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We introduce lattice gas models of active matter systems whose coarse-grained “hydrodynamic”
description can be derived exactly. We illustrate our approach by considering two systems exhibiting two of
the most studied collective behaviors in active matter: the motility-induced phase separation and the
transition to collective motion. In both cases, we derive coupled partial differential equations describing the
dynamics of the local density and polarization fields and show how they quantitatively predict the emerging
properties of the macroscopic lattice gases.
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Active matter systems are intrinsically out of thermal
equilibrium due to the dissipation of energy at the micro-
scopic scales to produce motion [1–4]. The resulting non-
Brownian random walks endow these systems with a rich
phenomenology, from the long-range order observed in 2D
assemblies of self-propelled particles [5–8] to the spatio-
temporal chaos of dense assemblies of nematic particles
[9,10] through the enhanced clustering resulting from the
interplay of repulsive forces and self-propulsion [11–13].
The toolbox of equilibriumstatisticalmechanics cannot be

used a priori to describe such nonthermal systems and one
has to rely ondynamical studies, even to characterize systems
in a steady state. When an effective detailed balance with
respect to a non-Boltzmann distribution is (partially) restored
[14–16], this canonly be established after a complex case-by-
case study of otherwise analytically untractable dynamics.
Numerical simulations have thus become a prominent tool to
study active matter, and progress is often hindered by strong
finite-size effects [17]. In such contexts, exact results derived
on simple model systems can offer much needed guiding
principles. Whereas this has frequently been true outside
equilibrium, for instance, to characterize dynamical phase
transitions [18], little success has been achieved along these
lines for activematter systems. In particular, the derivation of
coarse-grained descriptions of active systems has attracted a
lot of interest over the past decades [19–31], but the
complexity of the underlying microscopic models has
prevented the derivation of exact results outside the mean-
field regime [32,33].
In this Letter, following the recent interest for lattice

models of active particles [27,31,34–40], we introduce new
active lattice gas models whose large-scale physics can be
described exactly. We build on recent developments in the
mathematical-physics literature to derive exact coarse-
grained “hydrodynamic” descriptions of lattice gases
[41–44]. For illustration purposes, we focus on two of the

most studied emergent behaviors in active systems: the
motility-induced phase separation (MIPS) [11,15,45] and
the transition to collectivemotion [5,17,46], but the approach
wepresent here can be extended beyond these cases. For both
systems, we single out the relevant coarse-grained fields and
construct their exact dynamics. This allows us both to
simulate efficiently their large-scale behaviors as well as
analytically study their instabilities and the corresponding
phase diagrams.
We first consider a microscopic lattice gas that exhibit

MIPS. N particles evolve on a discrete ring of αL sites.
There are two types of particles and each site is occupied by
at most one particle so that a configuration can be
represented using occupation numbers σi at site i with
values in f−1; 0; 1g. To model self-propulsion, we endow
the þ particles with a weak drift to the right and the
− particles with a weak drift to the left, in addition to a
symmetric diffusive motion. Furthermore, a particle can
tumble and change sign at a fixed rate. More precisely, the
dynamics combine three mechanisms: (1.1) For each bond
ði; iþ 1Þ, σi and σiþ1 are exchanged at rate D. (1.2) For
each bond ði; iþ 1Þ, a þ particle in i jumps to iþ 1 if
σiþ1 ¼ 0 or a particle in iþ 1 jumps to i if σi ¼ 0, at rate
λ=L. (1.3) Particles switch sign at rate γ=L2.
As we show below, each mechanism will play a specific

role in the coarse-grained equations. The total number of
particles is N ≡ ρ0αL, where ρ0 ∈ ½0; 1� stands for the
mean density. The system remains homogeneous for small
ρ0 or λ, whereas the homogeneous phases become unstable
for large densities and drift. The previous dynamics can be
generalized to higher dimensions. We show in Fig. 1 the
result of 2D numerical simulations leading to the coexist-
ence between dilute and dense phases typical of MIPS.
Depending on whether the 2D case is built solely with a
left-right bias or whether one considers biases along each of
the four directions, we observe different symmetries for the
coexistence phases.
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To account for this phenomenology, one needs to
characterize the evolution of the local density of particles.
Let σ�i ðtÞ equal 1 when a particle with sign�1 is present at
site i and time t and 0 otherwise, then

