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1 Introduction : Random and ballistic deposition

So far, all the models studied linked to the KPZ univerality class are in (1+ 1) dimensions
(one space& one time dimension)

e Blocks drop at rate one on every site of Z

e First case : no interactions between the blocks, independant heights (h;).cz : random
deposition

e Second case, the blocks stick to their neighbors, heights are no longer independant

The expected scales for the fluctuation of the depositions models are

Random deposition Ballistic deposition
e Height expectation ~ O(t) e Height expectation ~ O()
e Height fluctuations ~ O('/?) e Height fluctuations ~ O(r"/%)
e No spatial correlation e Spatial correlations ~ O(t*/?)

The ballistic deposition model has three main characteristics :

KPZ growth characteristics
1. smoothing : the heights tend to homogeneize
2. slope dependant growth : when the slope is large, growth occurs more quickly

3. space time uncorrelated noise : independant blocks fall
2 Universality classes

2.1 Gaussian universality class :

CLT : By understanding normal varibales, the CLT gives intel on any average of random
variable.

e By studying one object (BM/Gaussian variable), one can obtain results on a wide variety
of models and quantities.

e The other way around, by showing things on discrete models, obtain results on the
continuum limit



2.2 KPZ universality class :
Any growth model with these characteristics is expected to be in the KPZ universality
class

— Main characteristics of the KPZ universality class is fluctuations of order 3 and
spatial correlations of order */3.

Despite significant progress in the last decades, up to this point, the KPZ universality is
not fully understood. (Cf. Universality conjectures, later in the talk)

3 The KPZ equation

General form of the KPZ equation

Orh = voxh + A(0xh)* + oW

e 3 parameters v, A and o.
e By space and time rescaling, one can drop two of the parameters.

e KPZ equation — KPZ equations, the ”"KPZ equation” is in fact a one parameter family
KPZ(y).

1 8§h: smoothing out  2) (dxh)? Slope-dependent growth ~ 3) W space-time white noise

It is expected that the KPZ universality involves both the scaling exponents as well as
the long-time distributions, within geometry-dependent subclasses. These geometry-
dependent subclasses depend on the initial profile. To illustrate that, ASEP.

4 The Asymmetric Simple Exclusion Process (ASEP)

4.1 The asymmetric exclusion process

Description of the model :
e On Z, each site is either occupied (17, = 1) or empty (7, = 0)
e fix a (possibly random) initial configuration

e Each particles moves from x to x+1 at rate 1/2 < p <1
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e Each particles moves from x to x—1l atrateg=1-p

e Exclusion rule : any motion towards an occupied site is cancelled

4.2 Various cases for the asymmetry

We denote by ¥y = p — g the asymmetry of the system, therefore p = (1 + y)/2, and
q=~10-7)/2.

1. v =0, Symmetric Simple Exclusion Process (SSEP)

2. v =1, Totally Asymmetric Simple Exclusion Process (TASEP)

3. 0 <y <1, Partially Asymmetric Simple Exclusion Process (PASEP)

4. v = &y, with > 0, Weakly Asymmetric Simple Exclusion Process (WASEP)

For now, we consider the PASEP, the case of the WASEP with 8 = 1/2 is linked to the
KPZ equation and studied later on.

4.3 Height function : corner growth model
Given an ASEP configuration on Z, one can build a height function (h(x)),cz

h(x) =1 if 7 =1

h(0)=0 and hx+1)= )
h(x)+1 ifn41=0

— If a particle moves from x to x+1 in 7, the local minimum of the function A in x becomes
a local maximum.

— If a particle moves from x +1 to x in 7, vice-versa.

hy(t, x) = h,(0, x) + 2(N, (t) = N{ (1)),

where N () is the total number of particles that came to x from x —1 between the times 0
and ¢, and N;(¢) is the total number of particles that came to x from x +1 between the times

0 and t.

O Macroscopic limit and fluctuations
Question : what is the behavior of the system at a macroscopic scale ?

4



First solution : given a smooth function H with bounded domain, study the behavior of

£ ) Hexn(Cot) - f HX)p(T, X)dX
R

X€Z

as € goes to 0 ? — Weak formulation of local equilibrium.
We denote by X = xe the macroscopic space variable and by T = C.t the macroscopic
time.

Second solution : representation by the height function. The macroscopic profile of the
corner growth model can be written as

— T X
h(T,X) = lime.h, (—, —).
&e—0 YeE &

Hydrodynamic limit : the macroscopic profile h is a weak solution to the inviscid
Burgers equation

—  1-(9xh)?
9T = (dxh)
2
Particular solution with wedge initial condition :
_ T (1+X/TY)
h(T,X) = —

+— Faire un dessin

05.1 Back to the universality class : fluctuations

In accord with the KPZ fluctuations scale, one must consider the fluctuation around the
hydrodynamic limit
f7.2) = lime" (1 (L, 2| - hro
0(’ )_81—1;%8 y')/8,82/3 8(9)'

The compensating mean is indeed H(T, 0), because the scaling of the spatial fluctuation is
less than the time rescaling. The fluctuation field around another macroscopic point X would
be given by

T X Z

- i /3 i
fx(T.2) = lims (hy(yg, o

) - 1R(T, X)),
E

where Z is on a mesoscopic scale relatively to X.
— Completer le dessin



2.2 Long time distributions and impact of the initial condi-
tlons

Getting back to the KPZ universality class, and long time distributions : Another strongly

presumed universality feature of the universality class, additionnaly to the scaling exponents,

would be the long-time distributions of the fluctuations. The field fo(7,0) is distributed in

long time like the Tracy-Widom distribution.
— A COMPLETER

5.3 Weak asymmetry and link to the KPZ equation
We now consider the case of the weak asymmetry with 8 = % We now have

1 _ 1 _
p:§+81/27 and ng—sl/zy.

Then, the fluctuation field of the weakly asymmetric exclusion process should be solution to
the KPZ(y) equation. (Bertini Giacomin ‘96)
More precisely this time, one considers the interface position equation

— T X
R(T,X) = lim s.hy( )

ye? &)
Then, HW(T, X) evolves according to the Burgers equation

—w 1 —w 1= (dxh )
drh = =Ah +(—X).
2 2

In (Bertini Giacomin ‘96), it is proved that for the weakly asymmetric corner growth
model, the fluctuations evolve according to the KPZ equation, i.e. that letting

_ T Z\ 1—w
fo(T,Z) = lim &"? (h7 (_—2 —) - —h (T, 0)),
-0 YeT &€ E

the function FO(T, Z) is solution to the KPZ equation with parameter 7.

6 Weak and Strong universality conjectures, Rescaling opera-
tor, Link with the Wilkinson Edwards universality class

— Faire un dessin
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