl

ηωx1Ecp,x ,
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where Ecp,x is the complementary event of Ep,x.
We are now ready to split Xf,εN

i,N into 4 vanishing parts. Let us denote by

W1 = W
f,l
i,1(η̂) = jωi − 〈jωi 〉l

′

0 −
(

Lf − 〈 Lf〉l−sf0

)
the difference between jωi − Lf and their local average, and by

W2 = W
εN,p
i,2 (η̂) = ds (ρεN ) δiρ

ω,p
εN

the mesoscopic contributions of full clusters, where ρω,pεN was defined in Equation (6.2)
above. Let us also introduce

W3 = W
l,εN,p
i,3 (η̂) = ds (ρεN ) δiρ

ω,p
εN − ds (ρl) δiρ

ω,p
lp

+ d (ρεN , ρ
ω
εN ) δiρεN − d (ρl, ρ

ω
l ) δiρl′ ,

where lp = l−p−1 and l′ = l−1, which is the difference between the cutoff microscopic
and macroscopic gradients. Note that the cutoff functions are not needed for the total
density ρ, because the gradients will vanish on full configurations. Finally, we set

(6.3) W4 = W
f,l,p
i,4 (η̂) = 〈jωi 〉l

′

0 + ds (ρl) δiρ
ω,p
lp

+ d (ρl, ρ
ω
l ) δiρl′ − 〈 Lf〉

l−sf
0 ,

the microscopic difference between currents and gradients, taking into consideration
the perturbation Lf . For any smooth function G ∈ C2(T2), we also introduce

Y1 = Y f,li,1 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τx W1, Y2 = Y εN,pi,2 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τx W2,

Y3 = Y l,εN,pi,3 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τx W3 Y4 = Y f,l,pi,4 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τx W4.

By construction,

Xf,εN
i,N (G, η̂) =

4∑
k=1

Yk(G, η̂).

We can now state the main result of this section.

Theorem 6.1.1. – Let G be a smooth function in C1,2([0, T ] × T2), T > 0, and
i ∈ {1, 2}. For any cylinder function f ,

(6.4) lim sup
l→∞

lim sup
N→∞

Eλ,β
µN

(∣∣∣∣∣
∫ T

0

Y f,li,1 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.

Furthermore,

(6.5) lim
p→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

(∣∣∣∣∣
∫ T

0

Y εN,pi,2 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.

For any integer p > 1,

(6.6) lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

(∣∣∣∣∣
∫ T

0

Y l,εN,pi,3 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.
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Finally,

(6.7) inf
f

lim
p→∞

lim sup
l→∞

lim sup
N→∞

Eλ,β
µN

(∣∣∣∣∣
∫ T

0

Y f,l,pi,4 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0,

where the infimum in f is taken over the set C of cylinder functions.

The core of this section is dedicated to proving these four estimates. The proof of
Equation (6.4) is immediate and is sketched in Section 6.2.

Equation (6.5) is quite delicate, and requires both the control on full clusters de-
rived in Equation (3.19) and the energy estimate (5.18). It is proved in Section 6.3,
in which the main challenge, as in the control of full clusters, is to carry out the
macroscopic estimate (5.18) in a microscopic setup.

The proof of Equation (6.6) is given in Section 6.4. This limit is the non-gradient
counterpart of the two-block estimate stated in Lemma 4.2.2. It follows closely
the replacement of local gradients by their macroscopic counterparts performed in
Lemma 3.1, p.156 of [28], but needs some technical adaptation due to the presence
of the cutoff functions.

The last limit (6.7) requires the tools developed by Varadhan and Quastel [48]
[35] for the hydrodynamic limit for non-gradient systems, and therefore requires more
work. It is the non-gradient counterpart of the one-block estimate of Lemma 4.2.1.
However, if the latter was essentially a consequence of the law of large numbers, (6.7)
is analogous to the central limit theorem, where the gradient term plays the role
of −E(jωi ). The limit (6.7) is the focus of Sections 6.5-6.6.

Finally, Section 6.7, and in particular Lemma 6.7.4, is dedicated to the integration
of the contribution Lf to the drift part of the scaling limit.

These four estimates are sufficient to allow the replacement of currents by macro-
scopic averages of gradients, up to a perturbation Lf .

Corollary 6.1.2. – Let G be a smooth function in C1,2([0, T ] × T2), and T > 0,
and consider Xf,εN

i,N introduced in (6.1). Then for i ∈ {1, 2}

(6.8) inf
f

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

[∣∣∣∣∣
∫ T

0

Xf,εN
i,N (Gt, η̂(t))dt

∣∣∣∣∣
]

= 0.

Proof of Corollary 6.1.2. – Since

Xf,εN
i,N (G, η̂) =

4∑
k=1

Yk(G, η̂),

this corollary follows immediately from the triangular inequality, and Theorem 6.1.1
above, taking the limits N → ∞, then ε → 0 then l → ∞, then p → ∞, and finally
the infimums over the local functions f .
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6.2. Replacement of the currents and Lf by their local average

In this paragraph, we prove Equation (6.4), i.e., that for any i = 1, 2, any function
G ∈ C1,2([0, T ]× T2), and any cylinder function f ,

lim sup
l→∞

lim sup
N→∞

Eλ,β
µN

(∣∣∣∣∣
∫ T

0

Y1(Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.

We set

Gl,N (x/N) =
1

(2l + 1)2

∑
y∈T2

N , | y−x |≤l

G(y/N),

an integration by parts yields that, shortening l′ = l − 1

1

N

∑
x∈T2

N

G(x/N)

jωx,x+ei −
1

(2l′ + 1)2

∑
| y−x |≤l′

jωy,y+ei


=

1

N

∑
x∈T2

N

(
G(x/N)−Gl

′,N (x/N)
)
jωx,x+ei ≤

C(G)l2

N
.

since the difference G(x/N) −Gl,N (x/N) is a discrete Laplacian, and is therefore of
order l2/N2, and the currents jωx,x+ei are bounded. By the same reasoning, letting
lf = l − sf , we obtain a similar bound on the difference

1

N

∑
x∈T2

N

G(x/N)

τx Lf − 1

(2lf + 1)2

∑
| y−x |≤lf

τy Lf

 ≤ C ′(G, f)l2

N
,

since Lf is a bounded function (this last statement comes from the fact that f is,
and depends only on a finite number of sites). These two bounds finally yield that for
some constant K = C(G) + C ′(G, f),

|Y1(G, η̂) | ≤ Kl2

N
,

which immediately yields Equation (6.4) for any cylinder function f .

6.3. Estimation of the gradients on full clusters

We now prove that Equation (6.5) holds. Our goal is to bound Y εN,pi,2 (G, η̂(s))

thanks to the control of full clusters functions obtained in (3.19), and to the energy
estimate (5.18). For the sake of clarity, we drop the various dependencies, and simply
write

Y2 = Y εN,pi,2 .
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z00
BεN

BεN(−ei)

yεN

yεN−1

y−εN

y1−εN

zεN

zεN−1

z1−εN

z−εN

yεN−2

y0

y2−εN

zεN−2

z2−εN

Figure 1. Definition of the yk’s and zk’s.

By definition of Y2 and ρω,pεN (6.2),

Y2(G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τx (ds (ρεN ) δiρ
ω,p
εN )

=
1

N

∑
x∈T2

N

G(x/N)τx

(
ds (ρεN )

[
1

(2εN + 1)2

∑
y∈BεN (ei)

ηωy 1Ecp,y

− 1

(2εN + 1)2

∑
y∈BεN

ηωy 1Ecp,y

])
,

and we can rewrite it by summation by parts as

Y2(G, η̂) =
1

N

∑
x∈T2

N

ηωx1Ecp,x
1

(2εN + 1)2

( ∑
y∈BεN (x−ei)

G(y/N)τyds(ρεN )(6.9)

−
∑

y∈BεN (x)

G(y/N)τyds(ρεN )

)
.

Most of the terms in the parenthesis above cancel out, since the boxes BεN (x − ei)
and BεN (x) overlap except on the two sides (cf. Figure 1).
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For any k ∈ [[−εN, εN ]], we let according to Figure 1

yk = −(εN + 1)ei + kei′ and zk = εNei + kei′ ,

where i′ 6= i is the second direction on the torus, which are defined so that
BεN (−ei)\BεN = {y−εN , . . . , yεN} and BεN\BεN (−ei) = {z−εN , . . . , zεN}.

We thus obtain from (6.9)

Y2(G, η̂(s)) =
1

N

∑
x∈T2

N

ηωx1Ecp,x
1

(2εN + 1)2

(
εN∑

k=−εN

G

(
x+ yk
N

)
ds(τx+ykρεN )

(6.10)

−G
(
x+ zk
N

)
ds(τx+zkρεN ).

We can now rewrite the quantity inside the parenthesis as the sum over k of[
G

(
x+ yk
N

)
−G

(
x+ zk
N

)]
ds(τx+ykρεN )−G

(
x+ zk
N

)
[ds(τx+zkρεN )− ds(τx+ykρεN )] .

Since yk and zk are distant of 2εN + 1, the first term in the decomposition above
can be bounded in absolute value uniformly in x and k by (2εN + 1) ||∂uiG||∞ /N .
Let C(G,ω) = ||∂uiG||∞ ||ω||∞ ||ds||∞, the corresponding contribution in (6.10) is

1

N

∑
x∈T2

N

ηωx︸︷︷︸
≤||ω||∞

1Ecp,x
1

(2εN + 1)2


εN∑

k=−εN

[
G

(
x+ yk
N

)
−G

(
x+ zk
N

)]
︸ ︷︷ ︸

≤(2εN+1)||∂uiG||∞/N

ds(τx+ykρεN )︸ ︷︷ ︸
≤||ds||∞


and can therefore be bounded by

C(G,ω)

N2

∑
x∈T2

N

1Ecp,x .

Furthermore, since ds is C∞ on [0, 1], it is Lipschitz-continuous on [0, 1] with Lip-
schitz constant c, we let C ′(G,ω) = c ||G||∞ ||ω||∞ /2. We can now write thanks to
the previous considerations that

|Y2 | ≤
C(G,ω)

N2

∑
x∈T2

N

1Ecp,x +
C ′(G,ω)

N2

∑
x∈T2

N

1

(2εN + 1)

εN∑
k=−εN

1Ecp,x
| τx+ykρεN − τx+zkρεN |

ε
.

For any positive γ, we have the elementary bound

1Ecp,x
| τx+ykρεN − τx+zkρεN |

ε
≤ γ1Ecp,x +

1

γ

(τx+ykρεN − τx+zkρεN )
2

ε2
,
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and finally, for any positive γ,

|Y2 | ≤
C + γC ′

N2

∑
x∈T2

N

1Ecp,x +
C ′

γN2

∑
x∈T2

N

1

(2εN + 1)

εN∑
k=−εN

(
τx−(εN+1)eiρεN − τx+εNeiρεN

)2
ε2

=
C + γC ′

N2

∑
x∈T2

N

1Ecp,x +
C ′

γN2

∑
x∈T2

N

(
τx−(εN+1)eiρεN − τx+εNeiρεN

)2
ε2

.

(6.11)

Recall that we want to prove (6.5), i.e.,

lim
p→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

(∫ T

0

|Y2(Gt, η̂(t)) | dt

)
= 0.

The contribution of the first term in the bound for |Y2 | in Equation (6.11) vanishes
for any γ as N then p goes to ∞, thanks to Proposition 3.3.2.

Furthermore, we can replace τx−(εN+1)eiρεN by τx−εNeiρεN in (6.11) since the dif-
ference between these two quantities is of order 1/N and vanishes in the limit N →∞.
This replacement allows us to work only with quantities that can be expressed in terms
of the empirical measure of the process. Equation (6.5) therefore holds according to
Lemma 6.3.1 below, letting γ go to ∞ after N →∞ then ε→ 0 then p→∞.

Lemma 6.3.1. – There exists a positive constant K such that

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

(τx−εNeiρεN (t)− τx+εNeiρεN (t))
2

ε2
dt

 ≤ K.
Proof of Lemma 6.3.1. – This lemma states that the difference of macroscopic densi-
ties between two points distant from 2ε is also of order ε, and is a consequence of the
energy estimate (5.18). We are going to prove this macroscopic estimate in the topo-
logical setup of the space of càdlàg trajectories of measures on T2 × S . Recall from
Section 5.2 that M (T2×S) is the space of non-negative measures on the continuous
configuration space,

M
[0,T ] = D

(
[0, T ], M (T2 × S)

)
is the space of right-continuous, left-limit trajectories on the set of measures on T2×S,
and that QN is the distribution on M

[0,T ] of the process’s empirical measure πN . We
have proved in Proposition 5.2.2 that the sequence (QN )N∈N is relatively compact
for the weak topology. Let Λε = [ε, ε]2 ⊂ T2 be the cube of size ε, and (ϕε)ε>0 be a
family of localizing functions on T2

ϕε(.) =
1

(2ε)2
1Λε(.),

MÉMOIRES DE LA SMF 169



6.3. ESTIMATION OF THE GRADIENTS ON FULL CLUSTERS 89

ϕ̃ε(., υ)

| υ | > ε+ ε3
| υ | ≤ ε

ϕε

ε

ui

ε+ ε3

1/4ε2

−ε−(ε+ ε3)

(a)

∇εiϕε

hε = ∇εi ϕ̃ε(., v)

−ε3

1/4ε3

ε ε+ ε3

−(ε+ ε3)−ε ui

ε3

(b)

Figure 2. (a) Representations of ϕ̃ε(·, v) depending on the value of v.
(b) Representation of hε(·, v) = ∇εϕ̃ε(·, v) depending on the value of v.

we then have

τxρεN (t) =
(2εN)2

(2εN + 1)2
<πNt , ϕε(.+ x/N)>.

We define the mesoscopic gradient

∇ε
iϕ(.) = ε−1(ϕ(· − εei)− ϕ(·+ εei)),

represented in Figure 2b. Note that ∇ε
iϕε is at most of order ε−3 since ϕε is of

order ε−2. We can rewrite the left-hand side in Lemma 6.3.1 as

EQN

∫ T

0

1

N2

∑
x∈T2

N

<πt,∇ε
iϕε(.+ x/N)>2dt

+ oN (1).(6.12)

Furthermore, since for any two sites x, x′ ∈ T2 distant from less than 1/N ,

|<πt,∇ε
iϕε(.+ x/N)>−<πt,∇ε

iϕε(.+ x′/N)> | ≤ C(ε)
1

N
,

we can replace the sum above by the integral over the continuous torus.
However, regarding the weak topology on M (T2 × S), it will be convenient later

on to consider smooth functions instead of ϕε. We therefore introduce for any ε a
function ϕ̃ε, represented in Figure 2a verifying

— ϕ̃ε = ϕε on Λε and on T2\Λε+ε3 .

— ||ϕ̃ε||∞ = ||ϕε||∞.

— ϕ̃ε is in C1(T2).
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Since ϕ̃ε and ϕε coincide everywhere except on Λε+ε3\Λε, and since ||ϕ̃ε||∞ = (2ε)−2

we can write for any x ∈ T2
N∣∣<πNt , ϕε(.+ x/N)>−<πNt , ϕ̃ε(.+ x/N)>

∣∣ ≤ 1

(2ε)2
<πNt ,1Λε+ε3\Λε(.+ x/N)>︸ ︷︷ ︸

≤4ε×ε3

≤ Cε2,

for some positive constant C. This bound immediately yields∣∣<πNt ,∇ε
iϕε(.+ x/N)>−<πNt ,∇

ε
i ϕ̃ε(.+ x/N)>

∣∣ ≤ Cε,
which allows us to replace in Equation (6.12), in the limit N → ∞ then ε → 0, ϕε
by ϕ̃ε.

To prove Lemma 6.3.1 it is therefore sufficient to prove that

(6.13) lim sup
ε→0

lim sup
N→∞

EQN

(∫∫
[0,T ]×T2

<πt, hε(.+ u)>2dudt

)
≤ K,

where hε = ∇ε
i ϕ̃ε, is a continuous bounded function, represented in Figure 2b. Let

us denote by Π the subset of M
[0,T ]

Π =

{
π ∈ M

[0,T ]
∣∣∣ sup
t∈[0,T ]

<πt, 1> ≤ 1

}
of trajectories with mass less than one at all times, which is compact w.r.t. Skorohod’s
topology introduced in Section 5.2.

Consider a weakly convergent subsequence QNk → Q∗, in order to substitute Q∗

to QN in the limit above, we want to prove that for any fixed ε > 0, the application

Iε : π 7→
∫∫

[0,T ]×T2

<πt, hε(.+ u)>2dudt

is bounded, and continuous on Π w.r.t. Skorohod’s topology.

Note that this application is bounded on Π by construction, we now prove the
following lemma.

Lemma 6.3.2. – Fix ε > 0, the application Iε is continuous on (Π, d), where d is the
Skorohod metric defined in Equation (B.3).

Proof of Lemma 6.3.2. – For any two trajectories π and π′ in Π, and some continuous
strictly increasing function κ from [0, T ] into itself, such that κ0 = 0 and κT = T , we
can write

Iε(π)− Iε(π′) =

∫∫
[0,T ]×T2

du<π′t + πt, hε(.+ u)><π′t − πκt + πκt − πt, hε(.+ u)>dt.
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The first factor <π′t + πt, hε(. + u)> can be crudely controlled by 2 ||hε||∞, which
yields

(6.14) | Iε(π)− Iε(π′) |

≤ 2 ||hε||∞
∫∫

[0,T ]×T2

|<π′t − πκt , hε(.+ u)>+<πκt − πt, hε(.+ u)> | dudt.

Note that by definition of ||κ||, one easily gets that for any t ∈ [0, T ], | t− κt | ≤
T (e||κ|| − 1), therefore, κt → t uniformly on [0, T ] as ||κ|| → 0. Let us fix π ∈ Π, and
assume that d(π, πn) → 0 for some sequence of trajectories (πn)n ∈ ΠN, there exists
a sequence (κn)n∈N such that ||κn|| → 0 and limn→∞ supt∈[0,T ] δ(π

n
t , πκnt ) = 0. This

last statement yields in particular that for any t ∈ [0, T ], δ(πnt , πκnt ) → 0, therefore
for any t ∈ [0, T ], and for any u ∈ T2,

lim
n→∞

<πnt − πκnt , hε(.+ u)> = 0,

since hε(. + u) is a continuous bounded function, and δ is a metric of the weak
convergence. Furthermore, since κnt converges uniformly towards t on [0, T ] and since
t → πt is weakly continuous almost everywhere on [0, T ] by definition of M

[0,T ], we
also have that for almost every (t, u) ∈ [0, T ]× T2,

lim
n→∞

<πκnt − πt, hε(.+ u)> = 0.

Since π and the πn’s are in Π, both of these quantities are crudely bounded in absolute
value by 2 ||hε||∞, which is naturally integrable on [0, T ]×T2. One finally obtains by
dominated convergence, from (6.14) applied to π′ = πn and κ = κn, that

| Iε(π)− Iε(πn) | →
n→∞

0.

Lemma 6.3.2 is complete.

We have now proved that the application Iε is continuous for any fixed ε, therefore
the left-hand side of (6.13) is less than

lim sup
ε→0

sup
Q∗

EQ∗
(∫∫

[0,T ]×T2

du<πt, hε(.+ u)>2dt

)
,

where the supremum is taken over all limit points Q∗ of the sequence QN . Since
by definition hε = ∇ε

i ϕ̃ε does not depend on θ, we drop the dependency of π on θ

and consider simply for any u ∈ T2, ρ(t, u) =
∫
S
ρ̂t(u, dθ), where ρ̂t(u, dθ) is the

density of πt(·, dθ) w.r.t. the Lebesgue measure T2, which exists Q∗-a.s. according to
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1/4ε2 + 0ε(1)

Φε,i(., υ)

| υ | > ε+ ε3
| υ | ≤ ε

−(ε+ ε3) ε+ ε3−ε εε3−ε3

Figure 3. Representation of Φε,i(·, v) depending on v.

Lemma 5.2.4. We can write

(6.15) EQ∗
(∫∫

[0,T ]×T2

du<πt, hε(.+ u)>2dt

)

= EQ∗
(∫∫

[0,T ]×T2

(∫
v∈T2

ρ(t, v)∇ε
i ϕ̃ε(v + u)dv

)2

dudt

)
.

We can now express ∇ε
i ϕ̃ε as a gradient, by writing

∇ε
i ϕ̃ε(u) = ∂ui

∫ ui

−1/2

∇ε
i ϕ̃ε(υei + ui′ei′)dυ = ∂uiΦε,i,

where i′ 6= i still denotes the second direction on the torus.

Furthermore, Φε,i, represented in Figure 3, is in C2(T2) because ϕ̃ε is C1, and the
various integrals can be freely swapped since all quantities are bounded at any fixed ε.
Since Q∗-a.s. ρ ∈ W 1,2([0, T ] × T2) according to Theorem 5.3.1, the right-hand side
in Equation (6.15) is therefore equal to

(6.16) EQ∗
(∫∫

[0,T ]×T2

(∫
v∈T2

Φε,i(v + u)∂uiρ(t, v)dv

)2

dudt

)
.

In order to conclude, we adapt the proof of Young’s Inequality, and apply Cauchy-
Schwarz inequality to f = (Φε,i(v + u))

1/2 and g = (Φε,i(v + u))
1/2

∂uiρ(t, v), to
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finally obtain that

EQ∗
(∫∫

[0,T ]×T2

du<πt, hε(.+ u)>2dt

)
≤ EQ∗

(∫∫
[0,T ]×T2

||Φε,i||1

[∫
v∈T2

Φε,i(v + u)(∂uiρ(t, v))2dv

]
dudt

)

= ||Φε,i||21 EQ∗
(∫∫

[0,T ]×T2

(∂uiρ(t, u))2dudt

)
,

where the last identity was obtained by integrating first w.r.t. u, then w.r.t. v. Since
||Φε,i||1 = 1 + oε(1), Lemma 6.3.1 follows from Equation (5.18).

6.4. Replacement of the macroscopic gradients by their local counterparts

We now prove Equation (6.6), i.e., that the macroscopic average of the gradients
can be replaced by a local average. To simplify the notations, throughout this section,
we drop the various dependencies of Y l,εN,pi,3 and simply denote it by Y3.

Recall that L
G,β=0 stands for the modified Glauber generator without alignment

of the angles, where each angle is updated uniformly in S,

L
G,β=0

f(η̂) =
∑
x∈T2

N

ηx

∫
S

(f(η̂x,θ)− f(η̂))

2π
dθ,

and
Lβ=0
N = N2 L

D
+ L

G,β=0
.

Recall that Pλ,0µ∗α is the measure on the trajectories starting from the equilibrium
measure µ∗α and driven by the generator Lβ=0

N , and that the expectation w.r.t. the
latter is denoted by Eλ,0µ∗α . We first apply Proposition 3.2.3 to the positive functional

X
(
η̂[0,T ]

)
=

∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣ ,
letting A = γN2, and obtain that for some constant K0 = K0(T, β, ζ̂),

Eλ,β
µN

(∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣
)
≤ K0

γ
+

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣
)]

.

Letting γ go to ∞ after N , to prove (6.6) it is therefore enough to show that for any
integer p > 1

(6.17)

lim
γ→∞

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣
)]

= 0.
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We now get rid of the absolute value by using both of the elementary inequalities

e| x | ≤ ex + e−x

and

lim sup
N→∞

1

N2
log(aN + bN ) ≤ max

(
lim sup
N→∞

1

N2
log aN , lim sup

N→∞

1

N2
log bN

)
.

Both of these imply that the limit in Equation (6.6) is bounded up by the maximum
of the limits of

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]
and

1

γN2
logEλ,0µ∗α

[
exp

(
−γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]
.

Since −Y3(G, η̂) = Y3(−G, η̂), and since the identity above must be true for any
function G, to obtain the wanted result it is sufficient to show that for any γ and any
G ∈ C1,2([0, T ]× T2)

(6.18)

lim
γ→∞

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]
≤ 0.

We now get back to a variational problem, since Lemma 5.1.2 yields

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]

≤ 2Tλ2

γ
+

1

γ

∫ T

0

sup
ϕ

{
E∗α (ϕγY3(Gt, η̂))− 1

2
D(ϕ)

}
.

The first term in the right-hand side above vanishes as γ goes to∞. Furthermore, the
time integral is now only applied to the functionGt, therefore to obtain Equation (6.6),
it is sufficient to prove that for any γ and any function G ∈ C2(T2),

(6.19) lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
ϕ
{2γE∗α (ϕY3(G, η̂))−D(ϕ)} ≤ 0.

Since this must be true for any G and any γ, we can safely assume that γ = 1/2,
and Equation (6.19) follows from Lemma 6.4.1 below. Thus this completes the proof
of (6.6).

In order to avoid repeating a similar proof twice, we forget for the moment
that dω (ρ, ρω) = ds(ρ) only depends on the total particle density, and present the
proof of the following lemma in the most difficult case where the gradient is on ρω,p

and where the diffusion coefficient depends on both ρ and ρω. We simply assume
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throughout this proof that the diffusion coefficient dω is a uniformly continuous
function of ρ and ρω on the set{

(α, αω) ∈ [0, 1]× [− ||ω||∞ , ||ω||∞] such that |αω| ≤ ||ω||∞ α
}
.

Lemma 6.4.1. – Let us fix 1 ≤ i, j ≤ 2, we shorten

Dk = dω (ρk, ρ
ω
k ) and vk = δiρ

ω,p
k .

For any G ∈ C2(T2)

(6.20)

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
ϕ

∑
x∈T2

N

[
1

N
G(x/N)E∗α

(
ϕτx( DεNvεN − Dlvlp)

)]
−D(ϕ)

 ≤ 0,

where as before lp = l − p − 1, and the supremum is taken over all probability den-
sities with respect to µ∗α. The same result is true for the gradients vk = δiρk instead
of δiρ

ω,p
k , d instead of dω, and l′ = l − 1 instead of lp.

Proof of Lemma 6.4.1. – The difficulty of this lemma comes from the extra factor N ,
which prevents us from using directly the replacement Lemma 4.1.1. We hence need
to get some precise control over each term to ensure that they are small enough. We
start by splitting in two parts the quantity in Lemma 6.4.1 by noticing that

(6.21) DεNvεN − Dlvlp = DεN (vεN − vlp) + ( DεN − Dl)vlp .

Both terms are treated in the same fashion due to the continuity of the diffusion
coefficients (which follows directly from their explicit expression). More precisely,
we intend to show that the difference between the average over a microscopic and
macroscopic box is of order 1/N , and hence yields the extra factor N needed to use
the replacement lemma. Let us thus consider the first term appearing in the lemma,
namely

1

N
E∗α

ϕ ∑
x∈T2

N

G(x/N)τx DεN (vεN − vlp)

 .

Recall that we denoted Bl = {x ∈ T2
N , |x | ≤ l}, and |Bl | = (2l+ 1)2. Since both vεN

and vlp are merely spatial averages of the gradients δi(ηω0 1Ep), a first summation by
parts yields that the quantity above is equal to

1

N
E∗α

(
ϕ
∑
x∈T2

N

(ηωx+ei1Ep,x+ei
− ηωx1Ep,x)

[
1

|BεN |
∑

| y−x |≤εN

G(y/N)τy DεN

− 1

|Blp |
∑

| y−x |≤lp

G(y/N)τy DεN

])
.
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ei

τeiBp

Bp

0

yp

yp−1

y−p

zp

zp−1

z−p

Figure 4. Change of variable η̂ → T x
i,pη̂.

Now let Sx(η̂) denote the quantity inside braces, i.e.,

Sx(η̂) =
1

|BεN |
∑

| y−x |≤εN

G(y/N)τy DεN −
1

|Blp |
∑

| y−x |≤lp

G(y/N)τy DεN .

We are now going to prove that
(6.22)

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
ϕ

 1

N
E∗α

ϕ ∑
x∈T2

N

Sx(ηωx+ei1Ep,x+ei
− ηωx1Ep,x)

− 1

2
D(ϕ)

 ≤ 0.

In order to transfer the gradient appearing in the expression above on ϕ and Sx,
we need the specific change of variable represented in Figure 4. For any direction
i ∈ {1, 2}, let i′ 6= i be the second direction on the torus. Given x in the torus, we
denote for any k ∈ [[−p, p]] (see Figure 1),

yk = x− pei + kei′ ∈ Bp(x) and zk = x+ (p+ 1)ei + kei′ ∈ Bp(x+ ei).

Given these, we denote, for any configuration η̂, by

T xi,p(η̂) =
((

(η̂x,x+ei)y−p,z−p
)...)yp,zp

,

the configuration where the sites x and x + ei have been swapped, as well as the
boundary sites yk and zk.

By construction, we have

ηωx 1Ep,x(T xi,pη̂) = ηωx+ei1Ep,x+ei
(η̂)
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The first term in the left-hand side of (6.22) can be rewritten as

1

N
E∗α
(
ϕ
∑
x∈T2

N

Sx(ηωx+ei1Ep,x+ei
− ηωx1Ep,x)

)

=
1

N
E∗α

∑
x∈T2

N

ηωx1Ep,x
(
(ϕSx)(T xi,pη̂)− ϕSx

)
=

1

N

∑
x∈T2

N

E∗α
(
ηωx1Ep,x

[
ϕ(T xi,pη̂)

(
Sx(T xi,pη̂)− Sx

)
+
(
ϕ(T xi,pη̂)− ϕ

)
Sx
])
.(6.23)

We are going to show that the contribution of the first term of the right-hand side
in (6.23) vanishes in the limit N → ∞, whereas the second term can be controlled
with the Dirichlet form D(ϕ). Recall that Sx is defined as

Sx(η̂) =
1

|BεN |
∑

| y−x |≤εN

G(y/N)τy DεN −
1

|Blp |
∑

| y−x |≤lp

G(y/N)τy DεN .

Since the only dependency of Sx in η̂ lies in DεN , which is the diffusion coefficient
evaluated in the macroscopic empirical density ρ̂εN , in order to control the first term
in the right-hand side of (6.23), we can write

Sx(T xi,pη̂)− Sx =
1

|BεN |
∑

| y−x |≤εN

G(y/N)τy
[

DεN (T xi,pη̂)− DεN (η̂)
]

(6.24)

− 1

|Blp |
∑

| y−x |≤lp

G(y/N)τy
[

DεN (T xi,pη̂)− DεN (η̂)
]
.

Recall that τy DεN (η̂) = dω(τyρεN , τyρ
ω
εN ). Since it depends on the configuration

through an average over BεN (y), τy DεN (η̂) is invariant under any exchange of a
pair of sites with both ends in BεN (y). We deduce from this remark that for any
| y − x | ≤ lp, the quantity

τy
[

DεN (T xi,pη̂)− DεN (η̂)
]

vanishes, since all the exchanges happen between sites at a distance at most p of x,
and therefore at a distance at most p + lp of y. This yields that the second term in
the right-hand side of (6.24) vanishes.

We now consider the first term in the right-hand side of (6.24). For the same reason
as before, for any y in BεN−p−1(x), all the exchanges in T xi,p have both ends in BεN (y),
and τy

[
DεN (T xi,pη̂)− DεN (η̂)

]
vanishes. We can finally rewrite (6.24) as

(6.25)

Sx(T xi,pη̂)− Sx =
1

|BεN |
∑

y∈BεN (x)\BεN−p−1(x)

G(y/N)τy
[

DεN (T xi,pη̂)− DεN (η̂)
]
.
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We now take a closer look at each of the remaining term. By definition, the configura-
tion T xi,pη̂ can be obtained from η̂ by inverting 2p+ 2 pair of sites in η̂. Furthermore,
fix a y in the sum above, and consider any inversion η̂z1,z2 with z1 ∈ BεN (y) and
z2 /∈ BεN(y), we wan write by definition of ρεN and ρωεN

| τyρεN (η̂z1,z2)− τyρεN (η̂) | ≤ 1

|BεN |
and | τyρωεN (η̂z1,z2)− τyρωεN (η̂) | ≤

2 ||ω||∞
|BεN |

.

By assumption, dω(α, αω) is uniformly continuous on the set{
(α, αω) ∈ [0, 1]× [− ||ω||∞ , ||ω||∞] such that |αω | ≤ ||ω||∞ α

}
.

We deduce from this that

τy ( DεN (η̂z1,z2)− DεN (η̂)) = oN (1),

therefore ∣∣ τy (DεN (T xi,pη̂)− DεN (η̂)
) ∣∣ ≤ oN (1),

where this time oN (1) stands for a constant depending on p which vanishes as N →∞.
We inject the latter identity in Equation (6.25), to obtain that

Sx(T xi,pη̂)− Sx =
|BεN (x) \BεN−p−1(x) |

|BεN |
oN (1) =

1

N
oN (1),

where the last oN (1) depends on p and ε, but vanishes as N → ∞. This allows us
to get back to Equation (6.23), in which the first term in the right-hand side can be
rewritten∣∣∣∣∣∣ 1

N

∑
x∈T2

N

E∗α
(
ηωx1Ep,xϕ(T xi,pη̂)

(
Sx(T xi,pη̂)− Sx

)) ∣∣∣∣∣∣
≤
||ω||∞
N2

∑
x∈T2

N

E∗α
(
ϕ(T xi,pη̂)

)
oN (1) = oN (1),

since µ∗α is invariant under the change of variable T xi,pη̂, and therefore E∗α
(
ϕ(T xi,pη̂)

)
=

E∗α(ϕ) = 1.

We now work on the contribution of the second part of (6.23), namely

(6.26) E∗α

N−1
∑
x∈T2

N

ηωx1Ep,xSx(η̂)
[
ϕ
(
T xi,pη̂

)
− ϕ

] ,

that we wish to estimate by the Dirichlet form D(ϕ). The elementary bound

cd (a− b) ≤ A c2

2

(√
a+
√
b
)2

+
d2

2A

(√
a−
√
b
)2

,

which holds for any positive constant A, applied to

a = ϕ
(
T xi,pη̂

)
, b = ϕ, c = ηωxSx and d = 1Ep,x
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yields that the quantity above (6.26) can be bounded from above for any positive A
by
(6.27)

1

N

∑
x∈T2

N

E∗α
(
A

2
(ηωxSx)

2 (√
ϕ
(
T xi,pη̂

)
+
√
ϕ
)2

+
1

2A
1Ep,x

(√
ϕ
(
T xi,pη̂

)
−√ϕ

)2)
.

Since we already established that Sx
(
T xi,pη̂

)
= Sx + (εN)−1oN (1), since ηωx can be

bounded by C(ω) > 0, and since 1Ep,x ≤ 1Ep+1,x the sum above is less than

(6.28)
AC2

N

∑
x∈T2

N

E∗α(ϕS2
x) +

1

2AN

∑
x∈T2

N

E∗α
(

1Ep+1,x

(√
ϕ
(
T xi,pη̂

)
−√ϕ

)2)
+ oN (1).