∂thσþi i ¼ D½hσþiþ1i þ hσþi−1i − 2hσþi i� −
γ

L2
½hσþi i − hσ−i i�

þ λ

L
½hσþi−1ð1 − jσijÞi − hσþi ð1 − jσiþ1jÞi�: ð1Þ

These equations are, however, not closed, since the evolution
of hσþi ðtÞi involves the correlator hσþi ðtÞjσiþ1ðtÞji.
A closed, explicit description of the dynamics can,

however, be achieved at the macroscopic level. Indeed,
following [41–44], we chose the three processes above to
occur with rates scaling with L in such a way that they all
contribute equally to a coarse-grained regime obtained by a
diffusive rescaling of space and time: x ¼ i=L and
τ ¼ t=L2. Indeed, the first dynamical rule leads to the
diffusion of the particles: if one follows the particles
without their signs, the exchange dynamics 1.1 amount
to a symmetric simple exclusion process. This first rule
makes particles travel a distance Δi ∼ L on a time δt ∼ L2

and hence at a macroscopic scale Δx ∼ 1 for Δτ ∼ 1. The
second rule applies at a reduced rate λ=L, but provides a
systematic drift to the left or to the right depending on the
particle type. Similarly, in a time L2, this leads to a
displacement of order L. Finally, at an even more reduced
rate γ=L2, the particle type changes, which boils down to
saying that a particle changes direction once in a macro-
scopic unit of time. This occurs sufficiently rarely so that
the drift has a macroscopic effect between two updates.
To derive the dynamical behavior of the system in the

large L limit, we introduce the macroscopic densities as

ρ�L ðx; τÞ ¼
1

2Lδ

X
ji−Lxj≤Lδ

σ�i ðτL2Þ; ð2Þ

where the coarse graining scale is determined by the
parameter δ ∈ ð0; 1Þ [47]. Our choice of the microscopic

system size αL depends on two parameters: L−1 plays the
role of a microscopic mesh; it vanishes in the L → ∞
limit in which α then controls the rescaled system size
x ∈ ½0; α�. The macroscopic equations for the densities
ρ� ≡ limL→∞ρ

�
L , starting from a smooth initial condition,

can then be derived exactly as

∂τρ
þ ¼ D∂2

xρ
þ − λ∂x½ρþð1 − ρÞ� − γðρþ − ρ−Þ; ð3Þ

∂τρ
− ¼ D∂2

xρ
− þ λ∂x½ρ−ð1 − ρÞ� þ γðρþ − ρ−Þ; ð4Þ

where the total density is ρ ¼ ρþ þ ρ−. Following standard
notations [48], we refer to Eqs. (3) and (4) as the hydro-
dynamic description of our microscopic model [49]. The
mathematical method to rigorously derive these hydrody-
namic equations has been initiated in [41,42] and we refer to
[44] for a detailed implementation.Wewill explain below the
underlying principles. Intuitively, Eq. (3) can be deduced
from the microscopic equation (1) by first replacing the
discrete differences by derivatives. Justifying the forms of the
nonlinear advection terms requires one to close the two-point
correlations in (1). Even though on a macroscopic scale the
three mechanisms of the dynamics compete at equal footing,
the first one dominates locally as it occurs much more
frequently. Thus, in the largeL limit, it can be shown that the
local correlations are controlled by the diffusive part. The
invariant measures of the dynamics reduced to the diffusive
part are product Bernoulli measures indexed by two param-
eters, which prescribe the local densities of� particles. Thus,
at any time, the local statistics of the full dynamics are
determined by a product of Bernoulli measures parametrized
by the local densities (2); this is sometimes referred to as
“local equilibrium” [48]. The approximation by these local
measures is valid beyond the expectation of the correlations
and applies at the level of sample paths so that local averages
as in (2) convergewith high probability to the solution of the
hydrodynamic equations (3) and (4). Note that the hydro-
dynamic equations directly extend to higher dimensions.We
compare in Fig. 2 simulations of the microscopic and
macroscopic dynamics for the 1D case. A perfect agreement
between the two dynamics is observed on their way to phase
coexistence.

