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Preliminary
A measurable space is a set Ω equipped with a σ‑algebra F . A probability

measure on Ω is a nonnegative, countably additive function P : F → [0,∞) such
that P(Ω) = 1. The triple (Ω,F ,P) is called a probability space.
NOTATION: Given a topological space (T,T ), the Borel σ‑algebra B(T,T ) (often
B(T ) for short) is the σ‑algebra generated by all open sets in T . When we mention
[0,∞), [a, b] and Rd, they are always equipped with the Borel‑σ‑algebras.

A random variable X is a measurable function X : (Ω,F ) → Rd. When d > 1,
X is often called a random vector. The (push‑forward) distribution of X is the
probability measure PX on Rd de ined as

PX(A) := P({ω; X(ω) ∈ A}), ∀ A ∈ B(Rd).

Given a measurable function f : Rd → R, the expectation is de ined as

E[ f (X)] :=
∫
Ω

f (X)dP =
∫
Rd

f dPX.

For p > 0, we denote X ∈ Lp(P) if E[|X|p] < ∞. In particular, X ∈ L1(P) is called
integrable and X ∈ L2(P) is called square integrable.

Given random variables {Xn; n ≥ 1} and X, we say Xn converges to X in proba‑
bility if

lim
n→∞
P
({ω; |Xn(ω) − X(ω)| > δ}) = 0, ∀ δ > 0.

We say Xn converges to X almost surely (a.s. for short) if

P
({
ω; lim

n→∞
Xn(ω) = X(ω)

})
= 1.

Suppose that X is integrable and G ⊆ F is a sub‑σ‑algebra of F . The condi‑
tional expectation of X given G is a G ‑measurable function Y such that

E[Y1A] = E[X1A], ∀A ∈ G .

We denote Y = E[X |G ]. Observe that if X is G ‑measurable, then E[X |G ] = X.
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1 Stochastic process
Throughout this section, let I = [0,∞) or [a, b] for some 0 ≤ a < b.∣∣∣∣De inition 1.1: Stochastic process ⋆

A stochastic process X = {Xt; t ∈ I} is a family of random variables Xt de ined
on a common probability space (Ω,F ,P).

REMARK: The element t ∈ I is interpreted as time.
REMARK: The index set I could also be multi‑dimensional. For example, for a
d‑dimensional manifold M, X = {Xx; x ∈ M} is called a random iled.
REMARK: A stochastic process X can be viewed as the map

I ×Ω 3 (t, ω) 7→ Xt(ω) ∈
(
Rd,B(Rd)

)
.

X is called measurable if this map is measurable with respect to the product σ‑
algebra B(I) ⊗F on I ×Ω. All the processes appearing in this note are measurable
processes.

1.1 Sample paths∣∣∣∣De inition 1.2: Sample path ⋆

For any ω ∈ Ω, the function I 3 t 7→ Xt(ω) is called a sample path (trajectory,
realisation) of the process X.

REMARK: We are interested in the properties of the sample paths, e.g., (usually
P‑a.s.) continuity and differentiability.

EXAMPLE: Let T1, T2, ... be a sequence of independent, identically distributed (i.i.d.)
random variables with exponential distribution P(Ti ∈ [0, t]) = 1 − e−t. Let ξ1, ξ2, ...
be a sequence of i.i.d. random variables with Bernoulli distribution P(ξi = ±1) = 1

2 ,
independent of Ti’s. De ine the stochastic process {Xt; t ∈ [0,∞)} by

X0 = 0, Xt =

n(t)∑
i=1

ξi, n(t) := sup
n≥1

 n∑
i=1

Ti ≤ t

 .
It is not hard to verify that the sample paths t 7→ Xt are right‑continuous with left
limit exists everywhere (denoted as RCLL or càdlàg paths for short).

Ti is interpreted as the time interval between the (i − 1)‑th and i‑th ring of a
random clock. A marker is placed at the origin of Z at time t = 0. Each time the
clock rings, the marker is moved to its left or right neighbour according to the
result of a fair coin tossing. The stochastic process X = {Xt; t ∈ [0,∞)} records the
location of the marker and is called a random walk.
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Suppose that {Xt, t ∈ I} and {Yt; t ∈ I} are two stochastic processes de ined on
the same probability space (Ω,F ,P).∣∣∣∣De inition 1.3: Indistinguishable processes & modi ication

X and Y are called indistinguishable if they have a.s. the same sample paths:

P
({ω ∈ Ω; Xt(ω) = Yt(ω),∀ t ∈ I}) = 1; (1.1)

Y is called a modi ication (or a version) of X if

P({ω ∈ Ω; Xt(ω) = Yt(ω)}) = 1, ∀ t ∈ I.

If two stochastic processes are indistinguishable, they are apparently modi i‑
cations of each other. The inverse is not true.
EXAMPLE: Let T be a random variable with exponential distribution P(0 ≤ T <
t) = 1 − e−t. Consider two stochastic processes:

{Xt := 0; t ≥ 0} and {Yt := 1{t=T }; t ≥ 0}.

Y is a modi ication of X since P(Xt = Yt) = P(T , t) = 1 for all t ∈ R+. However,
they are not indistinguishable: P(Xt = Yt;∀ t ∈ R+) = P(T = ∞) = 0.

EXAMPLE: De ine Y = {Yt; t ∈ [0,∞) by replacing n(t) in (1.1) with

n′(t) := sup
n≥1

 n∑
i=1

Ti < t

 , ∀ t ≥ 0.

Y is a modi ication of X, but with LCRL (left‑continuous with right limit exists
everywhere) sample paths.

Exercise 1

Suppose that Y is a modi ication of X and the sample paths of X and Y are
a.s. right‑continuous. Then X and Y are indistinguishable.

Observe that each sample path of X is an element of

(Rd)I :=
{
all vector‑valued functions x : I → Rd

}
.

A subset of A ⊆ (Rd)I is called a cylinder set, if ∃m ∈ N, t1, ..., tn ∈ I, t1 < . . . < tm,
and A1, ..., Am ∈ B(Rd) such that

A = {x ∈ (Rd)I; x(t1) ∈ A1, . . . , x(tm) ∈ Am}.

Equip (Rd)I with the cylindrical σ‑algebra C , which is the smallest σ‑algebra that
contains all cylinder sets. Equivalently speaking, C is the smallest σ‑algebra that
makes all coordinate maps {Πt; t ∈ I} measurable, where

Πt(x) := x(t), ∀ x ∈ (Rd)I .
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A stochastic process X then can be viewed as a measurable map from (Ω,F ) to
((Rd)I ,C ). The corresponding distribution P is called the law of the X.
REMARK: Given a distribution P on ((Rd)I ,C ), de ine

(Ω,F ,P) := ((Rd)I ,C ,P), Xt := Πt, ∀ t ∈ I,

then the distribution of the stochastic process {Xt; t ∈ I} is P (exercise). Hence, we
can mention the distribution of a process without specifying the probability space
(Ω,F ,P) where it is de ined. Similarly, to construct a process, it suf ices to construct
a distribution on the sample path space.

Let I be the collection of all inite, ordered subsets of I:

I := {t̃ = (t1, . . . , tm); m ∈ N, {t1, . . . , tm} ∈ I}. (1.2)∣∣∣∣De inition 1.4: Finite‑dimensional distributions ⋆

For any t̃ ∈ I , t̃ = (t1, . . . , tm), let Pt̃ be the distribution on (Rd)m of the random
vector (Xt1 , . . . , Xtm). We call the collection{

Pt̃; t̃ ∈ I
}

the family of inite‑dimensional distributions (FDDs) associated to the stochas‑
tic process {Xt; t ∈ I} (or equivalently, associated to the corresponding distri‑
bution P).

REMARK: If Y is a modi ication of X, they have the same family of FDDs. The inverse
fails to hold. Indeed, two processes de ined on different probability spaces can have
the same family of FDDs.

The family of FDDs has the following properties:

(C1) for any permutation (i1, . . . , im) of (1, . . . ,m) and A1, ..., Am ∈ B(Rd),

P(t1,...,tm) (A1 × . . . × Am) = P(ti1 ,...,tim )
(
Ai1 × . . . × Aim

)
;

(C2) for any A ∈ B((Rd)m−1),

P(t1,...,tm)

(
A × Rd

)
= P(t1,...,tm−1)(A).

Indeed, any collection of distributions that satis ies these properties turns out to
be the family of FDDs associated to some stochastic process.∣∣∣∣De inition 1.5: Consistency

For t̃ = (t1, . . . , tm) ∈ I , let Qt̃ be a distribution on (Rd)m. The family {Qt̃; t̃ ∈ I }
is called consistent if (C1)–(C2) are satis ied.
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∣∣∣∣Theorem 1.1: Daniell–Kolmogorov existence theorem

Let {Qt̃; t ∈ I } be a consistent family. Then there is a probability measure Q
on ((Rd)I ,C ) (and thus a process X = {Xt; t ∈ I}) such that {Qt̃, t̃ ∈ I } is the
family of FDDs associated to Q (and X).

We sketch the brief idea of the proof.
Step 1. For any cylinder set C = {x; x(ti) ∈ Ai, i = 1, . . . ,m} where A1, ..., Am ∈

B(Rd) and t1, ..., tm ∈ I, t1 < . . . < tm, de ine

Q(C) := Q(t1,...,tm)(A1 × . . . × Am).

Step 2. Verify that Q is countably additive:

Q

⋃
n≥1

Cn

 =∑
n≥1

Q(Cn) for disjoint {Cn}∞n=1.

Step 3. Extend Q to a probability measure Q : C → [0, 1] (Carathéodory
extension theorem). Such extension is unique.

End of lecture 1

1.2 Filtration∣∣∣∣De inition 1.6: Filtration ⋆

Given (Ω,F ), {Ft; t ∈ I} is called a iltration if it is a nondecreasing family of
sub‑σ‑algebras of F , i.e., each Ft is a σ‑algebra on Ω and Ft ⊆ Ft′ ⊆ F for
all t, t′ ∈ I such that t < t′.

EXAMPLE: Given a stochastic process {Xt; t ∈ [0,∞)}, let1

F X
t := σ{Xs; 0 ≤ s ≤ t}, ∀ t ∈ [0,∞), (1.3)

then {F X
t } is a iltration. It is called the natural iltration (generated by X). Note

that by time t, an observer of X knows any A ∈ F X
t has occurred or not.

EXAMPLE: Given a iltration {Ft; t ∈ [0,∞)}, de ine

F∞ := σ
(⋃

t≥0

Ft

)
, N := {A ∈ F∞;P(A) = 0}.

Let F̄t := σ(Ft ∪N ), then {F̄t; t ∈ [0,∞)} forms a iltration.
1Recall that σ{Xs; 0 ≤ s ≤ t} is the σ‑algebra generated by the subsets X−1

s (A) for A ∈ B(Rd)
and s ∈ [0, t].
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∣∣∣∣De inition 1.7: Complete iltration

A iltration is complete if Ft = F̄t for all t (equivalently, if N ⊆ F0).

EXAMPLE: Given a iltration {Ft; t ∈ I}, de ine

Ft+ :=
⋂

s>t,s∈I
Fs, Ft− := σ

( ⋃
s<t,s∈I

Fs

)
.

Then {Ft±; t ∈ I} are also iltrations and Ft− ⊆ Ft ⊆ Ft+ for all t ∈ I.∣∣∣∣De inition 1.8: Continuity of iltration

A iltration is called right‑continuous if Ft = Ft+ for all t. It is called left‑
continuous if Ft = Ft− for all t.

REMARK: Observe that even a process has right‑continuous (even continuous) sam‑
ple paths, the corresponding natural iltration may fail to be right‑continuous. Let
Z be a real‑valued random variable and

Xt := max{t − 1, 0}Z, ∀t ∈ [0,∞).

X has continuous sample paths, while the corresponding natural iltration is not
right‑continuous if Z is not a constant: F X

t = {∅,Ω} for t ∈ [0, 1] and F X
t = σ(Z) for

t > 1.

REMARK: It is sometimes convenient to consider a iltration which is right‑continuous
and complete. Such a iltration is said to satisfy the usual conditions and is called
an augmented iltration.

Given any iltration {Ft; t ∈ I}, we can de ine

F̃t :=
⋂

s>t,s∈I
σ(N ∪Ft), ∀ t ∈ I,

then {F̃t; t ∈ I} becomes an augmented iltration.

Suppose that {Xt; t ∈ I} is a stochastic process de ined on some probability
space (Ω,F ,P) equipped with a iltration {Ft; t ∈ I}.∣∣∣∣De inition 1.9: Adapted process ⋆

X is adapted to {Ft; t ∈ I} ({Ft}‑adapted for short) if Xt is Ft‑measurable for
each t ∈ I. An adapted process is denoted by {Xt,Ft; t ∈ I}.

Some simple facts:

1. Any process X is adapted to the natural iltration {F X
t }.

2. If {Xt; Ft} is an adapted process, so is {Xt; Ft+}.
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3. If {Xt; Ft} is an adapted process and Y is a modi ication of X, then {Yt; F̄t} is
an adapted process.

Recall that a stochastic process is measurable if the map (t, ω) → Xt(ω) is
B(I) ⊗F ‑measurable.∣∣∣∣De inition 1.10: Progressively measurable

An adapted process {Xt,Ft; t ∈ I} is called progressively measurable if for all
t ∈ I, the following map is B([0, t] ∩ I) ⊗Ft‑measurable:

([0, t] ∩ I) ×Ω 3 (s, ω) 7→ Xs(ω) ∈
(
Rd,B(Rd)

)
.

Exercise 2

If {Xt,Ft} is an adapted process such that t 7→ Xt(ω) is right‑continuous for
all ω ∈ Ω, then it is progressively measurable.

1.3 Stopping time
Suppose that {Ft; t ∈ [0,∞)} is a iltration on (Ω,F ,P). A random time is a

random variable T : (Ω,F )→ [0,∞] that is allowed to take in inite value2.∣∣∣∣De inition 1.11: Stopping & optional time ⋆

A random time T is called an {Ft}‑stopping time if

{ω ∈ Ω; T (ω) ≤ t} ∈ Ft, ∀ t ∈ [0,∞).

T is called an {Ft}‑optional time if

{ω ∈ Ω; T (ω) < t} ∈ Ft, ∀ t ∈ [0,∞).

EXAMPLE: Every deterministic time t is a stopping time.

EXAMPLE: Given an adapted process {Xt,Ft; t ∈ [0,∞)} and Γ ∈ B(Rd), de ine the
hitting time

HΓ(ω) := inf{t ≥ 0; Xt(ω) ∈ Γ}. (1.4)
HΓ is an optional time if X is right‑continuous and Γ is open (exercise).

2There is an Ω0 ∈ F such that T = ∞ on Ω/Ω0 and T1Ω0 is a random variable.
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∣∣∣∣Proposition 1.2: Basic properties

Any stopping time is optional. A random time is an {Ft}‑optional time if and
only if it is an {Ft+}‑stopping time. In particular, optional time and stopping
time coincide for right‑continuous iltration.