According to Section 3.3, on the event Ep+1,x on which there are two empty sites
in Bp+1, there exists a sequence of allowed jumps permitting to reach T xi,pη̂ from η̂.
However, this sequence is random, which we avoid by crudely bounding

1Ep+1,x ≤
∑

z1,z2∈Bp+1

(1− ηz1)(1− ηz2),

since the right-hand side only vanishes when there are less than one empty site inBp+1.
Given two fixed empty sites z1 and z2 there exists an integer np(z1, z2) bounded by a
constant Cp, and a sequence of edges ((am, bm))m∈[[0,np]] such that

η̂ = η̂(0), T xi,pη̂ = η̂(np), and η̂(m+ 1) = η̂(m)am,bm ∀m ∈ [[0, np − 1]],

where am and bm are neighboring sites in Bp+1(x) and ηam(η̂(m)) = 1− ηbm(η̂(m)) = 1.
We can therefore write

E∗α
(
1Ep,x

(√
ϕ
(
T xi,pη̂

)
−√ϕ

)2)
≤

∑
z1,z2∈Bp+1

E∗α

(
np

np−1∑
m=0

1Ep,x (
√
ϕ (η̂(m+ 1))−√ϕ(η̂(m)))

2

)
≤ KpDN,p+1(ϕ),

since η̂(m+ 1) is reached from η̂(m) by an allowed particle jump, where DN,p+1(ϕ) is
the contribution of edges in Bp+1 in D(ϕ).

The sum in the second term of (6.28) can therefore be bounded by C∗pD (ϕ), where
C∗p = (2p+ 1)2Kp. Finally, (6.26) can be bounded, for any positive A by

AC2

N

∑
x∈T2

N

E∗α(ϕS2
x) +

C∗p
2AN

D (ϕ) + oN (1).

We can now set A = C∗p/N , to obtain that

E∗α

N−1
∑
x∈T2

N

ηωx1Ep,xSx(η̂)
[
ϕ
(
T xi,pη̂

)
− ϕ

] ≤ C(p, ω)

N2

∑
x∈T2

N

E∗α(ϕS2
x) +

1

2
D (ϕ) + oN (1).
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The first term in the right-hand side above vanishes as a consequence of the two-
block estimate stated in Lemma 4.2.1, since the diffusion coefficients are continuous
according to their explicit expression. This concludes the proof of Equation (6.22).

The contribution of the second part of Equation (6.21) is treated in a similar
fashion. Denoting by

S′x(η̂) =
1

|Blp |
∑

| y−x |≤lp

G(y/N)(τy DεN − τy Dl).

As before, the corresponding contribution in the left-hand side of (6.20) can be written
as

− 1

N

∑
x∈T2

N

E∗α
(
ηωx1Ep,x

(
ϕ(T xi,pη̂)− ϕ

)
S′x
)
,

since this time, S′x is invariant under the action of T xi,p by definition of lp, whereas the
second term can be controlled in the limit N →∞ as well by D(ϕ)/2. This completes
the proof of Lemma 6.4.1 in the case where Dk = dω (ρk, ρ

ω
k ) and vk = δiρ

ω,p
k .

In the case where Dk = d (ρk, ρ
ω
k ) and vk = δiρk, the proof is easier and no longer

requires indicator functions, since unlike δiηωx , δiηx vanishes when there is no empty
site. We do not give a detailed proof, which would be an easier version of the previous
case. We will instead just give a brief outline and the equivalent quantities to the
previous ones. The same summation by parts allows us to rewrite

1

N
G(x/N)E∗α

(
ϕτx( DεNvεN − Dlvlp)

)
=

1

N
E∗α

ϕ ∑
x∈T2

N

(Sx + S′x)(ηx+ei − ηx)

 ,

where

Sx =
1

|BεN |
∑

| y−x |≤εN

G(y/N)τy DεN −
1

|Bl′ |
∑

| y−x |≤l′
G(y/N)τy DεN ,

and

S′x(η̂) =
1

|Bl′ |
∑

| y−x |≤l′
G(y/N)(τy DεN − τy Dl).

We can now rewrite ηx+ei − ηx = ηx+ei(1 − ηx) − ηx(1 − ηx+ei), to obtain that the
quantity above is

1

N

∑
x∈T2

N

E∗α
(
ηx(1− ηx+ei) ((Sx + S′x)ϕ) (η̂x,x+ei)− (Sx + S′x)ϕ

)
.

The gradients of Sx and S′x still vanish, whereas the average of the gradients
ϕ(η̂x,x+ei) − ϕ can be controlled by the sum of a vanishing term and the Dirichlet
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form of ϕ, since this time the jump rates ηx(1 − ηx+ei) are already present. This
concludes the proof of Lemma 6.4.1.

6.5. Projection on non-full sets and reduction to a variance problem

We now prove the limit (6.7), which states that in a local average, the current can
be replaced by gradients, up to a perturbation Lf . Following the exact same steps
as in Section 6.4, up until the statement of Lemma 6.4.1, where we reduced the proof
of Equation (6.6) to (6.19), we reduce the proof of Equation (6.7) to the variational
formula

(6.29) inf
f

lim
p→∞

lim sup
l→∞

lim sup
N→∞

sup
ϕ
{E∗α (ϕY4(G, η̂))−D(ϕ)} ≤ 0,

where we shortened

Y4(G, η̂) = Y f,l,pi,4 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τx W
f,l,p
i,4 ,

and W
f,l,p
i,4 was introduced in Equation (6.3). Since this step is performed in the exact

same way as in the beginning of Section 6.4, we do not detail them here and refer the
reader to the latter. To simplify notations, we shorten

W
l
i = W

f,l,p
i,4

for the local average of the difference between gradients and currents in the direction i.
We will now work to get an estimate of the largest eigenvalue of the small per-

turbation L + Y4 of L . The strategy is close to the one used in the one-block es-
timate of Section 4.3. To do so, we break down the process on finite boxes with a
fixed number of particles, where the generator L has a positive spectral gap. In or-
der to introduce this restriction, we adopt once again the notations introduced in
Section 4.3, which we briefly recall here. Let Bl = [[−l, l]]2 be the box of size l,
K̂ = (K, {θ1, . . . , θK}) be some particle number and angles. Recall that Kl is the set
of K̂’s such that K ≤ (2l + 1)2, and denote by α̂K̂ the grand-canonical parameter

α̂K̂ =
1

(2l + 1)2

K∑
k=1

δθk ∈ M 1(S).

Recall that we already defined in (3.3)

ΣK̂l =
{
η̂ ∈ ΣN

∣∣ ρ̂l = α̂K̂
}

the set of configurations withK particles in Bl with angles θk’s. Also recall that µl,K̂ is

the canonical measure µ∗α( . | ΣK̂l ) conditioned to particle configurations of the
form K̂ in Bl.
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We denote for any site x ϕx = τ−xϕ, and by ϕx
l,K̂

the density induced by ϕx on ΣK̂l .

It can be defined for any configuration ζ̂ on Bl by

ϕx
l,K̂

(ζ̂) =
E∗α(ϕx | η̂|Bl = ζ̂)

E∗α(ϕx | ΣK̂l )
.

Let us now get back to the quantity of interest,
(6.30)

E∗α (ϕY4(G, η̂)) =
1

N

∑
x∈T2

N

G(x/N)E∗α
(
ϕτx W

l
i

)
=

1

N

∑
x∈T2

N

G(x/N)E∗α
(

W
l
iϕ
x
)
.

Because W
l
i only depends on the vertices in Bl, we can replace the expectation

under µ∗α by the integral over Kl of the expectation under µl,K̂ . More precisely, let us
denote

mx(dK̂) = E∗α
(
ϕx1

ΣdK̂l

)
,

the infinitesimal probability of being on the set ΣK̂l under the measure with density ϕx

w.r.t. µ∗α. Thanks to (6.30), letting E∗l,α be the conditional expectation of E∗α w.r.t.
the sites inside of Bl, we can write

E∗α (ϕY4(G, η̂)) =
1

N

∑
x∈T2

N

G(x/N)E∗l,α
(

W
l
iϕ
x
)

=
1

N

∑
x∈T2

N

G(x/N)

∫
K̂∈Kl

El,K̂
(

W
l
iϕ
x
l,K̂

)
mx(dK̂).(6.31)

Let us now decompose in a similar fashion the Dirichlet form. For ϕ some density
with respect to µα̂, let Dl,K̂ be the Dirichlet form on ΣK̂l

Dl,K̂(ϕ) =
1

2

∑
x,y∈Bl
| x−y |=1

El,K̂

[
ηx(1− ηy)

(√
ϕ (η̂x,y)−√ϕ

)2
]
.

We have with the same tools as in the proof of Lemma 4.2.1

(6.32)
∑
x∈T2

N

∫
K̂∈Kl

Dl,K̂

(
ϕx
l,K̂

)
mx(dK̂) ≤ (2l + 1)2D(ϕ).
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From the previous considerations, we can localize the quantity inside braces in
Equation (6.29), which is bounded above thanks to (6.31) and (6.32) by

E∗α(ϕY4(G, η̂))−D(ϕ)

(6.33)

=
∑
x∈T2

N

∫
K̂∈Kl

mx(dK̂)

(
1

N
G(x/N)El,K̂

(
W

l
iϕ
x
l,K̂

)
− (2l + 1)−2Dl,K̂

(
ϕx
l,K̂

))

≤ κ1

∑
x∈T2

N

sup
K̂∈Kl

[κ2

N
El,K̂

(
W

l
iϕ
x
l,K̂

)
−Dl,K̂

(
ϕx
l,K̂

)]
≤ κ1

∑
x∈T2

N

sup
K̂∈Kl

sup
ψ

[κ2

N
El,K̂

(
W

l
iψ
)
−Dl,K̂ (ψ)

]
,

since
∫
K̂∈Kl mx(dK̂) = 1, where

κ1 = (2l + 1)−2 and κ2 = G(x/N)(2l + 1)2

and the supremum is taken over all densities ψ with respect to µl,K̂ .

We now wish to exclude in the supremum over K̂ above the configurations with one
or less empty sites since on the corresponding sets, the exclusion process is not irre-
ducible as investigated in Section 3.3. First note that for any K̂ such that K = |Bl |,
W

l
i vanishes. Indeed, thanks to our cutoff functions 1Ep , and since l goes to ∞ be-

fore p, in that case, the currents, the gradients as well as the Lf ’s in W
l
i all vanish

as well as Dl,K̂ (ψ).

We now consider the case where K = |Bl | − 1, i.e., when there is one empty site
in Bl. We state the corresponding estimate as a separate lemma for the sake of clarity.

Lemma 6.5.1. – There exists a constant C = C(G,ω, f) such that for any K̂ such
that K = |Bl | − 1,

κ2

N
El,K̂

(
W

l
iψ
)
≤ Dl,K̂ (ψ) +

C

N2
.

Proof of Lemma 6.5.1. – First note that all the gradients δiηω,p vanish in the expres-
sion of W

l
i due to the cutoff functions. We can therefore write, for any configuration

with one or less empty site, that

W
l
i =

1

(2l′ + 1)2

∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

)
− 1

(2lf + 1)2
L lf,

where we denoted by dK̂ the value on ΣK̂l of d (ρl, ρ
ω
l ), which does not depend on the

configuration, and f =
∑
x∈Blf

τxf . The quantity we want to estimate can therefore

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



104 CHAPTER 6. NON-GRADIENT ESTIMATES

be rewritten

κ2

N
El,K̂

(
W

l
iψ
)

=
κ2

N(2l′ + 1)2
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

)− κ2

N(2lf + 1)2
El,K̂

(
ψ L lf

)
,

where L l is the generator of the symmetric exclusion process restricted to jumps with
both ends in Bl. Since κ2, (2l′ + 1)2, and (2lf + 1)2 are of order (2l + 1)2, and since
the sign of f is arbitrary, to prove Lemma 6.5.1 it is sufficient to prove that for any
A > 0, we have both

1

N
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

) ≤ Dl,K̂ (ψ)

2A
+
AC(ω)

N2

and
1

N
El,K̂

(
ψ L lf

)
≤
Dl,K̂ (ψ)

2A
+
AC(f)

N2
.

(6.34)

The two inequalities above are proved in the same way. We treat in detail the
second, which is the most delicate, and simply sketch the adaptations to obtain the
first. Using the elementary inequality

(6.35) ab ≤ γa2

2
+
b2

2γ
,

which holds for any positive γ, we first write

El,K̂
(
ψ L lf

)
=

∑
x,x+z∈Bl

El,K̂
(
ψ∇x,x+zf

)
= −1

2

∑
x,x+z∈Bl

El,K̂
(
∇x,x+zψ∇x,x+zf

)
≤

∑
x,x+z∈Bl

γ

4
El,K̂

(
(∇x,x+z

√
ψ)2
)

+
1

4γ
El,K̂

(
(∇x,x+zf)2(

√
ψ +

√
ψ(η̂x,x+z))2

)

=
γ

2
Dl,K̂ (ψ) +

1

4γ
El,K̂

 ∑
x,x+z∈Bl

ηx(1− ηx+z)(f − f(η̂x,x+z))2(
√
ψ +

√
ψ(η̂x,x+z))2

 .

One only has now to carefully account for the order of the different quantities in
the second term. Since f is a bounded local function, by definition of f , it is invari-
ant under particle jumps with both ends outside of its domain. There hence exists
a constant C(f) such that for any x and x + z, f − f(η̂x,x+z) ≤ C(f). In partic-
ular, the constant C(f) does not depend on l. We can also crudely bound ηx by 1

and (
√
ψ +
√
ψ(η̂x,x+z))2 by 2ψ + ψ(η̂x,x+z). These bounds and a change of variable
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η̂ → η̂x,x+z finally yield that for any positive γ,

El,K̂
(
ψ L lf

)
≤ γ

2
Dl,K̂ (ψ) +

C(f)

2γ
El,K̂

 ∑
x,x+z∈Bl

(2− ηx − ηx+z)ψ

 .

Furthermore, since there is only one empty site in Bl,∑
| y |≤l−1

(2− ηy − ηy+ei) = |Bl−1 | −
∑

y∈Bl−1

ηy︸ ︷︷ ︸
≤1

+ | τeiBl−1 | −
∑

y∈τeiBl−1︸ ︷︷ ︸
≤1

ηy ≤ 2,

therefore, since ψ is a probability density, and setting γ = N/A proves the second
identity of (6.34).

The second identity is obtained in the same way, since

1

N
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

) =
1

N

∑
| y |≤l−1

El,K̂
(
(ω(θy) + dK̂)∇y,y+eiψ

)
,

we also obtain

1

N
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

)
≤ γ

2
Dl,K̂ (ψ) +

(||ω||∞ + ||d||∞)
2

2γ
El,K̂

 ∑
x,x+ei∈Bl

(2− ηx − ηx+ei)ψ

 .

The last estimate, in turn, yields the first inequality in (6.34), which concludes the
proof of Lemma 6.5.1.

In the limit N →∞ then l→∞, Lemma 6.5.1 yields, since κ1 vanishes as l→∞,
and since all quantities vanish when K = |Bl |, that

κ1

∑
x∈T2

N

sup
K̂∈Kl

K≥|Bl |−1

sup
ψ

[κ2

N
El,K̂

(
W

l
iψ
)
−Dl,K̂ (ψ)

]
→ 0.

We can therefore restrict the supremum over K̂ to those satisfying K ≤ |Bl | − 2.
Recall that we denoted in Equation (3.2) by K̃l the set of such K̂, the left-hand side
of (6.29) is bounded by

(6.36) inf
f

lim
p→∞

lim sup
l→∞

lim sup
N→∞

κ1

∑
x∈T2

N

sup
K̂∈K̃l

sup
ψ

[κ2

N
El,K̂

(
W

l
iψ
)
−Dl,K̂ (ψ)

]
,

where the supremum is taken over all densities ψ w.r.t. µl,K̂ . On all the sets ΣK̂l
considered, L l is invertible and the supremum over ψ is a variational formula for the
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largest eigenvalue of the operator L l + κ2 W
l
i/N . Proposition B.4.1 then allows us to

bound the quantity whose limit is taken in (6.36) by

lim sup
N→∞

sup
K̂∈K̃l

κ1κ
2
2

1− 2γl

∣∣∣∣∣∣Wl
i

∣∣∣∣∣∣
∞
κ2N−1

El,K̂
(

W
l
i(− L l)

−1 W
l
i

)
≤ ||G||2∞ (2l + 1)2 sup

K̂∈K̃l
El,K̂

(
W

l
i(− L l)

−1 W
l
i

)
.

To obtain the last inequality, we denoted by γl the spectral gap of the local genera-
tor L l, which is positive, and used that

∣∣∣∣∣∣Wl
i

∣∣∣∣∣∣
∞

is finite, and κ1κ
2
2 = ||G||2∞ (2l+1)2.

In order to obtain inequality (6.29), and conclude the proof of Equation (6.7), it is
therefore sufficient to prove the following result.

Proposition 6.5.2 (Estimate of the local covariance). – Recall that W
l
i is the local

average of the difference between currents and gradients up to Lf , namely

W
l
i = 〈jωi 〉l

′

0 + ds (ρl) δiρ
ω,p
lp

+ d (ρl, ρ
ω
l ) δiρl′ − 〈 Lf〉

lf
0 ,

where d is given by Equation (1.3). Recall that K̃l only takes into account configura-
tions with two empty sites in Bl. Then,

(6.37) inf
f

lim
p→∞

lim sup
l→∞

sup
K̂∈K̃l

(2l + 1)2El,K̂
(

W
l
i(− L l)

−1 W
l
i

)
= 0.

6.6. Limiting variance and diffusion coefficients

In Section 6.5, we reduced the proof of (6.7), and that of Theorem 6.1.1, to esti-
mating a local variance. In this section, we introduce the limiting variance �·�α̂ and
investigate its properties and the structure of a set of functions with mean 0 w.r.t.
any canonical measures, equipped with �·�α̂. The presence of indicator functions
in δiη

ω,p
0 and the necessity for a uniform estimate in the canonical state K̂ ∈ K̃l

makes this section fairly technical, however, most of the results come from elemen-
tary linear algebra. The main results of this section is Proposition 6.6.7, which is
the main ingredient to prove Proposition 6.5.2, and therefore concludes the proof of
Theorem 6.1.1.

To prove Proposition 6.5.2, we are now going to investigate the limit as l→∞ and
α̂K̂l → α̂ (cf Definition 3.1.2) of

(6.38)
1

(2l + 1)2
El,K̂l

(− L l)
−1

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 := �ψ�α̂,
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where ψ is supported by Bsψ and lψ = l − sψ − 1 is chosen such that
∑
x∈Blψ

τxψ is
measurable w.r.t. sites in Bl. There are therefore two important steps to prove (6.37):

— prove that the limit (6.38) is well-defined for any function ψ in a convenient
class of functions containing at least the currents, the gradients and L C . This
is done in Definitions 6.6.1, 6.6.2, and Theorem 6.6.4 below.

— Prove that, shortening Eα̂(ω) = Eα̂(ω(θ0)|η0 = 1) and letting

(6.39) d(α̂) = Eα̂(ω)(1− ds(α)),

we have

(6.40) inf
f∈ C

lim
p→∞

sup
α̂
�jωi + ds(α)δi(η

ω
0 1Ep) + d(α̂)δiη0 − Lf�α̂ = 0.

which is done below in Proposition 6.6.9.

We introduce a class of local functions with mean 0 w.r.t. any µB,K̂ . When there
are less than one empty site in the domain B, we require these functions to vanish in
order to avoid classifying the irreducible subsets of ΣN when there is only one empty
site. Recall that we already introduced in Definition 3.1.6 the sets Kl and K̃l. We now
define
(6.41)

C 0 =

{
ψ ∈ C

∣∣∣ Esψ,K̂(ψ) = 0 ∀K̂ ∈ K̃sψ and ψ|ΣK̂sψ
≡ 0 ∀K̂ ∈ Ksψ r K̃sψ

}
.

In particular, any function ψ ∈ C 0 has mean zero w.r.t. any canonical measure. Note
that ψ ∈ C 0, and any α̂ ∈ M 1(S), conditioning w.r.t. the canonical state of the
configuration in Bsψ , we obtain in particular that Eα̂(ψ) = 0. Further define

(6.42) Tω =

{
f∈ C

∣∣∣ f(η̂) = ϕ(η) +
∑
x∈Z2

ηωxψx(η), ϕ, ψx ∈ S , ∀x ∈ Z2

}
,

of functions whose only dependency in the θx’s is a linear combination of the ω(θx).
Note that since we only consider local functions, this set is well-defined.

Denote

(6.43) T
ω
0 = C 0 ∩ Tω.

Note that T
ω
0 and C 0 are stable by the symmetric exclusion generator L . Further

note that by construction, δi(ηω0 1Ep) ∈ T
ω
0 .

Recall that for any function Φ on S, jΦ
i = Φ(θ0)η0(1−ηei)−Φ(θei)ηei(1−η0) denotes

the symmetric current associated with Φ (we also shortened ji = j1
i = η0 − ηei). We

define J∗ the set of linear combinations of currents spanning any smooth angular
functions,

(6.44) J∗ =
{
jΦ1
1 + jΦ2

2 , for Φ1, Φ2 ∈ C1(S)
}
,
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and let

(6.45) Jω = J∗ ∩ Tω =
{
ja,b :=

∑
i=1,2

aij
ω
i + biji, a, b ∈ R2

}
.

We now have all the notations needed to introduce the limiting variance�·�α̂. In
order to be able to estimate concisely the drift term later on, and to solve a technical
issue, we need a rather general result. In particular, we give two distinct constructions
for �f�α̂ depending on the nature of the function f . Fix α̂ ∈ M 1(S). Although it
is not clear at this point that those two definitions actually coincide, this difficutly
is adressed by Theorem 6.6.4 below, which states that the object �·�1/2

α̂ is a semi
norm, and that for any function to which both Definitions 6.6.1 and 6.6.1 apply, the
two definitions actually coincide.

Definition 6.6.1 (Definition of�·�α̂ on J∗+ L C ). – For any Φ1, Φ2 ∈ C1(S) and
for any local function g ∈ C , we define

(6.46) �jΦ1
1 + jΦ2

2 + Lg�α̂ =
∑
i=1,2

Eα̂
(
η0(1− ηei)

[
Φi(θ0) + Σg(η̂

0,ei)− Σg)
]2)

,

where Σg =
∑
x∈Z2 τxg, which is not a priori well-defined, but whose gradient

Σg(η̂
0,ei)−Σg is, because g is a local function. For any function ψ ∈ T

ω
0 + J∗+ L C ,

define

(6.47) �ψ , Lg + jΦ1
1 + jΦ2

2 �α̂ = −Eα̂

(
ψ

[
Σg +

∑
x∈Z2

(
x1η

Φ1
x + x2η

Φ2
x

) ])
,

which once again is well-defined because any ψ ∈ T
ω
0 + J∗ + L C is a local function

with mean-0 w.r.t. any µα̂, therefore the expectation above only involves a finite
number of non-0 contributions. In particular, an elementary computation yields that
for any g ∈ C , and j ∈ J∗

� Lg + j , Lg + j�α̂ =� Lg + j�α̂,

where the left hand-side is given by (6.47) and the right-hand side by (6.46).

Definition 6.6.2 (Definition of �·�α̂ on T
ω
0 ). – For any ψ ∈ T

ω
0 , define

(6.48) �ψ�α̂ = sup
g∈Tω
j∈Jω

{
2�ψ , Lg + j�α̂ −� Lg + j�α̂

}
,

where Tω, T
ω
0 and Jω were defined in (6.43) and (6.45), and the two terms inside

braces are respectively given by (6.46) and (6.47).
For ψ ∈ T

ω
0 and jΦ1

1 + jΦ2
2 + Lg ∈ J∗ + L C , we also define

�ψ+ Lg+jΦ1
1 +jΦ2

2 �α̂ = � Lg+jΦ1
1 +jΦ2

2 �α̂+�ψ�α̂+2�ψ, Lg+jΦ1
1 +jΦ2

2 �α̂,
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where the three terms in the right-hand side are respectively given by (6.46), (6.48)
and (6.47).

These definitions allow us to finally define on T
ω
0 +J∗+ L C a bilinear form�·, ·�α̂

by letting �ψ,ψ�α̂ =�ψ�α̂ for any ψ ∈ T
ω
0 + J∗ + L C , by polarization identity

on T
ω
0

2 and (J∗ + L C )2, and by (6.47) on T
ω
0 × (J∗ + L C ).

Remark 6.6.3. – We will see in the proof of Theorem 6.6.4 below that this definition
coincides with Definition 6.6.1 for any ψ ∈ T

ω
0 ∩ {J∗ + L C} ⊂ Jω + LTω, since in

this case the supremum in (6.48) is reached for f = Lg + ja,b itself.

For any cylinder function ψ, recall that sψ is the smallest fixed integer such that ψ is
measurable with respect to F sψ

, and let lψ = l−sψ−1 for any integer l large enough.
The following result justifies the definitions above, and states that�ψ�α̂ defined for
any ψ ∈ T

ω
0 + J∗ + L C is the limit of (6.38).

Theorem 6.6.4. – Fix α̂ ∈ M 1(S), and a sequence (K̂l)l∈N such that K̂l ∈ K̃l and
||| α̂K̂l − α̂ ||| → 0, where α̂K̂l ∈ M 1(S) is the grand-canonical parameter defined in
(3.1.7).

The bilinear form �·, ·�α̂ introduced in Definition 6.6.2 is a semi-inner product
on T

ω
0 + J∗ + L C , and, for any functions ψ,ϕ ∈ T

ω
0 + J∗ + L C ,

(6.49) lim
l→∞

1

(2l + 1)2
El,K̂l

(− L
−1
l )

∑
x∈Blψ

τxψ .
∑
x∈Blϕ

τxϕ

 = �ψ,ϕ�α̂.

Furthermore, for any ψ,ϕ ∈ T
ω
0 + J∗ + L C , the application α̂ → �ψ,ϕ�α̂ is

continuous in α̂, and the convergence above is uniform in α̂. In particular, for any
ψ ∈ T

ω
0 + J∗ + L C ,

(6.50)

lim
l→∞

sup
K̂∈K̃l

1

(2l + 1)2
El,K̂

(− L
−1
l )

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 = sup
α̂∈M 1(S)

�ψ�α̂.

The proof of Theorem 6.6.4 is the purpose of Section 8, and is postponed for now.
It requires many adaptations because of the angles, but follows the global strategy
presented in [28]. Let us explicitly write the dependency in p and f of W

l
i = W

f,l
i,p

appearing in Proposition 6.5.2, and define for any α̂ ∈ M 1(S)

(6.51) V
f
i,p(α̂) = jωi + ds(α)δiη

ω,p
0 + d(α̂)δiη0 + Lf ∈ T

ω
0 + J∗ + L C .

Recall that lf = l − sf − 1, where sf is also the size of the support of V
f
i,p (since we

can safely increase sf , in order to have sf = sVfi,p
) and define

Q1 = (2l + 1)2 W
f,l
i,p −

∑
x∈Blf

(τx V
f
i,p)(ρ̂l) and Q2 =

∑
x∈Blf

[
(τx V

f
i,p)(ρ̂l)− (τx V

f
i,p)(α̂)

]
.
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For h a cylinder function measurable w.r.t. sites in Bl, define Dl,K̂(h) =

El,K̂(h(− L l)h). For α̂K̂l → α̂, the variational formula for the variance yields

El,K̂l
(

W
f,l
i,p(− L

−1
l ) W

f,l
i,p

)
= sup

h

{
El,K̂l

(
hW

f,l
i,p

)
− Dl,K̂l

(h)
}

≤ sup
h

 1

(2l + 1)2
El,K̂l

h ∑
x∈Blf

(τx V
f
i,p)(α̂)

− 1

3
Dl,K̂l

(h)


+ sup

h

{
1

(2l + 1)2
El,K̂l (hQ1)− 1

3
Dl,K̂l

(h)

}
+ sup

h

{
1

(2l + 1)2
El,K̂l (hQ2)− 1

3
Dl,K̂l

(h)

}

≤ 3

(2l + 1)4
El,K̂l

(− L
−1
l )

∑
x∈Blf

(τx V
f
i,p)(α̂) .

∑
x∈Blf

(τx V
f
i,p)(α̂)


+ sup

h

{
1

(2l + 1)2
El,K̂l (hQ1)− 1

3
Dl,K̂l

(h)

}
+ sup

h

{
1

(2l + 1)2
El,K̂l (hQ2)− 1

3
Dl,K̂l

(h)

}
.

Since the discrepancies in Q1 = (2l + 1)2 W
f,l
i,p −

∑
x∈Blf

V
f
i,p(ρ̂l) occur only in

Bl−1 \Blf , letting γ = 1/(2l + 1)2, Lemma 8.3.2 below yields that the second term
above is less than

Cf
∣∣Bl−1 \Blf

∣∣ (2l + 1)−4 = O(l−3).

The last term multiplied by (2l + 1)2 vanishes as well thanks to Lemma 8.3.2 and
because the diffusion coefficients ds and d are continuous in α̂. Furthermore, as in
Lemma 8.3.2, both of these convergences are uniform in K̂l and α̂. We can therefore
apply Theorem 6.6.4 to the first term to obtain that for any f ∈ C ,

lim
l→∞

sup
K̂

(2l + 1)2El,K̂
(

W
f,l
i,p(− L l)

−1 W
f,l
i,p

)
≤ 3 sup

α̂∈M 1(S)

�V
f
i,p(α̂)�α̂,

therefore to prove Proposition 6.5.2, and thus Equation (6.7), it is sufficient to prove

(6.52) inf
f∈ C

lim
p→∞

sup
α̂∈M 1(S)

�V
f
i,p(α̂)�α̂ = 0.

This estimate is proved later on in Proposition 6.6.9, and requires to understand the
structure of the space T

ω
0 + J∗ + L C equipped with �·�α̂. It is the main result of

this section.
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For any Φ ∈ C1(S) and any α̂ ∈ M 1(S), we shorten

Eα̂(Φ) := Eα̂(Φ(θ0) | η0 = 1), Vα̂(Φ) := V arα̂(Φ(θ0) | η0 = 1),

Covα̂(ω,Φ) = Eα̂(ωΦ)− Eα̂(ω)Eα̂(Φ), Φ̂(θ) = Φ(θ)− Eα̂(Φ).

In particular, we denote by jΦ̂
i = jΦ

i − Eα̂(Φ)ji = jΦ
i + Eα̂(Φ)δiη the associated

current. Note that any element jΦ1
1 +jΦ1

2 of J∗ can be written as a linear combination
of the jΦ̂i

i and ji’s, i = 1, 2. For any fixed α̂, we finally define the function hpi by

hpi (η̂) = ds(α)(δiη
ω,p
0 + Eα̂(ω)ji) = δi

[
ds(α)(ηω0 1Ep − Eα̂(ω)η0)

]
= ds(α)(ηω̂ei − η

ω̂
0 )− ds(α)

[
ηωei1τeiEcp − η

ω
0 1Ecp

]
,

where as before Ep =
{∑

x∈Bp ηx ≤ |Bp | − 2
}
.

We can now rewrite (6.51) as

(6.53) V
f
i,p(α̂) = jω̂i + hpi + Lf.

Note that both jω̂i and hpi depend on α̂ as well as ω, but to simplify notations, we do
not write it explicitly. Throughout this section, we will not indicate the dependencies
in ω which is a fixed smooth function. We now compute the inner product �·, ·�α̂

of hpi with elements of J∗ + L C .

Corollary 6.6.5. – For any α̂ ∈ M 1(S), g ∈ C , Φ ∈ C1(S) and i, k = 1, 2,
(6.54)
�hpi , Lg�α̂ = 0, �hpi , j

Φ̂
k�α̂ = 1{i=k}q

Φ
p (α̂) and �hpi , jk�α̂ = 1{i=k}rp(α̂),

where we shortened

qΦ
p (α̂) = −αds(α)Covα̂(ω,Φ)µα̂(Ep|η0 = 1)

and
rp(α̂) = ds(α)Eα̂(ω)Eα̂

(
η01Ecp

[
1− ηe1 − (2p+ 1)2(α− ηe1)

])
.

Furthermore, shortening qp(α̂) := qωp (α̂),
(6.55)

lim
p→∞

sup
α̂∈M 1(S)

|qp(α̂)µα̂(Ep|η0 = 1) + αds(α)Vα̂(ω)| = 0 and lim
p→∞

sup
α̂∈M 1(S)

r2
p(α̂)

α(1− α)
= 0.

In particular, qp(α̂) → −αds(α)Vα̂(ω) and rp(α̂) → 0 as p → ∞ uniformly in α̂ ∈
M 1(S).

Proof of Corollary 6.6.5. – The three identities in (6.54) are consequences of (6.47).
Regarding the first one,

�hpi , Lg�α̂ = −Eα̂(hpiΣg)

= −ds(α)Eα̂
(
Σg
[
ηωei1τeiEp − η

ω
0 1Ep − Eα̂(ω)ηei + Eα̂(ω)η0)

])
= 0
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by translation invariance of µα̂.

For the second, we write

�hpi , j
Φ̂
k�α̂ = −

∑
x∈Z2

xkEα̂(hpi η
Φ̂
x )

= −ds(α)
∑
x∈Z2

xkEα̂
(
(ηω̂ei − η

ω̂
0 )ηΦ̂

x

)
+ ds(α)

∑
x∈Z2

xkEα̂
(
(ηωei1τeiEcp − η

ω
0 1Ecp)ηΦ̂

x

)
.

Since by construction Φ̂ has mean 0 w.r.t. the product measure µα̂, for any function ψ
which does not depend on θx, Eα̂(ψηΦ̂

x ) = 0. In particular, in both sums, any term
x 6= 0, ei vanishes. The terms for x = 0 also vanishes because of the factor xk, and so
does the term for x = ei if i 6= k. This yields

�hpi , j
Φ̂
k�α̂ = −1{i=k}ds(α)

{
Eα̂
(
ηω̂eiη

Φ̂
ei

)
− Eα̂

(
ηωeiη

Φ̂
ei1τeiEcp

)}
= −1{i=k}αds(α)Covα̂(ω,Φ)µα̂(Ep|η0 = 1),

as wanted.

We now turn to the third identity, for which we can write, applying the same steps
as before

�hpi , jk�α̂ = −ds(α)
∑
x∈Z2

xkEα̂
(
(ηω̂ei − η

ω̂
0 )ηx

)
+ ds(α)

∑
x∈Z2

xkEα̂
(

(ηωei1τeiEcp − η
ω
0 1Ecp)ηx

)
.