FIG. 1. Snapshots of microscopic simulations of dynamics
1.1–1.3 in 2D showing MIPS for lattices of αL × αL sites, with
L ¼ 100. The symmetry of the dense phase depends whether
particles are biased only along x̂ (left, α ¼ 4, ρ0 ¼ 0.65) or can
point along the four lattice bonds (right, α ¼ 8, ρ0 ¼ 0.63). The
color of a site gives the direction of a particle: blue for right, green
for up, red for left, yellow for down. Simulations parameters:
D ¼ 1, γ ¼ 10, λ ¼ 40.

FIG. 2. Successive snapshots leading to phase coexistence in
1D: the microscopic (red) and macroscopic (blue) simulations
agree quantitatively. Simulation parameters: D ¼ 1, λ ¼ 5,
γ ¼ 0.1, ρ0 ¼ 0.75, α ¼ 4. Microscopic simulations: continuous
time simulations of dynamics 1.1–1.3 with L ¼ 1000, averaged
over 200 runs. Macroscopic simulations: semispectral method
with n ¼ 50 modes and semi-implicit Euler time stepping
(dt ¼ 10−4).
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To analyze the emerging behaviors predicted by (3) and
(4), we first introduce an unnormalized polarization field
m ¼ ρþ − ρ−. The dynamics can then be reduced to a
dimensionless form using x →

ffiffiffiffiffiffiffiffiffiffiffiffiðD=γÞp
x and t → t=γ, so

that x ∈ ½0;α ffiffiffiffiffiffiffiffiffiffiffiffiðγ=DÞp �. In this system of units, the evolution
equation reads

∂tρ ¼ Δρ − Pe∇½mð1 − ρÞ�; ð5Þ

∂tm ¼ Δm − Pe∇½ρð1 − ρÞ� − 2m; ð6Þ

with Pe ¼ ðλ= ffiffiffiffiffiffi
Dγ

p Þ. Equations (5) and (6) show that the
system is fully characterized by two control parameters: the
density ρ0 ¼ N=L and the Péclet number Pe. The latter
compares the length traveled between two successive tum-
bles thanks to the drift λ=γ to the one resulting from the
diffusive dynamics

ffiffiffiffiffiffiffiffiffi
D=γ

p
. For small Péclet numbers, the

diffusion dominates and the effect of self-propulsion is
negligible. Conversely, the effect of activity gets more and
more pronounced as Pe increases.
The homogeneous solutions of Eqs. (5) and (6), ρðx; tÞ ¼

ρ0 and mðx; tÞ ¼ 0, are linearly unstable when

Pe2ð1 − ρ0Þð2ρ0 − 1Þ > 2: ð7Þ

For any Pe larger than a critical value Pec ¼ 4, the system is
thus linearly unstable for ρ0 ∈ ½ρsl ; ρsh�, with ρsl;h ¼
3
4
� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð16=PeÞp

. This defines the spinodal region of
the system. Note that this is a large wavelength instability,
observed only for macroscopic system size Lα≡
α

ffiffiffiffiffiffiffiffiffiffiffiffiðγ=DÞp
> ð2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2ð1 − ρ0Þð2ρ0 − 1Þ − 2

p
Þ. We now

turn to the computation of the coexisting densities.
Hydrodynamic descriptions can sometimes be used to

compute the nonlinear profiles connecting coexisting phases
[50–52]. Here, we generalize the method introduced in
[53,54] to compute the binodal curves. For simplicity, we
consider the 2D case with left-right bias, in which the
interfaces between the phases are flat and along ŷ. We
consider fully phase-separated profiles and use Eqs. (5) and
(6) to construct a domain-wall solution, describing the
evolution of the density and magnetization fields through
an interface. By symmetry, the steady state has a vanishing
density flux so that Eq. (5) leads tom ¼ ð1=PeÞð∇ρ=1 − ρÞ.
Equation (6) then reads ∂xg ¼ 0, with

g≡ g0ðρÞ þ ΛðρÞð∂xρÞ2 − κðρÞ∂xxρ; ð8Þ

whereΛðρÞ−1¼−Peð1−ρÞ2, κðρÞ−1¼Peð1−ρÞ, and g0ðρÞ¼
Peρð1−ρÞ−2logð1−ρÞ=Pe. Since the density is homo-
geneous in the gas and liquid phases, one gets a first
relationship between the coexisting densities

g0ðρgÞ ¼ g0ðρlÞ≡ ḡðPeÞ: ð9Þ

To determine ρl and ρg, we need to complement (9) by a
second equation. Following [53,54], we define I ¼R
xl
xg

g∂xRðρÞdx, where R is a monotonically increasing

function of ρ. Using that gðxÞ ¼ ḡ, I can be readily computed
as

I ¼ ḡ½RðρlÞ − RðρgÞ�: ð10Þ

Computing I using the explicit form of g [Eq. (8)] is difficult
because of the gradient terms. For the specific function RðρÞ
such that R00κ ¼ −ð2Λþ κ0ÞR0, this can be done explicitly,
leading to

