Advanced Probability
Master 2 Sciences, Mention Math.
Parcours recherche

DS1-2h - English version

October 132022
All random variables are defined on some probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Exercise 1 : Poisson Process

Let $\left\{N_{t}, \mathscr{F}_{t} ; t \geq 0\right\}$ be a Poisson process of intensity $\lambda>0$.

1) Show that $\left\{X_{t}:=N_{t}-\lambda t, \mathscr{F}_{t} ; t \geq 0\right\}$ is a martingale ;
2) Show that $\left\{X_{t}^{2}-\lambda t, \mathscr{F}_{t} ; t \geq 0\right\}$ is a martingale.

Exercise 2: Submartingales

Let $\left\{X_{t}, \mathscr{F}_{t} ; t \geq 0\right\}$ be a right-continuous submartingale and T be a stopping time. Show that $\left\{X_{T \wedge t}, \mathscr{F}_{t} ; t \geq 0\right\}$ is a submartingale.
Hint. Admit the following fact : $X_{T \wedge t}$ is $\mathscr{F}_{T \wedge t}$-measurable, $\mathbb{E}\left[\mid X_{T \wedge t}\right]<\infty$.

Exercise 3: Bounded variation martingales

Let $\left\{M_{t}, \mathscr{F}_{t} ; t \in[0, T]\right\}$ be a continuous, square integrable martingale.
Suppose that $M_{0}=0, \mathbb{P}$-a.s.

1) If $\langle M\rangle_{T}=0$, show that $M_{t}=0, \forall t \in[0, T]$, \mathbb{P}-a.s.
2) A function $f:[0, T] \rightarrow \mathbb{R}$ is said to be of bounded variation if

$$
V(f):=\sup _{\Pi: \operatorname{partition~of~}[0, T]}\left\{\sum_{k=1}^{m}\left|f\left(t_{k}\right)-f\left(t_{k-1}\right)\right|\right\}<\infty,
$$

where $\Pi=\left\{0=t_{0} \leq \ldots \leq t_{m}=T\right\}$. If M is of bounded variation, \mathbb{P}-a.s., show that $M_{t}=0, \forall t \in[0, T]$, \mathbb{P}-a.s.
3) Is the claim in Exercise 3.2 still true when M is not continuous?

Exercise 4 : Brownian bridge

Let $\left\{W_{t}, \mathscr{F}_{t}^{W} ; t \geq 0\right\}$ be a Wiener process (standard, 1-d Brownian motion, $W_{0}=0$). Fix $T>0$ and define $B_{t}:=E\left[W_{t} \mid W_{T}=0\right], \forall t \in[0, T]$.

1) What is the distribution of B_{t} for each $t \in[0, T]$?
2) Calculate $\operatorname{cov}(s, t):=\mathbb{E}\left[B_{s} B_{t}\right]$ for $s, t \in[0, T]$.
3) Show that $\left\{B_{t} ; t \in[0, T]\right\}$ has a (\mathbb{P}-a.s.) continuous modification.

Solution of Exercise 1

For $0 \leq s \leq t$,

$$
\begin{aligned}
E\left[X_{t} \mid \mathscr{F}_{s}\right] & =N_{s}+E\left[N_{t}-N_{s} \mid \mathscr{F}_{s}\right]-\lambda t \\
& =N_{s}+\sum_{k=0}^{\infty} k \cdot \frac{[\lambda(t-s)]^{k}}{e^{\lambda(t-s)} k!}-\lambda t=N_{s}-\lambda s=X_{s}
\end{aligned}
$$