By definition of ω̂, each term in the first sum vanishes. Regarding the second term,
recall that Bp(x) = x+Bp, for any x ∈ (Bp∪Bp(ei))c and any x ∈ Bp∩Bp(ei)\{0, ei},
the corresponding contribution vanishes, because ηωeiηx1τeiEcp and ηω0 ηx1Ecp have the
same distribution. The term for x = 0 vanishes once again because of the factor xk.
We can therefore write

�hpi , jk�α̂ = 1{i=k}ds(α)Eα̂
(

(ηωei1τeiEcp − η
ω
0 1Ecp)ηei

)
+ ds(α)

∑
x∈Bp, xi=−p

or x∈Bp(ei), xi=p+1

xkEα̂
(

(ηωei1τeiEcp − η
ω
0 1Ecp)ηx

)
.

If i 6= k, the sum in the second line vanishes because the contributions for xk = q

cancel out the contributions for xk = −q. If i = k, all the contributions for xi = −p
(i.e., x ∈ Bp \Bp(ei)) are identical and equal to

−pds(α)Eα̂(ω)Eα̂
(
αηei1τeiEcp − ηxη01Ecp

)
= −pds(α)Eα̂(ω)Eα̂

(
(α− ηe1)η01Ecp

)
and the contributions for xi = p+ 1 (i.e., x ∈ Bp(ei) \Bp) are each equal to

−(p+ 1)ds(α)Eα̂(ω)Eα̂
(

(α− ηe1)η01Ecp

)
.
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Since each of those contributions appear 2p + 1 times, we finally obtain as wanted
that

�hpi , jk�α̂ = 1{i=k}ds(α)Eα̂(ω)
[
Eα̂
(

(1− ηe1)η01Ecp

)
− (2p+ 1)2Eα̂

(
(α− ηe1)η01Ecp

)]
.

According to Proposition B.2.3, c(1 − ρ) ≤ ds(ρ) ≤ C(1 − ρ) for some positive
constants c, C. Using this fact, the uniform estimates (6.55) follow from elementary
computations: for high densities, the factor µα̂(Ecp|η0) fail to converge uniformly in α̂,
but then ds(α) provides the needed control. Regarding rp the principle is the same,
and the extra factor (2p+ 1)2 is balanced out as α→ 1 by the factor α− η1. We start
with the first estimate. To prove that qp(α̂)µα̂(Ep|η0 = 1) + αds(α)Vα̂(ω) vanishes
uniformly in α̂, by definition of qp and since ω is bounded, it is enough to prove
that |1− µα̂(Ep|η0 = 1)2|αds(α) also does. The probability µα̂(Ep|η0 = 1) is explicit,
and given by

µα̂(Ep|η0 = 1) = 1− αP − P (1− α)αP−1

where we shortened P = (2p+1)2−1 = |Bp\{0}|. In particular, since ds(α) ≤ C(1−α),

|1− µα̂(Ep|η0 = 1)2|αds(α) ≤ Cα(1− α)
[
2αP + 2P (1− α)αP−1 − [αP + P (1− α)αP−1]2

]
.

Thanks to the prefactor 1− α, Each of the terms above is bounded by P a(1− α)a+1αC1P

for some different constants a ∈ {0, 1, 2} and C1 > 0 independent of P . The previous
expression is maximal in αP = C1P/(a + 1 + C1P ), and is therefore, uniformly
in α̂ ∈ M 1(S), less than

P a
(

a+ 1

a+ 1 + C1P

)a+1

,

which vanishes as wanted as P →∞.

We now turn to the second estimate. Once again, since ds(α) ≤ C(1−α), we obtain
immediately

rp(α̂)2

α(1− α)
≤ C ′ 1− α

α
Eα̂
(
η01Ecp

[
1− ηe1 − (2p+ 1)2(α− ηe1)

])2

.

The expectation above can be split in two terms, resp.(
1− (2p+ 1)2

)
Eα̂
(
η0(1− ηe1)1Ecp

)
and (1− α)(2p+ 1)2Eα̂

(
η01Ecp

)
.

We still shorten P = (2p+ 1)2 − 1 = |Bp \ {0}|, to obtain the bound∣∣∣Eα̂(η01Ecp
[
1− ηe1 − (2p+ 1)2(α− ηe1)

]) ∣∣∣ ≤ P (1− α)αP + α(1− α)(P + 1)µα̂(Ecp|η0 = 1).

the last probability µα̂(Ecp|η0 = 1) has already been computed for the previous esti-
mate, and one obtains straightforwardly that rp(α̂)2/α(1 − α) is also bounded from
above by a (finite) sum of terms of the form C1P

a(1−α)a+1αC2p for a ∈ {2, 3, 4} and
C1, C2 positive constants. As before, each of those vanishes uniformly in α̂ ∈ M 1(S),
which concludes the proof.
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We are ready to investigate the structure of T
ω
0 with respect to the semi-norm

�·�α̂ on T
ω
0 +J∗+ L C . Denote by N α̂ = Ker�·�α̂ and define H

ω
α̂ the completion

of (T
ω
0 +J∗+ L C )/N α̂ with respect to�·�1/2

α̂ . We need to define�·�α̂ on a rather
general space, including in particular J∗+ L C , in order to be able later on to estimate
the drift contribution to the hydrodynamic limit. However for now, we focus on the
symmetic current, and further defineHω the closure in H

ω
α̂ of ( T

ω
0 +Jω+ LTω)/N α̂.

Proposition 6.6.6 (Structure of Hω). – For any α̂ ∈ M 1(S), ( H
ω
α̂,�·�

1/2
α̂ ) is a

Hilbert space, and

Hω =
LTω

N α̂

⊕ Jω,

where LTω/N α̂ is the closure of LTω/N α̂ w.r.t. �·�α̂ in H
ω,0
α̂ .

Proof of Proposition 6.6.6. – First note that if α = 0 or 1, �·�α̂ ≡ 0 and therefore
H
ω
α̂ = {0} is trivial. We now assume that α̂ is such that α ∈ ]0, 1[. Since we took the

quotient by N α̂, the fact that ( H
ω
α̂,�·�

1/2
α̂ ) is a Hilbert space is immediate. By

construction Hω is a closed linear subspace of H
ω
α̂, and the inclusion

LTω

N α̂

+ Jω ⊂ Hω

is immediate, because Jω = Jω/N α̂. Since both sets are closed subspaces of H
ω
α̂, we

have

Hω =

(
LTω

N α̂

+ Jω

)
⊕

(
LTω

N α̂

+ Jω

)⊥,Hω
,

where the second set on the right-hand side denotes the orthogonal complement
of LTω

N α̂
+ Jω in Hω. To prove the converse inclusion, it is therefore sufficient to

prove that this orthogonal complement is reduced to {0}. This is rather straightfor-
ward, although a bit technical because of the different definitions for�·�α̂. For that
purpose, and to give a proof as clear as possible, let us shorten M = LTω/N α̂ +Jω,
and denote by m = ja,b + Lh its elements. Since M

⊥,Hω ⊂ Hω, and since Hω is
by definition the closure of ( T

ω
0 +M)/N α̂ any of its element can be written either

as g+m, where g ∈ T
ω
0 and m ∈M , or as the limit of elements of this type. In order

to avoid taking convergent sequences, fix

g0 +m0 ∈M
⊥,Hω

,

where g0 ∈ T
ω
0 and m0 ∈ M , we want to prove that g0 + m0 = 0. By construction,

for any m ∈M
�g0 +m0,m�α̂ = 0.
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and since g0 ∈ T
ω
0 , we can rewrite by the definition of �·�α̂ on T

ω
0 (cf. (6.48))

�g0�α̂ = sup
m∈M

{2�g0,m�α̂ −�m�α̂},(6.56)

therefore there exists a sequence (mk)k→∞ of elements of M such that �g0 +mk�α̂ → 0

as k →∞. We can thus write

�g0 +m0�α̂ =�g0 +mk, g0 +m0�α̂ +�m0 −mk, g0 +m0�α̂.

The second term vanishes because m0−mk ∈M , whereas the first term in the right-
hand side vanishes as k →∞, therefore�g0 +m0�α̂ = 0 as wanted. The same proof
holds if g0 +m0 is replaced by a convergent sequence of elements of T

ω
0 +M , which

proves the reverse inclusion.

Only remains to prove that the sum LTω

N α̂
+ Jω is direct. Assume that for some

coefficients ai, bi, and for some cylinder function g ∈ T
ω
0

�
∑
i=1,2

aij
ω̂
i + biji − Lg�α̂ = 0.

(We should really write this identity for a sequence gn instead of g, with the identity
above holding only as n→∞, but this is purely cosmetic and the proof below holds
in this case as well.) Thanks to Equation (6.54), we can take the inner product of the
identity above w.r.t. hpi and since we assumed that 0 < α < 1 let p → ∞ to obtain
that for i = 1, 2, aids(α)Vα̂(ω)α(1 − α) = 0, therefore a1Vα̂(ω) = a2Vα̂(ω) = 0. In
both cases, we therefore have �a1j

ω̂
1�α̂ =�a2j

ω̂
2�α̂ = 0. This yields

�b1j1 + b2j2 − Lg�α̂ = 0,

so that we can now take the inner product with δiη0 = −ji (which is orthogonal
to Lg), to obtain that b1α(1− α) = b2α(1− α) = 0, therefore b1 = b2 = 0 as wanted.
This proves that the sum is direct, and concludes the proof of Proposition 6.6.6.

The next proposition states that in H
ω
α̂, jωi can be written as a combination of hpi

and ji, up to a function which takes the form Lg, and that the coefficients converge
as p→∞ to those given in (6.53).

Proposition 6.6.7 (Decomposition of the currents). – For any positive integer p,
define

cp(α) =

{
µα̂(Ep|η0 = 1)−1 if α < 1

1 otherwise

and dp(α̂) =

{
−rp(α̂)cp(α)/α(1− α) if 0 < α < 1

0 otherwise,
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where rp was defined in Corollary 6.6.5. Then, for any i ∈ 1, 2 and α̂ ∈ M 1(S).

(6.57) inf
g∈Tω

�jω̂i + cp(α)hpi + dp(α̂)ji + Lg�α̂ = 0.

Furthermore, any sequence (gm)m ultimately realizing (6.57) can be chosen indepen-
dently of p, and also ultimately realizes

(6.58) inf
g∈Tω

�jω̂i + Lg�α̂.

Proof of Proposition 6.6.7. – We start by clearing out the trivial cases when α = 0

and α = 1. In those, all quantities vanish and (6.57) is trivially true for any co-
efficients. Another trivial case is when Vα̂(ω) = 0. In this case, jω̂i = 0 in H

ω
α̂,

therefore, the hpi and ji being orthogonal (as local gradients) to LTω, and hpi
being orthogonal to jk for k 6= i, as a consequence of Proposition 6.6.6 we can
then write �hpi + apji�α̂ = 0 for some constant ap. This constant can be deter-
mined using Lemma 6.6.5 and taking the inner product of the previous quantity
with ji, which yields ap = −rp(α̂)/�ji�α̂ = −rp(α̂)/α(1 − α). In this case,
�cp(α)hpi + dp(α̂)ji�α̂ = 0 for any p, as wanted.

We now fix α̂ ∈ M 1(S) satisfying α ∈ ]0, 1[ and Vα̂(ω) > 0. Fix p ∈ N, and
define cp, dp as in Proposition 6.6.7, we now prove that (6.57) holds. According to
Proposition 6.6.6, there exists coefficients api,k and bpi,k such that,

(6.59) inf
g∈Tω

�hpi +
∑
k=1,2

api,kj
ω̂
k + bpi,kjk + Lg�α̂ = 0.

In order not to burden the proof, we will assume that the infimum in g is reached,
i.e., that there exists a function gpi ∈ Tω such that

(6.60) �hpi +
[ ∑
k=1,2

api,kj
ω̂
k + bpi,kjk

]
+ Lgpi�α̂ = 0.

This assumption is purely for convenience, and we can substitute at any point to gpi
a sequence of functions (gpi,m)m∈N such that the previous identity holds in the limit
m→∞.

Using (6.47), one obtains immediately that �jω̂i , jω̂k�α̂ = 1{i=k}Vα̂(ω)α(1− α),
�jω̂i , jk�α̂ = 0 and �ji, jk�α̂ = 1{i=k}α(1 − α). Using these formulas and Corol-
lary 6.6.5, we take the inner product of the function in (6.60) with jω̂l , jl, Lgpl , and
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hpl , to obtain the four identities

(6.61)

1{i=l}qp(α̂) + api,lVα̂(ω)α(1− α) +� Lgpi , j
ω̂
l �α̂ = 0,

1{i=l}rp(α̂) + bpi,lα(1− α) = 0,∑
k=1,2

api,k�j
ω̂
k , Lgpl�α̂ +� Lgpi , Lgpl�α̂ = 0,

�hpi , h
p
l�α̂ + api,lqp(α̂) + bpi,lrp(α̂) = 0.

Note that since we assumed α ∈ ]0, 1[, Vα̂(ω) > 0 and p > 0, we have qp(α̂) < 0.
Define Ap, Bp, Hp, Gp and Jp the matrices whose respective elements are given for
i, k = 1, 2 by api,k, b

p
i,k, �h

p
i , h

p
k�α̂, � Lgpi , Lgpk�α̂ and � Lgpi , j

ω̂
k�α̂. Note in par-

ticular that Hp and Gp are symmetric with non-negative eigenvalues. Further denote
by I the two-dimensional identity matrix. The four identities above then rewrite in
matrix form as

Jp = −qp(α̂)I − Vα̂(ω)α(1− α)Ap, Bp = − rp(α̂)

α(1− α)
I

−ApJ†p = Gp, −qp(α̂)Ap − rp(α̂)Bp = Hp,

where J†p is the transposed matrix of Jp. The second and last identities show that Bp
and Ap are symmetric, therefore so is Jp, and that

Ap = − 1

qp(α̂)

[
Hp −

rp(α̂)2

α(1− α)
I

]
.

In particular, since Hp is positive in the matrix sense, it is diagonalizable, and thus
so is Ap. Finally, the first and third identities then yields

Ap[qp(α̂)I + Vα̂(ω)α(1− α)Ap] = Gp,

therefore, since Gp is positive in the matrix sense, any eigenvalue λ of Ap must satisfy

λ[qp(α̂) + Vα̂(ω)α(1− α)λ] ≥ 0

and therefore λ > −qp(α̂)/Vα̂(ω)α(1−α) > 0. Let Cp denote the inverse of Ap, which
is a positive matrix with eigenvalues bounded from above by −Vα̂(ω)α(1− α)/qp(α̂).
Since Ap is invertible, we can therefore rewrite (6.60) as

(6.62) �jω̂i +
[ ∑
k=1,2

cpi,kh
p
k + dpi,kjk

]
+ L g̃ki�α̂ = 0,

which holds for i = 1, 2, where g̃ki =
∑
k=1,2 c

p
i,kg

p
k, and the cpi,k (resp. dpi,k) are the

matrix elements of Cp (resp. Dp := CpBp). For x, y ∈ R2, shorten x · y = x1y1 + x2y2

their usual inner product. Let jω̂ = (jω̂1 , j
ω̂
2 ), and define the quadratic form Q as

x†Qx = inf
g∈Tω

�x · jω̂ + Lg�α̂.
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Then, (6.62) yields for any x ∈ R2

(6.63) inf
g∈Tω

�x · jω̂ +
[ ∑
i,k=1,2

xic
p
i,kh

p
k + xid

p
i,kjk

]
+ Lg�α̂ = 0.

Taking the inner product of the expression above with x ·jω̂+ Lg, and since the terms
in the sum are orthogonal to any Lg, we obtain

x†Qx = inf
g∈Tω

�x · jω̂ + Lg�α̂ =−�x · jω̂,
∑

i,k=1,2

xic
p
i,kh

p
k + xid

p
i,kjk�α̂

=−
∑

i,k=1,2

xixkc
p
i,k�h

p
k, j

ω̂
k�α̂ + xixkd

p
i,k�jk, j

ω̂
k�α̂

=− qp(α̂)x†Cpx,

thanks to Corollary 6.6.5 and because jk and jω̂k are orthogonal. We prove in Ap-
pendix B.2, Equation (B.6), that Q = αV (α̂)ds(α)I, therefore

Cp = −αV (α̂)ds(α)

qp
I = µα̂(Ep | η0 = 1)−1I = cp(α)I,

and Dp = [−cp(α)rp(α̂)/α(1 − α)]I = dp(α̂)I, where cp, dp were defined in Proposi-
tion 6.6.7. We can now rewrite (6.63) as wanted as

(6.64) inf
g∈Tω

�jω̂i + cp(α)hpi + dp(α̂)ji + Lg�α̂ = 0.

Since hpi and ji are both orthogonal to any Lg, taking the inner product of the
identity above with jω̂i + Lg, one obtains that any sequence of functions realizing the
infimum above also realizes infg∈Tω�jω̂i + Lg�α̂, which proves the last statement
and concludes the proof of Proposition (6.6.7).

Remark 6.6.8 (Bound on �hpi�α̂). – We already obtained in (6.61),
�hpi , h

p
l�α̂ + api,lqp(α̂) + bpi,lrp(α̂) = 0. Since we now have an explicit expres-

sion for the matrix Ap = C−1
p = c−1

p (α)I, and Bp = −rp(α̂)/α(1 − α)I, we obtain

�hpi�α̂ = −qp(α̂)c−1
p (α) +

rp(α̂)2

α(1−α) . Equation (6.55) then yields the uniform bound

(6.65) lim
p→∞

sup
α̂∈M 1(S)

|�hpi�α̂ − αds(α)Vα̂(ω)| = 0.

We now prove Equation (6.52), and thus concludes the proof of Theorem 6.1.1. Up
until now, we have only used �·�α̂ for functions in Tω, but in (6.52) the function
f is a priori no longer in Tω bur rather in C , we therefore need the extension of�·�α̂

to L C introduced in Definitions 6.6.1 and 6.6.2. Thanks to (6.53), the result can be
stated as follows.
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Proposition 6.6.9 (Uniform bound on �V
f
i,p�α̂). – Identity (6.52) holds, in the

sense that there exists a sequence of local functions fn ∈ C such that

(6.66) lim sup
n→∞

lim sup
p→∞

sup
α̂∈M 1(S)

�jω̂i + hpi + Lfn�α̂ = 0.

Furthermore, for any α̂ ∈ M 1(S), limn→∞�jω̂i + Lfn�α̂ = infg∈Tω�jω̂i + Lg�α̂.

Proof of Proposition 6.6.9. – In order not to burden with technical estimates, we start
by cutting off the extreme densities for which the convergences as p → ∞ can be
problematic. For any α̂, we can write by triangular inequality and using (6.65),

�jω̂i + hpi + Lf�α̂ ≤ �jω̂i �α̂ +�hpi�α̂ +� Lf�α̂

≤ Vα̂(ω)α(1− α) + αds(α)Vα̂(ω)(1 + op(1))

+
∑
i=1,2

Eα̂(η0(1− ηei)[Σf (η̂0,ei)− Σf ]2),

where the op(1) does not depend on α̂. As stated in Proposition B.2.3, ds(α) ≤ C(1− α),
ω is bounded, and f is a cylinder function and therefore Σf (η̂0,ei) − Σf is bounded
as well. Fix ε > 0, in particular, the estimate above yields, for some constant Cω,f ,
and for any α̂ such that α /∈ [ε, 1− ε]

�jω̂i + hpi + Lf�α̂ ≤ Cω,f (1 + op(1))ε.

We now fix α̂ such that ε ≤ α ≤ 1− ε, by triangular inequality,

�jω̂i +hpi + Lf�α̂ ≤ �jω̂i +cp(α)hpi +dp(α̂)ji+ Lf�α̂+�(cp(α)−1)hpi +dp(α̂)ji�α̂.

Since α̂ is bounded away from the extreme densities, the second term in the right-hand
side is Cεop(1), and we can therefore write

sup
α̂
�jω̂i +hpi + Lf�α̂ ≤ sup

α̂
�jω̂i +cp(α)hpi +dp(α̂)ji+ Lf�α̂+Cω,f ε+Cε,ω,fop(1).

We then let p→∞ and then ε→ 0 to obtain that

lim sup
p→∞

sup
α̂
�jω̂i + hpi + Lf�α̂ ≤ lim sup

p→∞
sup
α̂
�jω̂i + cp(α)hpi + dp(α̂)ji + Lf�α̂.

Proposition (6.6.9) is therefore a consequence of Lemma (6.6.10) below.

Lemma 6.6.10. – There exists a sequence of local functions fn ∈ C such that

lim sup
p→∞

sup
α̂
�jω̂i + cp(α)hpi + dp(α̂)ji + Lfn�α̂ ≤

3

n
,

and for any α̂ ∈ M 1(S), limn→∞�jω̂i + Lfn�α̂ = infg∈Tω�jω̂i + Lg�α̂
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Proof of Lemma 6.6.10. – The proof of this lemma is analogous to that of Theo-
rem 5.6, p.176 of [28]. We now write explicitly the dependency of hpi in α̂. According
to Theorem 6.6.4 the application α̂ 7→ �ψ�α̂ is continuous on M 1(S), and thanks
to Equation (6.52), for any α̂0 ∈ M 1(S), there exists a function gα̂0

∈ Tω and a
neighborhood N α̂0

of α̂0 such that for any α̂ ∈ N α̂0
,

�jω̂i + cp(α0)hpi (α̂0) + dp(α̂0)ji + Lgα̂0
�α̂ ≤ n−1.

Furthermore, thanks to the last statement in Proposition 6.6.7, this function is an
approximation of the one realizing infg∈Tω � jω̂i + Lg �α̂0

, and can be chosen
independently of p.

We prove in Proposition C.3.1 that M 1(S) is compact, it therefore admits a finite
covering M 1(S) ⊂

⋃m
j=1 N α̂j . We can build a C2 interpolation of the gα̂j ’s, and

therefore obtain a function (α̂, η) 7→ ψ(α̂, η) which coincides in α̂ = α̂j with gα̂j , with
the two following properties:

— let B be a finite set of edges in Z2 containing the support of all the gα̂j ’s,
ψ(α̂, . ) is a cylinder function in Tω with support included in B for any
α̂ ∈ M 1(S);

— for any fixed configuration η̂, ψ( . , η̂) is in C2( M 1(S));

— for any α̂ ∈ M 1(S)

(6.67) �jω̂i + cp(α)hpi (α̂) + dp(α̂)ji + Lψ(α̂, ·)�α̂ ≤ 2n−1.

Recall that we introduced in (2.21) ρ̂r = |Br |−1
∑
x∈Br ηxδθx the empirical angular

density in the box of side (2r + 1) around the origin. Define

fr(η̂) = ψ(ρ̂r, η̂),

for any r large enough for the support B of the ψ(α̂, η)’s to be contained in Br. Note
that fr is not necessarily in Tω, but it is a local function for r fixed.

By the triangle inequality,

(6.68) sup
α̂
�jω̂i +cp(α)hpi (α̂)+dp(α̂)ji+ Lfr�α̂ ≤ 2n−1 +sup

α̂
� L (fr−ψ(α̂, ·))�α̂.

The second term in the right-hand side is∑
i

Eα̂
((
∇0,ei

∑
x∈Z2

τx [fr − ψ(α̂, ·)]
)2)

=
∑
i

Eα̂
((∑

x∈Z2

τ−x∇x,x+ei [fr − ψ(α̂, ·)]
)2)

.

Note once again that
∑
x∈Z2 τxf is merely a notation, and is not a well-defined function

as such, but instead, is meant to either be integrated against a mean-0 local function,
or taken a gradient of, as is the case here. We extend B by 1 in such a way that
for any edge a outside of B, ∇aψ(α̂, .) vanishes. Therefore, the only contributions
outside of B in the sums above are at the boundary of Br, where fr has a variation
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in its first argument of order (2r+ 1)−2. Thanks to the regularity of ψ in α̂, and since
the number of corresponding edges is roughly 4(2r + 1), the contribution of all these
jumps is of order r−1 in the whole sum.

Then, since the number of edges in B depends only on ψ, and since Eα̂
(
(∇af)2

)
≤

4Eα̂(f2), we obtain by definition of fr that

(6.69) sup
α̂
� L (fr − ψ(α̂, ·))�α̂ ≤ sup

α̂
C(ψ)Eα̂

[
(ψ(ρ̂r, .)− ψ(α̂, ·))2

]
+O(r−2),

whose right-hand side vanishes as r goes to infinity by the law of large numbers.

Let us fix rn such that the right-hand side of (6.69) is less than 1/n, and let
fn = frn , (6.68) finally yields

(6.70) sup
α̂
�jω̂i + cp(α)hpi (α̂) + dp(α̂)ji + Lfn�α̂ ≤ 3n−1,

as wanted. The last statement of the lemma is a direct consequence of the construction
of fn and of Proposition 6.6.7. This concludes the proof of Lemma 6.6.10.

6.7. Drift part of the hydrodynamic limit

Recall that LN = N2 L + N L
WA

+ L
G is the complete generator of our process

introduced in (2.2). In the previous section, we proved that the symmetric currents can
be replaced by a gradient, up to a perturbation Lf . In our case, this perturbation is not
negligible, and must be added to the asymmetric currents induced by the asymmetric
generator L

WA to complete the drift term in Equation (2.11). This is the purpose of
this section.

To achieve that goal, we need notations similar to the ones introduced in Sec-
tion 4.1. For any positive integer l, and any smooth function G ∈ C([0, T ] × T2), let
us introduce

R
f,l
i (η̂) = rωi + L

WA
f − Eρ̂l(r

ω
i + L

WA
f),

and

Y f,li,N (G, η̂) =
1

N2

∑
x∈T2

N

G(x/N)τx R
f,l
i ,

where rωi is the asymmetric current introduced in (2.16). According to Theorem 6.1.1,
for any i, there exists a family of cylinder functions (fωi,n)n∈N introduced in Proposi-
tion 6.6.9 such that

lim
γ→∞

lim
n→∞

lim sup
ε→0

lim sup
N→∞

1

γN2
logEλ,βµ∗α

[
exp

(
γN2

∣∣∣∣∣
∫ T

0

X
fωi,n,εN

i,N (Gt, η̂(t))dt

∣∣∣∣∣
)]

= 0,
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whereXf,εN
i,N was defined in Equation (6.1). Furthermore, we also established in Propo-

sition 6.6.9 that this sequence satisfies for any α̂ ∈ M 1(S)

(6.71) lim
n→∞

�jωi + Lfωi,n�α̂ = inf
f∈Tω

�jωi + Lf�α̂.

The replacement Lemma 4.1.1 applied to g(η̂) = rωi + L
WA
f yields the following result.

Lemma 6.7.1. – Let G be some smooth function in C1,2([0, T ] × T2), and T ∈ R∗+,
then for i ∈ {1, 2} we have

lim
n→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

[∣∣∣∣∣
∫ T

0

Y
fωi,n,εN

i,N (G, η̂)ds

∣∣∣∣∣
]

= 0.

Furthermore, we now prove the following result, which states that any function of
the form N L

D
f vanishes in the hydrodynamic limit, where L

D
= L +N−1 L

WA is the
generator of whole exclusion process.

Lemma 6.7.2. – For any function G : [0, T ] × T2 → R in C1,2, and any cylinder
function f ,

lim sup
N→∞

EµN

∣∣∣∣∣∣
∫ T

0

1

N

∑
x∈T2

N

G (s, x/N) τx L
D
f(η̂(s))ds

∣∣∣∣∣∣
 = 0.

Proof of Lemma 6.7.2. – For any such smooth function H and cylinder function f ,
let us denote

FG(s, η̂(s)) = N−2
∑
x∈T2

N

G(s, x/N)τxf(η̂(s)).

The process

MG(t) = FG(t, η̂(t))− FG(0, η̂(0))−
∫ T

0

∂sFG(s, η̂(s))ds−
∫ T

0

LNFG(s, η̂(s))ds

is a martingale, where LN is the complete generator of our process, introduced in
(2.2). Since f is bounded, the first three terms are of order 1, it remains to control∫ T

0
LNFGds. The quadratic variation of this martingale is given (cf. Appendix 1.5,

Lemma 5.1 in [28]) by

[MG(·, η̂(.))]t =

∫ T

0

LNFG(s, η̂(s))2 − 2FG(s, η̂(s))LNFG(s, η̂(s))ds

=

∫ T

0

dsN2
∑
x∈T2

N

δ=±1,i∈{1,2}

τλx,z,i,δ
[
FG(s, η̂x,x+δei(s))− FG(s, η̂(s))

]2

+

∫ T

0

ds
∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)
[
FG(s, η̂x,θ(s))− FG(s, η̂(s))

]2
dθ
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=
1

N2

∫ T

0

ds
∑
x∈T2

N

δ=±1,i∈{1,2}

τλx,z,i,δ(η̂(s))

 ∑
y∈T2

N

G(s, y/N)
(
τyf(η̂x,x+z(s))− τyf(η̂(s))

)2

+
1

N4

∫ T

0

ds
∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)

 ∑
y∈T2

N

G(s, y/N)
(
τyf(η̂x,x+z(s))− τyf(η̂(s))

)2

dθ,

where

τλx,z,i,δ(η̂) =

(
1 +

δλi(θx)

N

)
ηx(1− ηx+z)

is the total displacement jump rate.

Since f is a local function, all but a finite number of terms in the y sums vanish,
and the quadratic variation is hence of order N−2. We deduce from the estimate of
the quadratic variation of MG and the order of the three first terms in the expression
of MG that

EµN

(∣∣∣∣∣
∫ T

0

N−1LNFG(s, η̂(s))ds

∣∣∣∣∣
)
≤ N−1

EµN ([MG(t, η̂(t))])
1/2︸ ︷︷ ︸

O(N−1)

+ON (1)

 →
N→∞

0.

The previous martingale estimate shows that EµN
(∣∣∣ ∫ T0 N−1LNFG(s, η̂(s))ds

∣∣∣) van-
ishes in the limit N → ∞. Furthermore, elementary computations yield a crude
bound on the contribution of the Glauber generator of order N−1. Finally, since
LN = N2 L

D
+ L

G, we obtain

EµN

(∣∣∣∣∣
∫ T

0

N L
D
FG(s, η̂(s))ds

∣∣∣∣∣
)
→

N→∞
0,

which completes the proof of Lemma 6.7.2.

We now use these two lemmas to prove that the total displacement current can be
replaced by the wanted averages. More precisely, let

U
f,l
i (η̂) = jωi +

1

N
rωi + ds (ρl) δiρ

ω
l + d (ρl, ρ

ω
l ) δiρl −

1

N
Eρ̂l(r

ω
i + L

WA
f),

we can state the following result.

Corollary 6.7.3. – For any G ∈ C1,2([0, T ]× T2), T ∈ R∗+, and i ∈ {1, 2},

lim
n→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

∣∣∣∣∣∣
∫ T

0

1

N

∑
x∈T2

N

G(x/N) U
fωi,n,εN

i (G, η̂)ds

∣∣∣∣∣∣
 = 0.
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Proof of Corollary 6.7.3. – Adding and subtracting L
D
fωi,n to U

fωi,n,εN

i , we can split
it into three parts,

jωi + ds (ρεN ) δiρ
ω
εN + d (ρεN , ρ

ω
εN ) δiρεN + Lfωi,n,

1

N
(rωi + L

WA
fωi,n)− 1

N
Eρ̂εN (rωi + L

WA
fωi,n), and − L

D
fωi,n.

The contribution of the first quantity vanishes in the limit of Corollary 6.7.3, ac-
cording to Corollary 6.1.2. The second contribution also does thanks to Lemma 6.7.1,
as well as the third due to Lemma 6.7.2, thus completing the proof of the corollary.

We now derive an explicit expression for the limit of Eρ̂εN (rωi + L
WA
fωi,n), appearing

in U
fn,l
i , as n goes to ∞.

Lemma 6.7.4. – For any α̂ ∈ M 1(S),

(6.72) lim
n→∞

Eα̂
(
rωi + L

WA
fωi,n

)
= 2ds(α)αωλi + 2

αωαλi
α

(1− α− ds(α)),

where for any function Φ ∈ C1(S), we defined αΦ = Eα̂(Φ(θ0)η0).

Proof of Lemma 6.7.4. – By definition of

rωi = λi(θ0)ω(θ0)η0(1− ηe1) + λi(θei)ω(θei)ηei(1− η0),

we can write, shortening as before Eα̂(Φ) = Eα̂(Φ(θ0)|η0 = 1),

(6.73) Eα̂(rωi ) = 2Eα̂(λiω)α(1− α) = 2�jλii , j
ω
i �α̂.

For any cylinder function f , by translation invariance of µα̂ and Definition 6.6.1, one
also obtains by elementary computations that

(6.74) Eα̂( L
WA
f) = 2�jλ1

1 + jλ2
2 , Lf�α̂.

Recalling Corollary 6.6.5, we can then write

�jλkk , hp,ωi �α̂ =�jλ̂kk , hp,ωi �α̂ + Eα̂(λk)�jk, hp,ωi �α̂

= −1{i=k}[αds(α)Covα̂(ω, λi)(1− op(1))− Eα̂(λi)op(1)],

where as before λ̂k = λk − Eα̂(λk). We can also write by Definition 6.6.1

�jλkk , jωi �α̂ = 1{i=k}Eα̂(λkω)α(1− α).

Once again, in order to avoid taking everywhere limits n → ∞, we assume for
the convenience of notations, that there exists a local function fωi realizing the in-
fimum (6.71). Recall then from Equation (6.57) that in H

ω
α̂, we have the identity
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jω̂i + Lfωi = −cp(α)hpi − dp(α̂)ji. Then, using (6.73), (6.74), and the explicit formu-
las for the inner products which prove orthogonality of directions i 6= k,

Eα̂(rωi + L
WA
fωi ) = 2�jλ1

1 + jλ2
2 , Lfωi �α̂ + 2�jλii , j

ω
i �α̂

= 2�jλ1
1 + jλ2

2 , jω̂i + Lfωi �α̂ − 2�jλ1
1 + jλ2

2 , jω̂i �α̂ + 2�jλii , j
ω
i �α̂

= −2�jλ1
1 + jλ2

2 , cp(α)hp,ωi + dp(α̂)ji�α̂ − 2�jλii , j
ω̂
i �α̂ + 2�jλii , j

ω
i �α̂

= −2cp(α)�jλii , h
p,ω
i �α̂ − 2dp(α̂)�jλii , ji�α̂ + 2Eα̂(ω)�jλii , ji�α̂.(6.75)

We now let p → ∞, so that dp vanishes, cp goes to 1, to obtain as wanted, by
Definition 6.6.1 and Corollary 6.6.5,

Eα̂(rωi + L
WA
fωi ) = 2αds(α)Covα̂(ω, λi) + 2Eα̂(ω)Eα̂(λi)α(1− α).

Reorganizing the terms yield Lemma 6.7.4.
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We now have all the pieces to prove Theorem 2.3.3. The last remaining difficulty
is to perform the second integration by parts, since even the gradients obtained in
Section 6 are not exactly microscopic gradients due to the non-constant diffusion
coefficient. This is not a problem when the variations only depend on one quantity,
the density for example, since we can then simply consider a primitive of the diffusion
coefficient and obtain at the highest order in N a discrete gradient. This is not the
case here, and we need some more work to obtain the wanted gradient.