PROOF: Suppose that T is an {Ft+}‑stopping time, then {T ≤ t − ε} ∈ F(t−ε)+ ⊆ Ft

for any ε > 0. Hence,

{T < t} =
⋃
n≥1

{
T ≤ t − 1

n

}
∈ Ft, ∀ t ∈ I,

so T is an {Ft}‑optional time.
Suppose that T is an {Ft}‑optional time, then{

T ≤ t − 1
n

}
∈ Ft+ 1

n
⊆ Ft+ 1

m
, ∀m ≤ n.

Therefore,
{T ≤ t} =

⋂
n≥m

{
T < t +

1
n

}
∈ Ft+ 1

m
, ∀m ≥ 1,

so {T ≤ t} ∈ ∪m≥1Ft+ 1
m
= Ft+ for all t ∈ I. Hence, T is an {Ft+}‑stopping time. □

Exercise 3

Suppose that S and T are {Ft}‑stopping times. Show that S ∧ T , S ∨ T and
S + T are {Ft}‑stopping times.

We shall answer two fundamental questions: what is observable up to a stop‑
ping time T , and can a process literally be stopped by T?∣∣∣∣De inition 1.12: Information prior to a stopping time ⋆

Given an {Ft}‑stopping time T , de ine

FT :=
{
A ∈ F ; A ∩ {ω; T (ω) ≤ t} ∈ Ft,∀ t ∈ [0,∞)

}
. (1.5)

Exercise 4

Verify the following:

1. FT forms a σ‑algebra;

2. T is FT ‑measurable;

3. if T ≡ t (deterministic time), then FT = Ft.
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∣∣∣∣Proposition 1.3: Monotonicity ⋆

For two {Ft}‑stopping times S and T , if S (ω) ≤ T (ω), ∀ω ∈ Ω, then FS ⊆ FT .
The same result holds if S ≤ T , P‑a.s. and {Ft} is complete.

PROOF: We shall prove a stronger result: ∀ A ∈ FS , A ∩ {S ≤ T } ∈ FT . Observe
that for any t ∈ [0,∞),(

A ∩ {S ≤ T }) ∩ {T ≤ t} = A ∩ {S ≤ t}︸       ︷︷       ︸
∈Ft

∩ {T ≤ t}︸ ︷︷ ︸
∈Ft

∩{S ∧ t ≤ T ∧ t}.

It suf ice to observe that both S ∧ t and T ∧ t are Ft‑measurable. □

Given a stochastic process X and a random time T , de ine

XT (ω) := XT (ω)(ω), ∀ω ∈ {T < ∞}. (1.6)

If T is inite, i.e., P(T < ∞) = 1, XT is almost everywhere de ined on Ω.

Exercise 5

Is XT a random variable on (Ω,F ,P)? (If X = {Xt} is measurable)

∣∣∣∣Proposition 1.4

Suppose that {Xt,Ft; t ∈ [0,∞)} is a progressively measurable process and T
is an {Ft}‑stopping time.

1. If T is inite, i.e., P(T < ∞) = 1, then XT is FT ‑measurable.

2. The process {XT∧t,Ft; t ∈ [0,∞)} is progressively measurable.

PROOF: We irst show the second statement. Fix an arbitrary t > 0. The map
[0, t] ×Ω 3 (s, ω) 7→ XT∧s(ω) is the composition of two maps:

φ1 : [0, t] ×Ω→ [0, t] ×Ω, (s, ω) 7→ (T (ω) ∧ s, ω);

φ2 : [0, t] ×Ω→ Rd, (s, ω) 7→ Xs(ω).

Both φ1 and φ2 are measurable maps, so is φ2 ◦ φ1.
For the irst statement, it suf ices to show for any A ∈ B(Rd) that

{XT ∈ A} ∩ {T ≤ t} ∈ Ft, ∀ t ∈ [0,∞).

Since {XT ∈ A} ∩ {T ≤ t} = {XT∧t ∈ A} ∩ {T ≤ t}, it directly follows from the second
statement. □
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∣∣∣∣De inition 1.13: Stopped process ⋆

The process {XT∧t,Ft; t ∈ [0,∞)} de ined above is called a stopped process.

EXAMPLE: Suppose that {Ft} is right‑continuous and X is an {Ft}‑adapted process
with right‑continuous sample paths. The hitting time

T := inf{t ≥ 0; |Xt(ω)| > M} (1.7)

is then a stopping time for any M > 0. Hence, {XT∧t,Ft} is an adapted process with
uniformly bounded sample paths. It is called a localization (or cut‑off ) of X.

End of lecture 2

1.4 Martingale
In this section, let {Xt,Ft; t ∈ [0,∞)} be an adapted process taking real values:

Mt ∈ R, ∀ t ∈ [0,∞).∣∣∣∣De inition 1.14: Martingale ⋆

{Xt,Ft} is called a martingale if E[|Xt|] < ∞, ∀ t ≥ 0 and

E[Xt |Fs] = Xs, ∀ 0 ≤ s ≤ t.

EXAMPLE: Given a random variable X and a iltration {Ft; t ∈ [0,∞)}. If E[|X|] < ∞,
Mt := E[X |Ft] is a martingale.∣∣∣∣De inition 1.15: Sub‑martingale & super‑martingale ⋆

{Xt,Ft} is a sub‑martingale (respectively, a super‑martingale) if E[|Xt|] < ∞
for each t and E[Xt |Fs] ≥ Ms (respectively, E[Mt |Fs] ≤ Ms), P‑a.s. for all
0 ≤ s ≤ t.

REMARK: The map t 7→ E[Xt] is nondecreasing (respectively, non‑increasing) if X is
a sub‑martingale (respectively, super‑martingale).

REMARK: If {Xt,Ft} is a sub‑martingale and t1 ≤ t2 ≤ . . . is a discrete sequence,
then {{Xtn ,Ftn; n = 1, 2, . . .} is a discrete‑time sub‑martingale. Similarly for super‑
martingale and martingale.

EXAMPLE: Let {Ti; i = 1, 2, . . .} be an i.i.d. sequence of exponential random times
with intensity λ > 0: P(Ti ∈ [0, t]) = 1 − e−λt, ∀t ≥ 0. De ine

S 0 := 0, S n := T1 + . . . + Tn. (1.8)
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S n can be viewed as the time of the n‑th happening of a random event. Consider
the counting process

Nt := max{n ≥ 0; S n ≤ t}, ∀ t ≥ 0.

Nt records the times of the events happened within [0, t]. Let Ft := F N
t be the

natural iltration associated with Nt. The process {Nt; Ft; t ∈ [0,∞)} is called a
Poisson process with density (or rate) λ.

Exercise 6

Show that

1. P(S Ns+1 > t |Fs) = e−λ(t−s), ∀ 0 ≤ s < t;

2. P(Nt − Ns = n |Fs) = e−λ(t−s) [λ(t−s)]n

n! , i.e., Nt − Ns is a Poisson random
variable with density λ(t − s) and is independent of Fs, ∀ 0 ≤ s < t;

3. {Nt; Ft} is a sub‑martingale and {Nt − λt; Ft} is a martingale.

Hint: suppose that we know there are n happenings up to time s, then all
events in Fs are determined by the values of T1, T2, ..., Tn. In mathematical
language, ∀ A ∈ Fs and n ≥ 1, ∃ Ã ∈ σ(T1, . . . , Tn) such that A ∩ {Ns = n} =
Ã ∩ {Ns = n}.

EXAMPLE: Given a martingale {Mt; Ft} and a convex function Φ : R→ R such that
E[|Φ(Mt)| < ∞], ∀ t ∈ [0,∞). By Jensen’s inequality, {Φ(Mt); Ft} is a sub‑martingale.
In particular, if E[M2

t ] < ∞, ∀ t ∈ [0,∞), then {M2
t ; Ft} is a sub‑martingale.∣∣∣∣Theorem 1.5: Doob’s optional sampling theorem ⋆

Let {Xt,Ft; t ∈ [0,∞)} be a right‑continuous sub‑martingale and S ≤ T be two
bounded stopping times: P(S ≤ T ≤ a) = 1 for some a ∈ R. Recall the random
variables XS , XT de ined in (1.6). Then E[|XT |] < ∞ and

E[XT |FS ] ≥ XS , P − a.s., (1.9)

where FS is de ined in De inition 1.12.

REMARK: If the sub‑martingale has a inal element X∞, i.e., an F∞‑measurable r. v.
such that Xt ≤ E[X∞|Ft] for all t, then (1.9) remains true for stopping times which
are not necessarily bounded.

PROOF: First, from Exercise 2 and Proposition 1.4, XS is FS ‑measurable and XT

is FT ‑measurable. Also recall Proposition 1.3 that FS ⊆ FT . To prove (1.9), we
exploit a discretization method as illustrated below.

Step 1. For k ≥ 1, de ine Tk(ω) = n2−k if T (ω) ∈ [(n − 1)2−k, n2−k). For every ω,
Tk(ω) ≥ Tk+1(ω) and limk→∞ Tk(ω) = T (ω). Similar de inition applies to S .

12



Exercise 7

Each Tk is a bounded stopping time taking values from {n2−k; n ∈ N}.

Step 2. {Xn2−k ,Fn2−k ; n ∈ N} is a discrete‑time martingale. Apply the discrete‑time
optional sampling theorem to conclude

E
[
XTk |FS k

] ≥ XS k , ∀k ≥ 1. (1.10)

Step 3. We need to take the limit k → ∞ in (1.10) to obtain (1.9). Since {Tk} is
a nondecreasing sequence such that Tk → T as k → ∞ and X has right‑continuous
path, XTk(ω) → T (ω) for each ω ∈ Ω and similarly for XS k . In order to guarantee
the same convergence in L1, we need the following lemma.∣∣∣∣Lemma 1.6: Uniform integrability ⋆

The family {XTk ; k ≥ 1} is uniformly integrable, i.e.,

lim
λ→∞

sup
k≥1
E

[
|XTk |1{|XTk |>λ}

]
= 0.

The same result holds for {XS k ; k ≥ 1}.

Indeed, suppose that Lemma 1.6 holds. Observe that∣∣∣XTk − XT

∣∣∣ ≤ ∣∣∣|XTk |1{|XTk |≤λ} − |XT |1{|XT |≤λ}
∣∣∣ + |XTk |1{|XTk |>λ} + |XT |1{|XT |>λ}.

For any ε > 0, by Lemma 1.6, ∃ λ > 0 such that E[|XTk |1{|XTk |>λ}] < ε for all k ≥ 1.
The monotonic convergence theorem then allows us to choose this λ suf iciently
large such that E[|XT |1{|XT |>λ}] < ε. For the irst term,

lim
k→∞
E

[∣∣∣|XTk |1{|XTk |≤λ} − |XT |1{|XT |≤λ}
∣∣∣] = 0,

by the bounded convergence theorem. Therefore, limk→∞ E[|XTk − XT |] = 0 and
similarly for XS k and XS . For A ∈ FS ⊆ FS k ,

E[XT 1A] = lim
k→∞
E[XTk1A] ≥ lim

k→∞
E[XS k1A] = E[XS 1A].

The inequality (1.9) then follows directly.
Step 4. We are left with the proof of Lemma 1.6. For x ∈ R, let x+ = x ∨ 0 and

x− = −(x ∧ 0). Since T < . . . ≤ Tk+1 ≤ Tk ≤ . . . ≤ T1 ≤ a + 1
2 and both X and X+ are

sub‑martingales,

P(|XTk | > λ) ≤ λ−1E[|XTk |] = λ−1E
[
2X+Tk

− XTk

]
≤ λ−1E

[
2X+T1

− XT

]
for any λ > 0. Therefore,

lim
λ→∞

sup
k≥1
P(XTk > λ) = lim

λ→∞
sup
k≥1
P(XTk < −λ) = 0. (1.11)
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As X+ is a sub‑martingale and Tk decreases in k,

lim
λ→∞

sup
k≥1
E

[
X+Tk

1{X+Tk
>λ}

]
≤ lim
λ→∞

sup
k≥1
E

[
X+T1

1{X+Tk
>λ}

]
= 0, (1.12)

where the limit follows from (1.11). On the other hand,

E
[
X−Tk

1{X−Tk
>λ}

]
= −E[XTk] + E

[
XTk1{XTk≥−λ}

]
≤ −E[XTk] + E

[
XTℓ1{XTk≥−λ}

]
= E[XTℓ] − E[XTk] − E

[
XTℓ1{XTk<−λ}

]
,

for any ℓ < k. Since {E[XTk]; k ≥ 1} forms a Cauchy sequence, given an arbitrary
ε > 0 one can choose some ℓ = ℓε such that

lim
λ→∞

sup
k>ℓ
E

[
X−Tk

1{X−Tk
>λ}

]
≤ ε + lim

λ→∞
sup
k>ℓ
E

[
|XT1 |1{XTk<−λ}

]
= ε.

Hence, limλ→∞ supk≥1 E[X−Tk
1{X−Tk

>λ}] ≤ ε and since ε is arbitrary,

lim
λ→∞

sup
k≥1
E

[
X−Tk

1{X−Tk
>λ}

]
= 0. (1.13)

Summing up (1.12) and (1.13), the desired estimate follows. □∣∣∣∣Corollary 1.7: stopped martingale ⋆

If {Mt,Ft} is a right‑continuous martingale and S , T are two bounded stop‑
ping times such that P(S ≤ T ) = 1, then E[MT |FS ] = MS , P‑a.s.

PROOF: Only to observe that ±M are both sub‑martingales. □

End of lecture 3

Let {Mt,Ft; t ∈ [0,∞) be a martingale such that
1. each Mt is square integrable: E[M2

t ] < ∞, ∀ t ∈ [0,∞),

2. the sample paths t 7→ Mt(ω) are continuous for all ω ∈ Ω.
Given t > 0, Π is called a partition of [0,T ] if Π = {t0, t1, . . . , tm} such that 0 = t0 ≤
t1 ≤ · · · ≤ tm = T . The norm of a partition Π is de ined as

‖Π‖ := max{|tk − tk−1|; k = 1, . . . ,m}.

For a continuous, square integrable martingale M, T ≥ 0 and a partition Π =
{t0, t1, . . . , tm} of [0,T ], let

V[0,T ](M,Π) :=
m∑

k=1

(Mtk − Mtk−1)
2.

Observe that V[0,T ](M,Π) is an integrable random variable.
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Exercise 8

Show that E[V[0,T ](M,Π)] = E[M2
T − M2

0] for any partition Π.

∣∣∣∣Theorem 1.8

For continuous, square integrable martingale M and any T ≥ 0, V[0,T ](M,Π)
converges in probability as ‖Π‖ → 0.

