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— All random variables are defined on some probability space (Ω,F ,P).
— The exercises are independent, take a look at every exercise before choosing

which ones to tackle first.
— The points for each exercise are given as an indication and may be subject to

changes. It is not necessary to do everything to obtain the maximal grade.

Exercise 1 : Random walks on N, ∼ 10pts

We consider a continuous time random walk Xt on N, jumping from x to
x + 1 at rate p ∈]0, 1[ for x ∈ N, and jumps at rate q := 1 − p from x to x − 1
for x ∈ N \ {0}.
1) Write down the intensity matrix for this Markov process, and give its
graphic representation. What are the communicating classes for this
process ?
2) We are interested in the stationary states for the Markov process.
Assume that Xt admits a stationary probability measure, denoted µ.

(i) What is the support of µ ? Justify that pµ(0) = qµ(1) and for any
x = {1, 2, . . .}

p(µ(x − 1) − µ(x)) = q(µ(x) − µ(x + 1)).

3) In the three cases below, determine whether there exists a reversible
state, a stationary state, and if so, define it. Interpret the result in terms of
the long-time behavior of (Xt)t≥0.

(i) p = 1/2 (ii) p > 1/2 (iii) p < 1/2.

4) For k ∈ N, we denote by Pk the distribution of (Xt)t≥0 started from X0 = k,
and Ek the corresponding expectation. We define Tk the first time Xt hits k.
Fix K ∈ N, and n ∈ N, compute

gn = Pn(TK ≤ T0).

Hint : find an equation satisfied by gn.
5) We now assume that p = 1. What are the communicating classes ? For
X0 = 0, what is the distribution of the process (Xt)t≥0 ?
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Solution :
1)

L =



−p p
q −p − q p (0)

q −p − q . . .

(0) . . .
. . .


Since p is different from 0 and 1, the only communicating class is N.
2) The support of µ is N. For any function f , we must have in matrix form
Eµ(L f ) = µL f = 0 (µ being a row vector) by definition, so that by choosing f (y) = 1y=0

we obtain the result. The second identity is obtained by choosing f (y) = 1y=x.
3) (i) If p = 1/2, the random walk is symmetric, and therefore far from the
origin, it should have the same probability to be everywhere, so that the latter
must be 0. There is no reversible probability measure, and the only stationary
measure is 0. Indeed, the previous identity yields that the discrete laplacian of µ is
0, so that µ must be linear. The only linear function with bounded integral over N
is 0.

(ii) If p is larger than 1/2, there is once again no reversible probability
measure, since the only reversible measure is identically 0. Since the random walk
drifts right, the random walker escapes to infinity, and the unique stationary measure
is also identically 0. To prove the latter, write gx = µ(x+1)−µ(x) the discrete gradient
of µ, the last identity yields for x ≥ 0

pgx−1 = qgx ⇒ gx =

(
p
q

)x

g0.

In particular,

µx = µ0 +

x−1∑
y=0

gy = µ0 + g0
1 − (p/q)x

1 − p/q

µx diverges except if g0 = 0, but then µ is constant and must be 0.
(iii) Finally, if p < q, there is a reversible measure, which is then also statio-

nary, and is given by pµx = qµx+1, so that

µx = µ0(p/q)x.

Since µ must be a probability measure, we find µ0 = 1 − p/q.
4) Clearly gK = 1, and g0 = 0. By Markov property,

gk = qgk+1 + pgk−1,

so that p
q

(gk − gk−1) = gk+1 − gk.

Let hk = gk+1 − gk, we obtain hk = h0(p/q)k, therefore

gk = g0 +

k−1∑
n=0

hn = h0
1 − (p/q)k

1 − p/q
.
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Since gK = 1, we obtain

gk =
1 − (p/q)k

1 − (p/q)K .

5) If p = 1, no state is accessible from a larger state, so that the communicating
classes are the {x}, for every x ∈ N. Xt increases by one at rate one, so that (Xt)t≥0 is
a rate 1 Poisson process. □

Exercise 2 : LDP for exponential and Poisson variables, ∼ 10pts

1) We consider first an i.i.d. sequence of Poisson variables Pk ∼ Poi(λ).
(i) Compute the log-MGF ΛP(t) of P1.
(ii) After justifying its existence, compute depending on the value of

x ∈ R
lim
n→∞

1
n

logP

 n∑
k=1

Pk ≥ nx

 .
2) We now consider an i.i.d. sequence of exponential variables Ek ∼ Exp(λ).

