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Abstract
Interest for the underlying mechanisms of collective animal motion has given rise in the last decades to an active

and multidisciplinary field of study. Inspired by the pioneering work by Vicsek et al. [4], we consider a swarm-
ing model set on a lattice, in which each particle is characterized by an angular speed which orients the weakly
asymmetric random walk it performs. Each particle also tend to align its angular speed with the average amongst
its nearest neighbors. We obtain the scaling limit of this system as the span of the lattice goes to 0 under diffusive
scaling, which requires the tools developed by Quastel and Varadhan for non-gradient dynamics, and poses several
further technical and theoretical difficulties.

Introduction
Numerous examples of swarming and coherent motion can be observed in nature. A classical model
for self-organized behavior is the Vicsek Model [4], which triggered a lot of interest for the mod-
eling of animal collective behavior. The central question in the study of animal coherent motion is
that of the phase transition between erratic individual motion, and global order, which arises as the
strength of the alignment between individuals reaches a critical value (cf. Figure 1). Ample numerical
evidence of such phase transitions have been obtained for active matter models (i.e. driven out-of-
equilibrium by an energy influx at an individual level) in the last decades, and they are now fairly well
understood from a physics standpoint. Mathematical proof of dynamical phase transitions, however,
remain a challenge to this day.

Figure 1: Emergence of global order for an alignment dynamics. From Solon & Tailleur, [3]

Apart from alignment-induced phase transitions, another phenomenon that can be observed with
active matter models is the motility-induced phase separation (MIPS, cf. Figure 2), which occurs
for models where the speed of each particle depends on the local density. If particles go slower in
crowded areas, they tend to accumulate there, thus creating important density fluctuations.

Figure 2: Congestion phenomenon for density-dependent particle speeds (MIPS). From Cates & Tailleur, [1]

We study a stochastic lattice gas with both a nearest-neighbor alignment dynamics and a congestion
mechanism to observe a MIPS, and obtain its hydrodynamic limit.

Description of the model
The particle system we study evolves on the two-dimensional periodic domain T2

N = J0, NK2. Each
particle is characterized by an angle θ, and evolves according to weakly asymmetric random walk
for which the asymmetry rate λi in the direction ei is a function of θ. Only one particle can be simul-
taneously present at each site of the domain. Furthermore, the angle of each particle is updates at
random times to align with the average angle among its neighbors.

Configurations of the model
• Each site of T2

N is either occupied by a particle with angle θ (ηx = 1, and θx = θ), or empty
(ηx = 0, and θx assumes the default value 0). The angle θx represent the favored motion direction
for the particle at site x.
•We let η̂ = ((ηx, θx))x∈T2

N
represent the complete configuration.

Infinitesimal Markov generator
The Markov generator of the process is given by LN = N2LD + LG, where LD is the displacement
generator, and LG is the alignment generator, which actions are represented in Figure 3. For any
local function f ,

LDf (η̂) =
∑
x∈TN

∑
δ=±1
i=1,2

(
1 +

δλi(θx)

N

)
ηx
(
1− ηx+δei

) (
f (η̂x,x+δei)− f (η̂)

)
,

LGf (η̂) =
∑
x∈TN

∫ 2π

0
cx,β(θ, η̂)ηx

(
f (η̂x,θ)− f (η̂)

)
dθ,

• η̂x,x+z is the configuration where the particle in x has been moved to x + z

• η̂x,θ is the configuration where θx has been set to θ
• λi(θ) represent the strength of the drift of a particle with angle θ in the direction ei
• cx,β(θ, η̂) tunes the alignment dynamic.

The initial configuration is chosen at local equilibrium, and close to a smooth profile. We then
consider a Markov process (η̂(t))t∈[0,T ] driven by the generator LN and starting from this initial
configuration, which will be referred to as Active Exclusion Process (AEP).
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Figure 3: Description of the dynamics : displacement (left) and alignment (right).

Main result & elements of proof
We denote by ρ̂t(u, θ) the macroscopic density of particles, which can be loosely characterized for
any smooth function Ht(u, θ), by∫ T

0

∫
T

∫ 2π

0
ρ̂t(u, θ)Ht(u, θ)dθdudt = lim

N→∞

∫ T

0

1

N2

∑
x∈T2

N

ηx(t)Ht(x/N, θx(t))dt.

Theorem 1 (Hydrodynamic limit for the AEP). Let ρt(u) =
∫ 2π

0 ρ̂t(u, θ)dθ denote the local particle
density, ρ̂t(u, θ) is solution (in a weak sense) of the differential equation

∂tρ̂t = ∇. [d(ρ̂t, ρt)∇ρt + ds(ρt)∇ρ̂t] + 2∇.
[
s(ρ̂t, ρt)λ

→
Ωt + ds(ρt)ρ̂t

(
λ1(θ)
λ2(θ)

)]
+ Γt.

• The quantity d(ρ̂, ρ) is a diffusion coefficient for which we have an explicit expression
• ds(ρ) is the diffusion coefficient of a tagged particle for the SSEP at equilibrium with density ρ
• The quantity s(ρ̂, ρ) is a conductivity coefficient linked to d(ρ̂, ρ) by the Stokes-Einstein relation

• The local asymmetry
→
Ωt is defined by

→
Ωt(u) =

∫
[0,2π[

ρ̂t(u, θ)

(
cos(θ)
sin(θ)

)
dθ,

• Γt is the local creation rate of particles with angle θ.

Difficulties of the proof
Irreducibility : due to the exclusion rule, and to the multiple types of particles, The Active Ex-
clusion Process loses its mixing properties as the density goes to 1 . This creates many technical
difficulties throughout the proof. In particular, it becomes necessary to bound the particle density
away from 1 at any time t > 0.

Non-gradient dynamics : the exclusion between particles with different angles prevents from ex-
pressing the instantaneous symmetric current as a discrete gradient. This is a major difficulty of the
proof, and requires the tools developed by Varadhan and Quastel [2].

Out-of-equilibrium dynamics : The AEP is an active matter model, in which particles are affected
by a weak drift. This constantly drives the system out of equilibrium, therefore some control is nec-
essary to prove local equilibrium and to compare our process to its equilibrium counterpart for which
explicit estimates can be obtained.

Conclusion & Research perspectives
The scaling limit of this active exclusion process could lead to proving a large deviations princi-
ple, and thus be the first step to unveil dynamical phase transitions for particle systems combining
alignment and displacement.
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