Let us recall from Section 2.4 that for any smooth function H ∈ C1,2,1([0, T ]× T2 × S),
that we denoted by MH,N

t the martingale

MH,N
t = <πNt , Ht>−<πN0 , H0>−

∫ t

0

[
<πNs , ∂sHs>+ LN<π

N
s , Hs>

]
ds,(7.1)

where

πNs =
1

N2

∑
x∈T2

N

ηx(t)δx/N,θx(s)

is the empirical measure of the process on T2 × S.

Theorem 2.3.3. – The quadratic variation [MH,N ]t of M
H,N
t (cf. A1.5. Lemma 5.1 in

[28]) is

[MH,N ]t =

∫ t

0

LN<π
N
s , Hs>

2 − 2<πNs , Hs>LN<π
N
s , Hs>ds

=

∫ t

0

1

N4

∑
x∈T2

N

∑
|z|=1

A1(η̂, x, z)Hs(x/N)Hs((x+ z)/N) +A2(η̂, x)Hs(x/N)2

ds
≤
∫ t

0

1

N4

∑
x∈T2

N

C ||H||2∞ ds ≤ 1

N2
tC ||H||2∞ ,
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where C, A1(η̂, x, z) and A2(η̂, x) are bounded uniformly in N . The quadratic vari-
ation [MH,N ]t is therefore of order N−2, and vanishes as N goes to infinity. Doob’s
inequality hence gives us for any T > 0, δ > 0

lim
N→∞

Pλ,β
µN

(
sup

0≤t≤T

∣∣∣MH,N
t

∣∣∣ ≥ δ) = 0,

and in particular

(7.2) lim
N→∞

Pλ,β
µN

(∣∣∣MH,N
T

∣∣∣ ≥ δ) = 0.

We first consider the case of a function H such that

Ht(u, θ) = Gt(u)ω(θ),

the general case will be a simple consequence of a periodic version of the Weierstrass
approximation theorem. For any such H, we can write

(7.3)
∫ T

0

LN<π
N
t , Ht>dt

=
1

N2

∫ T

0

dt
∑
x∈T2

N

τx

[
2∑
i=1

[Njωi + rωi ](t)∂ui,NGt(x/N) +Gt(x/N)γω(t)

]
,

where jωi , rωi and γω were introduced in Definition 2.4.1, and

∂ui,NG(x/N) = N(G(x+ ei/N)−G(x/N))

is a microscopic approximation of the spatial derivative ∂uiG.

Thanks to Sections 4 and 6, we can perform the following replacements, in the
expectation of the expression above, and in the limit N →∞ then ε→ 0:

— thanks to Corollary 6.7.3, we can replace jωi by

(7.4) − [ds(ρεN )δiρ
ω
εN + d(ρεN , ρ

ω
εN )δiρεN ] ,

where d is given by Equation (6.39),

d(ρ, ρω) = ρω(1− ds(ρ))/ρ,

— thanks to Corollary 6.7.3 and Lemma 6.7.4, rωi can be replaced by

Rωi (ρ̂εN ) := 2

[
ds(ρεN )Eρ̂εN (ηωλi0 ) +

Eρ̂εN (ηω0 )Eρ̂εN (ηλi0 )

ρεN
(1− ρεN − ds(ρεN ))

]
;

— finally, the Replacement Lemma 4.1.1 yields that γω can be replaced
by Eρ̂εN (γω).
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In other words, thanks to Equation (7.2), for any Hs(u, θ) = Gs(u)ω(θ), we can
write

(7.5) lim sup
ε→0

lim
N→∞

Pλ,β
µN

(∣∣∣ M̃H,N,ε
T

∣∣∣ ≥ δ) = 0,

where

M̃H,N,ε
T = <πNT , HT>−<πN0 , H0>−

∫ T

0

<πNt , ∂tHt>dt(7.6)

+

∫ T

0

dt

[
1

N2

∑
x∈T2

N

τx

2∑
i=1

[
N (ds(ρεN )δiρ

ω
εN + d(ρεN , ρ

ω
εN )δiρεN )

−Rωi (ρ̂εN )

]
∂ui,NGt(x/N)−Gt(x/N)Eρ̂εN (γω)

]
(t).

In order to give a clear scheme, we divide the end of the proof in a series of steps.

Performing the second integration by parts. – Due to the presence of the diffusion
coefficients, one cannot switch directly the last discrete derivatives δiρεN and δiρωεN
onto the smooth function G. In one dimension, one would consider a primitive d(ρ)

of the diffusion coefficient D(ρ), and write that

D(ρεN )δiρεN = δid(ρεN ) + oN (δiρεN ).

However, our case cannot be solved that way because the differential form

(ρ, ρω) 7→ ds(ρ)dρω + d(ρ, ρω)dρ

is not closed, and therefore not exact either, which means that we cannot express
(7.4) as

δiF (ρεN , ρ
ω
εN ) + oN (1/N).

We thus need another argument to obtain the differential Equation (2.11).

First, we get rid of the part with δiρω. To do so, notice that

δi [ds(ρεN )ρωεN ] = ds(ρεN )δiρ
ω
εN + ρωεNδids(ρεN ) + oN (1/N)

= ds(ρεN )δiρ
ω
εN + ρωεNd

′
s(ρεN )δiρεN + oN (1/N).

We can therefore write

(7.7) ds(ρεN )δiρ
ω
εN = δi [ds(ρεN )ρωεN ]− ρωεNd′s(ρεN )δiρεN + oN (1/N).

Let us denote for any x ∈ T2
N

DεN
x = τx (d(ρεN , ρ

ω
εN )− ρωεNd′s(ρεN )) .
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We perform a second integration by parts in the contribution of the first term in the
right-hand side of (7.7), whereas the left-hand side is added to the existing contribu-
tion of δiρεN , with the modified diffusion coefficient DεN

x defined above. We can now
rewrite M̃H,N,ε

T as

(7.8) <πNT , HT>−<πN0 , H0>−
∫ T

0

<πNt , ∂tHt>dt−
∫ T

0

I1(t, η̂t)−I2(t, η̂t)dt+oN (1),

where

I1(t, η̂) =
1

N2

∑
x∈T2

N

τx

[ 2∑
i=1

ds(ρεN )ρωεN∂
2
ui,NGt(x/N) +Rωi (ρ̂εN )∂ui,NGt(x/N)

+Gt(x/N)Eρ̂εN (γω))

]
and

I2(t, η̂) =
1

N2

∑
x∈T2

N

τx

2∑
i=1

NDεN
0 δiρεN∂ui,NGt(x/N)

=
1

N2

∑
x∈T2

N

2∑
i=1

NDεN
x (τx+eiρεN − τxρεN )∂ui,NGt(x/N).

In I1, we regrouped all the terms for which taking the limit N →∞ is not a problem,
whereas I2 is the term where the extra factor N still has to be absorbed in a spatial
derivative.

Replacement of the microscopic gradient by a mesoscopic gradient. – Since we cannot
switch the derivative on the smooth function G due to the diffusion coefficient, we
need to obtain the gradient of ρ in another way. For this purpose, we need to replace
the microscopic gradient τx+eiρεN − τxρεN by a mesoscopic gradient, and make the
derivative (in a weak sense) of ρ appear directly. More precisely, let us define

Ĩ2(t, η̂) =
1

N2

∑
x∈T2

N

2∑
i=1

DεN
x

τx+ε3NeiρεN − τx−ε3NeiρεN
2ε3

∂ui,NGt(x/N).

We are going to prove that for any configuration η̂,

(7.9)
∣∣∣ I2(t, η̂)− Ĩ2(t, η̂)

∣∣∣ ≤ oN (1) + oε(1),

uniformly in η̂. To prove the latter, for any k ∈ [[−ε3N, ε3N ]], let us denote by
xk = x+ kei,

τx+ε3NeiρεN − τx−ε3NeiρεN =

k=ε3N−1∑
k=−ε3N

τxk+1
ρεN − τxkρεN .
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A summation by parts therefore allows us to rewrite Ĩ2 as

Ĩ2(t, η̂) =
1

N2

∑
x∈T2

N

2∑
i=1

 1

2ε3N

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

N(τx+eiρεN − τxρεN ).

Furthermore, we can write for any x ∈ T2
N∣∣∣∣DεN

x ∂ui,NGt(x/N)− 1

2ε3N

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

∣∣∣∣
≤ 1

2ε3N

k=ε3N−1∑
k=−ε3N

∣∣DεN
x (∂ui,NGt(x/N)− ∂ui,NGt(xk/N))

∣∣
+
∣∣ ∂ui,NGt(xk/N)(DεN

x −DεN
xk

)
∣∣ .

Since the diffusion coefficients are bounded and Gs is C2, and since x and the xk’s
are distant of ε3N , we can write∣∣DεN

x (∂ui,NGt(x/N)− ∂ui,NGt(xk/N))
∣∣ ≤ C(Gt)ε

3.

SinceDεN
xk

depends on the macroscopic density ρ̂εN , and since the diffusion coefficients
can be extended as C1 functions due to their explicit expression, we also have∣∣ ∂ui,NGt(xk/N)(DεN

x −DεN
xk

)
∣∣ ≤ C ′(Gt) (| τxρεN − τxkρεN |+ | τxρωεN − τxkρωεN |)

≤ C ′′(Gt, ω)
ε3N

εN
.

These two bounds finally yield that∣∣∣∣∣∣DεN
x ∂ui,NGt(x/N)− 1

2ε3N

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

∣∣∣∣∣∣ ≤ C(Gt)ε
3 + C ′′(Gt, ω)ε2

= oε(ε).(7.10)

By definition of I2 and Ĩ2, the triangular inequality yields

| I2−Ĩ2 | ≤
1

N2

∑
x∈T2

N

2∑
i=1

∣∣∣∣∣∣DεN
x ∂ui,NGt(x/N)− 1

2ε3N

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

∣∣∣∣∣∣
×N(τx+eiρεN − τxρεN ).

The quantity inside the absolute values in the right-hand side above is oN (1) + oε(ε),
thanks to (7.10), whereas N(τx+eiρεN − τxρεN ) is of order at most 1/ε, whereas the
quantity inside absolute values is oε(ε), therefore their product vanishes as ε → 0,
which proves Equation (7.9). We therefore have obtained as wanted that

(7.11) lim sup
ε→0

lim sup
N→∞

I2(t, η̂)− Ĩ2(t, η̂) = 0,
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uniformly in η̂. We can now replace in Equation (7.8) I2 by Ĩ2.

Embedding in the space of trajectories of measures M
[0,T ]. – Recall that QN is the

distribution of the empirical measure of our process. We now wish to express the
martingale M̃H,N,ε

t introduced after Equation (7.5) as an explicit function of the
empirical measure πN in order to characterize the limit points Q∗ of the compact
sequence QN . For that purpose, let (ϕε)ε→0 be a family of localizing functions on T2,

ϕε(.) = (2ε)−21[−ε,ε]2(.)

and recall that we defined the empirical measure as

πNt =
1

N2

∑
x∈T2

N

ηx(t)δx/N,θx(t).

Then, for any function Φ : S → R, and any u ∈ T2 we denote by ϕΦ
ε,u the function

ϕΦ
ε,u : T2 × S → R

(v, θ) 7→ ϕε(v − u)Φ(θ).

With this notation, we can therefore write

Eτxρ̂εN (ηΦ
0 ) =

1

(2εN + 1)2

∑
||y−x||∞≤εN

ηΦ
y =

(2εN)2

(2εN + 1)2
<πN , ϕΦ

ε,x/N>.

In the particular case where Φ ≡ 1, (resp. Φ = ω), this rewrites

τxρεN =
(2εN)2

(2εN + 1)2
<πN , ϕ1

ε,x/N>

(
resp.τxρωεN =

(2εN)2

(2εN + 1)2
<πN , ϕωε,x/N>

)
.

Since (2εN)2/(2εN + 1)2 = 1 + oN (1), we can replace in the limit N → ∞ the
quantity Eτxρ̂εN (ηΦ

0 ) (resp. τxρεN , τxρω) by the function of the empirical measure
<πN , ϕΦ

ε,x/N> (resp. <πN , ϕ1
ε,x/N>, <π

N , ϕωε,x/N>).

We deduce from Equations (7.5), (7.8) and (7.11) and what precedes that for any
positive δ,

(7.12) lim sup
ε→0

lim sup
N→∞

QN
(∣∣∣NH,N

T

(
π[0,T ]

) ∣∣∣ ≥ δ) = 0.
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where NH,N
T is defined as

NH,N
T

(
π[0,T ]

)
= <πT , HT>−<π0, H0>−

∫ T

0

<πt, ∂tHt>dt

(7.13)

−
∫ T

0

[
1

N2

∑
x∈T2

N

2∑
i=1

d̃x/N,ε(πt)∂
2
ui,NGt(x/N)

(7.14)

+ R̃x/N,ε,i(πt)∂ui,NGt(x/N) + Γωx/N,ε (πt)Gt(x/N)

]
dt

+

∫ T

0

 1

N2

∑
x∈T2

N

2∑
i=1

D̃x/N,ε(πt)<πt,
ϕ1
ε,x/N+ε3ei

− ϕ1
ε,x/N−ε3ei

2ε3
>∂ui,NGt(x/N)

 dt.
In the identity above, we denoted

d̃x/N,ε(π) = ds(<π,ϕ
1
ε,x/N>)<π,ϕωε,x/N>

D̃x/N,ε(π) = d(<π,ϕ1
ε,x/N>,<π, ϕ

ω
ε,x/N>)−<π,ϕωε,x/N>d

′
s(<π,ϕ

1
ε,x/N>)

R̃x/N,ε,i(π) = ds

(
<π,ϕ1

ε,x/N>
)
<π,ϕωλiε,x/N>

+
<π,ϕωε,x/N><π,ϕ

λi
ε,x/N>

<π,ϕ1
ε,x/N>

[
1−<π,ϕ1

ε,x/N>− ds
(
<π,ϕ1

ε,x/N>
)]
,

and Γωu,ε (π) = Eα̂x/N,ε(π)(γ
ω), where α̂x/N,ε(π) ∈ M 1(S) is the measure on S

α̂x/N,ε(π)(dθ) =

∫
T2

ϕε(.− x/N)π(du, dθ).

Limit N → ∞. – We have now successfully balanced out all the factors N , and
can thus let N go to ∞ in (7.12). Since G is a smooth function, one can replace
in (7.13) the discrete space derivatives ∂ui,N by the continuous derivative ∂ui , the
sums N−2

∑
x∈T2

N
by the integral

∫
T2 du, and the variables x/N by u. We proved

in Proposition 5.2.2 that the sequence of distributions (QN )N is relatively compact.
Since the quantity inside the absolute values is a continuous function (for Skorohod’s
topology defined in Appendix B.1) of π[0,T ], the whole event is an open set, we obtain
that for any weak limit point Q∗ of (QN ), and any positive δ,

lim sup
ε→0

Q∗

(∣∣∣∣∣<πT , HT>−<π0, H0>−
∫ T

0

<πt, ∂tHt>dt

(7.15)

−
∫ T

0

∫
T2

2∑
i=1

[
d̃u,ε(πt)∂

2
uiGt(u) + R̃u,ε,i(πt)∂uiGt(u) + Γωu,ε (πt)Gt(u)

]
dudt
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+

∫ T

0

∫
T2

2∑
i=1

[
D̃u,ε(πt)<πt,

ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
>∂uiGt(u)

]
dudt.

∣∣∣∣∣ > δ

)
= 0.

Limit ε→ 0. – In order to consider the limit ε→ 0, we need to express

<πt,
ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
>

in the third line above as an approximation of the gradient of the density ∂uiρt(u).
As in the proof of Lemma 6.3.1, consider a smooth function hε,i,u such that

(7.16)
∫
T2

∣∣∣∣∣ ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
(v)− hε,i,u

∣∣∣∣∣ dv = oε(1).

Since such a function is very similar to the one already presented in Lemma 6.3.1, we
do not give a detailed construction here. Then, we can build a smooth anti-derivative
Hε,u of hε,i,u, and we can write for any u ∈ T2, and any density ρ in H1,∫

T2

ρ(v)hε,i,u(v)dv =

∫
T2

∂uiρ(v)Hε,u(v)dv.

Regarding the third line of (7.15), this yields

<πt,
ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
> =

∫
T2

∂uiρ(v)Hε,u(v)dv + oε(1),

where Hε,u is a smooth approximation of a Dirac in u and oε(1) is uniform in u.
According to (5.18), ∂uiρ is in L2([0, T ]× T2) Q∗-a.s, therefore

(7.17)
∫
T2

∂uiρt(v)Hε,u(v)dv
L2([0, T ]× T2)

−−−−−−−−−−−−−−−→
ε→0

∂uiρt(u),

Q∗-a.s. (see, for example, Theorem 4.22, p.109 in [6]).

By Lemma 5.2.4 any limit point Q∗ of (QN ) is concentrated on measures absolutely
continuous w.r.t. the Lebesgue measure on T2. For any such measure π[0,T ], we denote
by ρ̂t(u, dθ) its corresponding density profile on the torus at time t, and let

ρωt (u) =

∫
S

ω(θ)ρ̂t(u, dθ).

We also shorten ρ(u) = ρ1(u). Thanks to this last remark and using both (7.17) and
the dominated convergence theorem for the second line of (7.15), we can now let ε go
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to 0 in Equation (7.15), to obtain that for any limit point Q∗ of (QN ) and any δ > 0,

Q∗

(∣∣∣∣∣<πT , HT>−<π0, H0>−
∫ T

0

<πt, ∂tHt>dt

(7.18)

−
∫ T

0

∫
T2

2∑
i=1

ds(ρt)ρ
ω
t ∂

2
uiGt(u) + 2

[
ds(ρt)ρ

λiω
t +

ρωt
ρt

(1− ρt − ds(ρt))ρλit
]

× ∂uiGt(u) + Eρ̂t(γ
ω)Gt(u)

)
dudt

+

∫ T

0

∫
T2

2∑
i=1

[
d(ρt, ρ

ω
t )− d′s(ρt)ρωt

]
(∂uiρt)∂uiGt(u)dudt

∣∣∣∣∣ > δ

)
= 0.

Conclusion. – As expected, all the quantities above are linear in ω, and elementary
computations yield that

Eρ̂t(u,·)(γ
ω) =

∫
S

ω(θ)
[
ρt(u)Eρ̂t(u,·)(cu,β(θ, η̂))dθ − ρ̂t(u, dθ)

]
.

Furthermore, since Ht(u, θ) = Gt(u)ω(θ), we can write for k = 1, 2

ρωt ∂
k
uiGt(u) =

∫
S

ω(θ)∂kuiGt(u)ρ̂t(u, dθ) =

∫
S

∂kuiHt(u, θ)ρ̂t(u, dθ).

analogous identities can be obtained when ω is replaced by another function
Φ ∈ C1(S). Using in Equation (7.18) the identities above finally yield, as wanted,
that for any δ > 0

Q∗

(∣∣∣∣∣<πT , HT>−<π0, H0>−
∫ T

0

<πt, ∂tHt>dt

−
∫ T

0

∫
T2×S

[
2∑
i=1

(
− ∂uiHt(u, θ)

[
d̂(ρt, ρ̂t)− d′s(ρt)ρ̂t

]
(u, dθ)∂uiρt(u)

+ ∂2
uiHt(u, θ)ds(ρt)ρ̂t(u, dθ)

+ ∂uiHt(u, θ)

[
2λŝ(ρt, ρ̂t)

→
Ω(ρ̂t) + 2λi(θ)ds(ρt)ρ̂t

]
(u, dθ)

)
+Ht(u, θ)Γt(ρ̂)(u, dθ)

]
dudt

∣∣∣∣∣ > δ

)
= 0.

As in the proof of Proposition 5.2.2, this last identity can be extended in the case
where Ht(u, θ) does not take the form Gt(u)ω(θ) by using a periodic version of the
Weierstrass Theorem, thus letting δ → 0 completes the proof of Theorem 2.3.3.
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CHAPTER 8

LIMITING SPACE-TIME COVARIANCE

This section is entirely dedicated to the proof Theorem 6.6.4, that was postponed.
The strategy of the proof, follows the same scheme as in Section 7.4 of [28]. One of its
core ingredients is a decomposition theorem (cf. Proposition (8.2.5)) for translation-
invariant closed differential forms. To prove this decomposition, one requires a sharp
estimate on the spectral gap of the symmetric exclusion generator, which is not uni-
form w.r.t. the density in our case, and some adaptations w.r.t. the classical scheme
are necessary to account for the angles. The non-uniformity of the spectral gap comes
from the slow mixing occurring at high densities, and requires some minor adaptation
w.r.t. [35] where this issue was not dealt with. It is solved by cutting off large densities
(cf. Equation (8.2) and Lemma 8.2.9).

8.1. Spectral gap for the symmetric exclusion process with angles

As investigated in Section 3.3, the mixing time for the exclusion dynamics on con-
figurations of size n with angles is not of order n2. We therefore cannot consider a
general class of functions as dependent on the θx’s as wanted, and need to restrict
to a subclass of functions with low levels of correlations between particle angles, but
large enough for the non-gradient method to apply. In this section, we prove that the
spectral gap of the symmetric exclusion process on this class of functions is of or-
der C(ρ)n−2 if the density in the box is less than ρ < 1. The core estimate was first
derived by Quastel in [35]. We present here a modified version to take into account
the continuous angles.

Throughout this section, we consider the square domain

Bn = [[−n, n]]2
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with closed boundaries. Recall that S was introduced in Definition 2.1.1 as the set of
angle-blind functions, and that ω is the angular dependency of our test function H
(cf. Equation (2.13)). We already defined

Tω =

{
f ∈ C

∣∣∣ f(η̂) = ϕ(η) +
∑
x∈Z2

ηωxψx(η), ϕ, ψx ∈ S , ∀x ∈ Z2

}
,

and now denote by Cn (resp. S n) the set of cylinder functions (resp. angle-blind
functions) depending only on sites in Bn. Finally, we define Tωn = Cn ∩ Tω.

Remark 8.1.1. – The purpose of the non-gradient method is to replace the
instantaneous current jωi introduced in Equation (2.15) by a gradient quantity
D(η0 − ηei) + d(ηω0 − ηωei), and the class Tω above is the simplest set of functions,
stable by Ln and containing both the currents and the gradients.

We expect that it is not the biggest class of functions on which a spectral gap
estimate of order n−2 holds. Indeed, we believe that introducing some finite numbered
correlations between angles might not alter too much the order of the spectral gap.
It is not, however, the purpose of this section, and this remark is therefore left as a
conjecture at this point.

Recall from Definition 3.1.6 that we encoded in the canonical state K̂ ∈ Kn the
number and angles of the particles in Bn, and that we denote by µn,K̂ = µα̂( · | η̂ ∈ ΣK̂n )

the canonical measure with K̂ particles inside Bn. Finally, define

Dn,K̂(f) = En,K̂(f Lnf),

where Ln is the symmetric exclusion generator restricted to jumps with both extrem-
ities in Bn. We are now ready to state the main result of this section.

Proposition 8.1.2 (Estimate on the spectral gap for the SSEP with angles). – For
any 0 ≤ α < 1, there exists a constant C(α) such that for any K̂ ∈ Kn such that
K ≤ α|Bn|, and any f ∈ Tωn such that En,K̂(f) = 0,

En,K̂(f2) ≤ C(α)n2 Dn,K̂(f).

Remark 8.1.3 (Non-uniformity of the spectral gap). – Note that this estimate is
not uniform in the density. Actually, the constant C(α) behaves as 1/(1 − α), and
therefore even on the set Tω, the spectral gap of the exclusion process when there are
only a finite number of empty sites in Bn is or order n−4. This high density estimate
is sharp: define K̂n by Kn = (2n+ 1)2− 1, and for k = 1, . . . ,Kn, θk = 2kπ/Kn, then
for

fn(η̂) =
∑
x∈Bn

(θx − π)ηx cos

(
2πx1

2n+ 1

)
,
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one easily checks that there exists a positive constant C such that

n4
Dn,K̂n

(fn)

Varn,K̂n(fn)
−−−−→
n→∞

C.

This non-uniformity is not an issue here, however, because when we later on classify
the germs of closed forms for our model, we are able to cutoff the large densities (cf.
Equation (8.2)).

In order to prove Proposition 8.1.2, we need the following lemma, which states that
the angle-blind process has a uniform spectral gap of order n−2. For any angle-blind
function ψ ∈ S n, we will write ψ(η) instead of ψ(η̂) to emphasize that it does not
depend on the angles.

Lemma 8.1.4 (Spectral gap for the angle-blind exclusion process). – Denote by Ẽn,K
the expectation w.r.t. the angle-blind canonical measure with K particles inside Bn,
defined for any angle-blind function ψ ∈ S n by

Ẽn,K(ψ) = Eα̂

(
ψ

∣∣∣∣ ∑
x∈Bn

ηx = K

)
,

which holds for any α̂ with density α ∈ (0, 1). There exists a universal constant
C1 > 0 such that for any n ≥ 1, any 0 ≤ K ≤ (2n + 1)2 and any ψ ∈ S n satisfying
Ẽn,K(ψ) = 0,

Ẽn,K(ψ2) ≤ C1n
2 D̃n,K(ψ),

where D̃n,K(ψ) = Ẽn,K(ψ(− Ln)ψ).

This result is fairly classical, its proof can be found for instance in [28], we do not
repeat it here. Note in particular that for the angle-blind process, the constant can be
chosen independently of the cap on the density α. Before proving Proposition 8.1.2,
we need one more definition. Fix α ∈ [0, 1), and a canonical state K̂ ∈ Kn such
that K ≤ α|Bn|. We then define for any site x ∈ Z2,

(8.1) ω̂ = ω − En,K̂(ω) and ηω̂x =
[
ω(θx)− En,K̂(ω)

]
ηx,

where En,K̂(ω) stands for En,K̂(ω(θ0) | η0 = 1). In particular, for any configuration η̂,∑
x∈Bn η

ω̂
x = 0 under µn,K̂ . This centered occupation variable plays a particular role

in the proof of the spectral gap, and we state in the following lemma two identities
regarding ηω̂, which will be used later on.
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Lemma 8.1.5 (Properties of ηω̂). – Define Vn,K̂(ω) = Varn,K̂(ω(θ0) | η0 = 1). For
any x 6= y ∈ Bn, K̂ ∈ Kn, and any angle-blind function ψ ∈ S n, we have

En,K̂
(
ηω̂xψ

)
= 0,

En,K̂
(

(ηω̂x )2ψ
)

= Vn,K̂(ω)Ẽn,K(ηxψ),

and En,K̂
(
ηω̂x η

ω̂
y ψ
)

=

−
V
n,K̂

(ω)

K−1 Ẽn,K(ηxηyψ) if K > 1,

0 otherwise.

Proof of Lemma 8.1.5. – This lemma follows from elementary computations. Under
µn,K̂ , for any angle-blind function ψ ∈ S n and any function Φ on S, we have

En,K̂(ηΦ
x ψ) = En,K̂(Φ(θ0) | η0 = 1)Ẽn,K(ηxψ).

For the first (resp. second) identity, we set Φ = ω − En,K̂(ω) (resp. Φ = (ω − En,K̂(ω))2),
which by construction has mean 0 (resp. Vn,K̂(ω)) w.r.t. µn,K̂(· | η0 = 1). Regarding
the last identity, we obtain similarly

En,K̂
(
ηω̂x η

ω̂
y ψ
)

=
[
En,K̂(ω(θx)ω(θy) | ηx = ηy = 1)− En,K̂(ω)2

]
Ẽn,K(ηxηyψ)

= −
Vn,K̂(ω)

K − 1
Ẽn,K(ηxηyψ)

if K > 1, and trivially vanishes if K = 0, 1.

We now estimate the spectral gap of the angle process on Tωn .

Proof of Proposition 8.1.2. – Fix α ∈ [0, 1), K̂ ∈ Kn such that K ≤ α|Bn|, and
consider a function f = ϕ(η) +

∑
x∈Bn η

ω
xψx(η) in Tωn , where ϕ,ψx ∈ S n, such

that En,K̂(f) = 0. Recall the notation introduced in (8.1), and denote

f1 =
∑
x∈Bn

ηω̂xψx, fb = ϕ+ En,K̂(ω)
∑
x∈Bn

ηxψx ∈ S n.

By construction, f = f1 + fb. Since for any ψ ∈ S n, En,K̂
(
ηω̂xψ

)
= 0, it is straight-

forward to obtain that

En,K̂
(
f2
)

= En,K̂
(
f2

1

)
+ Ẽn,K

(
f2
b

)
and En,K̂ (f Lnf) = En,K̂ (f1 Lnf1) + Ẽn,K (fb Lnfb)

(i.e., Dn,K̂(f) = Dn,K̂(f1) + D̃n,K(fb)). By assumption En,K̂(f) = 0, therefore,
since by construction En,K̂(f1) = 0, we also have En,K̂(f b) = 0. Lemma 8.1.4 can
therefore be applied to fb. To prove Proposition 8.1.2, it is thus sufficient to prove it
for any function of the form f =

∑
x∈Bn η

ω̂
xψx(η). We can further assume, without
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loss of generality, that
∑
ψx = 0 and that each ψx vanishes if ηx = 0 since we can

rewrite
f(η̂) =

∑
x∈Bn

ηω̂x ψ̃x(η)

where
ψ̃x = ηx(ψx − ψ) and ψ =

∑
x∈Bn ηxψx∑
x∈Bn ηx

=
∑
x∈Bn ηxψx

K(η̂) .

Note that we only consider K > 0, since if K = 0, Proposition 8.1.2 is immediate.

To prove Proposition 8.1.2, it is therefore sufficient to prove it for any function

f =
∑
x∈Bn

ηω̂xψx,

where ψx = ηxψx, and satisfy
∑
x∈Bn ψx = 0. For any such f , if K = 1, there is

only one particle in Bn and ηω̂x = 0 for any x, therefore f = 0. We now assume
that 1 < K ≤ α|Bn|. By Lemma 8.1.5, since by assumption

∑
x ψx = 0,

(8.2) En,K̂
(
f2
)

=
∑

x,y∈Bn

En,K̂
(
ηω̂x η

ω̂
y ψxψy

)
=

K

K − 1
Vn,K̂(ω)

∑
x∈Bn

En,K̂
(
ψ2
x

)
.

We now turn our attention to En,K̂(f Lnf). For any site x and any angle-blind
function ψ ∈ S n, we can write

Ln(ηω̂xψx) = ηω̂x Lnψx +
∑
|z|=1

1{ηxηx+z=0}ψx(ηx,x+z)((ηx,x+z)ω̂x − ηω̂x ).

Since we assumed that ψx vanishes when the site x is empty, the quantity above can
be rewritten

Ln(ηω̂xψx) = ηω̂x Lnψx +
∑
|z|=1

ηω̂x+z(1− ηx)ψx(ηx,x+z).

It follows that

Dn,K̂(f) =
∑

x,y∈Bn

En,K̂(ηω̂x η
ω̂
y ψx(− Ln)ψy)− En,K̂

ηω̂xψx ∑
|z|=1

ηω̂y+z(1− ηy)ψy(ηy,y+z)

 .
Using once again that

∑
x∈Bn ψx = 0, and Lemma 8.1.5 the identity above rewrites

(8.3)

Dn,K̂(f) =
K

K − 1
Vn,K̂(ω)

∑
x∈Bn

 D̃n,K(ψx)−
∑
|z|=1

Ẽn,K
(
(1− ηx+z)ψxψx+z

(
ηx,x+z

)) .
Let us introduce the Dirichlet form locally cropped in x

(8.4) D̃
x

n,K(ψ) =
1

2
Ẽn,K

 ∑
y,y+z∈Bn\{x}

|z|=1

ηy(1− ηy+z)(ψ(ηy,y+z)− ψ(η))2

 ,
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which forbids jumps to and from the site x. Since ψx vanishes whenever the site x is
empty, the quantity ηx(1−ηx+z)(ψx(ηx,x+z)−ψx(η))2 is also equal to (1−ηx+z)ψx(η)2,
and a similar argument with ψx+z allows us to rewrite Equation (8.3)

Dn,K̂(f) =
K

K − 1
Vn,K̂(ω)

×
∑
x∈Bn

[
D̃
x

n,K(ψx) +
1

2

∑
|z|=1

Ẽn,K
(

(1− ηx+z)
[
ψx+z

(
ηx,x+z

)
− ψx(η)

]2)]
.

To obtain Proposition 8.1.2, thanks to the identity above together with (8.2) it is
enough to prove that for some constant C(α),

(8.5)
∑
x∈Bn

Ẽn,K
(
ψ2
x

)
≤ C(α)n2

×
∑
x∈Bn

[
D̃
x

n,K(ψx) +
1

2

∑
|z|=1

Ẽn,K
(

(1− ηx+z)
[
ψx+z

(
ηx,x+z

)
− ψx

]2)]
.

We now state a technical lemma, which gives a spectral gap estimate when one site
remains frozen.

Lemma 8.1.6 (Spectral gap for the exclusion process with a frozen site). – Fix
x ∈ Bn. There exists a universal constant C2 such that for any angle-blind function
ψ ∈ S n satisfying Ẽn,K(ψ | ηx = 1) = 0,

Ẽn,K(ψ2 | ηx = 1) ≤ C2n
2 D̃

x

n,K(ψ | ηx = 1),

where the conditioned Dirichlet form is defined by the conditional expectation
Ẽn,K(. | ηx = 1) instead of Ẽn,K ,

D̃
x

n,K(ψ | ηx = 1) = −Ẽn,K(ψ Lnψ | ηx = 1).

Proof of Lemma 8.1.6. – We do not give the detail of this proof. It is quite similar to
the proof without the frozen site for an angle-blind function, the only difference being
that whenever a path should go through the site x, the path is bypassed around it,
which results in a larger constant C but does not affect the order n2.

We now take a look at the left-hand side of Equation (8.5). Since ψx vanishes
whenever ηx = 0 we have Ẽn,K(ψx | ηx = 1) = |Bn|

K Ẽn,K(ψx), the previous lemma
applied to ψx − En,K̂(ψx | ηx = 1) yields

(8.6)
∑
x∈Bn

Ẽn,K
(
ψ2
x

)
− |Bn|

K
Ẽn,K (ψx)

2 ≤ C2n
2
∑
x∈Bn

D̃
x

n,K(ψx).
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Furthermore,∑
x,y∈Bn

[Ẽn,K (ψx)− Ẽn,K(ψy)]2

=
∑

x,y∈Bn

[Ẽn,K(ψx)2 + Ẽn,K(ψy)2]− 2
∑

x,y∈Bn

Ẽn,K(ψx)Ẽn,K(ψy)

= 2n2
∑
x∈Bn

Ẽn,K(ψx)2,

because the last term of the first line vanishes by the assumption
∑
x∈Bn ψx = 0.