∣∣∣∣De inition 1.16: Quadratic variation ⋆

The quadratic variation of M is the process {〈M〉t,Ft; t ∈ [0,∞)} given by

〈M〉t := lim
‖Π‖→0

V[0,t](M,Π) (in probability), ∀ t ∈ [0,∞). (1.14)

We sketch the proof of Theorem 1.8 for the bounded case: ∃K ∈ (0,∞) such
that |Mt| ≤ K, ∀ t ∈ [0,∞), P‑a.s. In this case, the limit holds almost surely and in
L2. The general unbounded case is then solved by the localization argument (see
(1.7)) and the optional sampling theorem.
PROOF: Without loss of generality, we assume M0 = 0 and ix some T > 0. Take
any sequence of partitions {Π(n); n ≥ 1} such that ‖Π(n)‖ → 0, our aim is to show
that V[0,T ](M,Π(n)) forms a Cauchy sequence in L2, i.e.,

lim
n,n∗→∞

E
[∣∣∣V[0,T ](M,Π(n)) − V[0,T ](M,Π(n∗))

∣∣∣2] = 0.

Step 1. For any n, n∗ ≥ 1, let Π := Π(n) ∩ Π(n∗). Observe that

E
[∣∣∣V[0,T ](M,Π(n)) − V[0,T ](M,Π(n∗))

∣∣∣2]
≤ E

[∣∣∣V[0,T ](M,Π) − V[0,T ](M,Π(n))
∣∣∣2]

+ E
[∣∣∣V[0,T ](M,Π) − V[0,T ](M,Π(n∗))

∣∣∣2] .
Since Π(n), Π(n∗) ⊆ Π, it suf ices to prove that if Π ⊇ Π′,

lim
‖Π′‖→0

E
[∣∣∣V[0,T ](M,Π) − V[0,T ](M,Π′)

∣∣∣2] = 0,

Step 2. Fix any partition Π = {t0, t1, . . . , tm} of [0,T ] and let
n = n(t;Π) := max{k; tk ≤ t}, ∀ t ∈ [0,T ].

De ine a stochastic process {vt(M,Π); t ∈ [0,T ]} by

vt(M,Π) := (Mt − Mtn)
2 +

n∑
k=1

(Mtk − Mtk−1)
2,

where n = n(t;Π). Observe that v0(M,Π) ≡ 0, vT (M,Π) = V[0,T ](M,Π).
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Exercise 9

{M2
t − vt(M,Π),Ft; t ∈ [0,T ]} is a (bounded, continuous) martingale.

Given two partition Π and Π′ of [0,T ], by Exercise 9, {Xt; t ∈ [0,T ]} is a (bounded,
continuous) martingale, where

Xt := vt(M,Π) − vt(M,Π′)

=
(
M2

t − vt(M,Π′)
)
−

(
M2

t − vt(M,Π)
)
, ∀ t ∈ [0,T ].

Recall that XT = V[0,T ](M,Π) − V[0,T ](M,Π′). Exercise 8 then yields that

E
[∣∣∣V[0,T ](M,Π) − V[0,T ](M,Π′)

∣∣∣2] = E [
X2

T

]
= E[V[0,T ](X,Π)]. (1.15)

Step 3. Suppose that Π′ ⊆ Π = {0 = t0 < · · · < tm = T } and de ine

sk := max{s ∈ Π′; s ≤ tk}, ∀ k = 1, . . . ,m.

Notice that 0 = s0 ≤ · · · ≤ sm = T and {sk; k = 0, . . . ,m} gives all points in Π′ with
possible duplicates. Direct calculation then shows

V[0,T ](X,Π) = 4
m∑

k=1

(Mtk−1 − Msk−1)
2(Mtk − Mtk−1)

2.

Using Cauchy–Schwarz inequality,

E[V[0,T ](X,Π)] = 4E

 m∑
k=1

(Mtk−1 − Msk−1)
2(Mtk − Mtk−1)

2


≤ 4E

[
supk

{
(Mtk − Msk)

2
}∑m

k=1(Mtk − Mtk−1)
2
]

≤ 4
√
E

[
supk

{
(Mtk − Msk)

4
}]√
E

[
V2

[0,T ](M,Π)
]
.

(1.16)

Our last task is to estimate the L2‑norm of V2
[0,T ](M,Π).

Exercise 10

Recall that we are in the bounded case: ∃K ∈ (0,∞) such that |Mt| ≤ K, P‑a.s.
Show that E[V2

[0,T ](M,Π)] ≤ CK .

By (1.15), (1.16) and Exercise 10,

lim
‖Π′‖→0

E
[∣∣∣V[0,T ](M,Π) − V[0,T ](M,Π′)

∣∣∣2]
≤CK lim sup

‖Π′‖→0

√
E

[
supk

{
(Mtk − Msk)

4
}]

≤CK lim sup
σ→0

√
E

[
supt,t′∈[0,T ],|t−t′ |≤σ

{
(Mt − Mt′)4

}]
.
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Recall that {Mt; t ∈ [0,T ]} has bounded and continuous sample paths, the last line
is 0 due to bounded convergence theorem. □

REMARK: Observe that 〈M〉0 ≡ 0 and {〈M〉t; t ∈ [0,∞)} has continuous, nondecreas‑
ing sample paths.

The most important property of 〈M〉 is the following.∣∣∣∣Proposition 1.9: Martingale property ⋆

Given a continuous, square integrable martingale {Mt,Ft; t ∈ [0,∞)}, {M2
t −

〈M〉t,Ft; t ∈ [0,∞)} is a martingale. In particular, E[M2
t − M2

0] = E[〈M〉t].

PROOF: We still prove for the bounded case. Fix some 0 ≤ s < t. For a partition
Π = {0 = t0 ≤ · · · ≤ tm = t} of [0, t], de ine Πs = (Π∩ [0, s))∪{s}, i.e., Πs = {t0, . . . , tk, s},
where k is the largest subscript such that tk < s. Then Πs is a partition of [0, s]
and ‖Πs‖ ≤ ‖Π‖. From Exercise 9,

E
[
M2

t − V[0,t](M,Π)
∣∣∣Fs

]
= M2

s − V[0,s](M,Πs), P‑a.s.

Take the limit ‖Πs‖ ≤ ‖Π‖ → 0 and use the bounded convergence theorem (since
we are in the bounded case). □

REMARK: The de inition of quadratic variation can be extended to all right‑
continuous, square integrable martingales. Indeed, for such a martingale M, 〈M〉 is
de ined as a nondecreasing, natural process such that

〈M〉t = 0 and M2
t − 〈M〉t is a right‑continuous martingale.

The existence of 〈M〉t is guaranteed by the Doob–Mayer decomposition (see, e.g., I.
Karatzas, S. Shreve: Brownian motion and stochastic calculus, Section 1.4). By the
same theory, the choice of 〈M〉 is unique. Nevertheless, only for continuous M we
have (1.14), which justify the terminology “quadratic variation”.

Given two continuous, square integrable martingales {Mt,Ft} and {M̃,Ft}, ob‑
serve that for each t,

MtM̃t =
1
4

[(
Mt + M̃t

)2 − (
Mt − M̃t

)2
]
.

The following de inition becomes natural.∣∣∣∣De inition 1.17: Cross variation

The cross variation of two continuous, square integrable martingales {Mt,Ft}
and {M̃t,Ft} is de ined as the process 〈M, M̃〉 is given by

〈M, M̃〉t :=
1
4

(
〈M + M̃〉t − 〈M − M̃〉t

)
, ∀ t ∈ [0,∞).

When 〈M, M̃〉t ≡ 0, P‑a.s., we say M and M̃ are orthogonal.

17



Exercise 11

Let M, M̃ and M′ be continuous, square integrable martingales.

1. 〈M, αM̃ + βM′〉 = α〈M, M̃〉 + β〈M,M′〉, ∀α, β ∈ R;

2. {MtM̃t − 〈M, M̃〉t,Ft; t ∈ [0,∞)} is a martingale;

3. 〈M, M̃〉2t ≤ 〈M〉t〈M̃〉t.

End of lecture 4

1.5 Solutions to some exercises
Exercise 2

ANSWER : For each k = 1, 2, ..., de ine the process {X(k)
s ; s ∈ [0, t]} by

X(k)
s := X01{s = 0} +

2k∑
n=1

X nt
2k

1
{
s ∈

(
(n−1)t

2k ,
nt
2k

]}
, ∀ s ∈ [0, t].

The function φk(s, ω) := X(k)
s (ω) is a inite sum of B([0, t])⊗Ft‑measurable functions,

hence also B([0, t]) ⊗Ft‑measurable. On the other hand, since each sample path
of X is right‑continuous,

lim
k→∞
φk(s, ω) = Xs(ω), ∀ (s, ω) ∈ [0, t] ×Ω.

Therefore, (s, ω) 7→ Xs(ω) is B([0, t]) ⊗Ft‑measurable. □

Exercise 9
ANSWER : The boundedness and the continuity are straightforward. We hereby
prove the martingale property. Take s < t, it suf ices to verify that

E
[
M2

t − vt(M,Π) − (
M2

s − vs(M,Π)
) ∣∣∣Fs

]
= 0. (1.17)

Denote n = n(t;Π) and n′ = n(s;Π),

vt(M,Π) − vs(M,Π) = (Mt − Mtn)
2 +

n∑
k=n′+1

(Mtk − Mtk−1)
2 − (Ms − Mtn′ )

2.

For each n′ + 2 ≥ k ≥ n, Fs ⊆ Ftk−1 and

E
[
(Mtk − Mtk−1)

2
∣∣∣Fs

]
= E

[
E[(Mtk − Mtk−1)

2|Ftk−1]
∣∣∣Fs

]
= E

[
E[M2

tk − M2
tk−1
|Ftk−1]

∣∣∣Fs

]
= E

[
M2

tk − M2
tk−1

∣∣∣Fs

]
.
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Similarly, E[(Mt − Mtn)
2|Fs] = E[M2

t − M2
tn |Fs], so that

E[vt(M,Π) − vs(M,Π) |Fs]

=E
[
M2

t − M2
tn′+1
− (Ms − Mtn′ )

2 + (Mtn′+1 − Mtn′ )
2
∣∣∣Fs

]
=E

[
M2

t − M2
s + 2(Ms − Mtn′+1)Mtn′

∣∣∣Fs

]
.

Since tn′ ≤ s, E[(Ms − Mtn′+1)Mtn′ |Fs] = Mtn′E[(Ms − Mtn′+1)|Fs] = 0 and (1.17) then
follows. □

Exercise 10
ANSWER : Without loss of generality, assume M0 = 0. We begin with the following
decomposition of V2

[0,T ](M,Π):

m∑
k=1

(Mtk − Mtk−1)
4 + 2

m−1∑
k=1

m∑
ℓ=k+1

(Mtk − Mtk−1)
2(Mtℓ − Mtℓ−1)

2.

We check the expectation of each term. For the irst term, as |Mtk | ≤ K,

E

 m∑
k=1

(Mtk − Mtk−1)
4

 ≤ 4K2E

 m∑
k=1

(Mtk − Mtk−1)
2

 ≤ 4K4.

Notice that the last estimate follows from Exercise 8. Similarly,

E

 m∑
ℓ=k+1

(Mtk − Mtk−1)
2(Mtℓ − Mtℓ−1)

2


=E

(Mtk − Mtk−1)
2

m∑
ℓ=k+1

E
[
(Mtℓ − Mtℓ−1)

2
∣∣∣Ftk−1

]
=E

[
(Mtk − Mtk−1)

2(M2
tm − M2

tk)
]
≤ 2K2E

[
(Mtk − Mtk−1)

2
]
.

Summing up for k = 1, ..., m − 1,

E

m−1∑
k=1

m∑
ℓ=k+1

(Mtk − Mtk−1)
2(Mtℓ − Mtℓ−1)

2


≤ 2K2E

m−1∑
k=1

(Mtk − Mtk−1)
2

 ≤ 2K2E
[
M2

tm−1

]
≤ 2K4.

The upper bound then follows. □
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2 Brownianmotion
In this section, let (Ω,F ,P) be a probability space. All the stochastic processes

mentioned below are de ined on (Ω,F ,P).∣∣∣∣De inition 2.1: Brownian motion ⋆

A (one‑dimensional, standard) Brownian motion is an adapted process B =
{Bt,Ft; t ∈ [0,∞)} satisfying the following conditions:

(B1) for s < t, Bt − Bs is independent of Fs,

(B2) for s < t, Bt − Bs ∼ N(0, t − s),

(B3) the sample paths t 7→ Bt(ω) are continuous, P‑a.s.

We usually also require that P(B0 = 0) = 1.

REMARK: With some abuse of notations, we shall also speak of a Brownian motion
{Bt,Ft; t ∈ [0,T ]} for T > 0. It is de ined similarly.

REMARK: A stochastic process {Bt,Ft; t ∈ [0,∞)} is called a Brownian motion
starting from x ∈ R if Bt − x is a Brownian motion.

REMARK: It is possible that the iltration {Ft} in the de inition of a Brownian motion
B does not coincide with the natural iltration {F B

t }. Indeed, Ft can be larger than
F B

t , provided that (B1) holds. Nevertheless, {Bt,F B
t ; t ∈ [0,∞)} is still a Brownian

motion, so a Brownian motion is sometimes mentioned without the iltration being
speci ied.

REMARK: (B1) is equivalent to the following statement

(B1’) For any m ∈ N+ and t1 < t2 < . . . < tm, Bt2 − Bt1 , Bt3 − Bt2 , ..., Btm − Btm−1 are
mutually independent.

REMARK: (B1) and (B2) yield that Brownian motion has stationary, independent
increments: for t1, ..., tm ∈ [0,∞) and h > 0, if (ti, ti + h) do not overlap then {Bti+h −
Bti; i = 1, . . . ,m} forms an i.i.d. family of random variables. A stochastic process with
stationary, independent increments and P‑a.s. càdlàg (RCLL) sample paths is called
a Lévy process.

Exercise 12

Let B be a Brownian motion. Then

E[Bt] = 0, E[BsBt] = s ∧ t, ∀ s, t ∈ [0,∞). (2.1)
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∣∣∣∣De inition 2.2: Second de inition of Brownian motion

An adapted process {Bt,Ft; t ∈ [0,∞)} is a Brownian motion if and only if
all its inite‑dimensional distributions are normal, (2.1) holds and its sample
paths are continuous, P‑a.s.

∣∣∣∣Proposition 2.1

Let {Bt,Ft; t ∈ [0,∞)} be a Brownian motion. Then the following processes
are also Brownian motions:

1. {−Bt,Ft; t ∈ [0,∞)},

2. {Bh+t − Bh,Gt = σ(Bs; h ≤ s ≤ h + 1); t ∈ [0,∞)} for any h ≥ 0;

3. {c− 1
2 Bct,Gt = Fct; t ∈ [0,∞)} for any c > 0;

4. {BT − BT−t; Gt = σ(Bs,T − t ≤ s ≤ T ); t ∈ [0,T ]} for any T > 0;

5. {Xt,Gt; t ∈ [0,∞)}, where

X0 :=

0, t = 0,
tBt−1 , t > 0,

Gt :=

{∅,Ω}, t = 0,
σ(Bs; s ≥ t−1), t > 0.

(2.2)

Exercise 13

Show that {Xt,Gt; t ∈ [0,∞)} de ined by (2.2) is a Brownian motion. (Notice
that we need to show the continuity at t = 0.)