and

$$
\begin{aligned}
E\left[X_{t}^{2}-\lambda t \mid \mathscr{F}_{s}\right] & =E\left[N_{t}^{2} \mid \mathscr{F}_{s}\right]-2 \lambda t E\left[N_{t} \mid \mathscr{F}_{s}\right]+\lambda^{2} t^{2}-\lambda t \\
& =N_{s}^{2}+E\left[\left(N_{t}-N_{s}\right)^{2} \mid \mathscr{F}_{s}\right]-2 \lambda s N_{s}+\lambda t(2 \lambda s-\lambda t-1) \\
& =N_{s}^{2}+\sum_{k=0}^{\infty} k^{2} \cdot \frac{[\lambda(t-s)]^{k}}{e^{\lambda(t-s)} k!}-2 \lambda s N_{s}+\lambda t(2 \lambda s-\lambda t-1) \\
& =N_{s}^{2}-2 \lambda s N_{s}+\lambda^{2} s^{2}-\lambda s=X_{s}^{2}-\lambda s .
\end{aligned}
$$

Solution of Exercise 2

Observe that $X_{T \wedge t}$ is $\mathscr{F}_{T \wedge t}$-measurable and $T \wedge t \leq t$, it is also \mathscr{F}_{t}-measurable. Given $s \leq t$, since $T \wedge t, T \wedge s$ are bounded stopping times, the optional sampling theorem yields that $E\left[\left|X_{T \wedge t}\right|\right]<\infty$ and

$$
E\left[X_{T \wedge t} \mid \mathscr{F}_{T \wedge s}\right] \geq X_{T \wedge s} .
$$

For any $A \in \mathscr{F}_{s}$,

$$
A \cap\{T>s\} \cap\left\{T \wedge s \leq t^{\prime}\right\}= \begin{cases}\emptyset \in \mathscr{F}_{t^{\prime}}, & t^{\prime}<s, \\ A \cup\{T>s\} \in \mathscr{F}_{t^{\prime}}, & t^{\prime} \geq s,\end{cases}
$$

so $A \cap\{T \geq s\} \in \mathscr{F}_{T \wedge s}$. Therefore,

$$
\begin{aligned}
E\left[X_{T \wedge t} \mathbf{1}_{A}\right] & =E\left[X_{T \wedge t} \mathbf{1}_{A \cap\{T \leq s\}}\right]+E\left[X_{T \wedge t} \mathbf{1}_{A \cap\{T>s\}}\right] \\
& =E\left[X_{T \wedge s} \mathbf{1}_{A \cap\{T \leq s)}\right]+E\left[X_{T \wedge t} \mathbf{1}_{A \cap\{T>s\}}\right] \\
& \geq E\left[X_{T \wedge s} \mathbf{1}_{A \cap\{T \leq s\}}\right]+E\left[X_{T \wedge s} \mathbf{1}_{A \cap\{T>s\}}\right] \\
& =E\left[X_{T \wedge s} \mathbf{1}_{A}\right] .
\end{aligned}
$$

In other words, $E\left[X_{T \wedge t} \mid \mathscr{F}_{s}\right] \geq X_{T \wedge s}$ for all $0 \leq s \leq t$.

Solution of Exercise 3

Observe that for $t \in[0, T], 0 \leq\langle M\rangle_{t} \leq\langle M\rangle_{T}=0$, so $\langle M\rangle_{t} \equiv 0$. Recall that $M_{t}^{2}-\langle M\rangle_{t}$ is a martingale, we obtain

$$
\begin{aligned}
0 & =E\left[M_{t}^{2}-M_{0}^{2} \mid \mathscr{F}_{0}\right]=E\left[M_{t}^{2}-\left(E\left[M_{t} \mid \mathscr{F}_{0}\right]\right)^{2}\right] \\
& =E\left[\left(M_{t}-E\left[M_{t} \mid \mathscr{F}_{0}\right]\right)^{2} \mid \mathscr{F}_{0}\right] .
\end{aligned}
$$

Therefore, $M_{t}=E\left[M_{t} \mid \mathscr{F}_{0}\right]=M_{0}, P$-a.s.
Recall the definition of the quadratic variation

$$
\langle M\rangle_{T}=P-\lim _{\|\Pi\| \rightarrow 0} \sum_{k=1}^{m}\left|M_{t_{k}}-M_{t_{k-1}}\right|^{2} .
$$