(i) Compute the log-MGF ΛE(t) of E1.
(ii) After justifying its existence, compute for any x ∈ R

lim
n→∞

1
n

logP

 n∑
k=1

Ek ≥ nx

 .
3) (i) Considering a rate λ Poisson process, show that for any n ∈ N,
t > 0,

P (Poi(λt) ≥ n) = P

 n∑
k=1

Ek ≤ t

 .
(ii) For x > 0, define Px ∼ Poi(λx), justify that for any x > 0,

Λ⋆Px(1) = xΛ⋆P(1/x).

Deduce from the previous questions an identity between the Legendre trans-
forms Λ⋆P and Λ⋆E of Poisson and exponential variables, and verify it on the
answers to questions 1) and 2).

Solution :
1) (i) We compute for t ∈ R

logE(etP1) = log

∑
k≥0

(etλ)k

k!
e−λ

 = λ(et − 1).

(ii) The log-MGF is finite everywhere, we can apply Cramér’s theorem once
we have computed its Legendre transform.

Λ⋆P(x) = sup
t
{xt − λ(et − 1)}.
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To compute the latter, derive in t, to obtain for x > 0

xt =
d
dt

[λ(et − 1)] = λet ⇒ tx = log(x/λ),

so that, i.e.
Λ⋆P(x) = x log(x/λ) + λ − x.

for x ≥ 0, and +∞ otherwise, with the convention 0 log 0 = 0. By Cramér’s theorem,
we therefore have for any x > λ

lim
n→∞

1
n

logP

 n∑
k=1

Pk ≥ nx

 =

−Λ⋆P(x) for x > λ = E(P1)
1/2 by CLT for x = λ
0 for x < λ

2) Similarly,

Λ⋆E(t) := logE(etE1) = log
∫

x≥0
λe−λx+txdx =

+∞ for t ≥ λ
log λ

λ−t for t < λ
.

(i) Once again, for positive λ, the log-MGF is finite around 0, so that we can
apply Cramér’s theorem once we compute the Legendre transform. we find

xt =
d
dt
Λ⋆E(t) =

1
λ − t

⇒ tx = λ −
1
x
,

so that
Λ⋆E(x) = λx − 1 − log(λx) for x ≥ 0,

and Λ⋆E(x) = +∞ otherwise. Once again, By Cramér’s theorem, we obtain

lim
n→∞

1
n

logP

 n∑
k=1

Ek ≥ nx

 =

−Λ⋆E(x) for x > 1/λ = E(E1)
1/2 by CLT for x = 1/λ
0 for x < 1/λ

3) (i) A Poisson process increases by 1 at rate Λ, so that letting τk ∼ Exp(λ) be
its holding times, we can rewrite

P (Poi(λt) ≥ n) = P

 n−1∑
k=0

τk ≤ t

 .
Denoting Ek = τk−1, which are i.i.d. Exp(λ), proves the identity.

(ii) We define t = xn, and note that in distribution, Poi(λxn) =
∑n

k=1 P′k where
Px

k ∼ Poi(λx), therefore

P

1
n

n∑
k=1

Px
k ≥ 1

 = P 1
n

n∑
k=1

Ek ≤ x


therefore

1
n

logP

1
n

n∑
k=1

Px
k ≥ 1

 = 1
n

logP

1
n

n∑
k=1

Ek ≤ x

 ,
so that for x > λ, 1/x < 1/λ, by Cramér’s Theorem,

Λ⋆Px(1) = xΛ⋆P(1/x) = Λ⋆E(x).

The same is true for x < λ. □
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Exercise 3 : Continuity and σ-algebras, ∼ 6pts

Let X = {Xt; t ≥ 0} be a real-valued stochastic process defined on some proba-
bility space (Ω,F , P) and {F X

t ; t ≥ 0} be the natural filtration of X. Show the
followings.

1. If X is left-continuous, then {F X
t } is left-continuous.

2. If X is right-continuous and τ := inf{t ≥ 0; Xt > 1}, then

{τ < t} ∈ F X
t , ∀ t ≥ 0.