∣∣∣∣Proposition 2.2: Martingale property ⋆

Suppose that {Bt,Ft; t ∈ [0,∞)} is a Brownian motion. Then

1. {Bt,Ft} is a martingale;

2. {B2
t − t,Ft} is a martingale.

Exercise 14

Show that the quadratic variation 〈B〉t = t, ∀ t ∈ [0,∞).

ANSWER : It suf ices to show that

lim
‖Π‖→0

m∑
k=1

(Btk − Btk−1)
2 = t in probability,
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where Π is a partition 0 = t0 < t1 < . . . < tm = t. Observe that

E


∣∣∣∣∣∣∣

m∑
k=1

(Btk − Btk−1)
2 − (tk − tk−1)

∣∣∣∣∣∣∣
2 = m∑

k=1

E
[(

(Btk − Btk−1)
2 − (tk − tk−1)

)2
]

=

m∑
k=1

E
[
(Btk − Btk−1)

4
]
− (tk − tk−1)2

= 2
m∑

k=1

(tk − tk−1)2 ≤ 2‖Π‖t → 0,

as the norm of the partition ‖Π‖ → 0. □

From (B1) and (B2), one obtains the family of FDDs of a Brownian motion as
follows.∣∣∣∣Proposition 2.3: Finite‑dimensional distributions ⋆

For m ∈ N+ and 0 ≤ t1 < . . . < tm, the vector (Bt1 , . . . , Btm) ∈ Rm has the joint
density function given by

ft1,...,tm(x) =
m∏

k=1

p(tk − tk−1; xk−1, xk), ∀ x = (x1, . . . , xm) ∈ Rm,

where we ix t0 = 0, x0 = 0 and

p(t; x, y) :=
1
√

2πt
exp

{
− (x − y)2

2t

}
, ∀ t > 0, x, y ∈ R.

2.1 Construction of Brownian motion
We now prove the existence of Brownian motion by constructing a stochastic

process that satis ies (B1)–(B3) in De inition 2.1. The gross idea starts from the
family of FDDs obtained in Proposition 2.3. By virtue of Theorem 1.1, we can
extend it to a probability measure on (R[0,∞),C ) (and thus a stochastic process X).
Finally, we need to select a modi ication B of X with continuous sample paths.

First, recall the set of all inite, ordered subsets I of [0,∞) in (1.2). For
t̃ = {t1, . . . , tm} ∈ I and A ∈ B(Rm), de ine

Pt̃(A) :=
∫

A
ftn1 ,...,tnm

(x)dx,

where {n1, . . . , nm} is a rearrangement of {1, . . . ,m} such that 0 ≤ tn1 < . . . < tnm .

Exercise 15

Show that {Pt̃; t̃ ∈ I } is a consistent family (De inition 1.5).
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By Theorem 1.1, we obtain a probability measure P on (R[0,∞),C ), and thus a
process X, such that (B1) and (B2) in De inition 2.1 are satis ied. Our construction
would be completed, provided that X is continuous. A straightforward idea is to
prove that P is concentrated on continuous sample path space. However, the next
exercise shows that it fails to hold.

Exercise 16

Denote by C([0,∞)) the subset of R[0,∞) that consists of all continuous func‑
tions. Prove that C([0,∞)) < C . Indeed, the only subset of C([0,∞)) which
belongs to C is the empty set.

ANSWER : Let A be the class of all subsets Ω0 ∈ R[0,∞) that satisfy the following
condition: ∃ {tk; k ∈ N+}, such that{

f ∈ R[0,∞); f |{tk;k∈N+} = ω|{tk;k∈N+} for some ω ∈ Ω0
} ⊆ Ω0.

We can verify that:
1. any cylinder set { f ; ( f (s1), . . . , f (sm)) ∈ A} ∈ A ;

2. A forms a σ‑algebra.
Therefore, C ⊆ A . For any Ω0 ∈ A , if f ∈ Ω0, ω := f + 1{t∗} also belongs to Ω0,
provided that t∗ < {tk; k ∈ N+}. Since f and ω never be continuous simultaneously,
Ω0 is not a subset of C([0,∞)). □

To solve this problem, we will modify the constructed process Xt in a proper
way. Notice the following estimate.

Exercise 17

There is a constant C = Cn such that

E[|Xt − Xs|2n] ≤ C|t − s|n, ∀ t, s ∈ [0,∞). (2.3)

The next theorem helps to select a continuous modi ication.∣∣∣∣Theorem 2.4: Kolmogorov–Čentsov continuity theorem

Suppose that ∃α > 0, β > 0 and C < ∞, such that

E
[|Xt − Xs|α

] ≤ C|t − s|1+β, ∀ s, t ∈ [0,T ]. (2.4)

Then, there is a modi ication Y of X, such that for each γ ∈ (0, β/α),

P
{
ω ∈ Ω; |Yt(ω) − Ys(ω)| ≤ Cγ,T (ω)|t − s|γ,∀ s, t ∈ [0,T ]

}
= 1,

with some random variable Cγ,T = Cγ,T (ω). In particular, the sample paths of
Y are uniformly continuous on [0,T ], P‑a.s.
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REMARK: It is important that β has to be strictly positive. The Poisson process
(E[|Nt − Ns|] = λ|t − s|) gives a counterexample for β = 0.
REMARK: From (2.3) and Chebyshev’s inequality,

lim
t′→t
P(|Xt′ − Xt| ≥ ε) ≤ C lim

n→∞
ε−α|t′ − t|1+β = 0, ∀ ε > 0,

i.e., at any ixed t, limt′→t Xt′ = Xt in probability. Note that this is insuf icient to get
the global continuity of sample paths.

PROOF: Without loss of generality, we prove for T = 1. Fix some γ ∈ (0, β/α) and
de ine for each n ∈ N+ that

En :=
{
ω ∈ Ω;

∣∣∣X k+1
2n
− X k

2n

∣∣∣ ≥ 2−γn,∃ k = 0, . . . , 2n − 1
}
.

From (2.3) and we Chebyshev’s inequality,

P(En) ≤
2n−1∑
k=0

P
{∣∣∣X k+1

2n
− X k

2n

∣∣∣ ≥ 2−γn
}
≤ C2n 2−(1+β)n

2−γαn =
C

2(β−γα)n .

Hence, ∑∞n=1 P(En) < ∞. By Borel–Cantelli lemma,

P(E) = 0, where E = lim sup
n→∞

En :=
⋂
N∈N

⋃
n≥N

En.

In other words, we can ind a subset Ω∗ ⊆ Ω and a random integer N = N(ω) for
each ω ∈ Ω∗, such that

1. P(Ω∗) = 1;

2. for each ω ∈ Ω∗ and n > N(ω),∣∣∣X k+1
2n

(ω) − X k
2n

(ω)
∣∣∣ < 2−γn, ∀ k = 0, . . . , 2n − 1.

Let D := {k2−n; n ∈ N+, k = 0, . . . , 2n} be the set of dyadic rationals in [0, 1]. Some
triangle argument then yields that

|Xt(ω) − Xs(ω)| < C(ω)|t − s|γ, ∀ t, s ∈ D,

with C = C(ω) determined by N(ω) and γ.
Finally, we construct a process Y = {Yt; t ∈ [0, 1]} with uniformly continuous

sample paths by

Yt(ω) :=

limtn∈D,tn→t Xt(ω), if ω ∈ Ω∗,
0, if ω < Ω∗, ∀ t ∈ [0, 1].

For any t and D 3 tn → t, Xtn → Xt in probability and Xtn → Yt, P‑a.s., so P(Xt =

Yt) = 1. Hence, Y is a modi ication of X. □

From (2.3) and Theorem 2.4, for each T > 0 we de ine {Y (T )
t ; t ∈ [0,T ]} with

uniformly continuous sample paths. The next exercise extends the de inition to
[0,∞) and completes the construction of Brownian motion. Indeed, it provides a
stronger statement on the Höder continuity of the sample paths.
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Exercise 18

A function f : [0,∞) → R is called Hölder continuous with exponent γ, or
simply γ‑Hölder continuous, if

| f (t) − f (s)| ≤ C|t − s|γ, ∀ t, s ∈ [0,∞).

It is called locally γ‑Hölder continuous, if for any [a, b] ⊆ [0,∞),

| f (t) − f (s)| ≤ Ca,b|t − s|γ, ∀ t, s ∈ [a, b].

Show that {Xt; t ∈ [0,∞)} has a modi ication {Bt; t ∈ [0,∞)} with locally γ‑
Hölder continuous sample paths for any γ < 1

2 .

REMARK: The Hölder exponent ( 1
2 − ε) is optimal for Brownian motion.

ANSWER : Recall that for each T > 0, we obtained {Y (T )
t ; t ∈ [0,T ]} with γ‑Hölder

continuous sample paths, ∀ γ < 1
2 . Since Y (T ) is a modi ication of X,

P(ΩT ) = 1, ΩT :=
{
ω; Y (T )

t (ω) = Xt(ω),∀ t ∈ [0,T ] ∩ Q
}
.

Hence, we obtain a set Ω∗ := ∩T∈N+ΩT such that P(Ω∗) = 1 and for any two positive
integers T and T ′,

Y (T )
t (ω) = Y (T ′)

t (ω), ∀ω ∈ Ω∗,∀ t ∈ [0,T ∧ T ′] ∩ Q.

Noting that both Y (T ) and Y (T ′) are continuous on [0,T ∧ T ′], it leads to

Y (T )
t (ω) = Y (T ′)

t (ω), ∀ω ∈ Ω∗,∀ t ∈ [0,T ∧ T ′].

For ω ∈ Ω∗, de ine Bt(ω) := Y ([t]+1)
t (ω) where [t] stands for the greatest integer less

than or equal to t. For ω < Ω∗, de ine Bt(ω) := 0. □

2.2 The Brownian sample paths
Reading material: Probability: theory and examples, 5th edition, Sections 7.1 & 7.2,
Cambridge University Press., by R. Durrett.

Suppose that B = {Bt,Ft; t ∈ [0,∞)} is a Brownian motion. We call its sample
path t 7→ Bt(ω) a Brownian sample path or Brownian paths.∣∣∣∣Proposition 2.5: Nowhere Lipschitz or differentiable ⋆

Brownian sample paths are not Lipschitz‑continuous at any t ∈ [0,∞), P‑a.s.
Consequently, the Brownian sample paths are nowhere differentiable.

PROOF: Durrett, Theorem 7.1.6. □

25



Recall the natural iltration {F B
t ; t ∈ [0,∞)} generated by {Bt; t ∈ [0,∞)} and its

right‑continuous modi ication

F B
t+ := σ

⋂
s>t

F B
t

 , ∀ t ∈ [0,∞).

∣∣∣∣Proposition 2.6: Blumenthal’s 0‑1 law

F B
0+ is degenerated: ∀ A ∈ F B

0+, P(A) = 0 or 1.

PROOF: Durrett, Theorem 7.2.1 and 7.2.2. The proof exploits the Markov property,
which will be introduced in the following sections. □∣∣∣∣Proposition 2.7: 0‑1 law for the tail ield

Let Tt := σ(Bs; s ∈ [t,∞)) for t ∈ [0,∞). The tail σ‑ iled T := ∩t∈[0,∞)Tt is also
degenerated: ∀ A ∈ T , P(A) = 0 or 1.

PROOF: Durrett, Theorem 7.2.7. Direct consequence of Proposition 2.6 and the last
assertion of Proposition 2.1. □

The 0‑1 laws are widely used to prove some sample path properties. The
following is a typical example.∣∣∣∣Corollary 2.8

For P‑a.s. Brownian sample paths,

lim sup
t→∞

t−
1
2 Bt = +∞, lim inf

t→∞
t−

1
2 Bt = −∞.

End of lecture 5

2.3 Donsker’s theorem
Reading material: Probability: theory and examples, 5th edition, Sections 8.1 & 7.2,
Cambridge University Press., by R. Durrett.

We built the Brownian motion on the sample path space (R[0,∞),C ), i.e., the
space of all real‑valued functions on [0,∞) with the cylinder σ‑algebra. As the
Brownian samples are continuous, the “canonical” space for Brownian motion
should be C+ := C([0,∞)).

Recall that C+ is a complete, separable metric space under the metric

d( f , g) :=
∞∑

n=1

1
2n sup

t∈[0,n]

{| f (t) − g(t)| ∧ 1
}
, ∀ f , g ∈ C+.
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Let B(C+) be the Borel σ‑algebra generated by the open sets in the corresponding
topology. B(C+) coincides with the cylinder σ‑algebra on C+, i.e., the smallest
σ‑algebra containing all cylinder sets{

ω ∈ C+; (ω(t1), . . . , ω(tm)) ∈ A
}
,

where m ∈ N+, t1, ..., tm ∈ [0,∞), A ∈ B(Rm).
Let {Xi; i ∈ N+} be a sequence of i.i.d. random variables such that E[Xi] = 0,

E[X2
i ] = 1. De ine S 0 = 0, S n = S n−1+Xn for n ∈ N+. The central limit theorem yields

that (
√

n)−1S n converges weakly, as n→ ∞, to the standard normal distribution.
For each n ∈ N+, de ine

Yn
t :=

1
√

n
(
S [nt] + (nt − [nt])X[nt]+1

)
, ∀ t ∈ [0,∞),

where [t] stands for the greatest integer less than or equal to t. Observing that
t 7→ Yn

t (ω) is continuous, Yn can be viewed as a function de ined on Ω and taking
values from C+. Furthermore, the function is measurable:

Yn : (Ω,F ,P)→ (C+,B(C+)).

Denote by Qn the probability measure of Yn on (C+,B(C+)).∣∣∣∣Theorem 2.9: Donsker’s invariance principle

{Qn, n ∈ N+} converges weakly to a measure Q on (C+,B(C+)), such that the
coordinate mapping process {Wt,F W

t ; t ∈ [0,∞)} given by

Wt(ω) := ω(t), ∀ω ∈ C+,

is a Brownian motion.
∣∣∣∣De inition 2.3: Wiener measure

The probability measure Q on (C+,B(C+)) is called Wiener measure.

2.4 Gaussian process
Recall that a real‑valued random variable X is called a Gaussian variable with

center µ ∈ R and covariance σ2 > 0 if it has the density function

fX(x) =
1

√
2πσ2

exp
{
− (x − µ)2

2σ2

}
, ∀ x ∈ R.

We simply X ∼ N(µ, σ2). In particular, X is called a standard Gaussian variable
when µ = 0 and σ2 = 1.
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∣∣∣∣Proposition 2.10: Gaussian variable ⋆

Suppose that X ∼ N(µ, σ2) and Y ∼ N(µ∗, σ2
∗). Then

1. Normalisation σ−1(X − µ) ∼ N(0, 1);

2. For each n ∈ N, E[(X − µ)2n+1] = 0, E[(X − µ)2n] = (2n)!
2nn!σ

2n;

3. The characteristic function φX(r) := E[eirX] = exp{iµr − σ2r2

2 };

4. X and Y are independent if and only if they are uncorrelated: E[(X −
E[X])(Y − E[Y])] = 0;

5. If X and Y are independent, then X + Y ∼ N(µ + µ∗, σ2 + σ2
∗);

6. If X ∼ N(0, 1), then P(X ≥ a) ≤ 1√
2πa2

exp{− a2

2 } for a > 0.