I ¼ ϕðRlÞ − ϕðRgÞ; ð11Þ

where ðdϕðRÞ=dRÞ ¼ g0ðρÞ. Equations (10) and (11) then
enforce the equality of h0 ≡ ϕ0ðRÞR − ϕðRÞ between the two
phases. The function R and ϕ can be computed explicitly as

RðρÞ ¼ logð1 − ρÞ;

ϕðRÞ ¼ Pe

�
1 −

eR

2

�
eR −

R2

Pe
: ð12Þ

The binodals are then obtained from the equality of g0 and h0
between the two phases,which amounts to a common tangent
construction on ϕðRÞ. The resulting phase diagram is shown
in Fig. 3. It shows perfect agreement with simulations of the
hydrodynamic equations and of themicroscopicmodel in 2D.
As far as we are aware, this is the first microscopic model for
which the hydrodynamic description and the phase diagram
of the MIPS can be derived exactly.
We now turn to the phase transition leading to collective

motion, which is probably the most studied emerging
behavior in active matter [1,5–8,17,27,46]. Following the
strategy laid out in the first part of this Letter, we introduce
a microscopic model of polar aligning active particles and
derive its hydrodynamic limit exactly. For simplicity, we
first describe the model in one dimension. N particles

FIG. 3. Phase diagram of the MIPS observed for dynamics
1.1–1.3. For each Péclet number, the coexisting densities are
computed analytically (red line) by simulating the microscopic
process (green crosses) and by numerically solving the macro-
scopic equations (red crosses). The analytic predictions for the
spinodals are shown in blue.
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evolve on a discrete ring of αL sites. Each particle is
described by 2 degrees of freedom: its position i ∈
f1;…; Lg and its orientation, noted � in 1D. We call ηi ¼
ðηþi ; η−i Þ ∈ N2 the number of particles of each type on site i.
The dynamics of a� particle is given by the three following
processes: (2.1) symmetric hops with rate 2D, (2.2) jumps
from site i to i� 1 with rate ðλ=LÞ, and (2.3) flips into a∓
particle with rate ð1=L2Þc�i ðηþi ; η−i Þ, where we choose c� to
produce a polar alignment

c�ðηþi ; η−i Þ ¼ exp½∓ βðηþi − η−i Þ�: ð13Þ

Note the lack of exclusion in this process.
We consider again a diffusive rescaling of time and space

to obtain the exact hydrodynamic equations

∂tρ
þ ¼ DΔρþ þ λ∇ρþ − Fðρþ; ρ−Þ; ð14Þ

∂tρ
− ¼ DΔρ− − λ∇ρ− þ Fðρþ; ρ−Þ; ð15Þ

where F is the average of nþcþðnþi ; n−i Þ − n−c−ðnþi ; n−i Þ
with respect to the local Poisson measure

νρþ;ρ−ðnþi ; n−i Þ ¼ e−ρ
þ−ρ− ðρþÞn

þ
i

ðnþi Þ!
ðρ−Þn−i
ðn−i Þ!

: ð16Þ

Again, while the dynamical rules 2.1–2.3 all contribute
equally in the hydrodynamic scaling, the symmetric ran-
dom walk equilibrates much faster on the microscopic
mesh scale. The averages of the nonlinear contributions due
to the flipping rules are thus computed with respect to local
Poisson measures, which are the steady-state measures of
the symmetric random walk, conditioned to produce the
correct mean local densities of þ and − particles. Finally,
the hydrodynamic equations (14) and (15) can be rewritten
in the more familiar form