Hint. Recall that the natural filtration is defined as

F X
t := σ(Xs; s ∈ [0, t]), ∀ t ≥ 0.

Solution :

1) Fix some arbitrary t ≥ 0. It suffices to show that

F X
t− := σ

( ∪
0≤s<t

F X
s

)
= F X

t .

Observe that F X
t− ⊆ F X

t is straightforward. On the other hand,{
Xt− 1

n
≤ x

}
∈ F X

t− 1
n
⊆ F X

t−, ∀ x ∈ R, n ∈ N+,

so Xt− 1
n

is F X
t−-measurable. Since t 7→ Xt is left-continuous,

Xt = lim
n→∞

Xt− 1
n

is F X
t−-measurable.

Therefore, F X
t ⊆ F X

t− and the equality follows.

2) By the definition of τ,

{τ < t} =
∪

s∈[0,t)
{Xs > 1}.

Denote by Q the set of rational numbers. We show that∪
s∈[0,t)
{Xs > 1} =

∪
s∈[0,t)∩Q

{Xs > 1}.

Indeed, suppose that Xs > 1 for some s ∈ [0, t), then ∃ sn ∈ Q such that s < sn < t
and limn→∞ sn = s. Since s 7→ Xs is right-continuous,

lim
n→∞

Xsn = Xs > 1.

Then, ∃ sufficiently large n such that Xsn > 1. Therefore,∪
s∈[0,t)∩Q

{Xs > 1} ⊆
∪

s∈[0,t)
{Xs > 1} ⊆

∪
s∈[0,t)∩Q

{Xs > 1}.
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The equality then follows. As each {Xs > 1} ∈ F X
s ⊆ F X

t ,

{τ < t} =
∪

s∈[0,t)∩Q
{Xs > 1} ∈ F X

t .

□

Exercise 4 Reflected Brownian motion, ∼ 6pts

Let {Bt; t ≥ 0} be a standard, one-dimensional Brownian motion such that
B0 = 0.

1. For n ∈ N+ and 0 < t1 < . . . < tn, compute the joint probability density
function of (Bt1 , . . . , Btn).

2. Define {Wt; t ≥ 0} by reflecting Bt at −1 :

Wt(ω) :=

Bt(ω), if Bt(ω) ≥ −1,
−2 − Bt(ω), if Bt(ω) < −1.

Compute the probability density function of Wt.

Solution :

1) For (a1, . . . , an) ∈ Rn denote

A =
{
(x1, . . . , xn) ∈ Rn; x j < a j,∀ j = 1, . . . , n

}
.

Fix x0 = 0 and define the map Φ : Rn → Rn by

Φ(x1, . . . , xn) = (x1 − x0, . . . , xn − xn−1),

The Jacobian determinant |detD| = 1, where

D =


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...
...
...

...
0 0 0 . . . 1


Let t0 = 0. By the definition of Brownian motion,

P
(
(Bt1 , . . . , Btn) ∈ A

)
= P

(
Φ(Bt1 , . . . , Btn) ∈ Φ(A)

)
=

∫
Φ(A)

n∏
j=1

p(t j − t j−1; y j)dy1 . . . dyn, p(t; y) =
1
√

2πt
e−

y2
2t .

Applying the change of variables (y1, . . . , yn) = Φ(x1, . . . , xn),

P
(
Bt1 < a1, . . . , Btn < an

)
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=

∫
A

n∏
j=1

p(t j − t j−1; x j − x j−1)|detD| dx1 . . . dxn,

Recalling that |detD| = 1, the joint probability density function is
n∏

j=1

1√
2π(t j − t j−1)

exp
{
−

(x j − x j−1)2

2(t j − t j−1)

}
.

2) For any [a, b] ⊆ [−1,∞),

P
(
Wt ∈ [a, b]

)
= P

(
Bt ∈ [a, b] ∪ [−2 − b,−2 − a]

)
=

1
√

2πt

(∫ b

a
+

∫ −2−a

−2−b

)
e−

x2
2t dx

=
1
√

2πt

∫ b

a

[
e−

x2
2t + e−

(x+2)2
2t

]
dx.

Hence the probability density function of Wt is

f (x) =
1{x≥−1}√

2πt

(
exp

{
− x2

2t

}
+ exp

{
− (x + 2)2

2t

})
.

□
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