Similarly, a Rd‑valued random variable X is called a Gaussian vector (multi‑
dimensional Gaussian variable) if there is an independent family of standard Gaus‑
sian variables {Y1, . . . , Yn}, a deterministic vector µ = (µ1, . . . , µd), and a matrix
Σ = (σ jk)d×n, such that

X = Σ


Y1
...

Yn

 +

µ1
...
µd

 =

σ11 . . . σ1n
...

...
σd1 . . . σdn



Y1
...

Yn

 +

µ1
...
µd

 .
The following observation is straightforward:

E[X] = µ, E
[
(X − µ)(X − µ)T

]
= ΣΣT := Γ.

Hence, we call Γ the covariance matrix and denote X ∼ N(µ,Γ).∣∣∣∣Proposition 2.11: Gaussian vector ⋆

Suppose that X ∼ N(µ,Γ). Then

1. Γ is a symmetric, positive semi‑de inite matrix;

2. When Γ is positive de inite (det Γ , 0), the density function of X is

fX(x) =
1√

(2π)d det Γ
exp

{
−1

2

〈
x − µ,Γ−1(x − µ)

〉}
, ∀ x ∈ Rd;

3. When Γ is singular (det Γ = 0), X is called degenerated and does not
have a density function.

REMARK: If constants are adopted as degenerated Gaussian variables (σ = 0), then
X = (X1, . . . , Xd) is a Gaussian vector if and only if for all (a1, . . . , ad) ∈ Rd, the linear
combination a1X1 + · · · + adXd is a Gaussian variable.
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∣∣∣∣De inition 2.4: Gaussian process ⋆

A stochastic process {Xt; t ∈ I} is called a Gaussian process if for all t1, ...,
tm ∈ I, (Xt1 , . . . , Xtm) is a Gaussian vector, i.e.,

a1Xt1 + a2Xt2 + · · · + amXtm

is a Gaussian variable (or constant) for all a = (a1, . . . , am) ∈ Rm.

EXAMPLE: Xt := cos(t)ξ1 + sin(t)ξ2 with independent Gaussian variables ξ1, ξ2.

EXAMPLE: The Brownian bridge {Xt := BT − T B1; t ∈ [0,T ]}, where {Bt; t ∈ [0,T ]} is
a Brownian motion. Observe that X0 = XT = 0.

Given a Gaussian process {Xt; t ∈ [0,∞)}, we de ine the expectation m : I → Rd

and the auto‑covariance C : I2 → Rd×d by

m(t) := E[Xt], C(t, s) := E
[
(Xt − µ(t))(Xs − µ(s))T

]
, ∀ t, s ∈ I.

REMARK: Note that the family of FDDs, and thus the law, of a Gaussian process X
is completely determined by m(·) and C(·, ·).
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3 Introduction to stochastic integration
We give here an introduction to stochastic integration. We refer to the following

book for a complete reference.

Reading material: Stochastic Integration and Differential Equations , by Philip E.
Protter.

The latter is an exhaustive reference, we give here a simple introduction to
stochastic integration using a more explicit, but limited, tool, namely the Wiener
integral.

3.1 Wiener integral
For T > 0, let f ∈ L2(0,T ). We construct the integration

∫ T

0
f (t)dBt where

(Bt,Ft; t ∈ [0,∞)) is a Brownian motion by the following steps.
Step 1. For f (t) = 1(a,b](t), 0 ≤ a < b ≤ T , it is nature to de ine the integration as

a random variable I( f ) : (Ω,F ,P)→ R by

I( f ) =
∫ T

0
f (t)dBt := Bb − Ba, ∀ω ∈ Ω.

Observe that I( f ) is “pathwisely” de ined and

E[I( f )] = 0, E[I2( f )] = b − a =
∫ T

0
f 2(t)dt.

This de inition can be easily extended to step functions with the form

f (t) = f01{0}(t) +
m∑

k=1

fk1((tk−1,tk](t), ∀ t ∈ [0,T ], (3.1)

where m ∈ N+, 0 = t0 < . . . < tm = T and fi ∈ R. De ine

I( f ) =
∫ T

0
f (t)dBt :=

m∑
k=1

(Btk − Btk−1) fi, ∀ω ∈ Ω.

Denote by E = E([0,T ]) the class of all step functions in (3.1). Recall that L2(P)
stands for all square integrable random variables on (Ω,F ,P).∣∣∣∣Proposition 3.1

I( f ) de ined above satis ies the following conditions.
1. I is linear: ∀α, β ∈ R and f , g ∈ E,

I(α f + βg) = αI( f ) + βI(g).

2. I( f ) is a Gaussian variable and E[I( f )] = 0. Furthermore, I : E → L2(P)
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is an isometry if E is embedded into L2([0,T ]):

‖I( f )‖L2(P) = ‖ f ‖L2([0,T ]), ∀ f ∈ E.

PROOF: The irst assertion is trivial. For the second one, only to see that

E[I2( f )] =
m∑

k=1

f 2
i E

[
(Btk − Btk−1)

2
]
=

m∑
k=1

(tk − tk−1) f 2
i =

∫ T

0
f 2(t)dt

for each step function f . □

Exercise 19

The class of step functions E is dense in L2([0,T ]).

Given an f ∈ L2([0,T ]), pick a sequence fn ∈ E such that ‖ fn − f ‖L2([0,T ]) → 0 as
n→ ∞. The argument above leads to the natural de inition

I( f ) =
∫ T

0
f (t)dBt := lim

n→∞
I( fn),

where the limit is in L2(P). It is called the Wiener integral of f (with respect to
the Brownian motion B).
REMARK: For each f ∈ L2([0,T ]), I( f ) is a Gaussian variable, E[I( f )] = 0 and
I : L2([0,T ])→ L2(P) inherits the linearity and the isometric formula.

REMARK: Using 〈B〉t = t, the isometric formula can be written as

E[I2( f )] =
∫ T

0
f 2(t)d〈B〉t.

REMARK: For f ∈ L2([0,T ]) and t ∈ [0,T ], de ine

It( f ) =
∫ t

0
f (s)dBs :=

∫ T

0
f (s)1[0,t](s)ds.

{It( f ),Ft; t ∈ [0,T ]} is a continuous, square integrable martingale,

〈
I( f )

〉
t =

∫ t

0
f 2(s)d〈B〉s, ∀ t ∈ [0,T ].

It is a special case of the Itô isometry. Similarly,

〈
I( f ), I(g)

〉
t =

∫ t

0
f (s)g(s)d〈B〉s, ∀ t ∈ [0,T ],

for f , g ∈ L2([0,T ]).
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3.2 Examples of stochastic differential equation
Suppose that {Bt,Ft; t ∈ [0,∞)} is a Brownian motion de ined on (Ω,F ,P).

With the de inition of Wiener integral, we are allowed to consider some ordinary
differential equations including dBt.

Formally consider a stochastic differential equation
dXt = b(t, Xt)dt + σ(t)dBt, X0 = ξ, (3.2)

where b : R2 → R, σ : R → R are some nice deterministic functions and ξ is a
random variable on (Ω,F ,P). The solution is interpreted as a stochastic process
{Xt; t ≥ 0} such that

Xt = X0 +

∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s)dBs, ∀ t ∈ [0,∞).

Observe that the irst integral in the right‑hand side above is de ined for each
sample path ω ∈ Ω, while the second one should be viewed as the Wiener integral,
provided that

∫ t

0
σ2(s)ds < ∞ for all t ∈ [0,∞).∣∣∣∣Theorem 3.2: Existence and uniqueness of solution

Assume that b is uniformly Lipschitz continuous and has linear growth: ∃K >
0, such that

|b(t, x) − b(t, y)| ≤ K|x − y|, |b(t, x)| ≤ K(1 + |x|),

for all t ≥ 0 and x, y ∈ R. Also let ξ be a square integrable random variable
that is independent of F B

∞. Then, (3.2) has a solution {Xt; t ≥ 0} that is P‑a.s.
continuous, E[

∫ t

0
|Xs|2ds] < ∞ for all t > 0. Furthermore, Xt is {F ξ,B

t }‑adapted,
where

F ξ,B
t := σ(ξ, Bs; 0 ≤ s ≤ t), ∀ t ∈ [0,∞).

The solution is unique in indistinguishable sense.

EXAMPLE: For deterministic constants λ, σ > 0 and ξ ∈ R,
dXt = −λXtdt + σdBt, X0 = ξ,

has the explicit solution

Xt = e−λt
(
ξ + σ

∫ t

0
eλsdBs

)
, ∀ t ∈ [0,∞).

EXAMPLE: The Brownian bridge {Xt; t ∈ [0, 1]} is the solution to

dXt = −
Xt

1 − t
dt + dBt, X0 = 0.

End of lecture 6
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4 Markov processes
Reading material: Markov Processes, by James R. Kirkwood.

In this section, we introduce the notion of Markov processes, a very useful type
of stochastic process that can be used to model a wide variety of objects in many
different ields (e.g. biology, economics, physics). We irst give a quick reminder on
Markov chains, which are discrete time versions of Markov processes. Throughout
this section, we ix a ( inite or) countable set E, to be the state space for our ran‑
dom variables, and a ixed probability space (Ω,F ,P) on which they are all de ined.

4.1 Discrete time Markov chains
4.1.1 Transition matrix, Markov chain

We start by a brief reminder on Markov chains.∣∣∣∣De inition 4.1: Markov chain, transition matrix ⋆

A sequence of E‑valued random variables (Xn)n∈N, is a Markov chain if for any
integer n ≥ 0, and for any e0, . . . , en+1 ∈ E, one has

P(Xn+1 = en+1 | X0 = e0, . . . , Xn = en) = P(Xn+1 = en+1 | Xn = en). (4.1)

Property (4.1) is called Markov property. The set E is called the Markov
chain’s state space.
A Markov chain is called homogeneous if for any n ∈ N, any e, e′ ∈ E

Pn(e, e′) := P(Xn+1 = e′ | Xn = e) = P(X1 = e′ | X0 = e)

does not depend on n. The matrix P is then called the Markov chain’s tran‑
sition matrix.

In other words, a Markov chain depends on the past only through the present.
In the remainder of this subsection, (Xn)n∈N designates a homogeneous Markov
chain with transition matrix P.
EXAMPLE: A discrete‑time random walk on Z is de ined by X0 = 0, and for any
n ≥ 0,

Xn+1 =

Xn − 1 with probability 1/2
Xn + 1 w.p. 1/2

.

This process is a Markov chain on the state space E := Z. It’s transition matrix is
the doubly in inite matrix P with coordinates in Z given by

P(i, j) =
1
2

1{|i− j|=1}.
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Such processes can model many things, from gaz diffusion to the stock market.∣∣∣∣Proposition 4.1: Properties of the transition matrix

The coef icients of the transition matrix are in [0, 1], and their sum over each
row adds up to 1, i.e. ∀e ∈ E, ∑

e′∈E
P(e, e′) = 1.

An homogeneous Markov chain’s transition Matrix is usually represented by a
graph, with

• each vertice of the graph representing a state e ∈ E .

• An edge linking vertice e ∈ E with vertice e′ ∈ E is labelled with their
transition probability p := P(e, e′).

Exercise 20

Consider the Markov chain (Xn)n∈N on E = {1, 2, 3}, with transition matrix

P =

1/3 1/3 1/3
0 1/2 1/2
1 0 0


Draw the graph representing this Markov chain.

ANSWER :

□∣∣∣∣Proposition 4.2: Probability of a sample path ⋆

For any inite sequence of states e0, . . . , en ∈ E,

P(X0 = e0, . . . , Xn = en) = P(X0 = e0)
n∏

k=1

P(ek−1, ek).
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For any e ∈ E, de ine µn(e) = P(Xn = e), which allows to represent the distribu‑
tion of Xn as a (row) vector µn = {µn(e), e ∈ E}.∣∣∣∣Proposition 4.3: Matrix form for µn ⋆

For any time n, we have the matrix identities

µn+1 = µnP and µn = µ0Pn.

In particular, Pk is the transition matrix of the Markov chain (Xnk)n∈N

4.1.2 States of a Markov chain∣∣∣∣De inition 4.2: Communicating states, irreducible chain ⋆

A state e′ is accessible from another state e if there exists a inite sequence
e0 := e, e1, e2, . . . , en−1, en := e′ such that ∀i ∈ {0, . . . n − 1}, P(ei, ei+1) > 0. We
denote it by e→ e′. Note that by convention, for any e, e→ e, and that

e→ e′ ⇔ sup
n∈N
{Pn(e, e′)} > 0.

If e → e′ and e′ → e, we say that e and e′ communicate, denoted by e ↔ e′.
This is an equivalence relation on E, and de ines a partition of E in equivalence
classes of communicating states. If there is only on equivalence class, i.e.
∀e, e′ ∈ E, e↔ e′, the Markov chain is called irreducible.

∣∣∣∣De inition 4.3: Recurrent, transient, and aperiodic states ⋆

A state e is called recurrent if P(∃n ≥ 1 : Xn = e | X0 = e) = 1, and transient
otherwise.
We call period of a state e the (maybe in inite) integer

d(e) = GCD{k ≥ 1 : Pk(e, e) > 0}.

If d(e) = 1, we call e aperiodic.

∣∣∣∣Proposition 4.4: Recurrent and transient classes

Recurrence, transience, and period are class properties, meaning

• {e is recurrent and e↔ e′} ⇒ e′ is recurrent.

• {e is transient and e↔ e′} ⇒ e′ is transient.

• {d(e) = k and e↔ e′} ⇒ d(e′) = k.
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Furthermore, if the state space E is inite, there exists at least one recurrent
state.

4.1.3 Invariant measures∣∣∣∣De inition 4.4: Invariant measure ⋆

A probability distribution π on E seen as a row vector is called

• invariant with respect to P if πP = π,

• reversible w.r.t. P if for any e, e′ ∈ E, π(e)P(e, e′) = π(e′)P(e′, e).

Any reversible probability measure is also invariant.

∣∣∣∣Proposition 4.5: Existence of invariant measures ⋆

An irreducible Markov chain has at most one invariant probability measure.
If furthermore, its state space is inite, then it has exactly one invariant prob‑
ability measure.

This notion is fundamental, because it gives the long‑time distribution of the
Markov chain. Indeed, assuming the existence of a limit,

lim
n→∞
µn = lim

n→∞
µn+1 = lim

n→∞
µnP,

therefore π = limn→∞ µn must be the invariant measure. More precisely:∣∣∣∣Theorem 4.6: Convergence in law ⋆

Assume that (Xn)n∈N is irreducible and aperiodic.