Furthermore, consider the family of paths (γx,y)x,y∈Bn going from x to y, defined
as follows: starting from x, the path γx,y starts straight in the first direction, until
reaching the first coordinate of y. then, it goes in the second direction until reaching y.
With this construction, each edge a is used at most a number of times pa ≤ Cn3 in
the γx,y’s, for some universal constant C. Furthermore, each path γx,y has length at
most 4n. With this construction, we therefore write, since

ψx − ψy =
∑

a=(a1,a2)∈γx,y

(ψa1 − ψa2),

and (
∑p
k=1 xk)2 ≤ p

∑p
k=1 x

2
k that∑

x,y∈Bn

[Ẽn,K (ψx)− Ẽn,K(ψy)]2 ≤
∑

x,y∈Bn

4n
∑

(a1,a2)∈γx,y

[Ẽn,K (ψa1)− Ẽn,K(ψa2)]2

= 4n
∑

(a1,a2)⊂Bn

pa[Ẽn,K (ψa1)− Ẽn,K(ψa2)]2

≤ 4Cn4
∑

(a1,a2)⊂Bn

[Ẽn,K (ψa1
)− Ẽn,K(ψa2

)]2

= 4Cn4
∑

x,x+z∈Bn,
|z|=1

[Ẽn,K (ψx+z)− Ẽn,K(ψx)]2.

Using the two previous identities, we obtain that

(8.7)
∑
x∈Bn

Ẽn,K(ψx)2 ≤ Cn2
∑

x∈Bn,|z|=1

[Ẽn,K (ψx+z)− Ẽn,K(ψx)]2,

so that using Equations (8.5), (8.6), and (8.7), to prove Proposition 8.1.2 it is enough
to show that for some constant C(α),

(8.8)
∑

x∈Bn,|z|=1

[Ẽn,K (ψx+z)− Ẽn,K(ψx)]2

≤ K

|Bn|
C(α)

∑
x∈Bn

 D̃
x

n,K(ψx) +
∑
|z|=1

Ẽn,K
(

(1− ηx+z)
[
ψx+z

(
ηx,x+z

)
− ψx

]2) .
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Let us denote by ex+z the empty site nearest to x + z other than x, chosen ar-
bitrarily if there are multiple candidates. We want to reach from η a configuration
with an empty site in x + z, where the successive jumps will be controlled by the
Dirichlet form of the ψ′xs, and the resulting difference will be controlled by the second
term above. To do so, we merely have to “move” the empty site from ex+z to x + z,
using a path of minimal length. We denote by a1, . . . , ap the sequence of edges along
which the empty site travels. For any integer r ≤ p let η(r−1) = ηa1...ar be the con-
figuration where the empty site has traveled along r edges. In particular, η(0) = η,
and η(p)

x+z = 0. Furthermore, for each edge ar in this sequence, we denote by ar,1 the
position throughout this construction of the displaced particle at the r− th stage, and
ar,2 the position of the empty site, therefore, ar = (ar,1, ar,2). One easily sees that if
ex+z 6= x, we can perform this construction with the following conditions satisfied.

1. The path followed by the empty site contains at most p(ex+z) ≤ 2 | ex+z − x |
jumps.

2. None of the edges ar connects x and one of its neighbors.

3. The only edge linking x+z to one of its neighbor is the last edge ap, and it is of
the form ap = (x+ z, x+ z + z′), with z and z′ orthogonal. In other words, we
assume that the empty site comes from the direction orthogonal to the direction
of the edge (x, x+ z).

With this construction, for any function h, since every successive jump is allowed
(each initial site is occupied, each end site is empty) we have(

1− η(p)
x+z

)
h
(
η(p)

)
= h

(
η(p)

)
= h(η) +

p∑
r=1

(
h
(
η(r−1)

)
− h

(
η(r−1)

))
= h(η) +

p∑
r=1

η(r−1)
ar,1 (1− η(r−1)

ar,2 )∇̃arh
(
η(r−1)

)
,

where ∇̃af = f(ηa1,a2)− f(η). We can rewrite this identity

h(η) =
(

1− η(p)
x+z

)
h
(
η(p)

)
−

p∑
r=1

η(r−1)
ar,1 (1− η(r−1)

ar,2 )∇̃arh
(
η(r−1)

)
.

Note that in the formula above, both p and the path η(r−1) depends on the position
of ex+z.

We not let h(η) = ψx+z(η
x,x+z)− ψx. This function vanishes if there is an empty

site in x, which is the only case for which the construction above does not hold
(because in particular the empty site cannot avoid the edges surrounding x). Using
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the construction above, we obtain

Ẽn,K (ψx+z)− Ẽn,K(ψx) = Ẽn,K
(
ψx+z(η

x,x+z)
)
− Ẽn,K(ψx)

= −Ẽn,K

(
p∑
r=1

η(r−1)
ar,1 (1− η(r−1)

ar,2 )∇̃ar
[
ψx+z((η

(r−1))x,x+z)− ψx(η(r−1))
])

+ Ẽn,K
((

1− η(p)
x+z

) [
ψx+z((η

(p))x,x+z)− ψx(η(p))
])
.

We now project on the possible positions for ex+z, by Cauchy-Schwarz inequality, and
since (

∑p
i=1 ai)

2 ≤ p
∑p
i=1 a

2
i , we obtain∣∣∣Ẽn,K (ψx+z)− Ẽn,K(ψx)
∣∣∣ ≤ ∑

e∈Bn\{x}

√
(2p(e) + 1)µ̃n,K

(
ex+z = e, ηx = 1

)
(8.9)

×

[
Ẽn,K

(
1{ex+z=e,ηx=1}

(
1− η(p(e))

x+z

) [
ψx+z((η

(p(e)))x,x+z)− ψx(η(p(e)))
]2)

+

p(e)∑
r=1

Ẽn,K
(

1{ex+z=e,ηx=1}η
(r−1)
ar,1 (1− η(r−1)

ar,2 )
[
∇̃arψx+z((η

(r−1))x,x+z)
]2)

+

p(e)∑
r=1

Ẽn,K
(

1{ex+z=e,ηx=1}η
(r−1)
ar,1 (1− η(r−1)

ar,2 )
[
∇̃arψx(η(r−1))

]2)]1/2

.

We now estimate each of the three terms in the bracket.

The empty site e being fixed, the sequence of edges (ar) and its length p are also
fixed. The first term in the bracket can therefore be rewritten, thanks the one-to-one
change of variables η(p−1)η

Ẽn,K
(

1{ex+z=e,ηx=1}(η
′) (1− ηx+z)

[
ψx+z(η

x,x+z)− ψx(η)
]2)

≤ Ẽn,K
(

(1− ηx+z)
[
ψx+z(η

x,x+z)− ψx(η)
]2)

,

where η′ denotes the invert change of variable ηη(p−1). Since none of the edges ar
connects x to one of its neighbors, and since each edge is used at most once, one-to-
one changes of variable η(r−1)η also allow us to crudely estimate

p∑
r=1

Ẽn,K
(

1{ex+z=e,ηx=1}η
(r−1)
ar,1 (1− η(r−1)

ar,2 )
[
∇̃arψx(η(r−1))

]2)

=

p∑
r=1

Ẽn,K
(

1{ex+z=e,ηx=1}(η
′(r))ηar,1(1− ηar,2)

[
∇̃arψx(η)

]2)
≤ D̃

x

n,K(ψx).

Finally, for the third contribution, we can write the same estimate, except for the
last gradient which is over an edge (ap,1, ap,2) = (x+z, x+z+z′), with |z′| = |z| = 1.
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We therefore write

p∑
r=1

Ẽn,K
(

1{ex+z=e,ηx=1}η
(r−1)
ar,1 (1− η(r−1)

ar,2 )
[
∇̃arψx+z((η

(r−1))x,x+z)
]2)

≤ D̃
x+z

n,K (ψx+z)+Ẽn,K
(

1{ex+z=e,ηx=1}η
(p−1)
ap,1 (1− η(p−1)

ap,2 )
[
∇̃apψx+z((η

(p−1))x,x+z)
]2)

≤ D̃
x+z

n,K (ψx+z) + Ẽn,K

(
ηx+z(1− ηx+z+z′)

[
ψx+z

((
ηx+z,x+z+z′

)x,x+z
)
− ψx+z

(
ηx,x+z

)]2
)
.

One easily obtains that ηx,x+z+z′ =
(

(ηx,x+z)
x+z,x+z+z′

)x,x+z

, therefore performing
the change of variable ηx,x+zη in the bound above yields

p∑
r=1

Ẽn,K
(

1{ex+z=e,ηx=1}η
(r−1)
ar,1 (1− η(r−1)

ar,2 )
[
∇̃arψx+z((η

(r−1))x,x+z)
]2)

≤ D̃
x+z

n,K (ψx+z) + Ẽn,K
(
ηx(1− ηx+z+z′)

[
ψx+z

(
ηx,x+z+z′

)
− ψx+z (η)

]2)
︸ ︷︷ ︸

≤2Ẽn,K((∇x,x+z′ψx+z)2)+2Ẽn,K((∇x+z′,x+z+z′ψx+z)2)

≤ 3 D̃
x+z

n,K (ψx+z),

where we used that z′ and z are orthogonal by assumption, which means that the
gradients in the last term are not of the form (x + z, x + z + z′′). We now use these
three bounds in (8.9), to obtain that for some universal constant C3

(
Ẽn,K (ψx+z)− Ẽn,K(ψx)

)2

≤ C3

 ∑
e∈Bn\{x}

√
(1 + 2p(e))µ̃n,K(ex+z = e, ηx = 1)

2

×

[
Ẽn,K

(
(1− ηx+z)

[
ψx+z(η

x,x+z)− ψx(η)
]2)

+ D̃
x

n,K(ψx) + D̃
x+z

n,K (ψx+z)

]
.

Since we assumed K ≤ α|Bn|, for α < 1 one straightforwardly obtains by elementary
computations that

∑
e∈Bn\{x}

√
(1 + 2p(e))µ̃n,K(ex+z = e, ηx = 1) ≤

√
K

|Bn|
C(α),

therefore (8.8) holds as desired. This concludes the proof of Proposition 8.1.2.
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8.2. Discrete differential forms in the context of particles systems

We introduce in this section the concept of discrete differential forms in the context
of particle systems. The key point of the non-gradient method is that any translation-
invariant closed form can be decomposed as the sum of a gradient of a translation-
invariant function and the currents. This result is stated in Proposition 8.2.5, and
directly rewrites as an approximation (in the sense of Equation (6.37)) of any function
in T

ω
0 by a linear combination of the currents up to an element of L C .

Let us denote by Σ∞ the set of configurations on Z2

Σ∞ =
{

(ηx, θx)x∈Z2 ∈ ({0, 1} × S)Z
2 ∣∣ θx = 0 if ηx = 0

}
.

We consider here the graph G = (Σ∞, E) with oriented edge set
(8.10)
E =

{
(η̂, η̂′) ∈ Σ2

∞ | η̂′ = η̂x,x+z for some x ∈ Z2, |z| = 1 and ηx(1− ηx+z) = 1
}
.

In other words, there is an edge from η̂ to η̂′ if and only if the latter can be reached
from the former with exactly one licit particle jump (i.e., the jump of a particle to
an empty site). We endow G with the usual distance d on graphs, i.e., d(η̂, η̂′) is the
minimal number of particle jumps necessary to go from one configuration to the other.
Note that this graph is not connected, since for example the configuration η̂ with no
particles is not accessible from any configuration η̂′ with any number of particles.
This is also the case for two configurations with different angle distributions. In such
a case where there is no path between η̂′ and η̂, we will adopt the usual convention
d(η̂, η̂′) = ∞. By abuse of notation, we also denote by µα̂ (cf. Definition 3.1.4) the
grand-canonical measure measure on Z2 with parameter α̂, and write Eα̂(.) for the
expectation w.r.t. µα̂.

We call differential form on ( G , d) a collection of L2(µα̂) variables associated with
each edge in E. More precisely, it is a collection u = (ux,x+z)x∈Z2,|z|=1, satisfying

ux,x+z(η̂) = ηx(1− ηx+z)ux,x+z(η̂) ∈ L2(µα̂).

This definition arbitrarily attributes to ux,x+z(η̂) the value 0 if ηx(1− ηx+z) vanishes
(i.e., if the jump from x to x + z cannot be performed in η̂), which is just a nota-
tion shortcut to define u on all configurations rather than only on those such that
ηx(1− ηx+z) = 1. Another way to look at these objects is that with each possible
particle jump in a configuration η̂ is associated a weight. In this section, we will only
consider closed forms, i.e., differential forms for which the added weight of any finite-
length path (composed only of licit jumps, i.e., jumps from x to x+z with x occupied
and x+ z empty) between two configuration does not depend on the path chosen but
only on the two endpoints. Equivalently, closed forms are those for which the integral
over a closed loop of licit jumps vanishes.
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We call path a finite sequence of jumps coordinates γ = (xi, xi + zi)0≤i≤qγ , where
the xi’s are in Z2, and |zi| = 1. Given a configuration η̂, we denote Γ(η̂) (resp. Γc(η̂))
the set of licit paths (resp. licit loops, i.e., licit closed paths) such that all successive
jumps in the path are licit starting from η̂, (resp. and such that the configuration
reached at the end of the sequence of jumps is η̂)

Γ(η̂) = {γ = (xi, xi + zi)0≤i≤qγ
∣∣ η̂(i,γ)

xi (1− η̂(i,γ)
xi+zi) = 1, 0 ≤ i ≤ qγ},

(resp. Γc(η̂) = {γ = (xi, xi + zi)0≤i≤qγ ∈ Γ(η̂) | η̂(qγ+1,γ) = η̂ },) where for any
path γ, and any configuration η̂, we denote η̂(0,γ) = η̂, and η̂(i+1,γ) =

(
η̂(i,γ)

)xi,xi+zi
for 0 ≤ i ≤ qγ . For any differential form u = (ux,x+z)x∈Z2,|z|=1, and any finite path γ,
we denote by

Iγ,u(η̂) = 1{γ∈Γ(η̂)}
∑

0≤i≤qγ

uxi,xi+zi(η̂
(i,γ)),

the random variable representing the integral of u along the path γ. We assign for
convenience the value 0 to the integral if one of the jumps in the path was not licit.

Definition 8.2.1 (Closed and exact forms on ( G , d)). – A differential form
u = (ux,x+z)x∈Z2,|z|=1 is closed if for any finite path γ,

1{γ∈Γc(η̂)}Iγ,u(η̂) = 0 µα̂-a.s.,

i.e., if its integral along any closed loop vanishes a.s.. Note that we require the above
to hold for any finite path, but for non-closed path the indicator function vanishes.
The reason for defining closed forms this way is that closedness of a finite path is
a random property that also depends on the configuration, not only on the jump
succession.

For any cylinder function f ∈ C , we say that uf is an exact differential form
associated with f if

ufx,x+z(η̂) = ηx(1− ηx+z)(f(η̂x,x+z)− f(η̂)) a.s.

It is easily checked that for any f ∈ C , uf is a closed form, since then

(8.11) Iγ,uf (η̂) = 1{γ∈Γ(η̂)}

[
f(η̂(qγ+1,γ))− f(η̂)

]
,

which vanishes a.s. if the loop is closed.

We now consider the case of translation invariant closed forms.

Definition 8.2.2 (Germs of a closed form). – A pair u = (u1,u2) : Σ∞ → R2

in L2(µα̂) is a germ of a closed form if u defined by
(8.12)
ux,x+ei(η̂) = τxui(η̂) and ux+ei,x(η̂) = −τxui(η̂x,x+ei) = −ux,x+ei(η̂

x,x+ei)
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is a closed form. We endow the set of germs of closed forms with its L2(µα̂) norm

(8.13) ||u||α̂,2 =
[
Eα̂(u2

1 + u2
2)
]1/2

.

Denote by T
ω
α̂ the closure in L2(µα̂) of Tω (the set of cylinder functions, defined

in (6.42), depending on the angles through a linear combination of the ω(θx)), and
let Tω = Tω0 denote the closure in L2(µα̂) of the set Tω0 of germs of closed forms with
components in T

ω
α̂, namely

(8.14)
Tω0 =

{
u = (u1,u2)

∣∣ u is a L2(µα̂) germ of a closed form, ui ∈ T
ω
α̂, ∀i ∈ {1, 2}

}
.

Definition 8.2.3 (Germs of an exact form). – A pair u = (u1,u2) will be called
germ of an exact form associated with a cylinder function h ∈ C if we can write

(u1,u2) = ∇Σh := (∇0,e1Σh,∇0,e2Σh)

pointwise, where Σh is the formal sum Σh =
∑
x∈Z2 τxh. Note that although the

formal sum Σh is ill-defined a priori, its gradient ∇Σh is not, because h is assumed
to be a cylinder function, and therefore only depends on a finite number of sites.

One easily verifies that any germ of an exact form is also the germ of a closed form.
In particular, for any function h ∈ Tω, (cf. (6.42)), we have ∇Σh ∈ Tω. We denote
by Eω = Eω0 the closure in L2(µα̂) of the set Eω0 of germs of exact forms associated
with functions in Tω,

Eω0 = {∇Σh,
(
h ∈ Tω} ⊂ Tω0 .

Definition 8.2.4 (Germs of a closed form associated with the currents). – Define
j1, j2, j1,ω, and j2,ω as

(8.15) jki (η̂) = 1{i=k}η0(1−ηei) and jk,ωi (η̂) = 1{i=k}η
ω
0 (1−ηei) for k, i = 1, 2.

These four functions are germs of closed forms, and can be seen as germs of “almost”
exact forms associated with the formal functions

fk =
∑
x∈Z2

xkηx and fk,ω =
∑
x∈Z2

xkη
ω
x ,

which are not well defined, but for which the gradient along any licit jumps is. Of
course, since the functions fk, fk,ω above are merely formal sums, the jk, jk,ω’s are not
germs of exact forms. In other words, the closed form j̄k associated with the germ jk

is equal to ±1 on any edge representing a particle jump in the direction ±ek, and
the closed form j̄k,ω associated with jk,ω is equal to ±ω(θ) on any edge representing
a jump in the direction ±ek of a particle with angle θ. We denote by Jω the linear
span of the jk, jk,ω

Jω =
{
ja,b := a1j

1 + a2j
2 + b1j

1,ω + b2j
2,ω, a ∈ R2, b ∈ R2

}
⊂ Tω0 .
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We are now ready to state the main result of this section.

Proposition 8.2.5 (Structure of Tω). – We have the decomposition

Tω = Jω ⊕ Eω.

Remark 8.2.6. – Note that we can safely assume that the total density α is in ]0, 1[.
If not, the graph is trivial since its edge set is empty. This assumption will be made
throughout the rest of this section.

Before turning to the proof of the last proposition, we investigate the case of a
finite domain. We start by a technical lemma. Recall that Cn is the set of functions
depending only on sites in Bn, and C1 with respect to each θx for x in Bn, we denote
Tωn = Tω∩ Cn, the set of functions depending only on sites in Bn, and depending on the
angles through a linear combination of the ω(θx). In order to be as clear as possible,
recall that α̂ is fixed, we denote by T̂ωn the set of functions a.s. equal to a function
in Tωn . Note that we need to be cautious because the various forms considered in this
section are not explicit and are merely L2(µα̂) functions of the infinite configuration.
However, once their conditional expectation w.r.t. the sigma-algebra generated by
sites in Bn, all those forms are, up to modification on a negligible set, in Tωn . Since
ω is a smooth function, and was fixed once and for all at the very begining of the
proof (cf. (2.13)), Tωn is actually a finite dimensional vector space, and all the results
below are therefore analogous to the ones one would obtain with a finite number of
particle types.

Lemma 8.2.7. – For any n ≥ 0, T̂ωn is closed in L2(µα̂), where µα̂, here, stands for
the product measure on Bn.

Proof of Lemma 8.2.7. – Since T̂ωn is roughly a finite-dimensional subspace of L2(µα̂),
this result is quite natural, but we detail the proof for the sake of exhaustivity. We
need to show that if a sequence of functions

(
ϕk(η) +

∑
x∈Bn η

ω
xψk,x(η)

)
k∈N con-

verges as k → ∞ in L2(µα̂) to f , then there exists angle-blind functions ϕ∗, ψ∗x
such that f = ϕ∗(η) +

∑
x∈Bn η

ω
xψ
∗
x(η) a.s.. Here, the ϕk, ψk,x, ϕ∗ and ψ∗x are angle-

blind functions depending only on sites in Bn. Denote σxη̂ the configuration equal
to η̂ everywhere in Bn except in x where it is distributed as an independent copy
η̂′x = (η′x, θ

′
x) with distribution α̂. Then, we abuse our notation, and also denote Eα̂

the expectation taken w.r.t. both η̂ and η̂′x.

We can now write

Eα̂
[
(f(η̂)− f(σxη̂))

2 1{ηx=η′x=1}

]
= lim
k→∞

Eα̂
[(
ω(θx)− ω(θ′x)2ψ2

k,x(η)1{ηx=η′x=1}
)]
.
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Now assume that the variance of ω(θx) w.r.t. µα̂ does not vanish (else, the result
obviously holds, because in L2(µα̂), Tωn is the set of angle blind functions), we can
write for some constant C := C(ω, α̂)

lim
k→∞

Eα̂
[
ψ2
k,x(η) | ηx = 1

]
≤ CEα̂(f2).

In particular, since the set of angle blind configurations in Bn is finite, and since we
can assume without loss of generality that ψk,x(η) vanishes if ηx = 0, all the ψk,x must
be bounded, uniformly in x, k, and η by some constant M , and therefore remain in
a compact set. Up to successive extractions, we can as a consequence assume that
each sequences (ψk,x)k converges uniformly in η as k → ∞ to ψ∗x. In particular,
the sequence ϕk also converges to a function ϕ∗, and we can thus write as wanted
f = ϕ∗(η) +

∑
x∈Bn η

ω
xψ
∗
x(η) a.s..

We now consider closed differential forms in a finite box. Considering the graph Gn
with vertices the configurations η̂ on the box Bn, and connected, as on the infinite
graph, if one configuration can be reached from another with one licit jump along an
edge of Bn.

Proposition 8.2.8. – Fix a parameter α̂,n≥0, and a closed form u = (ux,x+z)x,x+z∈Bn
on Gn satisfying for any x, x+ z ∈ Bn
(i) ux,x+z identically vanishes when there are 1 or less empty sites in Bn,

(ii) ux,x+z ∈ Tωn and is therefore smooth.

Then, there exists a cylinder function h ∈ Tωn such that

ux,x+z = ∇x,x+zh ∀x, x+ z ∈ Bn, pointwise,

i.e., on a finite set, all closed forms are exact forms. Furthermore, one can assume
without loss of generality that for any K̂ ∈ Kn, En,K̂(h) = 0.

Proof of Proposition 8.2.8. – Since u is a closed form with each element in Tωn (there-
fore in particular smooth in the angle variables), we have that 1{γ∈Γc(η̂)}Iγ,u′ vanishes
pointwise for any finite path γ. Recall that ux,x+z vanishes if there is one or less empty
site in Bn, we split the set of configurations on Bn into components (ΣK̂n )K̂∈Kn each
connected on the graph Gn. In particular, for any two configurations η̂, η̂′ in the
same ΣK̂n , we must have by construction d(η̂, η̂′) <∞.

For any K̂ with at least two empty sites, let us denote η̂K̂ the configuration where
the particles are inserted from the bottom left, row by row, and in the order of
increasing angles from 0 to 2π. In other words, we insert the particle with the angle
closest to 0 at site (−n,−n), the second closest at (−n,−n + 1), and so on until
all particles have been placed. The choice of this reference configuration is arbitrary,
but depends continuously in the angles in K̂ ∈ K̃n. We then set h(η̂K̂) = 0 for
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each K̂ ∈ K̃n, and for any other configuration η̂ ∈ ΣK̂n , we fix a path γη̂ of licit jumps
from η̂K̂ to η̂, and let

h(η̂) = Iγη̂,u′(η̂
K̂).

Since u is a pointwise closed form, this expression does not depend on the choice
of γη̂ and pointwise, we have for any x, x + z, ux,x+z = ∇x,x+zh. Furthermore, by
construction, because both u and η̂K̂ depend smoothly on the particle’s angles, so
does h, and therefore h ∈ Cn. We now show that h ∈ Tωn .

To do so, we now consider the space L2(µα̂), recall that T̂ωn is the trace of Tωn
in L2(µα̂). Since, according to Lemma 8.2.7, T̂ωn is a closed linear subspace of L2(µα̂),

we can write on Bn that L2(µα̂) = T̂ωn ⊕
(
T̂ωn

)⊥
. Straightforwardly, one can show

that both T̂ωn and
(
T̂ωn

)⊥
are stable under any symmetric gradient ∇̃x,x+zf :=

1{ηxηx+z=0}(f(η̂x,x+z)− f(η̂)), for x, x+ z ∈ Bn. In particular, since ux,x+z ∈ T̂ωn , we
also have ∇̃x,x+zh = ux,x+z(η̂) + ux,x+z(η̂

x,x+z) ∈ T̂ωn for any x, x+ z ∈ Bn. Let now
write h as h1+h2, where h1 ∈ T̂ωn and h2 ∈ (T̂ωn )⊥, we must have ∇̃x,x+zh = ∇̃x,x+zh1.
All gradients of h2 therefore vanish a.s., we conclude that h2 is a.s. constant on each
connected component, therefore we can choose it to be 0 without changing ∇̃x,x+zh.
We thus have as wanted u′x,x+z = ∇x,x+zh1, we can therefore choose h = h1 ∈ T̂ωn .
Since h is smooth in the angle coordinates, it implies as wanted h ∈ Tωn in a pointwise
sense.

Regarding the second claim of the proposition, given a configuration η̂ on Bn, let
us denote by K̂n(η̂) := (K(η̂),ΘK(η̂)(η̂)) the parameter giving the number and angles
of particles in η̂, i.e.,

K(η̂) =
∑
x∈Bn

ηx and ΘK(η̂)(η̂) =
{
θx1 , . . . , θxK(η̂)

}
,

where x1, . . . , xK are the positions of the K particles in η̂. Since the function K(η̂) is
unchanged under any gradient inside Bn, we can replace h by h0 = h − En,K̂n(η̂)(h)

(where En,K̂ is the expectation w.r.t. the canonical measure corresponding to having
K̂ particles in Bn) and still satisfy ux,x+z(η̂) = ∇x,x+zh0(η̂).

We now turn to the proof of the decomposition of germs of closed forms on the
infinite graph.

Proof of Proposition 8.2.5. – We first prove that the sum is direct: assume that
for a, b ∈ R2, there exists a cylinder function h such that

ja,b = a1j
1 + a2j

2 + b1j
1,ω + b2j

2,ω = ∇Σh.
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In particular fix i = 1, 2, one easily obtains that

aiji + bij
ω
i = ∇0,eiΣh −∇0,eiΣh(η̂0,ei) = 1{η0ηei=0}(Σh(η)− Σh(η0,ei)),

where the ji’s are the currents defined in (2.4.1). Multiplying by ηei−η0 (resp. ηωei−η
ω
0 )

and taking the expectation w.r.t. µα̂, the identity above rewrites

2(ai + biEα̂(ω))α(1− α) = 0 ( resp. 2(aiEα̂(ω) + biEα̂(ω2))α(1− α) = 0),

where, as in Section 8.1, Eα̂(ωk) stands for Eα̂(ωk(θ0)|η0 = 1). In particular, since
α ∈ (0, 1) this yields that ai + biEα̂(ω) = 0 and that Eα̂(ω2) = Eα̂(ω)2, therefore
ω(θ0) is constant under µα̂. In particular, aiji + bij

ω
i vanishes in L2(µα̂) as wanted.

The inclusion Tω ⊃ Jω + Eω is immediate.

We now prove the reverse inclusion. The set of germs of an exact form being a
linear (therefore convex) subset of L2(µα̂), its weak and strong closure in L2(µα̂)

coincide. In order to prove Proposition 8.2.5, it is therefore sufficient to prove that
for any u ∈ Tω, there exists a sequence of cylinder functions hn ∈ Tω such that the
sequence (∇Σhn)n∈N is weakly relatively compact in L2(µα̂), and for any of its weak
limit points h, there exists a and b in R2 such that

h = u+ ja,b.

Fix u ∈ Tω, and (ux,x+z)x,x+z the associated closed form defined by (8.12). For
any fixed integer n, let F n be the σ-algebra generated by the sites inside Bn

F n = σ (η̂x, x ∈ Bn) ,

and let unx,x+z denote the conditional expectation

unx,x+z = Eα̂(ux,x+z | F n).

Note in particular that since u is in Tω, un is a closed form on Gn, and each of its
coordinate is in T̂ωn , according to Lemma 8.2.7, and because each of the ux,x+z is the
limit in L2(µα̂) of a sequence of functions in Tω. In particular, up to simultaneous
modification of all the unx,x+z, x, x+ z ∈ Bn on a µα̂-negligible set of configurations,
we can safely assume that unx,x+z ∈ Tωn in a pointwise sense.

Fix once and for all a density α < α′ < 1, and define ρn = 1
|Bn|

∑
x∈Bn ηx the

density in Bn, according to Proposition 8.2.8, there exists a family of F n-measurable
functions ϕn ∈ Tωn with mean 0 w.r.t. any canonical measure on Bn such that

1{ρn≤α′}u
n
x,x+z = ∇x,x+zϕn ∀x, x+ z ∈ Bn µα̂-a.s.,

where the identity holds only a.s. and not pointwise because we may have modified
the unx,x+z on a negligible set. Note that we would need a weaker indicator function
to respect the conditions of Proposition 8.2.8 (namely, that there are two empty sites
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in Bn) however in order to estimate the L2(µα̂)-norm of the ϕn, we will need the
stronger indicator function above.

Let us fix n ∈ N, and consider the germ of an exact form 1
(2n)2 ∇Σϕn , whose

coordinates can be rewritten for i = 1, 2

1

(2n)2
∇0,eiΣϕn =

1

(2n)2

∑
x∈Z2

τ−x∇x,x+eiϕn.

Since ϕn is F n-measurable, ∇x,x+eiϕn vanishes as soon as neither x nor x + ei is
in Bn. Hence, the previous quantity is equal to

1

(2n)2
∇0,eiΣϕn =

1

(2n)2

∑
−n−1≤xi≤n

x∈Bn

τ−x∇x,x+eiϕn(8.16)

= Rn,i +
1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−x∇x,x+eiϕn,

where the boundary term Rn,i is

Rn,i =
1

(2n)2

 ∑
xi=−n−1
x∈Bn(−ei)

τ−x∇x,x+eiϕn +
∑
xi=n
x∈Bn

τ−x∇x,x+eiϕn

 .
For any n, the left-hand side in (8.16) the germ of an exact form as introduced in

Definition 8.2.3. We will see that the second term of the right-hand side converges
in L2(µα̂) as n goes to infinity towards ui. Hence to prove Proposition 8.2.5 it will be
sufficient to show that the boundary term Rn,i is weakly relatively compact in L2(µα̂),
and that any of its weak limit points is in Jω. Since ϕn is supported in Bn, the
exchanges at the boundary act as reservoirs with creation (first term in Rn,i) at the
sites x + ei with xi = −n − 1, and annihilation of particles (second term in Rn,i) at
the sites x such that xi = n, and cannot be expressed as such as particle transfers. To
prove that the sequence of boundary terms is weakly relatively compact, we therefore
need to smooth out the ϕn’s, by letting

(8.17) ϕ̃n = Eα̂(ϕ3n | F n).

Not in particular that we still have ϕ̃n ∈ Tωn .

Rewrite (8.16) with ϕ̃n instead of ϕn

(8.18)
1

(2n)2
∇0,eiΣϕ̃n =

1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−x∇x,x+ei ϕ̃n + R̃n,i,
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where this time

(8.19) R̃n,i =
1

(2n)2

 ∑
xi=−n−1
x∈Bn(−ei)

τ−x∇x,x+ei ϕ̃n +
∑
xi=n
x∈Bn

τ−x∇x,x+ei ϕ̃n

 .
We are going to show that

— the bulk term converges in L2(µα̂) to ui,

— the sequence of boundary term is bounded in L2(µα̂), and any of its weak limit
points is an element of Jω.

For the sake of clarity, we state both of these results as separate lemmas, and we will
prove them afterwards.

Lemma 8.2.9 (Convergence of the bulk term towards ui). – For any i ∈ {1, 2},

(8.20) lim sup
n→∞

Eα̂


 1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

[
τ−x∇x,x+ei ϕ̃n − ui

]
2 = 0.

Lemma 8.2.10 (Limit of the boundary term). – For any i ∈ {1, 2}, we split the
boundary term as

R̃n,i = R̃−n,i + R̃+
n,i,

where
(8.21)

R̃−n,i =
1

(2n)2

∑
xi=−n−1
x∈Bn(−ei)

τ−x∇x,x+ei ϕ̃n, and R̃+
n,i =

1

(2n)2

∑
xi=n
x∈Bn

τ−x∇x,x+ei ϕ̃n,

which will be referred to respectively as negative and positive boundary terms. With the
previous notations, both sequences (R̃−n,i)n∈N and (R̃+

n,i)n∈N are bounded in L2(µα̂).
Furthermore, for any weakly convergent subsequence R̃−kn,i → R−i , there exists
ai, bi ∈ R such that

R−i = aiη
ω
0 (1− ηei) + biη0(1− ηei).

The same is true for the positive boundary term.

Thanks to (8.18), these two lemmas prove Proposition 8.2.5.

The proof of Lemma 8.2.9 is simple, we treat it right now before turning to the
proof of Lemma 8.2.10, which is the main difficulty of this section.
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Proof of Lemma 8.2.9. – By construction, for any x, x+ ei ∈ Bn,

∇x,x+ei ϕ̃n = ∇x,x+eiEα̂(ϕ3n | F n)

= Eα̂(∇x,x+eiϕ3n | F n)

= Eα̂(1{ρ3n≤α′}u
3n
x,x+ei | F n)

= Eα̂(1{ρ3n≤α′}Eα̂(ux,x+ei | F 3n) | F n)

= Eα̂(1{ρ3n≤α′}ux,x+ei | F n).(8.22)

By triangular inequality, translation invariance of µα̂, and using (
∑k
i=1 ai)

2 ≤
k
∑k
i=1 a

2
i , we can bound the expectation in (8.20) by

(8.23)
1

2n2

∑
−n≤xi≤n−1

x∈Bn

(
Eα̂
[(
Eα̂(ux,x+ei | F n)− ux,x+ei

)2]
+ Eα̂

[
1{ρ3n>α′}u

2
x,x+ei

])
.