∂tρ ¼ DΔρþ λ∇m; ð17Þ

∂tm ¼ DΔmþ λ∇ρ − 2F̃ðm; ρÞ; ð18Þ

where

F̃ ¼ (m cosh½m sinhðβÞ� − ρ sinh½m sinhðβÞ�)
× e−βþρ coshðβÞ−ρ ð19Þ

is deduced from F by a change of variables and is not equal
to the mean-field expectation of nþcþ − n−c−.
Simulations of the microscopic model and its hydro-

dynamic description confirm the presence of a transition to
collective motion: at large “temperature” T ≡ β−1 and low
density ρ0 ¼ N=V, the system is in a homogeneous dis-
ordered (m ¼ 0) “gas” phase. At low noise and large
density, the system is in a homogeneous ordered (m ≠ 0)

“liquid” phase; there, particles hop, on average, in the same
direction, hence leading to “collective motion.” These
homogeneous phases are separated by a coexistence region
in which a dilute disordered gas of density ρgðTÞ coexists
with a dense liquid phase of density ρlðTÞ. A perfect
agreement between simulations of the microscopic model
and of its hydrodynamic description is shown in Fig. 4
where the relaxation of a perturbation towards an ordered
liquid phase is shown.
For this microscopic model, the existence of a finite

region in which none of the homogeneous phases are
linearly stable can now be rigorously proven. The hydro-
dynamic description indeed predicts that the disordered
homogeneous phase ρðxÞ ¼ ρ0, mðxÞ ¼ 0 loses linear
stability for densities such that ∂mF̃ð0; ρÞ < 0, i.e.,
ρ0 > ρsg ≡ sinhðβÞ−1. Then, a fully ordered solution
appears given by ρðxÞ ¼ ρ0 and m0 the solution of

m0 ¼ ρ0 tanh½m0 sinhðβÞ�: ð20Þ

This solution is, however, linearly unstable for ρsg < ρ0 <
ρsl and leads to the traveling bands described above.
At higher densities, for ρ0 ≥ ρsl, the ordered uniform
state becomes linearly stable. The corresponding phase
diagram (Fig. 5) thus shows “spinodal curves” ρsg=lðTÞ and
“binodal curves” ρg=lðTÞ, in agreement with the liquid-gas
scenario recently proposed for the flocking transition
[27,46], for which the coexisting densities are such
that ρg < ρsg < ρsl < ρl.
In this Letter, we have introduced lattice models for

which one can derive exact hydrodynamic equations. Our
strategy relies on scaling the rates of the different dynami-
cal contributions so that they contribute equally at a
diffusive hydrodynamic scale. The symmetric hopping,
however, controls the dynamics at a local mesoscopic scale.
This yields an explicit form for the local measure one needs
to use to compute the average of any nonlinear function
entering the dynamics of the mean local densities. Then, the
hydrodynamic descriptions allow us to characterize the

FIG. 4. Successive snapshots of 1D simulations of the dynam-
ics 2.1–2.3 and of the hydrodynamic equations (17) and (18). The
system is in the ordered phase and the initial condition is fully
ordered with ρðx; 0Þ ¼ ρ0½1þ cosð2πxÞ�. Microscopic simula-
tions: the density profiles are averaged over 300 simulations of
the dynamics 2.1–2.3 on a lattice of L ¼ 1000 sites (α ¼ 1).
Macroscopic simulations: pseudospectral simulations with 50
Fourier modes and a semi-implicit time stepping with dt ¼ 10−4.
Physical parameters: D ¼ 0.5, λ ¼ 4, β ¼ 0.8.
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large-scale emerging behaviors of these active lattice gases.
In particular, we have introduced two models, presenting
two of the most studied collective behaviors of active
particles, namely, the motility-induced phase separation
and the transition to collective motion. Constructing more
general models is rather straightforward using the ingre-
dients presented in this Letter [44], for instance, to study
nematic alignment or the interplay between MIPS and
aligning torques. Note that the hydrodynamic description is
exact for finite macroscopic times in the L → ∞ limit. For
large-but-finite sizes, describing the statistics of the active
lattice-gas trajectories requires the addition of subleading
fluctuating terms, in the spirit of the macroscopic fluc-
tuation theory [18,55,56]. These terms are key to under-
standing the selection of metastable propagating solutions
observed in simple flocking models [46,52,57]; their
rigorous mathematical derivation, however, remains an
open challenge.
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