• If P has an invariant probability distribution π, then for any initial state
e0, and for any e ∈ E,

P(Xn = e | X0 = e0) −→
n→∞
π(e).

• If P does not have an invariant probability distribution, then for any
state e0, and for any e ∈ E

P(Xn = e | X0 = e0) −→
n→∞

0.

Note that according to Proposition 4.3, P(Xn = e | X0 = e0) = [Pn](e0, e).
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∣∣∣∣Theorem 4.7: Ergodic theorem, weak law of large numbers

Assume that (Xn)n∈N is irreducible and aperiodic, with invariant probabil‑
ity distribution π. For any function f integrable w.r.t. π (i.e. satisfying∑

e∈E | f (e)|π(e) < ∞), we have

P

 1
N

N−1∑
n=0

f (Xn) −→
N→∞

∑
e∈E

f (e)π(e)

 = 1.

4.2 General tools
Our goal is now to de ine Markov processes on countable sets. To do so, we

will need a few key notions to keep their construction as simple as possible.

4.2.1 Exponential distribution

We irst start by recalling the de inition of the exponential distribution. It will
play the key role in the construction of Markov processes, since all waiting time
between successive jumps of the process will have exponential distribution.∣∣∣∣De inition 4.5: Exponential variable ⋆

A random variable T taking values in R has exponential distribution with
parameter λ > 0, noted T ∼ Exp(λ), if its density is given by

fT (t) = λe−λt1[0,+∞).

In particular, an exponential variable is characterized by its cumulative dis‑
tribution function (fr: fonction de répartition)

FT (t) = P(T ≤ t) = 1 − e−λt

The expectation of T is then E(T ) = 1/λ.

∣∣∣∣Proposition 4.8: Multiplication by a constant

If T ∼ Exp(λ) has exponential distribution with parameter λ > 0, and if α > 0,
then αT has exponential distribution with parameter λ/α. In particular, λT
is an Exp(1) variable.

PROOF: Given the characterization of distributions by their cumulative distribution
function, this is immediate. □

REMARK: By convention, one can de ine exponential variables with parameter 0 by

X ∼ Exp(0) ⇔ P(X = +∞) = 1.
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This is coherent with the de inition and the previous property, since we can see X as
the limit as λ↘ 0 of Exp(1)/λ.∣∣∣∣Proposition 4.9: Absence of memory ⋆

The exponential distribution is memoryless, in the sense that for any positive
time t, we have

{T − t conditioned on T ≥ t} (d)
= T,

or in other words, for any s ≥ 0

P(T ≥ s + t | T ≥ t)
(d)
= P(T ≥ s).

It is the only distribution on [0,+∞) that has this property for all s, t > 0.

PROOF: Straightforward by de inition of the conditional distribution. □∣∣∣∣Proposition 4.10: In imum of exponential variables ⋆

Fix summable sequence λk > 0, λ :=
∑

k∈N λk < ∞. Let (Tk)k∈N be a sequence of
independent, exponentially distributed variables with parameters λk. Then,
T := infk∈N Tk, has exponential distribution with parameter λ,

P(∃!k ∈ N, T = Tk) = 1.

We denote by K the random corresponding index, namely T = TK , for any
k ∈ N, we have

P(K = k) =
λk

λ
.

Finally, the random variables T and K are independent.

PROOF: One can straightforwardly compute

P(T ≥ t,K = k) = P(T j ≥ Tk ≥ t, ∀ j , k) =
∫ +∞

t
P(T j ≥ s, ∀ j , k)λke−λ j sds

=

∫ +∞

t
λke−λsds =

λk

λ
e−λt.

From this identity follow all the statements of the proposition. □

4.2.2 Intensity matrix and semi‐group

For now, we assume for simplicity that the state‑space E is inite. As we will
see in Section 4.4, all notions given in this section can be extended to the case
where E is countable. We now introduce the notion of intensity matrix, that plays
for continuous‑time, countable‑state space Markov processes an analogous role to
the transition matrix for Markov chains.
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∣∣∣∣De inition 4.6: Intensity matrix ⋆

Assume that E is inite. An intensity matrix L = [ℓe,e′]e,e′∈E is a matrix with
coef icients in R de ined on E × E, satisfying

1. the diagonal coef icients are non‑positive, −∞ < ℓe,e ≤ 0.

2. All other coef icients are non‑negative, 0 ≤ ℓe,e′ ≤ +∞.

3. On each row, the diagonal coef icient is minus the sum of all other
coef icients, ∑e′∈E ℓe,e′ = 0.

REMARK: The intensity matrix can also be called in initesimal generator matrix, or
transition rate matrix.∣∣∣∣Proposition 4.11: Properties of the matrix exponential

Assume that E is inite. For any t ≥ 0, and any matrix L on E × E, we de ine
the exponential matrix etL as the series

etL =

+∞∑
k=0

(tL)k

k!
(4.2)

We will admit that this matrix is well de ined for any t ≥ 0, and the this
de inition of the exponential shares the same properties as the real‑valued
one, i.e.

1. For any positive t, the convergence radius of this series is in inite.

2. For any integer n, enL = (eL)n.

3. If L1 and L2 commute, eL1+L2 = eL1eL2 .

PROOF: admitted. □

Exercise 21 : Computation of the semi‑group

Compute Pt[1, 1] when L is the intensity matrix

L :=

−2 1 1
1 −1 0
2 1 −3


ANSWER : To compute the coef icients of the semi‑group, the general strategy is to
compute the eigenvalues α1, . . . , α3 of the matrix L. Note that any intensity matrix
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will have 0 as eigenvalue, because

L

111
 =

000
 .

Furthermore, since Pt is a stochastic matrix, all af its eigenvalues must be non‑
positive.

Then, the eigenvalues of etL will be given by etαi , for i = 1, . . . , 3, so that Pt[i, j]
will be searched of the form

Pt[ j, k] =
3∑

i=1

ai
j,ke

tαi .

To identify the coef icients ai
j,k, we use the fact that P0 = Id, P′0 = L, and P′′0 = L2,

and that although the eingenvalues may be complex, the semi‑group’s coef icients
are real numbers. Note that this strategy becomes less and less applicable as the
dimension of the matrix grows.

In this case, we ind

α1 = −2, α2 = −4, α3 = 0,

si that we search Pt[11] = a + be−2t + ce−4t, with P0[1, 1] = 1, P1
0[1, 1] = ℓ1,1 = −2,

and P1
0[1, 1] = L2[1, 1] = 7. Solving this system yields the values of a, b and c.

□∣∣∣∣Theorem 4.12: Semi‑group ⋆

If E is inite, for any matrix L on E × E, de ine the semi‑group

{Pt := etL, t ≥ 0}.

Then, the matrix L is an intensity matrix, in the sense of De inition 4.6, if
and only if for any t ≥ 0, Pt is a stochastic matrix. (Recall that a matrix is
called stochastic if is has non‑negative entries, and its rows all sum to 1)

PROOF: First assume that Pt is stochastic for any t ≥ 0. Since tL and sL commute
for any non‑negative s, t, we have Ps+t = PsPt. In particular, by de inition of the
exponential matrix, as t ↘ 0, we can write

Pt = IdE + tL + O(t2), (4.3)

so that since Pt is stochastic, all entries of L must be non‑negative, except at the
diagonal, and its entries on each row must sum to 0. This proves that L must be
an intensity matrix.

Conversely, if L is an intensity matrix, for any ixed time t, we can write Pt = Pn
t/n.

For t/n small enough, Pt/n has positive entries, therefore so does Pt. Furthermore,
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one easily show by recurrence that Ln’s rows also sum to 0, so that in particular,
all rows of ∑+∞

k=1 tLk/k! sum to 0. This concludes the proof. □

The identity Pt = etL associates to any intensity matrix L a semi‑group (Pt)t≥0,
with the binary operation Ps ·Pt = Pt+s. We now derive a few important properties
to characterize the semi‑group (Pt)t≥0 given L.∣∣∣∣Theorem 4.13: Kolmogorov equations ⋆

Assume that E is inite. Fix an intensity matrix L, the semi‑group (Pt)t≥0 is
the unique solution to the Kolmogorov equations

1. P′(t) = PtL (forward equation),

2. P′(t) = LPt (backward equation),

It also satis ies P(k)
0 = Qk.

PROOF: The fact that Pt satis ies the equations is straightforward, given the power
series formula for Pt and the fact it has in inite convergence radius. Regarding
uniqueness, for any solution Mt to the irst equation, one easily obtains that Mte−tQ

has null derivative, and is therefore constant equal to IdE . The same proof holds
for the second equation. □

4.3 Markov jump process on finite sets
4.3.1 Jump processes and measurability

Since we focus on Markov processes, we will not give a formal de inition of
general jump processes. Informally however, jump processes are continuous time
processes with discrete jumps at random times S 0 := 0 < S 1 < S 2 . . . , where
the process changes its state to Y0, Y1, Y2, . . . . In what follows, we will refer to
the set of visited states (Yk)k∈N as the process’s skeleton, and to the time interval
in‑between jumps τk = S k − S k−1 as the holding times.

For continuous‑time processes, however, one needs to consider the question
of measurability. Without assuming any regularity on a process X composed of a
collection of measurable variables (Xt)t≥0, some basic questions can remain unan‑
swered. Given such a process X, for example, started from X0 = 0, imagine that
one wants to estimate the probability that it reaches value 1 before time t. We
would therefore like to de ine the “event”{

sup
s≤t

Xs ≥ 1
}
=

⋃
s≤t

{
Xs ∈ [1,+∞)

}
.

Unfortunately, because the segment [0, t] is not countable, neither is the union
above, so that {sups≤t Xs ≥ 1} < F is not measurable, and does not have a proba‑
bility.
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For this reason, we add an additional assumption to our de inition of jump pro‑
cesses, and assume that they are right‑continuous, so that now the entire trajectory
(Xs)s≤t can be uniquely determined with a countable number of measurable events,
which solves the previous problem. We now introduce continuous time Markov
processes, which are a speci ic type of jump processes satisfying, like discrete time
Markov chains, the Markov property ensuring that present jumps do not depend
on the past of the process. Of course, we will make this statement precise later
on, see Theorems 4.15 and 4.16.

4.3.2 First construction of Markov processes ⋆

Once again, we irst tackle the case where E is inite. Fix an intensity matrix
L, and an initial distribution µ on E. We now want to build a continuous time
process (Xt)t≥0, whose transition matrix P(Xt = · | X0 = ·) between times 0 and t is
given by Pt = etL for any t. Fix a time t, and assume we want to build the Markov
process on the time‑segment [0, t]. By the semi‑group’s property, we could start
our process from µ, and then build the process as a Markov chain on n small time
steps dt = t/n with transition matrix

Pt/n = Id +
t
n

L + O(n−2)

and then take the limit as n → ∞ and the time steps become in initely short.
Clearly, for any k ≤ n, the distribution at time k/n will be given by µPtk/n. Intu‑
itively, as time‑steps become in initely small, this process should admit a well‑
de ined limit, provided we give a sense to the construction between the discrete
sampling times. In the remainder of this section, we will give meaning to this limit
construction.

In practice, unless the intensity matrix and the state space are very simple,
it is in general dif icult to compute explicitly the transition matrix Pt given L.
Fortunately, computing it is not necessary to actually build the limiting process
described above. They are many ways to formulate the construction of Markov
jump processes, but the one we present here has the advantage of needing the less
notations and objects, and being somewhat intuitive. Recall that µ is the initial
distribution for the process.

Starting from µ, the matrix L encodes all the information necessary to build
(Xt)t≥0. Unlike a Markov chain, that can have a positive jump probability from a
state e ∈ E to itself, a Markov process is characterized by its jump rates ℓe,e′ from
e to e′ , e. Those jump rates are the entries of the intensity matrix L = [ℓe,e′], and
they encode the (non‑negative) frequency at which the process tries to jump from
e to e′. As is natural for a continuous time jump processes, a Markov process is
composed of two parts

• its skeleton, which is the succession of different states the Markov process
reaches, represented by a discrete time Markov chain Y := (Yn)n≥0.

• its holding times, i.e. the time the Markov process waits between jumps,
represented by a succession of exponential variables τ := (τn)n≥0.
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In what follows, we will denote by

λe := −ℓe,e

the rate at which state e is left. We will irst build the skeleton, for which we
choose Y0 = X0 ∼ µ. If λY0 = 0, the Markov process cannot leave state Y0, and
we stop the construction. Otherwise, the next state Y1 of the skeleton is chosen
according to the distribution

P(Y1 = e | Y0 = e0) =
ℓe0,e∑

e′,e0
ℓe0,e′

=
ℓe0,e

λe0

.

having chosen Y1 = e1, we then repeat the same procedure, and choose Y2 according
to the distribution

P(Y2 = e | Y1 = e1) =
ℓe1,e

λe1

if λe1 > 0, independently from the rest of the skeleton except Y1, otherwise we stop
the construction. We carry on with this construction, assuming Yn = en has been
chosen, we similarly choose Yn+1 according to the distribution

P(Yn+1 = e | Yn = en) =
ℓen,e

λen

,

if λen > 0, otherwise we stop the construction. In other words, the skeleton (Yn)
can be seen as a Markov chain, with the same initial distribution µ as X, and with
transition matrix

Π[e, e′] :=
ℓe,e′

λe
1{e′,e, λe>0} + 1{e=e′, λe=0}. (4.4)

Now that the skeleton is built, we choose the holding times. Fix an i.i.d. se‑
quence of Exp(1) times (Tk)k∈N, we de ine the random variables

τk =
Tk

λYk

, S k =

k∑
m=0

τm,

with the convention τk = +∞ if λYk = 0.
We are now ready to build our Markov process (Xt), by letting Xs = Y0 on

[0, S 0), and for each discrete step k, letting Xs = Yk on [S k−1, S k). Note in particular
that if the skeleton visits a state with jump rate λe = 0, then the corresponding τk

is in inite, and the Markov process remains there forever.∣∣∣∣De inition 4.7: Absorbing state ⋆

We call absorbing state any state e of the Markov chain satisfying λe = 0.

The Markov process (Xt)t≥0 described above is right continuous, and fully char‑
acterized by its intensity matrix L and its initial distribution µ. We denote a process
following this construction, with intensity matrix L and initial state µ by MP(µ, L).
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4.3.3 Second construction of Markov processes

We now present another, and equivalent construction of continuous time Markov
processes. First, we de ine a Poisson clock.∣∣∣∣De inition 4.8: Poisson clock

A Poisson clock with rate λ is a collection S = (S k)k∈N of times S 0 := 0 ≤
S 1 ≤ S 2 ≤ . . . such that (S k − S k−1)k≥1 is a sequence of i.i.d. Exp(λ) random
variables. The S k’s will be referred to as rings. In other words, a Poisson
clock initially waits an Exp(λ) time to ring, and waits independent times
∼ Exp(λ) between consecutive rings.

One easily checks that a rate λ Poisson clock can be seen as the set of jump
times of a rate λ Poisson process, and is therefore measurable w.r.t. the
Poisson process’s natural iltration.