We start by estimating the contribution of the first expectation in the sum. To do so,
split it for any positive ε as

1

2n2

∑
x∈Bn(1−ε)

Eα̂
[(
Eα̂(ux,x+ei | F n)− ux,x+ei

)2]
+

1

2n2

∑
−n≤xi≤n−1
x∈Bn\Bn(1−ε)

Eα̂
[(
Eα̂(ux,x+ei | F n)− ux,x+ei

)2]

By definition of u, τxui = ux,x+ei , thus for any ε > 0, the expectations in the first
term vanish uniformly in x ∈ Bn(1−ε) as n→∞ by martingale convergence theorem,
whereas the second sum can be crudely estimated by Jensen inequality and is less
than

Cε max
−n≤xi≤n−1
x∈Bn\Bn(1−ε)

Eα̂
[
(Eα̂(ux,x+ei | F n)− ux,x+ei)

2
]
≤ 4CεEα̂(u2

i ),

which vanishes as ε→ 0 regardless of n.

We now consider the contributions of the second part in (8.23). That each term
vanishes is a direct consequence of the dominated convergence theorem, however since
we need a convergence that is uniform in x, we give a more detailed and quantitative
argument. We can rewrite by translation invariance of µα̂, for any x, x+ ei ∈ Bn, and
for any p < 2,

Eα̂
[
1{ρ3n>α′}u

2
x,x+ei

]
= Eα̂

[
u2
i (τ−x1{ρ3n>α′})

]
≤ Eα̂

[∣∣u2
i − |ui|p

∣∣]+ Eα̂
[
|ui|p(τ−x1{ρ3n>α′})

]
≤ Eα̂

[∣∣u2
i − |ui|p

∣∣]+ Eα̂
(
u2
i

)p/2
µα̂ (ρ3n > α′)

1−p/2
,
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by Holder inequality. By a standard large deviation estimate, µα̂ (ρ3n > α′) =

O(e−Cn
2

). We then choose p = p(n) = 2 − 1/n, to obtain that second term in the
right-hand side above is less than C(ui)e

−Cn. The function inside the expectation in
the first term is pointwise less than max(2u2

i , 1) which is integrable and the first term
therefore vanishes by dominated convergence as p(n) → 2. Since the bound above
does not depend on x, we finally obtain

(8.24) lim
n→∞

1

2n2

∑
−n≤xi≤n−1

x∈Bn

Eα̂
[
1{ρ3n>α′}u

2
x,x+ei

]
= 0

as wanted, which proves Lemma 8.2.9.

Proof of Lemma 8.2.10. – The proof of this lemma being long, we split it into three
steps.

— We first control the L2(µα̂) norm of the ϕ̃n’s.

— Thanks to this control, we prove that the sequence of boundary terms R̃±n,i is
bounded in L2(µα̂).

— Finally, we prove that any weak limit point R±i of the boundary term can only
depend on the configuration through η̂0 and η̂ei , and that they can be written
as a combination of the ji and ji,ω.

The scheme follows closely that of Theorem 4.14 in Appendix 3 of [28] however ad-
justments are needed in the second and third step to take into account the presence
of the angles.

First step: Control on the L2 norm of the ϕn’s. – We proved in Section 8.1 that,
even though we do not have a general spectral gap of order n−2, we could circumvent
this difficulty by staying in a convenient class of functions linear in the angles and
by cutting off the large densities. This spectral gap estimate is needed to control the
norm of the ϕ′ns. This is the reason for limiting the result to closed forms in Tω

defined in (8.14), and for introducing the indicator functions 1{ρn≤α′}. We state this
step as a separate lemma for the sake of clarity.

Lemma 8.2.11. – There exists a constant K := K(α̂, α′,u) such that for any n ∈ N,

Eα̂(ϕ2
n) ≤ Kn4,

where ϕn was introduced in (8.2).

Proof of Lemma 8.2.11. – For any K̂ ∈ Kn, we proved in Proposition 8.2.8 that we
could assume En,K̂(ϕn) = 0, and thanks to the indicator function 1{ρn≤α′}, ϕn van-
ishes when the density in Bn is larger than α′, therefore the spectral gap estimate
given in Proposition 8.1.2, since ϕn ∈ Tωn , yields

Eα̂(ϕ2
n) = Eα̂(ϕ2

n1{ρn≤α′}) ≤ C(α̂, α′)n2 Dn(ϕn),
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where Dn(f) = −Eα̂(f Lnf) is the Dirichlet form relative to the symmetric exclusion
process restricted to Bn,

Dn(ϕn) =
1

2

2∑
i=1

∑
δ∈{−1,1}

∑
x,x+δei∈Bn

Eα̂
[
(∇x,x+δeiϕn)2

]
.

By construction (cf. (8.2)), ∇x,x+eiϕn = 1{ρn≤α′}u
n
x,x+ei and ∇x+ei,xϕn =

−1{ρn≤α′}u
n
x,x+ei(η̂

x,x+ei). Thus, since u is in L2(µα̂), and since µα̂ is invariant
under the change of variables η̂ 7→ η̂x,x+ei , Jensen’s inequality yields
(8.25)

Dn(ϕn) ≤
2∑
i=1

∑
x,x+ei∈Bn

Eα̂
[
(unx,x+ei)

2
]
≤

2∑
i=1

∑
x,x+ei∈Bn

Eα̂
[
(ui)

2
]
≤ C ′(u)n2.

We obtain as wanted, thanks to the spectral gap estimate above,

(8.26) Eα̂(ϕ2
n) ≤ Kn4,

where K = CC ′ depends only on α̂, α′, and u.

Second step: Control on the L2 norm of the boundary terms. – We now prove thanks
to Lemma 8.2.11 that the boundary terms are bounded in L2(µα̂).

Lemma 8.2.12. – There exists a constant C = C(α̂, α′,u) such that for any n,

(8.27) Eα̂
[(
R̃−n,i

)2] ≤ C.
The statement remains true if R̃−n,i is replaced by R̃+

n,i.

Proof of Lemma 8.2.12. – We will treat in full detail only the case of the negative
boundary term

R̃−n,i =
1

(2n)2

∑
xi=−n−1
x∈Bn(−ei)

τ−x∇x,x+ei ϕ̃n,

analogous arguments yield the bound for R̃+
n,i. Using (

∑k
i=1 ai)

2 ≤ k
∑k
i=1 a

2
i , we

obtain

Eα̂
[(
R̃−n,i

)2] ≤ (2n+ 1)

(2n)4

∑
xi=−n−1
x∈Bn(−ei)

Eα̂
[
(τ−x∇x,x+ei ϕ̃n)2

]
≤ Cn−3

∑
xi=−n−1
x∈Bn(−ei)

Eα̂
[
(∇x,x+ei ϕ̃n)2

]
,

for some universal constant C, by translation invariance of µα̂. For x in the negative
boundary, under µα̂, we can rewrite

(8.28) ∇x,x+ei ϕ̃n(η̂) = ηx(1− ηx+ei)
(
ϕ̃n(η̂ + δθx+ei)− ϕ̃n(η̂)

)
,
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where η̂+ δθx+ei is the configuration equal to η̂ everywhere except in x+ ei, where the
site contains a particle with angle θ distributed as α̂/α independently of η̂. Note that
in the expectation Eα̂, we will also take the expectation w.r.t. θ, but still denote it Eα̂
not to burden the notations. Since ϕn is independent of η̂x for any x in the negative
boundary term,

(8.29) Eα̂
[(
R̃−n,i

)2] ≤ αCn−3
∑

xi=−n−1
x∈Bn(−ei)

Eα̂
[
(1− ηx+ei)

(
ϕ̃n(η̂ + δθx+ei)− ϕ̃n(η̂)

)2]
,

where the expectation w.r.t. θ is also taken, under the distribution α̂/α. Recall
that ϕ̃n = Eα̂(ϕ3n | F n), since the number of terms in the sum isO(n), Lemma 8.2.12
is a consequence of Lemma 8.2.13 below.

Lemma 8.2.13. – There exists a constant C = C(α̂, α′,u) such that for any
x ∈ Bn(−ei) such that xi = −n− 1,

Eα̂
[
(1− ηx+ei)

(
Eα̂(ϕ3n| F n)(η̂ + δθx+ei)− Eα̂(ϕ3n| F n)(η̂)

)2] ≤ Cn2,

where the expectation above is taken w.r.t. µα̂ on B3n and w.r.t. θ distributed un-
der α̂/α.

Proof of Lemma 8.2.13. – Let us fix x, such that xi = −n− 1 in the negative bound-
ary. To make the Dirichlet form appear, we are going to force an occupied site in a
neighborhood of x, and transform the particle creation into a particle transfer. This
is the reason for smoothing out ϕn and taking ϕ̃n instead. For the sake of clarity, any
configuration η̂ on B3n will be considered as the pair of an interior configuration ζ̂

on Bn (which is hence F n-measurable), and an exterior configuration ξ̂ on B3n \Bn.
For any y ∈ B3n \Bn, we rewrite using the identity (1− α)−1[1− ξ + ξ − α] = 1

Eα̂(ϕ3n| F n)
(
ζ̂ + δθx+ei

)
=

1

1− α

(
Eα̂
(

(1− ξy)ϕ3n | F n

)
+ Eα̂

(
(ξy − α)ϕ3n | F n

))(
ζ̂ + δθx+ei

)
,

where ξy is the occupation variable in y, and is either 1 or 0 depending on whether
the site y is empty or not.

The first part of this decomposition will be controlled by the Dirichlet form, as
the existence of an empty site in y (thanks to 1 − ξy) will allow us to reconstruct a
particle transfer from y to x + ei. The second term will be estimated after a spatial
averaging over a large microscopic box. This box must be measurable with respect to
the sites in B3n \ Bn, in order to be able to introduce it inside the expectation. For
any x in the negative boundary, consider the set

Bxn−1,i = x− nei +Bn−1,
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which is the box of radius n − 1 centered in x − nei. Remark that the cardinal
of Bxn−1,i is (2n − 1)2, so that averaging the previous identity over the y’s in Bxn−1,i

yields

Eα̂(ϕ3n | F n)
(
ζ̂ + δθx+ei

)
=

1

(2n− 1)2

∑
y∈Bxn−1,i

(
Eα̂
(

1− ξy
1− α

ϕ3n

∣∣∣∣ F n

)
(8.30)

+ Eα̂
(
ξy − α
1− α

ϕ3n

∣∣∣∣ F n

))(
ζ̂ + δθx+ei

)
.

Let us consider the first term of the previous equality. For any y in the boundary,
thanks to the factor 1 − ξy the site y is empty. Performing the change of variable
ξ̂ → ξ̂ − δy where ξ̂ − δy is the configuration identical to ξ̂ everywhere except in y

where the site is now empty, we obtain

Eα̂
( 1− ξy

1− α
ϕ3n

∣∣∣∣ F n

)(
ζ̂ + δθx+ei

)
= Eα̂

(
ξy
α
ϕ3n

(
ξ̂ − δy

) ∣∣∣∣ F n

)(
ζ̂ + δθx+ei

)
= Eα̂

(
ξy
α

[
ϕ3n

(
ζ̂ + δθx+ei , ξ̂ − δy

)
− ϕ3n

(
ζ̂, ξ̂
)] ∣∣∣∣ F n

)
+ Eα̂

(
ξy
α
ϕ3n

(
ζ̂, ξ̂
) ∣∣∣∣ F n

)
.

We deduce from the last identity and Equation (8.30) that we can write
Eα̂(ϕ3n| F n)

(
ζ̂ + δθx+ei

)
as

1

(2n− 1)2

∑
y∈Bxn−1,i

[
Eα̂
(
ξy
α

[
ϕ3n

(
ζ̂ + δθx+ei , ξ̂ − δy

)
− ϕ3n

(
ζ̂, ξ̂
)] ∣∣∣∣ F n

)

+ Eα̂
(
ξy
α
ϕ3n

(
ζ̂, ξ̂
) ∣∣∣∣ F n

)
+ Eα̂

(
ξy − α
1− α

ϕ3n

(
ζ̂ + δθx+ei , ξ̂

) ∣∣∣∣ F n

)]
,

and therefore

(8.31) Eα̂(ϕ3n| F n)
(
ζ̂ + δθx+ei

)
− Eα̂(ϕ3n| F n)(ζ̂)

=
1

(2n− 1)2

∑
y∈Bxn−1,i

[
Eα̂
(
ξy
α

[
ϕ3n

(
ζ̂ + δθx+ei , ξ̂ − δy

)
− ϕ3n

(
ζ̂, ξ̂
)] ∣∣∣∣ F n

)

+ Eα̂
(
ξy − α
α

ϕ3n

(
ζ̂, ξ̂
) ∣∣∣∣ F n

)
+ Eα̂

(
ξy − α
1− α

ϕ3n

(
ζ̂ + δθx+ei , ξ̂

) ∣∣∣∣ F n

)]
.
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Using (
∑k
i=1 ai)

2 ≤ k
∑k
i=1 a

2
i as well as Jensen’s inequality yields

Eα̂
(

(1− ηx+ei)
(
Eα̂(ϕ3n| F n)(η̂ + δθx+ei)− Eα̂(ϕ3n| F n)(η̂)

)2)
≤ 3

(2n− 1)2

 ∑
y∈Bxn−1,i

Eα̂
(
ηy(1− ηx+ei)

α2

[
ϕ3n

(
η̂ + δθx+ei − δy

)
− ϕ3n (η̂)

]2)
+ 3Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α
α

 ϕ3n

∣∣∣∣∣∣ F n

2


+ 3Eα̂

Eα̂

 (1− ηx+ei)

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α
1− α

ϕ3n

(
η̂ + δθx+ei

) ∣∣∣∣∣∣ F n

2
 .

(8.32)

From now on, the strategy to prove Lemma 8.2.13 is straightforward. We are going
to prove that each of the three terms in the right-hand side above is of order n2:

— the second and third line above are controlled thanks to the spatial averaging
by the L2 norm of the ϕn’s;

— in the first line, the angle of the particle deleted in y is not necessarily the
same as the one of the particle created in x + ei, because the angle θ above is
distributed according to α̂/α and independent of the configuration. However,
since the ϕn are in Tωn their dependency in the angles can be sharply estimated.
Once this difficulty is dealt with, the remaining quantity will be controlled by
the Dirichlet form.

We first treat the first step above. Thanks to the Cauchy-Schwarz inequality, we can
estimate the second line

Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α
α

 ϕ3n

∣∣∣∣∣∣ F n

2


≤ 1

α2
Eα̂


 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α

2
Eα̂

(
ϕ2

3n

)
=

(1− α)

α(2n− 1)2
Eα̂
(
ϕ2

3n

)
,

since under µα̂, the ηy’s are i.i.d. variables. We can now use the bound obtained in
Lemma 8.2.11, which yields that for some constant C1 = C1(α̂, α′,u),

(8.33) Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α

 ϕ3n

∣∣∣∣∣∣ F n

2
 ≤ C1n

2.
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Similarly, since

Eα̂
(

(1− ηx+ei)ϕ3n

(
η̂ + δθx+ei

)2)
=

1− α
α

Eα̂(ηx+eiϕ
2
3n) ≤ Cn2,

we also have for some constant C2 = C2(α̂, α′,u)

(8.34)

Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α
1− α

 (1− ηx+ei)ϕ3n

(
η̂ + δθx+ei

) ∣∣∣∣∣∣ F n

2
 ≤ C2n

2.

We now estimate the first line of the right-hand side of (8.32), namely

(8.35)
1

(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy(1− ηx+ei)

α2

[
ϕ3n

(
η̂ + δθx+ei − δy

)
− ϕ3n (η̂)

]2)
.

We first deal with the fact that the deleted and created particles do not have the same
angle. Recall that η̂y,θ is the configuration where the angle of the particle at the site
y has been set to θ, we can thus write

η̂ + δθx+ei − δy =
(
η̂y,θ

)y,x+ei
,

therefore

(
ϕ3n

(
η̂ + δθx+ei − δy

)
− ϕ3n (η̂)

)2
≤ 2

[
ϕ3n

((
η̂y,θ

)y,x+ei
)
− ϕ3n

(
η̂y,θ

)]2
+ 2

[
ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂)

]2
.

Since θ is distributed according to α̂/α, conditionally to ηy = 1, η̂y,θ has the same
distribution as η̂ under µα̂, and we can therefore control (8.35) by

(8.36)
2

α2(2n− 1)2

∑
y∈Bxn−1,i

[
Eα̂
(
ηy(1− ηx+ei)

[
ϕ3n

(
η̂y,x+ei

)
− ϕ3n (η̂)

]2)
+ Eα̂

(
ηy
[
ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂)

]2)
.

Once again, we are going to prove that the contributions of both terms in the right-
hand side above are of order n2.

We first need to decompose, as in the proof of the two-block estimate of
Lemma 4.2.2, the particle jumps appearing in the first term into nearest neigh-
bor jumps. More precisely, there exists a finite family x0, . . . , xp such that x0 = y,
xp = x and for any k ∈ [[0, p − 1]], |xk − xk+1 | = 1. Furthermore, we can safely
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assume that p = | y − x |. With this construction, for any y ∈ Bxn−1,i, we can write

Eα̂
[
ηy(1− ηx+ei)

(
ϕ3n(η̂y,x+ei)− ϕ3n(η̂)

)2
]

≤ | y − x |
| y−x |∑
k=1

Eα̂
[
ηxk(1− ηxk+1

)
(
ϕ3n(η̂xk,xk+1)− ϕ3n(η̂)

)2
]

≤ | y − x |
| y−x |∑
k=1

Eα̂
([
∇xk,xk+1

ϕ3n

]2)
,(8.37)

since (
∑p
k=1 ak)2 ≤ p

∑p
k=1 a

2
k. As in the proof of Lemma 8.2.11, one easily checks

that, xk and xk+1 being neighbors,

Eα̂
([
∇xk,xk+1

ϕ3n(η̂)
]2) ≤ C(u).

therefore (8.37) yields

Eα̂
[
ηy(1− ηx+ei)

(
ϕ3n(η̂y,x+ei)− ϕ3n(η̂)

)2
]
≤ | y − x |2C(u).

We now get back to the first term in (8.36).

It is not hard to see that
∑
y∈Bxn−1,i

| y−x |2 is of order n4, and we obtain as wanted
that for some constant C3 = C3(α̂,u),

(8.38)
2

α2(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy(1− ηx+ei)

[
ϕ3n

(
η̂y,x+ei

)
− ϕ3n (η̂)

]2) ≤ C3n
2.

We now estimate the second contribution in (8.36). The only difference between
ϕ3n

(
η̂y,θ

)
and ϕ3n (η̂) is the angle of the particle at site y. Recall that for any n,

ϕn ∈ Tω, therefore the variation of ϕn when an angle is changed can be precisely esti-
mated. Fix n ≥ 0, and recall that ϕ3n∈ Tω3n. Then, there exists angle-blind functions
(ψn,x)x∈B3n , and ψn in S , such that

ϕ3n = ψn +
∑
x∈B3n

ηωxψn,x.

Since the only difference between η̂y,θ and η̂ is in the angle present at the site y, we
can write

ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂) = (ω(θ)− ω(θy))ηyψn,y(η),

therefore the second contribution in (8.36) can be rewritten
(8.39)

2

α2(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy(ω(θ)− ω(θy))2ψ2

n,y

)
=

4Vα̂(ω)

α2(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηyψ

2
n,y

)
,
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where we shortened Vα̂(ω) = Varα̂(ω(θ0) | η0 = 1), since the angles are independent
of the configuration conditionally to the presence of a particle. Similarly to what we
did in Section 8.1 rewrite

ϕ3n = ϕ1
n + ϕbn,

where

ϕ1
n =

∑
x∈B3n

(ω(θx)− Eα̂(ω))ηxψn,x and ϕbn = ψn + Eα̂(ω)
∑
x∈B3n

ηxψn,x,

where Eα̂(ω) stands for Eα̂(ω(θ0) | η0 = 1). As in Section 8.1,

Eα̂(ϕ2
3n) = Eα̂((ϕ1

n)2) + Eα̂((ϕbn)2)

and

Eα̂((ϕ1
n)2) = Vα̂(ω)

∑
x∈B3n

Eα̂(ηxψ
2
n,x).

The two previous identities finally yield that

Vα̂(ω)
∑
x∈B3n

Eα̂(ηxψ
2
n,x) ≤ Eα̂(ϕ2

3n).

We now use this bound as well as (8.39) and Lemma 8.2.11 to obtain that for some
constant C4 = C4(η̂, α′,u)

(8.40)
2

α2(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy
[
ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂)

]2) ≤ C4n
2.

This is the estimate we wanted for the second line of (8.36).

Letting C = 3(C1 + C2 + C3 + C4), we now use the four bounds (8.33), (8.34),
(8.38) and (8.40) in Equation (8.32), to obtain that

Eα̂
(

(1− ηx+ei)
(
Eα̂(ϕ3n| F n)(η̂ + δθx+ei)− Eα̂(ϕ3n| F n)(η̂)

)2) ≤ Cn2

as wanted, which concludes the proof of Lemma 8.2.13.

We have now finished the second step, and proved that the sequences of boundary
terms (R̃+

n,i)n∈N and (R̃−n,i)n∈N are bounded in L2(µα̂). To conclude the proof of
Lemma 8.2.10 we now prove that any weak limit point R−i of (R̃−n,i) is in the linear
span of the currents Jω. The main difficulty is to prove that any limit point only
depends on η̂0 and η̂ei , which we state as a separate lemma. We will once again only
consider the negative boundary terms, the positive boundary terms being treated in
the same way.
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Third step: Proof that R−i only depends on η̂ through η̂0 and η̂ei . – Let us introduce

Z2
+,i = {xi > 0} ∩ Z2 \ {ei}.

We first prove the following intermediate result.

Lemma 8.2.14. – Any weak limit point R−i of the sequence (R̃−n,i) is measurable w.r.t.
the sites in Z2 ∩ {xi > 0} ∪ {0}. Furthermore, for any edge (y, y + z) with both ends
in the set Z2

+,i, the gradient ∇y,y+zR
−
i vanishes in L2(µα̂).

Proof of Lemma 8.2.14. – In order to avoid taking subsequences, let us also assume
that (R̃−n,i) weakly converges towards R−i . We first prove the first statement, which
is elementary. For any x in the negative boundary, xi = −n− 1, τ−xϕ̃n is measurable
with respect to the half plane {xi > 0}, therefore∇0,eiτ−xϕ̃ is measurable with respect
to the sites in {xi > 0} ∪ {0}. We deduce from the last remark that for any n, R̃−n,i is
measurable for any n w.r.t. the sites in {xi > 0} ∪ {0}, therefore R−i also is.

We now show that for any edge {y, y+ z} ⊂ Z2
+,i, the gradient ∇y,y+zR

−
i vanishes

in L2(µα̂). Fix an edge (y, y + z) with both ends in Z2
+,i. By definition,

∇y,y+zR̃
−
n,i =

1

(2n)2

∑
xi=−n−1

∇y,y+zτ−x∇x,x+ei ϕ̃n

=
1

(2n)2

∑
xi=−n−1

∇y,y+z∇0,eiτ−xϕ̃n.

Because y, y + z are different from 0 and ei, the two gradients in the formula above
commute, therefore using once again (

∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i , as well as the crude

bound Eα̂((∇af)2) ≤ 4Eα̂(f2), yields

Eα̂
[∣∣∇y,y+zR̃

−
n,i

∣∣2] ≤ 1

(2n)3

∑
xi=−n−1

Eα̂
[(
∇0,ei∇y,y+zτ−xϕ̃n

)2]
=

1

(2n)3

∑
xi=−n−1

Eα̂
[(
∇0,eiτ−x∇x+y,x+y+zϕ̃n

)2]
≤ 4

(2n)3

∑
xi=−n−1

Eα̂
[(
∇x+y,x+y+zϕ̃n

)2]
.(8.41)

There are three cases to consider to estimate Eα̂
[(
∇x+y,x+y+zϕ̃n

)2].
1. The first one is the case where both x+ y and x+ y+ z are in Bcn, the comple-

mentary set of Bn. In this case,

Eα̂
[(
∇x+y,x+y+zϕ̃n

)2]
= 0,

because ϕ̃n is F n- measurable.
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2. The second case when both x + y and x + y + z are in Bn. In this case, using
(8.22) and Jensen’s inequality we can write

(8.42) Eα̂
((
∇x+y,x+y+zϕ̃n

)2) ≤ Eα̂
(

1{ρ3n≤α′}
(
ux+y,x+y+z

)2) ≤ C(u).

3. The last case to consider is if x+ y and x+ y + z link Bn and Bcn. Then, as in
the proof of Lemma 8.2.12 we obtain

Eα̂
[(
∇x+y,x+y+zϕ̃n

)2] ≤ C(α̂, α′,u)n2.

Fix an edge (y, y + z) with both ends in Z2
+,i and write z as ±ej , we treat sepa-

rately the two cases for j. If j = i, for any n large enough (more precisely as soon
as 2n+ 2 ≥ yi), for any x such that x1 = −n − 1, either x + y and x + y ± ei are
both in Bn or both are in its complementary set Bcn. We are therefore either in the
first or in the second case above, and since the number of terms in the sum is O(n),
Equation (8.41) yields

Eα̂
[(
∇y,y+zR̃

−
n,i

)2] ≤ C ′n−2 −−−−→
n→∞

0,

for some constant C ′ = C ′(α̂,u).

If now j 6= i, there can be only two terms in the sum over x for which x + y and
x+ y± ei link Bn and Bcn (third case above), whereas all the others are either in the
first or the second case. In this case, Equation (8.41) yields

Eα̂
[(
∇y,y+zR̃

−
n,i

)2] ≤ C ′(α̂,u)n−2 + C ′′(α̂, α′,u)n−1 ||u||22,α̂ −−−−→n→∞
0.

This proves that the sequence ∇y,y+zR̃
−
n,i vanishes as n → ∞ in L2(µα̂) for any

edge (y, y + z) with both ends in Z2
+,i. Since the gradient ∇y,y+z is a (Lipschitz, and

therefore) continuous functional in L2(µα̂), ∇y,y+zR
−
i vanishes for any edge (y, y+z)

with both ends in Z2
+,i. This concludes the proof of Lemma 8.2.14.

Lemma 8.2.15. – Any weak limit point R−i of the sequence (R̃−n,i)n∈N only depends
on the configuration through η̂0 and η̂ei . The same is true for the limit points of the
positive boundary terms (R̃+

n,i)n∈N.

Proof of Lemma 8.2.15. – This lemma is a consequence of Lemma 8.2.14. Consider
the localization R−i,n = Eα̂(R−i | F n), then R−i,n is measurable with respect to the
sites in {xi > 0} ∪ {0} and for any edge (y, y+ z) with both ends in Z2

+,i its gradient
vanishes in L2(µα̂). These two properties are immediate consequences of the properties
of R−i and Jensen’s inequality.

Let
B+
i,n = Bn ∩ Z2

+,i,
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since the gradients of R−i vanish for any edge in B+
i,n, on the event on which there

are at least two empty sites in B+
i,n, R

−
i only depends on the η̂x, x ∈ B+

i,n through
the empirical measure on B+

i,n

ρ̂B+
i,n

:=
1

|B+
i,n |

∑
B+
i,n

ηxδθx .

Indeed, for two configurations η̂ and η̂′ with the same number of particles, and with
the same angles in B+

i,n, we can reach one from the other with a combination of the
previous gradients, hence the difference R−i,n(η̂)−R−i,n(η̂′) vanishes. This is not true
whenever there is one or less empty site in B+

i,n, but since we are under the product
measure, this happens with exponentially small probability and will not be an issue.

Let us denote by E∗n the event “there are at least two empty sites in B+
i,n,” the

previous statement rewrites as

R−i,n1E∗n = Eα̂

(
R−i,n1E∗n

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

)
.

For any cylinder function f , we are going to prove that

Eα̂(f.R−i ) = Eα̂
[
f. E(R−i | η̂0, η̂ei)

]
.

Let
f+ = E (f | η̂x, x ∈ {xi > 0} ∪ {0})

be the conditional expectation with respect to the sites in {xi > 0}∪{0}. Since f is a
cylinder function, so is f+, therefore for any sufficiently large integer n, we can write

Eα̂(f.R−i 1E∗n) = Eα̂(f.R−i,n1E∗n)

= Eα̂

(
Eα̂

(
f.R−i,n1E∗n

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))

= Eα̂

(
R−i,n1E∗nEα̂

(
f

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))

= Eα̂

(
R−i,n1E∗nEα̂

(
f+

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))

= Eα̂

(
R−i,nEα̂

(
f+

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))

+ Eα̂

(
R−i,n1E∗cn Eα̂

(
f+

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))
= Eα̂

(
R−i Eα̂

(
f+
∣∣∣ η̂0, η̂ei

))
+ on(1),(8.43)
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since

Eα̂

(
f+

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

)
L2(µα̂)−−−−→
n→∞

Eα̂
(
f+
∣∣∣ η̂0, η̂ei

)
,

because ρ̂B+
i,n

converges µα̂ a.s. as n→∞ towards α̂, and

Eα̂

(
R−i,n1E∗cn Eα̂

(
f+

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))
−−−−→
n→∞

0,

because f+ is a bounded function, and R−i,n is in L2(µα̂). For the same reason, the
left-hand side in (8.43) converges as n goes to ∞ towards Eα̂(f.R−i ), and therefore
for any cylinder function f

Eα̂
(
R−i Eα̂

(
f+
∣∣∣ η̂0, η̂ei

))
= Eα̂(f.R−i ),

so that

R−i = Eα̂
(
R−i

∣∣∣ η̂0, η̂ei

)
.

This concludes the proof of Lemma 8.2.15.

To complete the proof of Lemma 8.2.10, now that we have proved that all limit
points of the boundary terms are function of η̂0 and η̂ei , we still have to show that such
limit points are in Jω. First notice that any limit point of the negative boundary R−i
verifies

(8.44) ηeiR
−
i = (1− η0)R−i = 0.

Indeed,

ηeiR
−
i = lim

n→∞

1

(2n)2

∑
xi=−n−1
x∈Bn

ηeiτ−x∇x,x+ei ϕ̃n = lim
n→∞

1

(2n)2

∑
xi=−n−1
x∈Bn

ηei∇0,eiτ−xϕ̃n,

since τx∇af = ∇τxaτxf . Now the latter obviously vanishes since ηei∇0,ei = 0. The
second identity is proved in the same way.

Since the ϕ̃n’s are in Tω, so is R−i . Since R
−
i depends only on η̂0 and η̂ei , using

(8.44) it can therefore be expressed as

R−i (η̂) = η0(1− ηei)R−i (η̂0, η̂ei) = η0(1− ηei) [ψ(η0, ηei) + ηω0 ψ0(η0, ηei)] ,

for some angle blind functions ψ, ψ0. In particular, letting c1 = ψ0(1, 0), c2 = ψ(1, 0),

R−i (η̂) = (c1η
ω
0 + c2η0)(1− ηei).

Finally, any weak limit point of the boundary term is an element of Jω, which is what
we wanted to show. The proof of Lemma 8.2.10 is thus complete.
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8.3. An integration by parts formula

Considering the symmetric exclusion generator L as a discrete Laplacian, to prove
Theorem 6.6.4, we are going to need an integration by parts formula in order to express
the expectation of ψ.h in terms of the gradient of h and the “integral” ∇ L

−1
ψ of ψ.

We first extend the definition of the canonical measures given in Definition 3.1.6 to
any domain B ⊂ T2

N . For that purpose, consider an integer K ≤ |B|, and an orderless
family {θ1, . . . , θK} ∈ SK . Recall that we denote by K̂ the pair (K, {θ1, . . . , θK}), and
we let µB,K̂ be the measure such that the K particles with fixed angles θ1, . . . , θK are
uniformly distributed in the domain B. If B = Bl is the ball of radius l, this notation
is shortened as µl,K̂ in accord with Definition 3.1.6. The expectation w.r.t. both of
these measures is respectively denoted EB,K̂ and El,K̂ . We will, in a similar fashion,
write

LBf(η̂) =
∑

x,x+z∈B
|z|=1

ηx (1− ηx+z)
(
f(η̂x,x+z)− f(η̂)

)
,

for the generator of the symmetric exclusion process restricted to B, shortened as L l
if B = Bl.

Recall that we defined

C 0 =

{
ψ ∈ C

∣∣∣ Esψ,K̂(ψ) = 0 ∀K̂ ∈ K̃sψ and ψ|ΣK̂sψ
≡ 0 ∀K̂ ∈ Ksψ r K̃sψ

}
,

and that ∇a is the gradient representing a particle jump along a.

Lemma 8.3.1 (Integration by parts formula). – Let ψ ∈ C 0 be a cylinder function, and
a ⊂ Bsψ an oriented edge in its domain. Then, ψ is in the range of the generator L sψ ,
and we can define the “primitive” Ia(ψ) of ψ with respect to the gradient along the
oriented edge a as

Ia(ψ) =
1

2
∇a(− L sψ )−1ψ.

Furthermore, for any B ⊂ T2
N containing Bsψ , any K̂ = (K, (θ1, . . . , θK)) such

that K ≤ |B| and h ∈ C measurable w.r.t. sites in B, we have

(8.45) EB,K̂ (ψ.h) =
∑

a⊂Bsψ

EB,K̂ (Ia(ψ).∇ah) .

This result is also true if µB,K̂ is replaced by a grand-canonical measure µα̂. Note that
if K = |B| − 1 or K = |B| the result is trivial because ψ vanishes.

Proof of Lemma 8.3.1. – The proof of the previous result is quite elementary. Fix a
function ψ ∈ C 0, to prove the integration by parts formula, we first show that ψ is
in the range of L sψ , by building for any K̂ a function ϕK̂ on Σ

sψ

K̂
, verifying

L sψϕK̂ = ψ|Σsψ
K̂

. This result is well-known for the color-blind exclusion process, but
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in our case where each particle has an angle, the canonical measures take an unusual
form, and we prove it for the sake of exhaustivity.

For any ϕ : Σ
sψ

K̂
→ R such that L sψϕ = 0,

EBsψ ,K̂(ϕ L sψϕ) = −1

2
EBsψ ,K̂

 ∑
x,x+z∈Bsψ

ηx(1− ηz)(ϕ(η̂x,z)− ϕ(η̂))2

 = 0,

therefore ϕ is invariant under the allowed jump of a particle along any edge in Bsψ . For
any K̂ ∈ K̃sψ , the function ϕ is constant on Σ

sψ

K̂
, because Σ

sψ

K̂
is then irreducible w.r.t.

the exclusion dynamics in Bsψ , according to Section 3.3. In particular Ker
Σ
sψ

K̂

L sψ is
the set of constant functions, and{

ϕ : Σ
sψ

K̂
→ R

∣∣ EBsψ ,K̂(ϕ) = 0
}

=
{

L sψψ, ψ : Σ
sψ

K̂
→ R

}
.

For any ψ ∈ C 0, any K̂ ∈ K̃sψ , there exists a ϕK̂ : Σ
sψ

K̂
→ R, such that

L sψϕK̂ = ψ|Σsψ
K̂

.

