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All random variables are defined on some probability space (Q,.%,P).

Exercise 1 : Poisson Process

Let {N;, %;;t > 0} be a Poisson process of intensity A > 0.
1) Show that {X; := N, — At, Z#,;t > 0} is a martingale;
2) Show that {X? — A1, Z,;t > 0} is a martingale.

Exercise 2 : Submartingales

Let {X;, %#;;t > 0} be a right-continuous submartingale and T be a stopping
time. Show that {X7,,, %t > 0} is a submartingale.

Hint. Admit the following fact : X7y, is #ra-measurable, E[|X7,|] < oo.

Exercise 3 : Bounded variation martingales

Let {M,, %#,;;t € [0, T]} be a continuous, square integrable martingale.
Suppose that My = 0, P-a.s.

1) If (M)r =0, show that M, =0, Yt € [0,T], P-a.s.

2) A function f:[0,T] — R is said to be of bounded variation if

V(f):=  sup {Z £ (@) — f(tk_1)|} < oo,

I1: partition of [0,T'] =1

where [1={0=1 <...<t, =T} If Mis of bounded variation, P-a.s., show
that M; =0, VYt € [0,T], P-a.s.
3) Is the claim in Exercise 3.2 still true when M is not continuous ?

Exercise 4 : Brownian bridge

Let {W,, #V;t > 0} be a Wiener process (standard, 1-d Brownian motion,
Wy =0). Fix T > 0 and define B, := E[W,|Wr = 0], YVt € [0, T].

1) What is the distribution of B, for each ¢ € [0,T]?

2) Calculate cov(s, 1) := E[B;B,] for s, t € [0, T].

3) Show that {B;;t € [0,T]} has a (P-a.s.) continuous modification.



Solution of Exercise 1

For0<s<t,

E[X,| #] = Ns + EIN, — N;| ] - At

/l(t—s)
= N, +Z o A= Ne-As= X,

and
E[X? - At| F,] = EIN?| Z,] - 2UE[N,| F,] + 2*F - At

= N2+ E[(N, - N,)?*| S]—2/lsN + At(2As — At = 1)

/l(t
2 2
=N, + E k- =TT S>k' —2AsN, + At(RAs — At — 1)

:NS—lesNS+/12 s —As = X2 - As.

Solution of Exercise 2

Observe that X7, is Z#ra-measurable and T At < ¢, it is also .%,-measurable.
Given s < t, since T At, T A s are bounded stopping times, the optional sampling
theorem yields that E[|X7.] < oo and

E[XT/\I | <gsT/\s] = XT/\s-
For any A € .Z;

0 e Z#,, Y <s,

AN{T > siN{T As <t} =
{ i } {AU{T>S}€3}, >,

so AN{T > s} € Frs. Therefore,

E[Xrada] = E[Xradanr<s] + E[X7TAdAnT> 5]
= E[X7rasdanr<s] + E[X7adanrs>5)]
> E[X7aslanir<s] + E[IX7aslanrss)]
= E[X7as14].

In other words, E[X7x | %] = Xras for all 0 < s <t.

Solution of Exercise 3

Observe that for t € [0,T], 0 < (M), < (M) = 0, so (M); = 0. Recall that
M? — (M), is a martingale, we obtain

0= E|M} - M| | = E M} — (EIM|.F))]
= E|(M, - EIM|.F) | |
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Therefore, M, = E[M,|.%y] = M,, P-a.s.
Recall the definition of the quadratic variation

M)r =P — li M, - M, .
(Mr ”Hl”r30;| = M|

Suppose that M is of bounded variation, then

Z |Mlk - Ml‘k_] |2 < sup |Mlk - Mtk_1 | Z |Mtk - Mlk_1|
k=1

1<k<m =1
<V(M.) sup |M; —M,_,|

1<k<m

From the continuity of M, the right-hand side above vanishes almost surely as ||I1|| —
0, so (M)r = 0.

The conclusion fails when M is not continuous, for instance M, := N, — At where
N; is a Poisson process.

Solution of Exercise 4

For t € [0, T], the joint density of (W,, Wr) is

1 -2
fir(s,y) = p&; 0, x)p(T — t;x,y),  pt;x,y) = e
o V2t
Therefore, the density of B, := E[W,|Wr = 0] is given by
p(t;0,0)p(T —1;x,0) \NT o {_ Tx? }
pr(t; 0,)p(T —t;x,0)dx 2n (T —1) P 20T -1}~

. . . . . T—t
So B, is a Gaussian variable with mean 0 and variance %

Similarly as above, for s < ¢ < T, the joint density of (Bs, B,) is

p(s;0,x)pt — s;x,)p(T — 1;,0)
2 P(530, )p(t = 53.x,)p(T = 1, y, 0)dxdy

Notice that

1
2n)32s(t — s)(T — 1)

T— s(t—s
expq— .

p(s;0,x)p(t = s;x,y)p(T — 1;y,0) =

2s(t—s)(T —1)

So that tB; — sB; and B, are Gaussian and they are independent.

t
E[BB] = E [BS - ;B,] E[B,] + ;E[B,Z] - “;E[Bf] =5 57

Considering also the case s > t, cov(s, 1) = s At — %
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For the continuous modification, just note that for s <t < T,

_ _ o2
BB - By = =0 30 =9, 20 U9
T T T
As B, — B, ia Gaussian,
— 2P
E[(B, - B,)"] :C[t—s— =) ] < C(t - s)°.

One can apply Kolmogorov continuity theorem.