∣∣∣∣Proposition 4.14: Markov property for Poisson clocks

For any stopping time τ w.r.t. the natural iltration of a rate λ Poisson process
(Nt)t≥0, the process (Nτ+t−Nτ)t≥0 is a rate λ Poisson process independent from
the information Fτ prior to τ. In particular, a Poisson clock seen from a
stopping time τ is still a Poisson clock.

We admit this proposition, and turn to an alternative construction for Markov
processes: consider independently for any e , e′ a Poisson clock S e,e′ with rate
ℓe,e′ , meaning that with each transition e→ e′ of the process is associated a Poisson
clock that rings in initely many times S e,e′

0 := 0 ≤ S e,e′

1 ≤ S e,e′

2 ≤ . . . . We now build
the Markov process as follows. We call e the starting point of the Poisson clock,
and e′ its destination.

• The process is initially in state X0 = Y0 ∼ µ.

• Xt remains in state Y0 until one of the Poisson clock (S Y0,e′)e′∈E with starting
point Y0 rings, at time S 0 = S Y0,Y1

0 = mine′,e S Y0,e′

0 . Then, the process performs
the corresponding jumps , and remains in Y1 until one of the Poisson clock
(S Y1,e′)e′∈E with starting point Y1 rings.

• We carry on with this construction, by waiting at each state Yk until one of
the Poisson clock with starting point Yk rings at time

S k = S Yk ,Yk+1
nk

= min
e′,e
n∈N

{
S Yk ,e′

n ≥ S k−1

}
,

at which point the process jumps to Yk.

Note that if the process reaches a state Yk such that λYk=0, none of the exponential
clocks with starting point Yk will ever ring, so that the system remains stuck in Yk.
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It is not hard to see that the two constructions presented above are equivalent:
indeed, by the memoryless property of the exponential distribution, at any of the
times S k where the process jumps to Yk, assuming that λYk > 0 the probability that
the next clock to ring is associated with the destination e′ is (see Propositions 4.14
and 4.10)

P(Yk+1 = e′) =
ℓYk ,e′

λYk

,

and the corresponding holding time is the time needed for one of the Poisson
clocks to ring

τk = min
e′,e
n∈N

{
S Yk ,e′

n − S k−1, for S Yk ,e′
n ≥ S k−1

} (d)
= Exp(λYk)

Graphical representation of continuous time Markov Processes: as for discrete
time Markov processes, continuous time processes can be represented by a graph,
with set of vertices E, and with set of edges E = {(e, e′) ∈ E2, ℓe,e′ > 0}. Each edge
(e, e′) ∈ E is then labeled with its corresponding jump rate ℓe,e′ . The only difference
between graphs of for Markov chains or Markov process is that Markov processes’
graphs do not have any self‑edge (e, e), and edges’ tags are in [0,+∞) instead of
[0, 1].
EXAMPLE: The Markov process on E := {1, 2, 3} with generator matrix

L =

−1 1 0
0 −1 1
1 1 −2


is represented by the graph

1

1

1

1

1

22 3

.

The corresponding Markov process jumps at rate 1 from 1 to 2, at rate 1 from
2 to 3, and at rate 2 from 3 to either 1 or 2, chosen w.p. 1/2, 1/2.

End of lecture 7

4.3.4 Fundamental properties of Markov processes

We now introduce some key properties of Markov processes. We start by the
Markov property, already seen for discrete time Markov chains, that is a funda‑
mental tool to study Markov processes.
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∣∣∣∣Theorem 4.15: Markov property ⋆

Let Xt be a MP(µ, L). Fix s ≥ 0 and e ∈ E. Then, the distribution of (Xt+s)t≥0

conditioned to {Xs = e} is that of a MP(δe, L) independent of the past σ‑
algebra F X

s = σ{Xr, r ≤ s}.

PROOF: This result will be admitted. □

This result encodes the absence of memory of Markov processes, which is
analogous to that of discrete time Markov chains. In the Markov property, the
conditioning time s is ixed, but a stronger result can be stated if s is replaced by
a stopping time T .∣∣∣∣Theorem 4.16: Strong Markov property ⋆

Let T be a stopping time w.r.t. the natural iltration of a MP(µ, L) Xt. Then, the
distribution of (Xt+T )t≥0 conditioned to {T < ∞, XT = e} is that of a MP(δe, L),
independent of the past prior to the stopping time, i.e. independent of the
sigma‑algebra F X

T introduced in De inition 1.12.

PROOF: This result will be admitted. □∣∣∣∣Proposition 4.17: Semi‑group ⋆

The Markov process built in Section 4.3.2 has Pt = etL for transition matrix
between times 0 and t, i.e.

Qt[e0, e] := P(Xt = e | X0 = e0) = Pt[e0, e].

PROOF: According to Theorem 4.13, it is enough to check that the transition matrix
is solution to the Kolmogorov forward equation. More precisely, we consider the
process at time t and t + ε, and we want to estimate

lim
ε→0

Qt+ε[e0, e] − Qt[e0, e]
ε

. (4.5)

To estimate the limit above, we irst condition the irst term on the value of Xt

Qt+ε[e0, e] =
∑
e′∈E
P(Xt+ε = e | Xt = e′, X0 = e0)Qt[e0, e′].

By construction, P(Xt+ε = e | Xt = e′, X0 = e0) = P(Xt+ε = e | Xt = e′) since once we
know that we are at site e at time t, the past of the process does not affect the
construction. Consider the event

J := {Xt has jumped at least twice in the time interval [t, t + ε)}.
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Since the holding times are exponential, we can write, by Markov property at time
t, and strong Markov property at the next jump time, the crude bound over all
possible holding times

P(J) ≤ sup
e,e′∈E
P(Eλe ≤ ε,Eλe′ ≤ ε) = sup

e,e′∈E
(1 − eλeε)(1 − eλe′ε) = O(ε2),

where Eλe , Eλe′ represent two independent exponential holding times. Note that
this bound is by no means sharp, since we only require that both times are less
than ε, whereas their sum should be less than ε for J to occur. We can now rewrite
the quantity inside the limit in 4.5 as∑

e′∈E P(Xt+ε = e and Jc | Xt = e′)Qt[e0, e′] − Qt[e0, e]
ε

+ O(ε).

We irst single out the term for e′ = e, meaning that the process has not jump in
ther time interval [t, t + ε], which occurs with probability

P(Xt+ε = e and Jc | Xt = e) = e−λeε = 1 − λeε + O(ε2).

Here, we used the fact that exponential distribution is memoryless (cf. Proposition
4.9), since we do not know the time the process reached state e before time t. The
other terms for e , e′ are easily computed as well, once again using the lack of
memory of exponential variables, since they are the probabilities, starting from e′

to jump to e before time ε,

P(Xt+ε = e and Jc | Xt = e′) =
ℓe′,e

λe′
(1 − e−λe′ε) = ℓe′,eε + O(ε2).

Putting all these identities together, we obtain
Qt+ε[e0, e] − Qt[e0, e]

ε
=

∑
e′,e

ℓe′,eQt[e0, e′] − λeQt[e0, e] + O(ε) = (QtL)[e0, e] + O(ε).

Letting ε go to 0 proves that the matrix Qt solves the Kolmogorov forward equation,
and is therefore equal to Pt = etL according to Theorem 4.13.

□∣∣∣∣De inition 4.9: Communicating states, classes

States (e, e′) communicate in a MP(µ, L) if both are accessible from the other,
i.e. there exists t, t′ > 0 such that P(Xt = e′ | X0 = e) and P(Xt′ = e | X0 = e′)
are both positive. The following characterization of accessible states are
equivalent:
i) e′ is accessible from e.
ii) e′ is accessible from e in the skeleton (Yk).
iii) There exists a sequence e1 = e, e2, . . . en = e′ such that ℓek ,ek+1 > 0 ∀k ∈
{1, . . . , n − 1}.
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iv) Pt[e, e′] > 0 forall t > 0.

v) ∃t > 0 such that Pt[e, e′] > 0.

In particular, the notion of communicating classes anf irreducibility for a
Markov process coincide with those of its skeleton, see De inition 4.2.

∣∣∣∣De inition 4.10: In initesimal generator ⋆

Any vector F indexed by E can be seen as a function f : E → R. In the
same way, the intensity matrix L associated with a Markov process X can be
seen as an operator L mapping the set of functions f : E → R into itself, by
de ining L f as the function on E

L f (e) =
∑
e′,e

ℓe,e′{ f (e′) − f (e)}

The operator L is called the in initesimal generator of the Markov process.
In matrix form, the identity above rewrites LF as the vector whose e‑entry
is given by ∑

e′∈E ℓe,e′ f (e′).

REMARK: For general Markov processes, one can check that the in initesimal gen‑
erator can be seen as the derivative at time 0 of the semi‑group:

L f (e) = lim
t↘0

PtF[e] − F[e]
t

.

In reality, this de inition of the in initesimal generator is a general way to de ine
it given the associated Markov semi‑group. In what follows, we will at times char‑
acterize Markov processes either by their intensity matrix L or their in initesimal
generator L , but keep in mind that the two are perfectly equivalent for our use.

4.4 Infinite but countable state spaces
Some precautions need to be taken in the case where the state space E is

in inite but countable. Indeed consider for example the following Markov process
Nt on N, started from N0 = 0, with generator operating on functions f : N→ R as

L f (k) = 2k{ f (k + 1) − f (k)}.

In other words, once it reaches k, the process waits for a time τk ∼ Exp(2k) before
jumping to k + 1. Note that the total holding time before escaping to in inity,

τ∗ =
∑
k∈N
τk

has inite expectation E(τ∗) = 2, so that in particular τ∗ is a.s. inite. This means
that the chain jumps faster and faster and escapes to in inity in inite time a.s..
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∣∣∣∣De inition 4.11: Explosive Markov process

Given a Markov process X := (Xt)t≥0, we denote by τ∗ = ∑∞
k=0 τk its total

holding time. The process X is called explosive is τ∗ is inite with positive
probability, namely

P(τ∗ < ∞) > 0.

We now give a criterion for non‑explosiveness.∣∣∣∣Theorem 4.18: Non‑explosion criteria

If one of the following condition is satis ied, then X is non‑explosive.

i) The state space E is inite.

ii) All states have bounded exit rate,

sup
e∈E
λe < ∞. (4.6)

iii) There exists a state that is visited a.s. and is recurrent for the skeleton,
i.e.

∃e ∈ E,P(∃t ≥ 0, Xt = e) = 1,

and e is recurrent for the Markov chain (Yk)k∈N.

Note that these conditions are suf icient but not necessary. In the context of
this course, we will focus on the case where condition ii) above is satis ied. In
this case, the construction laid out in paragraph 4.3.2 holds verbatim, with the
exception now that at each construction step k, if λe > 0, the distribution of the
next state Yk+1 is chosen in a countable set instead of a inite one, with probability

P(Yk+1 = e′ | Yk = e) =
ℓe,e′

λe
.

When instead, the λe’s are not bounded, or, even worse, when they can be in inite,
subtler constructions are required, but those go much beyond the scope of this
course.

The de inition of the intensity matrix L in the case of a countable in inite state
space remains the same, with the only difference being that L is a in inite square
matrix, satisfying the same three properties 1‑3. in De inition 4.6. It is not clear,
however, that identity (4.2) gives a well‑de ined formulation for the exponential
of L. This is not an issue, because in practice (4.2) is seldom used to identify
the semi‑group associated with a Markov process, one instead typically uses the
Kolmogorov equations. The latter is guaranteed in the in inite countable case by
the following result.
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∣∣∣∣Theorem 4.19: Kolmogorov equations

Let E be a countable set, and let L be an intensity matrix according to De i‑
nition 4.6. Assume that L satis ies (4.6), the equation

P′t = LPt, P0 = IdE,

has a unique non‑negative solution, which forms a semi‑group PsPt = Ps+t.
Furthermore, Pt is also the unique solution to

P′t = PtL, P0 = IdE.

Finally, a right‑continuous process Xt is MP(µ, L) in the sense of paragraph
4.3.2 if and only if X0 ∼ µ, and for any integer n, any 0 ≤ t0 ≤ · · · ≤ tn and
e0, . . . , en ∈ E

P(Xtn = en | Xt0 = e0, . . . , Xtn−1 = en−1) = Ptn−tn−1[en−1, en].

For countable state spaces, however, the most convenient description for a
given Markov process satisfying (4.6) is through its in initesimal generator, oper‑
ating on bounded functions f . Indeed, applying de inition 4.10, one obtains the
identity

L f (e) =
∑
e′,e

ℓe,e′{ f (e′) − f (e)}

which is well de ined if ∑
e′ ℓe,e′ ≤ ∞ and f is bounded.

Furthermore, under assumption 4.6, the Markov and strong Markov property
(Theorems 4.15 and 4.16) both hold in the case of an in inite countable state
space. Once again, this goes beyond the scope of our course, but as long as the
underlying Markov process is well de ined, the Markov property holds with great
generality.∣∣∣∣Corollary 4.20: Dynkin’s formula ⋆

Let (Xt)t≥0 be a MP(µ, L) on a countable set E satisfying (4.6). Then, for any
bounded function F : R+ × E

d
dt
E(Ft(Xt)) = E((L Ft)(Xt)) + E((∂tF)(Xt)). (4.7)

In particular, there exists a martingale MF
t (w.r.t. (Xt)t≥0’s natural iltration)

such that
Ft(Xt) = F0(X0) +

∫ t

0
(L + ∂s)Fs(Xs)ds + MF

t .

This identity is called Dynkin’s formula.

REMARK: In the irst identity, the irst term corresponds to the variation due to the
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time‑variation of (Xt), whereas the second corresponds to the time variation of F
itself. In particular, if F does not depend on time,

d
dt
E(F(Xt)) = E((L F)(Xt)).

One can show that the quadratic variation 〈MF〉t is then given by the identity

〈MF〉t =
∫ t

0

{
(L F2

s )(Xs) − 2Fs(L Fs)(Xs)
}

ds.

Dynkin’s formula is a very useful way to compute the expectation of functionals
of Markov processes. The estimate on its quadratic variation then yields some
control on the luctuations around this expectation.
PROOF: We irst prove the irst identity. To do so, recall the Kolmogorov equations,
P′t = LPt. Recall that the distribution of the process at time t is given by µPt. In
matrix form, E(F(Xt)) rewrites as µPtFt, where we denote Ft for the vector with
entries [Ft(e)]e∈E . Then, we have in matrix form

d
dt
E(Ft(Xt)) = µP′t Ft + µPt(∂tFt).

the second term can be rewritten as E(∂tFt(Xt)). By Kolmogorov’s equation, the
irst term can be rewritten as µPt[LFt] = E(L Ft(Xt)), which proves the identity.