Since ψ vanishes when Bsψ has one or less empty site, we also let ϕK̂ = 0 for any
K̂ ∈ Ksψ \ K̃sψ . We now define the local function ϕ∗ ∈ C by ϕ∗|Σsψ

K̂

= ϕK̂(η̂), which

verifies by construction
ψ = L sψϕ

∗,

therefore ψ ∈ L sψ C .
Proving the integration by parts formula is now elementary: since ψ = L sψ L

−1
sψ
ψ,

EB,K̂(h.ψ) = EB,K̂
(
h. L sψ L

−1
sψ
ψ
)

= −1

2

∑
a⊂Bψ

EB,K̂
(
∇a L

−1
sψ
ψ.∇ah

)
=
∑
a⊂Bψ

EB,K̂ (Ia(ψ).∇ah)

which proves identity (8.45). By conditioning to the canonical state in B, one easily
obtains that the same is true when the canonical measure is replaced by a grand-
canonical measure µα̂.

We finish this section with a technical lemma. Recall that for any cylinder func-
tion ψ, we denote by sψ the size of its support and for any integer l, lψ = l− sψ − 1.

Lemma 8.3.2. – For any ψ ∈ C 0 + J∗ + L C , there exists a constant C(ψ) such that
for any l, K̂ ∈ K̃l, h ∈ C only depending on sites in Bl, γ > 0, and A ⊂ Blψ

El,K̂

(
h
∑
x∈A

τxψ

)
≤ γC(ψ)|A|+ 1

2γ
D
Aψ

l,K̂
(h),
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where we shortened Aψ = {x ∈ Bl, d(x,A) ≤ sψ}, D
A
l,K̂(h) = El,K̂(h(− LA)h) and

LA is the SSEP generator restricted to jumps with both ends in A.

Proof of Lemma 8.3.2. – Since for some constant C(sψ),
∑
x∈A D

Bsψ (x)

l,K̂
(h) ≤

C(sψ) D
Aψ

l,K̂
(h) to establish this result, it is sufficient to prove that for any x ∈ A and

for any positive γ′,

(8.46) El,K̂ (hτxψ) ≤ γ′C ′(ψ) +
1

2γ′
D
Bsψ (x)

l,K̂
(h).

We now establish this last bound for any ψ ∈ C 0 ∪J∗ ∪ L C , which proves the lemma.

Assume first that ψ = jΦ
k for k ∈ {1, 2}, and Φ ∈ C1(S). Then, El,K̂ (hτxψ) =

El,K̂
(
hjΦ
x,x+ek

)
, where as before jΦ

x,x+ek
= Φ(θx)ηx(1−ηx+ek)−Φ(θx+ek)ηx+ek(1−ηx).

Thanks to changes of variable η̂ 7→ η̂x,x+ek , in the second term, we obtain, using the
elementary bound ab ≤ γa2/2 + b2/2γ which holds for any γ,

El,K̂ (hτxψ) = −El,K̂ (Φ(θx)∇x,x+ekh) ≤
γ ||Φ||2∞

2
+

1

2γ
El,K̂

(
(∇x,x+ekh)2

)
which proves (8.46).

We now consider ψ = Lf ∈ L C . Since f is a local function, fix sψ such that
Lf = L sψf . We rewrite

El,K̂ (hτxψ) = El,K̂
(
h LBsψ (x)(τxf)

)
= El,K̂

(
(τxf) LBsψ (x)h

)
=

∑
y,y+z∈Bsψ (x)

El,K̂((τxf)∇x,x+zh) ≤
γC(sψ) ||f ||2∞

2
+

1

2γ
D
Bsψ (x)

l,K̂
(h),

as wanted.

Only remains the case ψ ∈ C 0, for which (8.46) is a consequence of the integration
by parts formula and is proved similarly to the case ψ = Lf . By definition of Ia(ψ),∑

y,y+z∈Bsψ (x)

El,K̂(Ix,x+z(τxψ)2) =
1

2
El,K̂((τxψ)(− L

−1
Bsψ (x))(τxψ))

=
1

2
El,K̂

(
ψ(− L

−1
Bsψ

)ψ
)
≤ C(ψ),

where C(ψ) can be chosen independently of K̂. Using (8.45), and this last bound, we
obtain

El,K̂ (hτxψ) =
∑

y,y+z∈Bsψ (x)

El,K̂ (Iy,y+z(τxψ).∇y,y+zh) ≤ γC(ψ)

2
+

1

2γ
D
Bsψ (x)

l,K̂
(h),

which proves (8.46) and Lemma 8.3.2.
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8.4. Heuristics on�·�α̂ and Theorem 6.6.4

The purpose of this section is to explain the variational formula for the limiting
covariance�ψ�α̂ introduced in Definition 6.6.2. Given the generator L of the SSEP
on Z2, for any function f with mean 0 w.r.t. any canonical measure, consider the
linear application

(8.47) F : f 7→ ∇ L
−1

Σf =

(
∇0,e1 L

−1
Σf

∇0,e2 L
−1

Σf

)
.

A priori, even if f is a local function, L
−1
f is no longer local, and ∇ L

−1
Σf can there-

fore involve a infinite number of non-zero contribution, so that F is not a priori well
defined. However, assuming that f is such that ∇ L

−1
Σf is well-defined, the definition

above indicates thanks to the translation invariance of Σf and L
−1, that F(f) is the

germ of a closed form as introduced in Section 8.2. To illustrate this last remark, we
describe the effect of this application on L C and J∗.

Recall that for Φ ∈ C1(S), jΦ
i = ηΦ

0 (1− ηei)−ηΦ
ei (1− η0). We first investigate the

action of F on the currents jΦ
i . Consider an infinite configuration η̂ with no particles

outside of some large compact set K. For the sake of concision, we will call such a
configuration bounded. Then, we can write

L

[∑
x∈Z2

xiη
Φ
x

]
=
∑
x∈Z2

xi LηΦ
x =

∑
x∈Z2

τxj
Φ
i = ΣjΦi .

Since the configuration was assumed bounded, both of the sums above are finite,
and the identity above is well posed. Coming back to our application F, the previous
identity yields

F(jΦ
i ) =

(
∇0,e1 L

−1
ΣjΦi

∇0,e2 L
−1

ΣjΦi

)
=

(
∇0,e1

∑
x∈Z2 xiη

Φ
x

∇0,e2

∑
x∈Z2 xiη

Φ
x

)
.

Since the only positive contribution in the right-hand side above is for x = ei, ele-
mentary calculations yield

F(jΦ
i ) = ji,Φ,

where the ji,Φ’s are the germs of closed forms introduced in Equation (8.15). The
application F therefore maps J∗ (cf. (6.44)) into

J∗ :=
{
j1,Φ1 + j2,Φ2 , Φ1,Φ2 ∈ C1(S)

}
.

Since one can also write F(f) = ∇Σ L−1f , we can define F on L C as

F( Lf) = ∇
∑
x∈Z2

τx L
−1

Lf = ∇Σf ,

which is the germ of an exact form associated with f .
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Denote by E∗ the set of germs of exact forms associated with functions in C , the
construction above allow us to define the bijective application

F : J∗ + L C → J∗ + E∗

jΦ1
1 + jΦ2

2 + Lf 7→ j1,Φ1 + j2,Φ2 + ∇Σf .

Recall that we defined the L2-norm of any closed form u as

||u||2,α̂ =
[
Eα̂
(
u2

1 + u2
2

)]1/2
.

According to Proposition 8.2.5, we can rewrite for any u ∈ Tω,

(8.48) ||u||22,α̂ = sup
g∈Tω
a,b∈R2

{
2Eα̂

(
u · (∇Σg + ja,b)

)
−
∣∣∣∣∣∣∇Σg + ja,b

∣∣∣∣∣∣2
2,α̂

}
.

Define Kerα̂(F) the kernel of F w.r.t. || . ||2,α̂, we can equip T
ω
0 /Kerα̂(F) with the

norm �·�1/2
α̂ induced by the mapping F, defined as

�f�α̂ = ||F(f)||22,α̂ = sup
g∈Tω
a,b∈R2

{
2Eα̂

(
F(f) · (∇Σg + ja,b)

)
−
∣∣∣∣∣∣∇Σg + ja,b

∣∣∣∣∣∣2
2,α̂

}
.

By generalizing the integration by parts formula in the previous section, this formula
is strictly analogous to Definition 6.6.1, and F is therefore an isomorphism

F :
(

T
ω
0 /Kerα̂(F) , �·�α̂

)
−→

(
Tω = Jω + Eω , ||·||22,α̂

)
,

which gives T
ω
0 /Kerα̂(F), as stated in Proposition 6.6.6, the same structure as

Jω + LTω/Kerα̂(F).

We now briefly carry on with our heuristics and explain why Theorem 6.6.4 holds,
which is rigorously proved in Section 8.5. The proof is based on the integration by
parts obtained in Subsection 8.3. Applying it to

∑
x∈Blψ

τxψ yields that the quantity
in the right-hand side of (6.49) can be rewritten

lim
l→∞

1

(2l + 1)2
El,K̂l

1

2

∑
x,x+z∈Bl

∇x,x+z L
−1
l

∑
x∈Blψ

τxψ

2
 .

Assuming that one is able to replace µl,K̂l by the translation invariant grand-canonical
measure µα̂, and all quantities being ultimately translation invariant, this limit should

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



174 CHAPTER 8. LIMITING SPACE-TIME COVARIANCE

be the same as

lim
l→∞

1

(2l + 1)2
Eα̂

1

2

∑
x,x+z∈Bl

∇x,x+z L
−1
l

∑
x∈Blψ

τxψ

2


= lim
l→∞

Eα̂

∑
i=1,2

∇0,ei L
−1
l

∑
x∈Blψ

τxψ

2


= ||F(ψ)||22,α̂
=�ψ�α̂.

The rigorous proof of this result, given in the next section, is technical due to the
delicate nature of L

−1.

8.5. Proof of Theorem 6.6.4

In order to prove Theorem 6.6.4, we need to prove that

(8.49) lim
l→∞

1

(2l + 1)2
El,K̂l

(− L l)
−1

∑
x∈Blψ

τxψ .
∑
x∈Blϕ

τxϕ

 = �ψ,ϕ�α̂

in three cases:

1. ϕ = ψ and ψ ∈ L C + J∗,

2. ϕ ∈ T
ω
0 and ψ ∈ L C + J∗,

3. ϕ = ψ and ψ ∈ T
ω
0 .

The first two cases correspond to Definition 6.6.1, whereas the last one corresponds
to Definition 6.6.2. The first two cases are easier, we treat them first as a separate
lemma. The uniformity of the convergence will be proved at the end of the section as
in [28].

Lemma 8.5.1. – Fix ϕ ∈ T
ω
0 and ψ = Lg+ jΦ1

1 + jΦ2
2 ∈ L C + J∗. For any sequence

(K̂l) such that α̂K̂l → α̂,

lim
l→∞

1

(2l + 1)2
El,K̂l

(− L
−1
l )

∑
x∈Blψ

τxψ ·
∑
x∈Blψ

τxψ


=

2∑
i=1

Eα̂
(
η0(1− ηei)

[
Φi(θ0) + Σg(η̂

0,ei)− Σg
]2)

,(8.50)
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and

lim
l→∞

1

(2l + 1)2
El,K̂l

(− L
−1
l )

∑
x∈Blψ

τxψ ·
∑
x∈Blϕ

τxϕ


= −Eα̂

(
ϕ

[
Σg +

∑
x∈Z2

(
x1η

Φ1
x + x1η

Φ1
x

)])
.

Proof of Lemma 8.5.1. – Fix ψ = Lg + jΦ1
1 + jΦ2

2 ∈ L C + J∗, and shorten
B̃il = {x ∈ Bl, xi ≤ l − 1} one easily obtains the identity∑

x∈B̃il

τxj
Φi
i = L l

∑
x∈Bl

xiη
Φi
x .

Shorten

F = F g,Φ1,Φ2

l :=
∑
x∈Blψ

τxg +
∑
i=1,2,
x∈Bl

xiη
Φi
x and G = −

∑
i=1,2,

x∈B̃il\Blψ

τxj
Φi
i ,

we can then rewrite
∑
x∈Blψ

τxψ = L lF +G, and therefore
(8.51)
El,K̂

(
(− L

−1
l )

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ
)

= El,K̂ (F (− L l)F )− 2El,K̂ (FG) + El,K̂
(
G(− L l)

−1G
)
.

Writing
El,K̂

(
G(− L l)

−1G
)

= sup
h
{El,K̂(Gh)− Dl,K̂(h)},

and using Lemma 8.3.2, we obtain that the last term in (8.51) is less than
C(Φ1,Φ2)|B̃il \Blψ | = O(l), and therefore the corresponding contribution vanishes in
the limit (8.49). Regarding the second term, elementary computations yield

El,K̂l(η
Φi
y τxj

Φk
k ) = C(1{y=x} − 1{y=x+ek}),

where we shortened C = El,K̂l(ΦiΦk(θ0)η0(1 − ηek)), which yields after elementary
computations that

El,K̂

 ∑
i=1,2,
y∈Bl

yiη
Φi
y

∑
k=1,2,

x∈B̃kl \Blψ

τxj
Φk
k

 = O(l).

Similarly, for any y such that {x, x+ ek} ∩Bsg (y) = ∅, we have El,K̂l(τygτxj
Φk
k ) = 0,

so that
El,K̂l (FG) ≤ C(g,Φ1,Φ2)|B̃il \Blψ | = O(l)

and thus vanishes as well in the limit (8.49).
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Finally, the last two contributions in (8.51) vanish in the limit, and we now only
need to compute El,K̂l (F (− L l)F ), that we split into three parts. We rewrite the first
one

El,K̂

(− L l)
∑
x∈Blψ

τxg ·
∑
x∈Blψ

τxg

 =
1

2

∑
y,y+z∈Bl

El,K̂


∇y,y+z

∑
x∈Blψ

τxg

2
 .

Since f only depends on sites in Bsg , for any y ∈ Bl−2sg−2, we can write
∇y,y+z

∑
x∈Blψ

τxg = ∇y,y+zΣg, where as before Σg is the formal sum
∑
x∈Z2 τxg.

Furthermore, for any y /∈ Bl−2sg−2∇y,y+z

∑
x∈Blψ

τxg

2

=

∇y,y+z

∑
| x−y |≤sg+2

τxg

2

≤ C(sg) ||g||2∞ .

Since all the ∇y,y+zΣg have the same distribution under µl,K̂ for y ∈ Bl−2sg−2, we
can therefore write using the two bounds above

1

(2l + 1)2
El,K̂

(− L l)
∑
x∈Blψ

τxg ·
∑
x∈Blψ

τxg

(8.52)

=
|Bl−2sg−2|
2(2l + 1)2

∑
|z|=1

El,K̂
(

[∇0,zΣg]
2
)

+ C(f)O

( |Bl \Bl−2sg−2|
(2l + 1)2

)

=

2∑
i=1

El,K̂
(

[∇0,eiΣg]
2
)

+ C(f)O(1/l).

Since∇0,eiΣg is a local function, the equivalence of ensembles (cf. Proposition (C.1.1))
finally yields for any sequence K̂l such that α̂K̂l → α̂

lim
l→∞

1

(2l + 1)2
El,K̂l

(− L l)
∑
x∈Blψ

τxg ·
∑
x∈Blψ

τxg

 =

2∑
i=1

Eα̂
(

[∇0,eiΣg]
2
)

as wanted.

Similarly, one obtains straightforwardly after elementary computations

El,K̂

(− L l)
∑
i=1,2,
x∈Bl

xiη
Φi
x ·

∑
i=1,2,
x∈Bl

xiη
Φi
x

 =
1

2

∑
y,y+z∈Bl

El,K̂

([
∇y,y+zη

Φiz
y

]2)
,
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where iz = k iff z = ±ek. Once again, under µl,K̂ , all the terms have the same
distribution, and we can rewrite

1

(2l + 1)2
El,K̂

(− L l)
∑
i=1,2,
x∈Bl

xiη
Φi
x ·

∑
i=1,2,
x∈Bl

xiη
Φi
x


=

2∑
i=1

El,K̂
(

[Φi(θ0)η0(1− ηei)]
2
)

+ C(Φ1,Φ2)O(1/l),

therefore using once again the equivalence of ensembles also yields

lim
l→∞

1

(2l + 1)2
El,K̂l

(− L l)
∑
i=1,2,
x∈Bl

xiη
Φi
x ·

∑
i=1,2,
x∈Bl

xiη
Φi
x

 =

2∑
i=1

Eα̂
(

[Φi(θ0)η0(1− ηei)]
2
)
.

Using the fact that El,K̂(f L lg) = −
∑
y,y+z∈Bl El,K̂([∇y,y+zf ][∇y,y+zg]), is is

straightforward to adapt the previous estimates to the cross term, and obtain

lim
l→∞

1

(2l + 1)2
El,K̂l

(− L l)
∑
i=1,2,
x∈Bl

xiη
Φi
x ·

∑
x∈Blψ

τxg

 =

2∑
i=1

Eα̂ (Φi(θ0)∇0,eiΣg) .

These three estimates finally yield as wanted
(8.53)

lim
l→∞

1

(2l + 1)2
El,K̂ (F (− L l)F ) =

2∑
i=1

Eα̂
(
η0(1− ηei)[Φi(θ0) + Σg(η̂

0,ei)− Σg]
2
)
,

which proves the first statement of the lemma.

The second identity in Lemma 8.5.1 is proved in a similar way. Using the same
notations as for the first identity, we have

∑
x∈Blψ

τxψ = L lF+G, and given f ∈ T
ω
0 ,

we rewrite the left-hand side in (8.50)

El,K̂l

(F + (− L
−1
l )G) ·

∑
x∈Blf

τxf

 .

Using once again the equivalence of ensembles, it is easy to prove that
(8.54)

lim
l→∞

1

(2l + 1)2
El,K̂l

F ∑
x∈Blf

τxf

 = −Eα̂

(
f

[
Σg +

∑
x∈Z2

(
x1η

Φ1
x + x1η

Φ1
x

)])
,
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therefore we only need to prove that the contribution of G vanishes. This is straight-
forward, since the contribution of G can be rewritten

1

(2l + 1)2
El,K̂l

(− L
−1
l )G · (− L l)(− L

−1
l )

∑
x∈Blf

τxf


=

1

(2l + 1)2

1

2

∑
x,x+z∈Bl

El,K̂l

∇x,x+z(− L
−1
l )G · ∇x,x+z(− L

−1
l )

∑
x∈Blf

τxf

 .
We now use Holder’s inequality, and that for any positive γ, |ab| ≤ γa2/2 + b2/2γ, to
obtain that the absolute value of the left-hand side above is less than∣∣∣∣∣∣ 1

(2l + 1)2
El,K̂l

(− L
−1
l )G ·

∑
x∈Blf

τxf

∣∣∣∣∣∣
≤ γ

2(2l + 1)2
El,K̂l

(
G(− L

−1
l )G

)
+

1

2γ(2l + 1)2
El,K̂l

(− L
−1
l )

∑
x∈Blf

τxf ·
∑
x∈Blf

τxf

 .

We already proved that the first term in the right-hand side is O(γl−1), whereas in
the limit l→∞ the second is bounded by�f�α̂/γ according to Lemma 8.5.3 below.
We can therefore choose γ =

√
l, to obtain that both terms vanish as l → ∞, thus

concluding the proof of Lemma 8.5.1.

We now consider the case ψ ∈ T
ω
0 , which is the main result of this section, and

conclude by proving that the convergence is uniform and that (6.50) holds. Thanks
to the decomposition of the germs of closed forms obtained in Proposition 8.2.5 and
Lemma 8.5.1 above, these two steps follow closely Section 7.4 of [28], we repeat the
proof here for the sake of exhaustivity. Recall that we denoted for any ψ ∈ T

ω
0

�ψ�α̂ = sup
g∈Tω
a,b∈R2

2Eα̂

ψ.
Σg +

∑
y∈Z2

(y.a)ηωy + (y.b)ηy

−� Lg + ja,b�α̂

 .

We split the proof of the third case ψ ∈ T
ω
0 in two lemmas, namely an upper and a

lower bound. Using the identities obtained in Lemma 8.3.2, the lower bound is easy
to prove.

Lemma 8.5.2. – Under the assumption of Theorem 6.6.4,

(8.55) lim sup
l→∞

1

(2l + 1)2
El,K̂l

(− L
−1
l )

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 ≥ �ψ�α̂.
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Proof of Lemma 8.5.2. – Denote by C l the set of local functions measurable w.r.t.
sites in Bl. We start by writing the variational formula

El,K̂l

(− L
−1
l )

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 = sup
h∈ C l

2El,K̂l

h ∑
x∈Blψ

τxψ

− Dl,K̂l
(h)


≥ sup
h∈ T̃

ω

l

2El,K̂l

h ∑
x∈Blψ

τxψ

− Dl,K̂l
(h)

 ,(8.56)

where T̃
ω

l is the subspace of C l

T̃
ω

l =

F g,a,bl =
∑
x∈Blg

τxg +
∑
x∈Bl

((a.x)ηωx + (b.x)ηx), g ∈ Tω, a, b ∈ R2

 .

As stated in (8.54) the contribution of the first term in (8.56) is

lim
l→∞

1

(2l + 1)2
El,K̂l

 ∑
x∈Blψ

τxψ .F
g,a,b
l

 = −Eα̂

ψ ∑
y∈Z2

[
τyg +

2∑
i=1

((a.x)ηωy + (b.y)ηy)

]
and we proved in (8.53) that

lim
l→∞

1

(2l + 1)2
Dl,K̂l

(F g,a,bl ) =� Lg + ja,b�α̂.

These two identities prove (8.56), and concludes the proof of the lemma.

We now state and prove the upper bound, which is more difficult.

Lemma 8.5.3. – Under the assumptions of Theorem 6.6.4, for any ψ ∈ T
ω
0 ,

(8.57) lim sup
l→∞

1

(2l + 1)2
El,K̂l

(− L l)
−1

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 ≤ �ψ�α̂.

Proof of Lemma 8.5.3. – We start by replacing the canonical measure µK̂l,l by the
grand-canonical measure µα̂ thanks to the equivalence of ensembles stated in Propo-
sition C.1.1. The main obstacle in doing so is that the support of the function whose
expectation we want to estimate grows with l.

By the variational formula for the variance, we can write for any K̂ ∈ K̃l

El,K̂

(− L l)
−1

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 = sup
h∈Tωl

2El,K̂

 ∑
x∈Blψ

τxψ .h

− Dl,K̂(h)

 ,

where as before, Tωl = C l∩Tω and Dl,K̂(h) = El,K̂l (h.(− L lh)). As in the proof of the
one-block-estimate, let k be an integer that will go to∞ after l, and let us partition Bl
into disjoint boxes Λ̃0, . . . , Λ̃p, where p = b 2lψ+1

2k+1 c
2, Λ̃j = B2k+1(xj) for any 1 ≤ j ≤ p
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and some family of sites x1, . . . , xp, and where we let Λ̃0 = Blψ \ (
⋃p
j=1 Λ̃j). Recall

that sψ is the smallest integer such that ψ is measurable with respect to the sites
in Bsψ , we now define

Λj = {x ∈ Λ̃j , d(x, Λ̃cj) > sψ} and Λ0 = Blψ \ (

p⋃
j=1

Λj).

One easily obtains that for some universal constant C, |Λ0| ≤ Csψ(l2/k + lk).

Let h be a function in Tωl , we can split

(8.58)
∑
x∈Blψ

El,K̂l (τxψ .h) =
∑

j=1,...,p
x∈Λj

El,K̂l (τxψ .h) +
∑
x∈Λ0

El,K̂l (τxψ .h) .

Letting γ =
√
k/2 in lemma 8.3.2, for any l ≥ k2, the second term is less

than k−1/2
[
C(ψ)l2 + Dl,K̂(h)

]
. Letting ck = 1− k−1/2, for some constant C(ψ), and

for any l ≥ k2, the left-hand side of (8.57) is therefore less than

ck
(2l + 1)2

sup
h∈Tωl


∑

j=1,...,p
x∈Λj

2

ck
El,K̂ (τxψ .h)− Dl,K̂(h)

+
C(ψ)√
k
.

For any h ∈ Tωl , 1 ≤ j ≤ p define hj = El,K̂(h | η̂y, y ∈ Λ̃j), by convexity of the
Dirichlet form, we have

Dl,K̂(h) ≥
p∑
j=1

D
Λ̃j

l,K̂
(h) ≥

p∑
j=1

D
Λ̃j

l,K̂
(hj),

where as before D
A
l,K̂(h) is the contribution to the Dirichlet form of edges in A.

Denoting Tωk,j the set of functions in T
ω measurable w.r.t. sites in Λ̃j , we can therefore

finally bound from above the left-hand side of (8.57) by

ck
(2l + 1)2

p∑
j=1

sup
h∈Tωk,j

∑
x∈Λj

2

ck
El,K̂l (τxψ .h)− D

Λ̃j

l,K̂l
(h)

+
C(ψ)√
k
.

All the terms in the sum over j are identically distributed, the quantity above is thus
less than

ck
(2k + 1)2

sup
h∈Tωk

 ∑
x∈Bkψ

2

ck
El,K̂l (τxψ .h)− D

Bk
l,K̂l

(h)

+
C(ψ)√
k

=
1

ck(2k + 1)2
El,K̂l

(− L
−1
k )

∑
x∈Bkψ

τxψ ·
∑

x∈Bkψ

τxψ

+
C(ψ)√
k
.
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The quantity inside the expectation is now a local function w.r.t. l, we can now
let l → ∞ and as α̂K̂l → α̂, replace µl,K̂l by µα̂ by the equivalence of ensembles
stated in Proposition C.1.1. Letting then k →∞, we finally obtain

(8.59) lim sup
l→∞

1

(2l + 1)2
El,K̂l

(− L l)
−1

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ


≤ lim sup

k→∞

1

(2k + 1)2
Eα̂

(− Lk)−1
∑

x∈Bkψ

τxψ .
∑

x∈Bkψ

τxψ

 .

By the variational formula for the variance, to prove the lemma it is enough to
show

(8.60) lim sup
k→∞

1

(2k + 1)2
sup
h∈Tωk

2Eα̂

h ∑
x∈Bkψ

τxψ

− Dα̂,k(h)

 ≤ �ψ�α̂,

where we shortened Dα̂,k(h) = Eα̂(h(− Lk)h). According to Lemma 8.3.2, there

exists a constant C(ψ) such that the first term 2Eα̂
(∑

x∈Bkψ
τxψ .h

)
is less than

C(ψ)(2k + 1)2 + Dα̂,k(h)/2. For any h such that Dα̂,k(h) ≥ 2C(ψ)(2k + 1)2, the
right-hand side above is therefore negative, and since it vanishes for h = 0, we can
therefore safely assume that the supremum is taken w.r.t. functions h ∈ Tωk satisfying
Dα̂,k(h) ≤ 2C(ψ)(2k + 1)2. Using the integration by parts formula of Lemma 8.3.1
yields

Eα̂ (τxψ .h) =
∑

x∈Bψ(x)

Eα̂(Ia(τxψ)∇ah),

where Ia(ψ) = (1/2)∇a(− L sψ )−1ψ. For any edge a, let us denote by Bψ(a) the set
of sites x ∈ Z2 such that a is in Bψ(x), and B̃ψk (a) = Bψ(a) ∩ Bkψ . Note that for
any edge a ∈ Bkψ−sψ , these two sets coincide. The integration by parts formula then
yields∑
x∈Bkψ

Eα̂ (hτxψ) =
∑
a∈Bk

∑
x∈B̃ψk (a)

Eα̂(Ia(τxψ)∇ah)

=
∑
a∈Bk

∑
x∈Bψ(a)

Eα̂(Ia(τxψ)∇ah)−
∑
a∈Bk

∑
x∈Bψ\B̃ψk (a)

Eα̂(Ia(τxψ)∇ah)

=
∑
a∈Bk

∑
x∈Bψ(a)

Eα̂(Ia(τxψ)∇ah)−
∑

a∈Bk\Bkψ−sψ

∑
x∈Bψ\B̃ψk (a)

Eα̂(Ia(τxψ)∇ah).

For any positive γ,

Eα̂(Ia(τxψ)∇ah) ≤ 1

2γ
Eα̂(Ia(τxψ)2) +

γ

2
Eα̂((∇ah)2),
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since |Bk \Bkψ−sψ | ≤ C(ψ)k, and thanks to the bound on Dα̂,k(h), letting γ = 1/
√
k,

it is then straightforward to obtain∑
a∈Bk\Bkψ−sψ

∑
x∈Bψ\B̃ψk (a)

Eα̂(Ia(τxψ)∇ah) ≤ C(ψ)k3/2.

therefore its contribution to the left-hand side of (8.60) vanishes in the limit k →∞.
Letting Ia(ψ) =

∑
x∈Bψ(a) Ia(τxψ), the left-hand side of Equation (8.60) is therefore

less than

(8.61) lim sup
k→∞

1

(2k + 1)2
sup
h∈Tωk

{
2
∑
a∈Bk

Eα̂(Ia(ψ)∇ah)− Dα̂,k(h)

}

= lim
k→∞

1

(2k + 1)2

{
2
∑
a∈Bk

Eα̂(Ia(ψ)∇ahk)− Dα̂,k(hk)

}
,

for some sequence of functions hk ∈ Tωk ultimately realizing the limit k → ∞ of the
left-hand side.

Thanks to the translation invariance of µα̂, and since τyIa(ψ) = Iτya(ψ), letting
y = a1 be the first site of the edge a = (a1, a2), we have

Eα̂(Ia(ψ)∇ahk) = Eα̂
(
I(0,a2−a1)(ψ)∇(0,a2−a1)τ−a1

hk
)
.

As seen before, a simple change of variable yields that Eα̂ (∇af.∇ag) = Eα̂ (∇−af.∇−ag),
from which we deduce

2
∑
a∈Bk

Eα̂(Ia(ψ)∇ahk) = 4
∑
i=1,2

Eα̂

I(0,ei)(ψ).∇(0,ei)

∑
x

x,x+ei∈Bk

τ−xhk

 .

Define

uki =
1

(2k + 1)2
∇(0,ei)

∑
x

x,x+ei∈Bk

τ−xhk ∈ Tω.

The elementary bound (
∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i yields∑

i=1,2

Eα̂((uki )2) ≤2k(2k + 1)

(2k + 1)4

∑
x

x,x+ei∈Bk

Eα̂
((
∇(x,x+ei)hk

)2)

≤ 1

(2k + 1)2
Dα̂,k(hk).
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Thanks to this bound, Equation (8.61) yields

1

(2k + 1)2
Eα̂

(− Lk)−1
∑

x∈Bkψ

τxψ .
∑

x∈Bkψ

τxψ


≤ lim
k→∞

4
∑
i=1,2

Eα̂(I(0,ei)(ψ).uki )−
∑
i=1,2

Eα̂((uki )2)

 ,

and since we already assumed that for some constant C(ψ), Dα̂,k(hk) ≤ C(ψ)(2k + 1)2,
the sequence of differential forms (uk)k∈N is bounded in L2(µα̂). It is straightforward
to check that any of its limit point u = (u1,u2) is the germ of a closed form in Tω in
the sense of Definition 8.2.2).

Indeed, given a limit point u and a finite path γ defined by jumps xi, xi + zi,
0 ≤ i ≤ qγ − 1, we can write for the closed form u associated with u

Eα̂(1γ∈Γc(η̂)|Iγ,u(η̂)|) = lim
k→∞

Eα̂(1γ∈Γc(η̂)|Iγ,uk(η̂)|),

where uk is the (non-closed) differential form

ukx,x+z =
1

(2k + 1)2
∇(x,x+z)

∑
y

y,y+z∈Bk(x)

τ−yhk.

Since γ is a finite path, it depends on edges in a finite box Bn, with n fixed. In partic-
ular, for any y ∈ Bk−n, when computing Iγ,uk(η̂), the contribution of τ−yhk vanishes
since it involves the complete path. We can therefore write for some constant Cγ and
any k > n,

Eα̂(1γ∈Γc(η̂)|Iγ,uk(η̂)|) ≤ qγ
(2k + 1)2

∑
y, y+ei∈Bk

y or y+ei /∈Bk−n

Eα̂ (|∇0,eiτ−yhk|)

≤ qγ
(2k + 1)2

(
Cn,k Dα̂,k(hk)

)1/2
,

where Cn,k ≤ cnk is the cardinal of the y’s such that y and y+ei are in Bk and either
y or y + ei are not in Bk−n. Since Dα̂,k(hk) ≤ C(ψ)(2k + 1)2, the right-hand side
above vanishes as k →∞ for any path γ. This proves that Eα̂(1γ∈Γc(η̂)|Iγ,u(η̂)|) = 0

for any path γ, and any limit point u of (uk)k, and in particular 1γ∈Γc(η̂)|Iγ,u(η̂)|
vanishes µα̂-a.s. for any finite path γ.
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We can therefore write

1

(2k + 1)2
Eα̂

(− Lk)−1
∑

x∈Bkψ

τxψ .
∑

x∈Bkψ

τxψ


≤ sup
u∈Tω

4
∑
i=1,2

Eα̂(I(0,ei)(ψ).ui)−
∑
i=1,2

Eα̂(u2
i )

 ,

where Tω is the set of germs of closed forms introduced in Definition 8.2.2.
According to Proposition 8.2.5, the estimate above becomes

1

(2k + 1)2
Eα̂

(
(− Lk)−1

∑
x∈Bkψ

τxψ .
∑

x∈Bkψ

τxψ

)

≤ sup
g∈Tω
a,b∈R2

4
∑
i=1,2

Eα̂(I(0,ei)(ψ).(ja,bi +∇(0,ei)Σg))−
∑
i=1,2

Eα̂((ja,b + ∇Σg)
2)


= sup

g∈Tω
a,b∈R2

2Eα̂

ψ.
Σg +

∑
y∈Z2

(y.a)ηωy + (y.b)ηy

−� Lg + ja,b�α̂

 .

The last identity is derived as in the proof of Lemma 8.5.1. The right-hand-side
above is �·�α̂ as defined in Definition 6.6.2, which concludes the proof of the upper
bound.

In order to complete the proof of Theorem 6.6.4, we still need to prove that the
convergence is uniform in α̂, to prove (6.50). Let us denote

Vl,ψ,ϕ(α̂K̂l) =
1

(2l + 1)2
El,K̂l

− L
−1
l

∑
x∈Blψ

τxψ .
∑
x∈Blϕ

τxϕ

 ,

and let us extend smoothly the domain of definition of Vl,ψ,ϕ to M 1(S). The three
previous lemmas yield that Vl,ψ,ϕ(K̂l(2l+1)−2)) converges as l goes to∞ to�ψ,ϕ�α̂

as soon as K̂l converges towards the profile α̂, hence in particular, Vl,ψ,ϕ(α̂l) converges
as l goes to ∞ towards �ψ,ϕ�α̂ as soon as α̂l goes to α̂. For that reason, �·�α̂ is
continuous, and Vl,ψ,ϕ(α̂) converges uniformly in α̂ towards�ψ,ϕ�α̂ as l goes to∞.
This, combined with the three Lemmas 8.5.1, 8.5.3 and 8.5.2, completes the proof of
Theorem 6.6.4.
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APPENDIX A

POSSIBLE APPLICATION:
COARSENING AND GLOBAL ORDER IN ACTIVE MATTER

We give some context on the modeling of collective dynamics and the rich phe-
nomenology of active matter.