Suppose that M is of bounded variation, then

$$
\begin{aligned}
\sum_{k=1}^{m}\left|M_{t_{k}}-M_{t_{k-1}}\right|^{2} & \leq \sup _{1 \leq k \leq m}\left|M_{t_{k}}-M_{t_{k-1}}\right| \sum_{k=1}^{m}\left|M_{t_{k}}-M_{t_{k-1}}\right| \\
& \leq V(M .) \sup _{1 \leq k \leq m}\left|M_{t_{k}}-M_{t_{k-1}}\right| .
\end{aligned}
$$

From the continuity of M, the right-hand side above vanishes almost surely as $\|\Pi\| \rightarrow$ 0 , so $\langle M\rangle_{T}=0$.

The conclusion fails when M is not continuous, for instance $M_{t}:=N_{t}-\lambda t$ where N_{t} is a Poisson process.

Solution of Exercise 4

For $t \in[0, T]$, the joint density of $\left(W_{t}, W_{T}\right)$ is

$$
f_{t, T}(s, y)=p(t ; 0, x) p(T-t ; x, y), \quad p(t ; x, y)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{(x-y)^{2}}{2 t}} .
$$

Therefore, the density of $B_{t}:=E\left[W_{t} \mid W_{T}=0\right]$ is given by

$$
\frac{p(t ; 0, x) p(T-t ; x, 0)}{\int_{\mathbb{R}} p(t ; 0, x) p(T-t ; x, 0) d x}=\frac{\sqrt{T}}{2 \pi \sqrt{t(T-t)}} \exp \left\{-\frac{T x^{2}}{2 t(T-t)}\right\} .
$$

So B_{t} is a Gaussian variable with mean 0 and variance $\frac{t(T-t)}{T}$.
Similarly as above, for $s<t \leq T$, the joint density of (B_{s}, B_{t}) is

$$
\frac{p(s ; 0, x) p(t-s ; x, y) p(T-t ; y, 0)}{\iint_{\mathbb{R}^{2}} p(s ; 0, x) p(t-s ; x, y) p(T-t ; y, 0) d x d y} .
$$

Notice that

$$
\begin{aligned}
p(s ; 0, x) p(t-s ; x, y) p(T-t ; y, 0) & =\frac{1}{(2 \pi)^{3 / 2} \sqrt{s(t-s)(T-t)}} \\
& \exp \left\{-\frac{\frac{T-t}{t}(t x-s y)^{2}+\frac{s(t-s) T}{t} y^{2}}{2 s(t-s)(T-t)}\right\} .
\end{aligned}
$$

So that $t B_{s}-s B_{t}$ and B_{t} are Gaussian and they are independent.

$$
E\left[B_{s} B_{t}\right]=E\left[B_{s}-\frac{s}{t} B_{t}\right] E\left[B_{t}\right]+\frac{s}{t} E\left[B_{t}^{2}\right]=\frac{s}{t} E\left[B_{t}^{2}\right]=s-\frac{s t}{T} .
$$

Considering also the case $s \geq t, \operatorname{cov}(s, t)=s \wedge t-\frac{s t}{T}$.

For the continuous modification, just note that for $s<t \leq T$,

$$
E\left[\left(B_{t}-B_{s}\right)^{2}\right]=\frac{t(T-t)}{T}+\frac{s(T-s)}{T}-2 s+\frac{2 s t}{T}=t-s-\frac{(t-s)^{2}}{T} .
$$

As $B_{t}-B_{s}$ ia Gaussian,

$$
E\left[\left(B_{t}-B_{s}\right)^{4}\right]=C\left[t-s-\frac{(t-s)^{2}}{T}\right]^{2} \leq C(t-s)^{2} .
$$

One can apply Kolmogorov continuity theorem.