A.1. Collective motion among biological organisms

Collective motion is a widespread phenomenon in nature, and has motivated in
the last decades a fruitful and interdisciplinary field of study [34]. Such behavior can
be observed among many animal species, across many scales of the living spectrum,
and in a broad range of environments. Animal swarming usually needs to balance
out the benefits of collective behavior (defense against predation, protection of the
young ones, increased vigilance) against the drawback of large groups (food hardships,
predator multiplication, etc.).

Despite the numerous forms of interaction between individuals, all of these self-
organization phenomenons present spontaneous emergence of density fluctuations and
long range correlations. This similarity suggests some universality of collective dynam-
ics models [26], [51]. Even though the biological reasons for collective behavior are
now well known, the underlying microscopic and macroscopic mechanisms are not
yet fully understood. To unveil these mechanisms, numerous aggregation models have
been put forward.

These models can be built on two distinct principles. The first approach specifies
the macroscopic partial differential equation which rules the evolution of the local
density of individuals. The main upside is that one can use the numerous tools de-
veloped for solving PDE’s. Several examples of such models are presented in Okubo
and Levin’s book, [33]. Since it represents an average behavior, this approach to col-
lective dynamics is, however, mainly fitted to describe systems with large number of

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



186 APPENDIX A. COARSENING AND GLOBAL ORDER IN ACTIVE MATTER

individuals, and does not take into account the fluctuations to which smaller systems
are subject.

The second approach, called Individual-Based Models (IBM), specifies the motion
of each individual organism. If the motion of each individual was described realisti-
cally (from a biological standpoint), the theoretical study of these models with large
number of degrees of freedom would be extremely difficult. For this reason, it is usu-
ally preferred to simplify the rules for the motion of each individual, as well as its
interaction with the group. A classical simplification is to consider that the interaction
of each individual with the group is averaged out over a large number of its neighbors.
This so-called local field simplification often allows to obtain explicit results, at the
expense however of their biological accuracy (cf. below).

A.2. Microscopic active matter models

In order to represent the direction of the motion of each individual, as well as spatial
constraints (e.g., volume of each organism), collective dynamics are often modeled by
individual-based active matter models. Active matter is characterized by an energy
dissipation taking place at the level of each individual particle, which allows it to
self-propel, thus yielding an extra degree of freedom representing the direction of its
motion. One can therefore obtain a phase transition towards collective motion when
these directions align on lengths large with respect to the size of the particles. Active
matter models exhibit various behaviors, and in the context of collective motion, two
phenomena are particularly important:

— when each particle tends to align the direction of its motion to that of its neigh-
bors, one can observe a phase transition between order and disorder depending
on the strength of the alignment. This alignment phase transition was first ob-
served in an influential model for collective dynamics introduced by Vicsek et
al. [50];

— When the particle’s velocity decreases with the local density, congestion effects
appear: particles spend more time where their speed is lower, and therefore tend
to accumulate there. This phenomenon, called Motility-Induced Phase Separa-
tion (MIPS), was extensively studied in the recent years [9], [22], [11].

Vicsek model and phase transition in alignment models. – Interest for self-organization
phenomenons have grown significantly in statistical physics, where the diversity of
such behaviors opens numerous modeling perspectives, and raises new questions re-
garding out-of-equilibrium systems. Many stochastic models have been introduced
to represent specific biological behavior using statistical physics methods and have
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(a) (b)

Figure 1. Schematic representation of the phase transition in Vicsek’s
model. (a) low density and high noise intensity, (b) high density and low
noise intensity.

revealed a phase transition between high density collective motion, and disordered
behavior with short range correlations at low densities.

A pioneering model was proposed in 1995 by Vicsek et al. They introduce in [50]
a general IBM (cf. previous paragraph) to model collective dynamics. In the latter,
a large number of particles move in discrete time, and update the direction of their
motion to the average direction of the particles in a small neighborhood. The direc-
tion of their motion is also submitted to a small noise, which makes the dynamics
stochastic.

Despite its relative simplicity, the original model described in [50] is extremely
rich, and has given rise to a considerable literature (cf. the review by Viczek and
Zafeiris, [51]). The first article on this model unveiled a phase transition between a
high-noise, low-density disordered phase and a low-noise high-density ordered phase.
Initially thought to be critical, this transition was later shown to be discontinuous [12],
with an intermediate region in which an ordered band cruises in a disordered back-
ground. It was recently shown that this transition can be understood as a liquid-gas
phase separation in which the coexistence phase is organized in a smectic arrangement
of finite-width bands traveling collectively [42]. Numerous extensions and variations
on Vicsek’s model have been put forward, usually by considering a continuous time
dynamics, more pertinent to represent biological organisms.

Phase transitions are central to the study of collective dynamics, where coher-
ent behavior arise when the alignment becomes strong enough. This notion of phase

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



188 APPENDIX A. COARSENING AND GLOBAL ORDER IN ACTIVE MATTER

transition for alignment dynamics is reminiscent of the Ising and XY models, two
classical statistical physics models. The Ising model is known to have a symmetry
breaking phase transition leading to the emergence of a spontaneous magnetization.
Unlike the Ising model, the XY model (for which the spins are two-dimensional unit
vectors parametrized by angles θ ∈ [0, 2π[) does not present in two dimensions this
type of symmetry breaking phase transition, according to the Mermin-Wagner The-
orem. This is one of the reasons for the popularity of the Vicsek model [50], whose
alignment dynamics is reminiscent of the XY model, but unlike the latter presents a
phase transition of the magnetization due to the particle motility [47]. Both the Ising
and XY models are now well understood. These are equilibrium models and they
fall within the formalism of Gibbs measures, which relates to the thermodynamical
parameters of the system.

Active matter models like Vicsek’s are out of equilibrium, and in the case of Vicsek’s
model, the phase transition is a dynamical phenomenon. The concepts developed for
equilibrium models, namely Gibbs measures and free energy, can therefore no longer
be used, and despite ample numerical evidence of spontaneous magnetization, (cf.
[41]) mathematically proving a phase transition becomes significantly harder.

Despite these issues, several exact results have been obtained for systems closely
related to Vicsek’s model. In 2007, Degond and Motsch notably introduced a con-
tinuous time version of Vicsek’s model, and derived the macroscopic scaling limit of
the system [19], as well as its microscopic corrections [20]. Their model, which was
directly inspired by that of Vicsek et al., is a locally mean-field model, where particles
interact with all other particles present in a small macroscopic neighborhood. This ap-
proximation simplifies a number of difficulties of out-of-equilibrium systems. In their
initial article [19], Degond and Motsch assume that a law of large number holds for
the microscopic system. This was later rigorously proved in [5]. The phase transition
as a function of the noise level, between disordered system and global alignment, was
shown in [17] for this model. Similar results have since been extended to more gen-
eral forms of alignment, (e.g., [4], [7], [18]) and to density dependent parameters [23].
The evolution of the macroscopic density was also obtained in the particular case
where the interaction between individuals is driven by a Morse potential, [8], where
previously the shape of animal aggregates (e.g., fish schools mills) was only known
empirically.

The Active Ising Model (AIM) is another alignment model, phenomenologically
close to Vicsek’s model [41], put forward to better understand collective dynamics.
It is less demanding from a computational standpoint, and is extensively studied
both numerically and theoretically by Solon and Tailleur in [43]. This model does
not rely on the mean-field approximation of the Vicsek’s model. The particles (with
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either “+” or “-” spins) move independently in a discrete space domain, performing
an asymmetric random walk with drift directed according to the particle’s spin. In
addition to the displacement dynamics, the particles align their spins with the other
particles on the same site as in a fully connected Ising model.

It was numerically shown in [43] that the AIM presents, as does Vicsek’s, a phase
transition depending both on the temperature and the particle density. At low tem-
perature and density, one observes a magnetically neutral gas, whereas at strong
temperature and densities, one obtains a strongly polarized liquid. In an intermedi-
ary domain, these two phases coexist. The AIM being an out-of-equilibrium model
as well, its mathematical study is difficult, mainly because of the lack of mean-field
approximation present in Vicsek’s model. To our knowledge, there exists to this day
no mathematical proof of the phase transition of the AIM. The model considered in
this paper is closely related to both the Vicsek and the active Ising models.

Motility-Induced Phase Transition (MIPS). – As previously emphasized, a second in-
teresting phenomenon can occur in active matter: when the motility of the particles
decreases as the local particle density increases, one can observe a phase separation
between a low density gaseous phase, and condensed clusters. This separation is a
direct consequence of particles slowing down in dense areas: since they spend more
time there, they tend to accumulate. This creates the congestion phenomenon called
Motility Induced Phase Transition, or MIPS, which was thoroughly studied in recent
years (cf. the review by Cates and Tailleur, [11]).

This congestion phenomenon can be observed across several types of dynamics,
under the condition that the particle’s velocities and diffusion constants depend on
the local density. One of the most studied is the run-and-tumble dynamics [2], which
models the behavior of bacteria: each individual goes in a straight line for a while,
and then reorients in another random direction. However, MIPS is not specific to run
and tumble dynamics: it is shown numerically in [10], [40] that MIPS also occurs for
active Brownian particles, for which each particles motion’s direction diffuses, instead
of updating at discrete times like in the run-and-tumble dynamics. MIPS can also be
observed in lattice models [46], or in models with repulsive forces [22], for which the
kinetic slowdown is a consequence of repulsive forces.

As already pointed out, one can expect that the active exclusion process investi-
gated in this article may exhibit both MIPS and alignment phase transition. However,
mathematically proving this statement is a difficult task, and this claim is left as a
conjecture at this point.
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APPENDIX B

GENERAL TOOLS

This appendix regroups a general definitions and results that have been used
throughout the proof.

B.1. Topological setup

This paragraph defines the topological setup we endow the trajectories space for
our process with. Denoting by M (T2×S) the space of non-negative measures on the
continuous configuration space, and

M
[0,T ] = D

(
[0, T ], M (T2 × S)

)
,

the space of right-continuous and left-limited trajectories of measures on T2×S. Each
trajectory η̂[0,T ] of our process admits a natural image in M

[0,T ] through its empirical
measure

(B.1) πNt

(
η̂[0,T ]

)
=

1

N2

∑
x∈T2

N

ηx(t)δx/N,θx(t).

Let (fk)k∈N be a dense family of functions in C∞(T2 × S), and assume that f0 ≡ 1.
The weak topology on M (T2 × S) is metrizable, by letting

(B.2) δ(π0, π
′
0) =

∞∑
k=0

1

2k
|<π0, fk>−<π′0, fk> |

1 + |<π0, fk>−<π′0, fk> |
.

Given this metric, M
[0,T ] is endowed with Skorohod’s metric, defined as

(B.3) d(π, π′) = inf
κ∈F

max

{
||κ|| , sup

[0,T ]

δ(πt, π
′
κt)

}
,

where F is the set of strictly increasing continuous functions from [0, T ] into itself,
such that κ0 = 0 and κT = T , equipped with the norm

||κ|| = sup
s,t∈[0,T ]

{
log

[
κs − κt
s− t

]}
.
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Now, ( M
[0,T ], d) is a metric space, and we endow the set P( M

[0,T ]) of probability
measures on M

[0,T ] with the weak topology.
Given the empirical measure πNt of the process at time t, defined in Equation (B.1),

define the application

πN : Σ
[0,T ]
N → M

[0,T ]

η̂[0,T ] 7→
(
πNt

(
η̂[0,T ]

))
t∈[0,T ]

,

we define

(B.4) QN = Pλ,β
µN
◦
(
πN
)−1 ∈ P( M

[0,T ]),

the pushforward of Pλ,β
µN

by πN .

B.2. Self-diffusion coefficient

We regroup in this paragraph some useful results regarding the self-diffusion coeffi-
cient. Consider on Z2, an initial configuration where each site is initially occupied w.p.
ρ ∈ [0, 1], and with a tagged particle at the origin. Each particle then follows a symmet-
ric exclusion process with finite range transition matrix p(.), verifying

∑
z zp(z) = 0,

and p(z) = 0 outside of a finite set of vertices B.

Definition B.2.1 (Self-Diffusion Coefficient). – Given Xt = (X1
t , . . . , X

d
t ) the

position at time t of the tagged particle, the d-dimensional self-diffusion matrix
Ds = Ds(ρ) is defined as

(B.5) x†Dsx = lim
t→∞

E((x ·Xt)
2)

t
∀y ∈ Rd,

where x† is the transposed vector of x and ( . ) is the usual inner product in Rd.

This result follows from [29]. The following lemma gives a variational formula forDs

and was obtained in Spohn [44].

Proposition B.2.2 (Variational formula for the self-diffusion coefficient). – The self-
diffusion matrix Ds = Ds(ρ) is characterized by the variational formula

x†Dsx = inf
f∈ S

{ ∑
i=1,2

Eα̂ ((1− ηei)
[
xi + τeif

(
η0,ei

)
− f

]2)
+
∑
y 6=0,ei

Eα̂
(

[∇0,eiτyf ]
2
)}.

Our system being invariant through coordinates inversions, it is shown in [14] that
the matrix Ds is diagonal, and can therefore be written

Ds(ρ) = ds(ρ)I.
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Finally, the regularity of the self-diffusion coefficient follows from [32], and a lower
and upper bound was derived by Varadhan in all dimensions by Varadhan in [49].

Proposition B.2.3 (Regularity of the self-diffusion coefficient). – In any dimen-
sion d ≥ 1, the self-diffusion coefficient ds is C∞([0, 1]), and for some constant C > 0,
we can write

1

C
(1− ρ) ≤ ds(ρ) ≤ C(1− ρ).

Finally, we prove a result that we postponed in during the proof of Proposi-
tion 6.6.7.

Proposition B.2.4 (Conductivity matrix). – Fix α̂ ∈ M 1(S), let jω̂ = (jω̂1 , j
ω̂
2 ),

where as before

jω̂i = [ω(θ0)− Eα̂(ω)]η0(1− ηei)− [ω(θei)− Eα̂(ω)]ηei(1− η0).

Recall that we defined the conductivity matrix Q = Qω as

x†Qx = inf
g∈Tω

�x · jω̂ + Lg�α̂,

then, we have the identity

(B.6) Q = αVα̂(ω)Ds(α) = αVα̂(ω)ds(α)I.

Proof of Proposition B.4. – The proof is analogous to that of Theorem 3.2 in [35]. We
first consider the trivial case α = 0, 1. Since ds(1) = 0, if α = 0, 1, Proposition B.2.4
is trivially true, because both sides of the identity vanish. Furthermore, assuming
that Vα̂(ω) = 0, we then have jω̂ = 0, therefore both sides vanish as well. We now
assume that α ∈ ]0, 1[ and Vα̂(ω) > 0. By Definition 6.6.1,

�x · jω̂ + Lg�α̂ = Eα̂

∑
i=1,2

xiηω̂0 (1− ηei) +∇0,ei

∑
y∈Z2

τyg

2
 .

Since g ∈ Tω, it can be rewritten g = ϕ(η) +
∑
y η

ω̂
y ψy(η) for some angle-blind

functions ϕ,ψy ∈ S . As we saw in the proof of the spectral gap, any angle-blind
function is orthogonal to any function ηω̂y ψ(η), therefore

�x · jω̂ + Lg�α̂ =
∑
i=1,2

Eα̂
([
xiη

ω̂
0 (1− ηei) +∇0,ei

∑
y,y′∈Z2

τy′ [η
ω̂
y ψy]

]2)
+ Eα̂

([
∇0,ei

∑
y∈Z2

ϕ
]2)

.

To minimize the left-hand side, we can choose ϕ = 0, so that g must take the form
g =

∑
y η

ω̂
y ψy. Since g is a local function, ψ′ =

∑
y τ−yψy is well defined, and satisfies
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∑
y,y′∈Z2 τy′ [η

ω̂
y ψy] =

∑
y∈Z2 ηω̂y τyψ

′, therefore

�x · jω̂ + Lg�α̂ =
∑
i=1,2

Eα̂


xiηω̂0 (1− ηei) +∇0,ei

∑
y∈Z2

ηω̂y τyψ
′

2
 .

Elementary computations yield

∇0,eiη
ω̂
0 ψ
′ = −ηω̂0 (1− ηei)ψ′,

∇0,eiη
ω̂
eiτeiψ

′ = ηω̂0 (1− ηei)τeiψ′
(
η0,ei

)
,

and for any y 6= 0, ei, ηω̂y∇0,eiτyψ
′, therefore

�x · jω̂ + Lg�α̂ =
∑
i=1,2

Eα̂


ηω̂0 (1− ηei)

[
xi + τeiψ

′ (η0,ei
)
− ψ′

]
+
∑
y 6=0,ei

ηω̂y∇0,eiτyψ
′

2
 .

For any angle-blind function ψ ∈ S , we have already established in Section 8.1 that

Eα̂(ηω̂y η
ω̂
y′ψ(η)) = 1{y=y′}Vα̂(ω)Eα̂(ηyψ(η)).

The previous quantity now rewrites

�x · jω̂ + Lg�α̂

= Vα̂(ω)
∑
i=1,2

Eα̂ (η0(1− ηei)
[
xi + τeiψ

′ (η0,ei
)
− ψ′

]2)
+
∑
y 6=0,ei

Eα̂
(
ηy [∇0,eiτyψ

′]
2
) .

Denote by f = Eα̂(ψ′|η0 = 1)= α−1Eα̂(η0ψ
′), where the expectation is taken only

w.r.t. η0 (f is therefore a function of the configuration (ηx)x 6=0), we have

Eα̂(τeiψ
′ (η0,ei

)
|η0 = 1) = τeif

(
η0,ei

)
and Eα̂(∇0,eiτyψ

′|ηy = 1) = ∇0,eiτyf,

so that

�x · jω̂ + Lg�α̂

= αVα̂(ω)
∑
i=1,2

Eα̂ ((1− ηei)
[
xi + τeif

(
η0,ei

)
− f

]2)
+
∑
y 6=0,ei

Eα̂
(

[∇0,eiτyf ]
2
) .

Taking the infimum over g ∈ Tω, f spans S which yields as wanted, according to
Proposition B.2.2

x†Qx =�x · jω̂ + Lg�α̂ = αVα̂(ω)x†Dsx,

thus concluding the proof.
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B.3. Entropy

Given two measures on a space E, let us denote

H(µ | ν) = Eν
(
dµ

dν
log

dµ

dν

)
the relative entropy of µ w.r.t. ν.

Proposition B.3.1 (Entropy inequality). – Let π be a reference measure on some
probability space E. Let f be a function E → R, and γ ∈ R+. Then, for any non-
negative measure µ on E, we have∫

fdµ ≤ 1

γ

[
log

(∫
eγfdπ

)
+H(µ|π)

]
,

where H(µ|π) is the relative entropy of µ with respect to π.

Proof of Proposition B.3.1. – The proof is omitted, it can be found in Appendix 1.8
of [28].

Remark B.3.2 (Utilization throughout the proof). – This inequality is used through-
out this proof with µNs the marginal at time s of the measure of the process started
from an initial profile µN , and with π = µα̂ the equilibrium measure of a symmetric
simple exclusion process with grand-canonical parameter α̂. Then, for any fixed time
s and for any function f and any positive γ,

EµNs (f) ≤ 1

γ

[
logEα̂

(
eγf
)

+H(µNs |µα̂)
]
.

This inequality will be our main tool to bound expectation w.r.t. the measure of our
process of vanishing quantities .

B.4. Bound on the largest eigenvalue of a perturbed Markov generator

Proposition B.4.1 (Largest eigenvalue for a small perturbation of a Markov gen-
erator). – Let us consider a Markov Generator L with positive spectral gap γ and a
bounded function V with mean 0 with respect to the equilibrium measure µα̂ of the
Markov process. Then, for any small ε > 0, the Largest eigenvalue of the operator
L+ εV can be bounded from above by

sup
f

{
εEα̂(V f2) + Eα̂(fLf)

}
≤ ε2

A− 2εγ ||V ||∞
Eα̂
(
V (−L)−1V

)
,

where the supremum in the variational formula is taken among the probability densi-
ties f w.r.t. µα̂.

The proof of this result is omitted, it is given in Theorem A3.1.1, p.375 in [28].
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APPENDIX C

SPACE OF GRAND-CANONICAL PARAMETERS

In this appendix, we prove some useful results regarding the space of parameters
( M 1(S), ||| . |||) introduced in Section 3.1.

C.1. Equivalence of ensembles

Proposition C.1.1 (Equivalence of ensembles). – Let f be a cylinder function (in
the sense of Definition 2.1.1), we have

lim sup
l→∞

sup
K̂∈Kl

∣∣∣El,K̂(f)− Eα̂
K̂

(f)
∣∣∣→ 0,

where the first measure is the projection along sets with K̂ particles in Bl, whereas
the second is the grand-canonical measure with parameter α̂ = α̂K̂ introduced in Def-
inition 3.1.7.

Proof of Proposition C.1.1. – The proof of this result is quite elementary, and is a
matter of carefully writing expectations for a random sampling with (grand-canonical
measures) and without (canonical measures) replacement.

The proof of this problem can be reduced to the following: Consider two samplings
of M occupation variables, chosen among L fixed possible values

{η̂1, . . . , η̂L} ∈ ΣL1 := {(δ, θ) ∈ {0, 1} × S, θ = 0 if δ = 0}L.

The first sampling is made without replacement to represent the canonical measure
µl,K̂ , and the sampled items will be denoted X1, . . . , XM , where each Xi is of the form
(δ, θ). The second sampling is made with replacement to represent the grand-canonical
measure µα̂

K̂
, and will be denoted Y1, . . . , YM . let us denote by ξL the set

ξL = {η̂1, . . . , η̂L},

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



198 APPENDIX C. SPACE OF GRAND-CANONICAL PARAMETERS

and denote by EξL the expectation w.r.t. the two samplings (Xi) and (Yi) given ξL.
Further denote by IL,M = {1, . . . , L}M , i = (i1, . . . , iM ) the elements of IL,M , and
DL,M and CL,M its two subsets

DL,M = {(i1, . . . , iM ) ∈ IL,M
∣∣ i1 6= · · · 6= iM}, and CL,M = IL,M \DL,M

Then, for any function
g : ΣM1 → R,

we have

|EξL(g(X1, . . . , XM ))− EξL(g(Y1, . . . , YM ))|

≤ ||g||∞
∑

i∈IL,M

∣∣∣PξL[(X1, . . . , XM ) = (η̂i1 , . . . , η̂iM )
]

− PξL
[
(Y1, . . . , YM ) = (η̂i1 , . . . , η̂iM )

]
= ||g||∞

∑
i∈DL,M

∣∣∣PξL[(X1, . . . , XM ) = (η̂i1 , . . . , η̂iM )
]

− PξL
[
(Y1, . . . , YM ) = (η̂i1 , . . . , η̂iM )

]
+ ||g||∞

∑
i∈CL,M

PξL
[
(Y1, . . . , YM ) = (η̂i1 , . . . , η̂iM )

]
.

The sum on the last line is the probability that at least two indexes among the M we
chosen uniformly in {1, . . . , L} are equal. This probability is∑

i∈CL,M

PξL
[
(Y1, . . . , YM ) = (η̂i1 , . . . , η̂iM )

]
= 1− L(L− 1) · · · (L−M + 1)

LM
,

which for M fixed vanishes uniformly in ξL as L → ∞. We now take a look at the
other term, for which we write∑
i∈DL,M

∣∣∣∣PξL[(X1, . . . , XM ) = (η̂i1 , . . . , η̂iM )
]
− PξL

[
(Y1, . . . , YM ) = (η̂i1 , . . . , η̂iM )

]∣∣∣∣
=
∑

i∈DL,M

∣∣∣∣ 1

L(L− 1) · · · (L−M + 1)
− 1

LM

∣∣∣∣
= 1− L(L− 1) · · · (L−M + 1)

LM
,

which also vanishes uniformly in ξL as L → ∞. We can therefore write for any
bounded function g depending on M sites

sup
ξL∈ΣL1

∣∣EξL(g(X1, . . . , XM ))− EξL(g(Y1, . . . , YM ))
∣∣ ≤ ||g||∞ C(M)oL(1),

thus proving Proposition C.1.1.
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C.2. Regularity of the grand-canonical measures in their parameter

Proposition C.2.1. – Consider the set of local profiles M 1(S) equipped with the
norm ||| . ||| defined in Definition 3.1.2. Then, given a function g ∈ C , the application

Ψg : ( M 1(S), ||| . |||)→ R

α̂ 7→ Eα̂(g)

is Lipschitz-continuous with Lipschitz constant depending on the function g.

Proof of Proposition C.2.1. – Let us consider a cylinder function g depending only
on vertices x1, . . . , xM , and let us start by assuming that g vanishes as soon as one of
the sites x1, . . . , xM is empty. We can then rewrite g(η̂) as ηx1

. . . ηxM g(θx1
, . . . , θxM ),

and

Eα̂(g) =

∫
θ1

· · ·
∫
θM

g(θx1
, . . . , θxM ) dα̂(θx1

) · · · dα̂(θxM ).

We can now proceed by recurrence on M . Given a function g depending only on a
site x1, and for any two grand-canonical parameters α̂ and α̂′ we can write

Eα̂(g)− Eα̂′(g) = ||g||∗
∫
θx1

g(θx1
)

||g||∗
d(α̂− α̂′)(θx1) ≤ ||g||∗ ||| α̂− α̂′ |||.

Assuming now that the proposition is true for any function depending onM −1 sites,
and considering a function g depending on M vertices, we can write

Eα̂(g)− Eα̂′(g) = Eα̂ (Eα̂(g | η̂x2
, . . . , η̂xM ))− Eα̂′ (Eα̂′(g | η̂x2

, . . . , η̂xM )) .(C.1)

Fix any angle θ, and let gθ be the function gθ(η̂) = g(θ, θx2,...,θxM
), we can write

thanks to the recurrence hypothesis that∣∣Eα̂(gθ)− Eα̂′(gθ)
∣∣ ≤ Cθ||| α̂− α̂′ |||,

which, integrated in θ against α̂′, yields

|Eα̂′ (Eα̂′(g | η̂x2
, . . . , η̂xM ))− Eα̂′ (Eα̂(g | η̂x2

, . . . , η̂xM )) | ≤ C1||| α̂− α̂′ |||.

On the other hand, we can also write

|Eα̂ (Eα̂(g | η̂x2 , . . . , η̂xM ))− Eα̂′ (Eα̂(g | η̂x2 , . . . , η̂xM )) | ≤ C2||| α̂− α̂′ |||,

therefore (C.1) yields that

|Eα̂(g)− Eα̂′(g) | ≤ (C1 + C2)||| α̂− α̂′ |||,

which is what we wanted to show.

To complete the proof of Proposition C.2.1, we now only need to extend the result
to functions g which do not necessarily vanish when one site in their domain is empty.
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This case is easily derived, since any function g depending on vertices x1,. . . ,, xM can
be rewritten

(C.2) g(η̂x1
, . . . , η̂xM ) =

∑
B⊂{1,...,M}

gB(θxi , i ∈ B),

where gB(θxi , i ∈ B) is defined in the following fashion: recall that η̂x = (ηx, θx), with
θx = 0 if ηx = 0, and let us assume that B is the set of increasing indexes i1, . . . , ip,
then gB is defined as

gB(θxi1 , . . . , θxip )

= ηxi1 . . . ηxip g((0, 0), . . . , (0, 0), (1, θxi1 ), (0, 0), . . . , (0, 0), (1, θxip ), (0, 0), . . . , (0, 0)).

These functions all vanish whenever one of their depending sites is empty, therefore
according to the beginning of the proof, there exists a family of constants CB such
that for any B ⊂ {1, . . . ,M} we have

|Eα̂(gB)− Eα̂′(gB) | ≤ CB ||| α̂− α̂′ |||.

We now only need to let C =
∑
B⊂{1,...,M} CB to obtain thanks to the decomposition

(C.2) that
|Eα̂(g)− Eα̂′(g) | ≤ C||| α̂− α̂′ |||,

as intended. This completes the proof of Proposition C.2.1.

C.3. Compactness of the set of grand-canonical parameters

Proposition C.3.1 (Compactness of ( M 1(S), ||| . |||)). – The metric space
( M 1(S), ||| . |||) introduced in Definition 3.1.2 is totally bounded and Cauchy
complete, and is therefore compact.

Proof of Proposition C.3.1. – The proof of the Cauchy-completeness is almost imme-
diate, we treat it first. Consider a Cauchy sequence (α̂k)k∈N ∈ M 1(S)N, then by
definition of ||| . |||, for any g ∈ B∗, the sequence (

∫
S
g(θ)α̂k(dθ))k is a real Cauchy

sequence and therefore converges, and we can let∫
S

g(θ)α̂∗(dθ) = lim
k→∞

∫
S

g(θ)α̂k(dθ).

This definition can be extended to any C1(S) function g by letting∫
S

g(θ)α̂∗(dθ) = max(||g||∞ , ||g′||∞) lim
k→∞

∫
S

g(θ)

max(||g||∞ , ||g′||∞)
α̂k(dθ).

This defines a measure α̂∗ on S, whose total mass is given by∫
T2

α̂∗(dθ) = lim
k→∞

∫
T2

α̂k(dθ) ∈ [0, 1],

which proves the Cauchy completeness of ( M 1(S), ||| . |||).
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We now prove that ( M 1(S), ||| . |||) is totally bounded. For any integer n, we are
going to construct a finite set M 1,n ⊂ M 1(S) such that

sup
α̂∈M 1(S)

inf
α̂′∈M 1,n

||| α̂− α̂′ ||| ≤ 1

n
.

For any n ∈ N and any j ∈ [[0, n− 1]], we shorten θj,n = 2πj/n, and θn,n = θ0,n = 0.
We can now define

M 1,n =


n−1∑
j=0

kj
n2
δθj,n

∣∣∣∣∣∣ kj ∈ [[0, n2]],
∑
j

kj ≤ n2

 .

The inclusion M 1,n ⊂ M 1(S) is trivial thanks to the condition
∑
j kj ≤ n2, and

M 1,n is finite since the kj ’s can each take only a finite number of values. we now
prove that any α̂ ∈ M 1(S) is at distance at most 1/n of an element α̂n ∈ M 1,n.

Fix α̂ ∈ M 1(S), and let

kj = bn2α̂([θj,n, θj+1,n[)c.

Since α̂ ∈ M 1(S), its total mass is in [0, 1], and the conditions kj ∈ [[0, n2]] and∑
j kj ≤ n2 are trivially verified. We now let

α̂n =

n−1∑
j=0

kj
n2
δθj,n ,

and prove that ||| α̂− α̂n ||| ≤ 2/n.
Fix a function g ∈ C1(S) such that max(||g||∞ , ||g′||∞) ≤ 1, we can write∫

S

g(θ)(α̂− α̂n)(dθ) =

n−1∑
j=0

∫
[θj,nθj+1,n[

g(θ)α̂(dθ)− kj
n2
g(θj,n)

=

n−1∑
j=0

α̂([θj,n, θj+1,n[)g(θj,n)− kj
n2
g(θj,n)

+

n−1∑
j=0

∫
[θj,nθj+1,n[

(g(θ)− g(θj,n))α̂(dθ)

≤
n−1∑
j=0

||g||∞

∣∣∣∣ α̂([θj,n, θj+1,n[)− kj
n2

∣∣∣∣︸ ︷︷ ︸
≤1/n2

+

n−1∑
j=0

||g′||∞ | θj+1,n − θj+1,n |︸ ︷︷ ︸
≤1/n

∫
[θj,nθj+1,n[

α̂(dθ)

≤
||g||∞ + ||g′||∞

n
≤ 2/n.
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Finally, we have proved that

||| α̂− α̂n ||| ≤ 2/n,

which proves that M 1(S) is totally bounded. This, together with the Cauchy com-
pleteness, immediately yields the compactness, and concludes the proof of Proposi-
tion C.3.1.
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Collective dynamics can be observed among many animal species, and have given rise
in the last decades to an active and interdisciplinary field of study. Such behaviors
are often modeled by active matter, in which each individual is self-driven and tends
to update its velocity depending on the one of its neighbors.

In a classical model introduced by Vicsek et al., as well as in numerous
related active matter models, a phase transition between chaotic behavior at high
temperature and global order at low temperature can be observed. Even though
ample evidence of these phase transitions has been obtained for collective dynamics,
from a mathematical standpoint, such active systems are not fully understood yet.
Significant progress has been achieved in the recent years under an assumption of
mean-field interactions, however to this day, few rigorous results have been obtained
for models involving purely local interactions.

In this paper, as a first step towards the mathematical understanding of active
microscopic dynamics, we describe a lattice active particle system, in which particles
interact locally to align their velocities. We obtain rigorously, using the formalism
developed for hydrodynamic limits of lattice gases, the scaling limit of this out-of-
equilibrium system. This article builds on the multi-type exclusion model introduced
by Quastel [35] by detailing his proof and incorporating several generalizations, adding
significant technical and phenomenological difficulties.

L’étude des dynamiques collectives, observables chez de nombreuses espèces animales,
a motivé dans les dernières décennies un champ de recherche actif et transdiscipli-
naire. De tels comportements sont souvent modélisés par de la matière active, c’est-
à-dire par des modèles dans lesquels chaque individu est caractérisé par une vitesse
propre qui tend à s’ajuster selon celle de ses voisins.

De nombreux modèles de matière active sont liés à un modèle fondateur
proposé en 1995 par Vicsek et al.. Ce dernier, ainsi que de nombreux modèles
proches, présentent une transition de phase entre un comportement chaotique à
haute température, et un comportement global et cohérent à faible température. De
nombreuses preuves numériques de telles transitions de phase ont été obtenues dans
le cadre des dynamiques collectives. D’un point de vue mathématique, toutefois, ces
systèmes actifs sont encore mal compris. Plusieurs résultats ont été obtenus récemment
sous une approximation de champ moyen, mais il n’y a encore à ce jour que peu
d’études mathématiques de modèles actifs faisant intervenir des interactions purement
microscopiques.

Dans cet article, nous décrivons un système de particules actives sur réseau inter-
agissant localement pour aligner leurs vitesses. Comme première étape afin d’atteindre
une meilleure compréhension des modèles microscopiques de matière active, nous ob-
tenons rigoureusement, à l’aide du formalisme des limites hydrodynamiques pour les
gaz sur réseau, la limite macroscopique de ce système hors-équilibre. Nous dévelop-
pons le travail réalisé par Quastel [35], en apportant une preuve plus détaillée et en
incorporant plusieurs généralisations posant de nombreuses difficultés techniques et
phénoménologiques.