We now turn to the second identity, that we will only prove for F not depending
on time, the adaptation for F time‑dependent is straightforward. We only need to
prove that

MF
t := F(Xt) − F(X0) −

∫ t

0
L F(Xs)ds.

is an (Ft)‑martingale. Fix r ≤ t, conditioning to Fr, and splitting the integral in
two parts, we obtain

E(MF
t | Fr) = E(F(Xt) | Fr) − F(Xr) −

∫ t

r
E [L F(Xs) | Fr] ds

+ F(Xr) − F(X0) −
∫ r

0
L F(Xs)ds

where we used repeatedly that Xs is Fr‑measurable for any s ≤ r. The second
line is exactly MF

r , we now prove that the irst line vanishes. By Markov property,
conditionally to Xr = e, the process X̃e := (Xs+r)s≥0 is a MP(δe, L) independent from
Fr, so that the irst line rewrites∑

e∈E
P(Xr = e)

[
E(F(X̃e

t−r)) − F(e) −
∫ t−r

0
E

(
L F(X̃e

s)
)

ds
]
.

By (4.7), for any ixed e, the quantity in brackets above vanishes, which proves as
wanted that E(MF(t) | Fr) = MF(r). □
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The Dynkin formula is the reason the generator of the process is a key quantity
to understand. Assume for example that you want to understand the evolution in
time, for a given set ∆ ⊂ E, of P(Xt ∈ ∆), one only has to apply the Dynkin’s formula
to the function F = 1{Xt∈∆}, and apply the generator to F.

End of lecture 8

Exercise 22

We consider the evolution of a bacteria population. Initially, a single bacteria
is born. All bacteria have the same behavior, independently for each bacteria:
after a random time Td after their birth, which has distribution Td ∼ Exp(λd),
the bacteria dies, and after a random time T 1

b with distribution T 1
b ∼ Exp(λb),

the bacteria produces a new bacteria. Once a bacteria has produced a new
bacteria, it wait once again a time T 2

b ∼ Exp(λb) before producing another
one, and so on until it inally dies. If Td < T 1

b , the bacteria dies without
having ever reproduced. We denote by P1 the distribution of the process
started from 1 bacteria.
1) (i) Justify that the number Nt of bacteria in the system is a Markov
process, whose only transitions with positive rates are ℓn,n+1 = nλb,
ℓn,n−1 = nλd, and that 0 is an absorbing state.

(ii) De ine h(t) = P1(Nt = 0), show that

h(t) =
∫ t

0
e−(λb+λd)s(λd + λbh(t − s)2)ds.

Hint: denote τ0 the irst holding time, justify that h(t) = P1(Nt = 0, τ0 < t), and
exploit the Markov property at the time of the irst jump.

(iii) Compute h(t).
2) We now consider the same process started from a population with n > 1
bacteria. Compute h(n)(t) = Pn(Nt = 0).

ANSWER :
1) (i) Consider the time to give birth to a new particle : given the number
Nt = n of particles, each one giving birth independently after an exponential time
with parameter λb, the time to give birth to a bacteria is the min of n independent
exponential variables, which follows an exponential distribution with parameter
nλb according to Proposition 4.10. The same is true for the death of bacteria,
therefore when there are n bacteria, one is born at rate nλb and one dies at rate
nλd. Furthermore, w.p. 1, no two deaths or births can occur at the same time,
therefore only the transitions n → n + 1 and n → n + 1 occur at positive rates. In
particular, 0 is an absorbing state, since no transition occurs at positive rate at
Nt = 0.

(ii) Recall that we de ine S 0 as the irst time the process jumps. If S 0 > t,
then Nt = 1. In particular, we have h(t) = P1(Nt = 0, S 0 ≤ t), so that projecting on
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the value of S 0,

h(t) = P1(Nt = 0, S 0 ≤ t) =
∫ t

0
dsλe−λsP1(Nt = 0 | S 0 = s).

where we shortened λ = λb + λd the total jump rate per bacteria. We can rewrite
for any s ≤ t

P1(Nt = 0 | S 0 = s) =
λd

λ
P1(Nt = 0 | S 0 = s,NS 0 = 0) +

λb

λ
P1(Nt = 0 | S 0 = s,NS 0 = 2)

=
λd

λ
+
λb

λ
P2(Nt−s = 0)

by strong Markov property. Furthermore, since the bacteria and their descendants
evolve independently, the probability that the process started from 2 bacteria dies
out is the square of the probability that the process started from one bacteria dies.
We obtain as wanted

h(t) =
∫ t

0
e−λs

(
λd + λbh(t − s)2

)
ds.

(iii) To compute the previous quantity, we irst perform the change of vari‑
ables t − s 7→ s, to obtain

h(t) =
∫ t

0
e−λ(t−s)

(
λd + λbh(s)2

)
ds = e−λt

∫ t

0
eλs

(
λd + λbh(s)2

)
ds.

Taking the time derivative yields

h′(t) = −λh(t) + λd + λbh(t)2.

We separate variables, to obtain

dt =
dh

λd + λbh2 − λh =
dh

(1 − h)(λd − λbh)
=

adh
1 − h

+
bdh
λd − λbh

,

with aλd + b = 1 and −aλb − b = 0, we obtain a = 1/(λd − λb), b = −λb/(λd − λb). This
inally yields

t = −a log(1 − h) − b
λb

log
(
1 − λb

λd
h
)
,

so that
e(λd−λb)t =

1 − λb
λd

h

1 − h
=

1 − λb
λd

1 − h
+
λb

λd
,

which in turn yields
h =

e(λd−λb)t − 1
e(λd−λb)t − λb/λd

.

Note in particular that if λd > λb, h goes to 1 as t goes to ∞, whereas if λd < λb,
h→ λd/λb.
2) By the same argument as previously, descendants of bacteria evolve indepen‑
dently, to that h(n)(t) = h(t)n. □
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4.5 Examples of Markov processes
We now give in more details a few key examples of Markov processes.

4.5.1 Poisson jump process ⋆

We start by the Poisson jump process, which has already been mentioned at
several points throughout the course.∣∣∣∣De inition 4.12: Poisson Process

A Poisson jump process with rate λ is a right‑continuous, non decreasing
process, with skeleton given by Yk = k ∀k ∈ N, and with independent holding
times given by τk ∼ Exp(λ). Note in particular that S k :=

∑k−1
n=0 τn, (S k)k∈N is a

rate λ Poisson clock.
In other words, a Poisson jump process with rate λ is a MP(δ0, L) on E = N,
with intensity matrix given for n,m ∈ N by

L[n,m] = ℓn,m := λ
[
1{m=n+1} − 1{n=m}

]
.

Its in initesimal generator (see Def. 4.10) Lλ is characterized by its action
on functions f : N→ R

Lλ f (n) = λ
[
f (n + 1) − f (n)

]
.

∣∣∣∣Theorem 4.21: Markov property for Poisson jump processes

Let (Xt)t≥0 be a Poisson jump process with parameter λ. For any ixed s ≥
0, (Xs+t − Xs)t≥0 is also a Poisson Point process with parameter λ, and is
independent from σ(Xr, r ≤ s). The same is true if s is replaced by a stopping
time (Strong Markov property).

PROOF: This is a direct consequence of the Markov property. □∣∣∣∣De inition 4.13: Stationary and independent increments

A process (Xt)t≥0 has stationary increments if the distribution of Xt+s−Xs does
not depend on s. It has independent increments if for any increasing family
t0 = 0 < t1 < · · · < tn the family {Yk := Xtk − Xtk−1 , 1 ≤ k ≤ n} is independent.

∣∣∣∣Corollary 4.22

A càdlàg process (Xt)t≥0 is a Poisson process with parameter λ if and only if
it has stationary and independent increments, and if for any t, Xt ∼ Poi(λt).
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PROOF: exercise. □∣∣∣∣Theorem 4.23: Thinning and compounding of Poisson processes ⋆

Fix λ > 0, and consider a Poisson point process (Xt)t≥0 with parameter λ.
Fix a distribution π = (pi)1≤i≤n on {1, . . . , n}, and a family of i.i.d. variables
(ξk)k ∈ N ∼ π, independent of X, to give each jump a label in 1, . . . , n (ξk is
the label of the k‑th jump in X). For 1 ≤ i ≤ n, consider the processes

Xi
t =

Xt∑
k=1

1{ξk=i},

which jump by one when they encounter a jump in Xt with label i. Then, the
(Xi

t)t≥0 are independent Poisson processes with respective parameters λi = λpi.

Conversely , ix λ1, . . . , λn > 0 and consider n independent Poisson processes
(Xi

t)t≥0 for i = 1 . . . n with respective parameter λi. Then, letting λ = ∑n
i=1 λi,

the process Xt =
∑n

i=1 Xi
t is a Poisson process with parameter λ.

PROOF: exercise. □

4.5.2 Homogeneous Random walk on Z∣∣∣∣De inition 4.14: Symmetric Random walk

Given a sequence of i.i.d. Bernoulli random variables (Bn)n∈N, a discrete time
random walk (started from the origin) is a Markov chain Yn :=

∑n
k=1(2Bk−1). A

continuous time random walk with rate λ has skeleton (Yn), and independent
holding times given by τk ∼ Exp(λ).
In other words, a continuous time random walk is a MP(δ0, L) on E = Z, with
intensity matrix given for n,m ∈ N by

L[n,m] = ℓn,m := λ
[
1{m=n+1} + 1{m=n−1} − 21{n=m}

]
.

Its in initesimal generator (see Def. 4.10) Lλ is characterized by its action
on functions f : N→ R

Lλ f (n) =λ
[
f (n + 1) − f (n) − ( f (n) − f (n − 1))

]
=λ

[
f (n + 1) + f (n − 1) − 2 f (n)

]
, (4.8)

which is a discrete laplacian.
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4.6 Recurrence, transience, invariant states
4.6.1 Hitting times

For any set of states A ⊂ E and a MP(µ, L) on E, we denote by

T A := inf{t ≥ 0, Xt ∈ A} ∈ [0,+∞]

the hitting time of A.
REMARK: We can see with hitting times the importance for the Markov process to
be right‑continuous : indeed, if it was for example left continuous, we might have
{T {e} ≤ t} < Ft, and would not be a stopping time. In particular, we could not use
the Markov property on it.∣∣∣∣Proposition 4.24: Hitting probabilities

The function
pA

e = Pe(T A < ∞),

where Pe is the distribution of MP(δe, L) started from state e, is solution topA
e = 1 if e ∈ A∑
e′∈E pA

e′ℓe,e′ = 0 if e < A.

PROOF: The irst identity is trivial, the second is a consequence of the strong
Markov property applied at the time of the irst jump:

Pe(T A < ∞) =
∑
e′,e

Pe′(T A < ∞)P(Y1 = e′) =
∑
e′,e

Pe′(T A < ∞)
ℓe,e′

−ℓe,e
,

which proves the second part. □

REMARK: Note that the second identity can be rewritten as L pA
· (e) = 0 ∀e ∈ A.∣∣∣∣Proposition 4.25: Hitting time

The function
qA

e = Ee(T A)

is solution to qA
e = 0 if e ∈ A∑
e′∈E qA

e′ℓe,e′ = 1 if e < A.
.

PROOF: The proof is similar to the previous one, by applying the strong Markov
property,

Ee(T A) = Ee(τ0) + Ee(T A − τ0) = E(τ0) +
∑
e′,e

Ee′(T A)P(Y1 = e′) =
1
λe
+

∑
e′,e

Ee′(T A)
ℓe,e′

λe
,
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which proves the identity. □

Exercise 23 : Hitting probability of random walks

We consider a rate λ = 1 symmetric random walk, with generator given by
(4.8) above, we denote by Pk its distribution started from k. Choose n ∈ Z,
and de ine gk := Pk(T {0} > T {n}) the probability to reach n before 0. Find an
equation satis ied by the function g, and compute g1

ANSWER : Clearly g0 = 0 and gn = 1, and by Markov property applied at the irst
jump time, we can write for any 1 ≤ k ≤ n − 1

gk =
1
2
Pk−1(T {0} > T {n}) +

1
2
Pk+1(T {0} > T {n}) =

1
2

(gk+1 + gk−1),

therefore letting δgk := (1/2)(gk+1 − gk), we have for any 0 ≤ k ≤ n − 1 that

δgk = δgk+1.

In particular, since 1 = gn−g0 =
∑n−1

k=0 δgk = nδg1, so that δgk = 1/n ∀k ∈ {0, . . . , n−1}.
This yields

gk =

k−1∑
m=0

δgm = k/n.

□

End of lecture 9

4.6.2 Recurrence and transience

In this paragraph, we ix an intensity matrix L.∣∣∣∣De inition 4.15: Recurrent state ⋆

A state e is called recurrent if

Pe
({t ≥ 0, Xt = e} is not a bounded set) = 1,

where Pe is the distribution of a MP(δe, L). Otherwise, e is called transient.

∣∣∣∣Proposition 4.26: Recurrent and transient classes

A state e is transient iff

Pe
({t ≥ 0, Xt = e} is not a bounded set) = 0,

i.e. the probability above can only be either 0 or 1. Furthermore, a state is
recurrent (resp. transient) iff it is recurrent (resp. transient) for the skeleton
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(Yk)k∈N of X.
In particular, as for Markov chains (cf. Proposition 4.4), recurrence and
transience are classes properties : all states in a communicating class are
either recurrent or transient.

PROOF: Assume that e is transient, i.e.

νe = Pe
({t ≥ 0, Xt = e} is not a bounded set) < 1.

Then, we apply the Markov property to the irst time the Markov chain gets back
to e,

T e
+ = inf{t > τ0, Xt = e} ∈ [0,+∞],

which is a stopping time, to obtain

νe = P(T e
+ < ∞)Pe

({t ≥ 0, Xt = e} is not a bounded set) = P(T e
+ < ∞)νe.

But since e is transient, P(T e
+ < ∞) < 1, so that we must have νe = 0.

The other properties are straightforward. □

We call local time at e the average time spent by the Markov process at site e.
For example, assuming the chain starts from state e,

Ee

(∫ +∞

0
1{Xt=e}dt

)
=

∫ +∞

0
Pe(Xt = e)dt :=

∫ +∞

0
pe,e(t)dt.

∣∣∣∣Proposition 4.27: Consequence on the local time

If λe = 0 or Pe(T e
+ < ∞) = 1, then e is recurrent and

∫ +∞
0

pe,e(t)dt = ∞.
If λe > 0 and p+e := Pe(T e

+ < ∞) < 1, then e is transient and∫ +∞

0
pe,e(t)dt = 1/λe(1 − p+e ) < ∞.

PROOF: If λe = 0, then a.s., starting from e, we have Xt = e ∀t > 0. Otherwise, if
P(T e

+ < ∞) = 1, we can write∫ +∞

0
pe,e(t)dt =

∫ +∞

0
Ee(1{Xt=e})dt = Ee

(∫ +∞

0
1{Xt=e}dt

)
.

By strong Markov property applied T e
+, the right‑hand side can be rewritten

Ee

(∫ +∞

0
1{Xt=e}dt

)
= Ee(τ0) + P(T e

+ < ∞)Ee

(∫ +∞

0
1{Xt=e}dt

)
=

1
λe
+ Ee

(∫ +∞

0
1{Xt=e}dt

)
.

This proves that Ee

(∫ +∞
0

1{Xt=e}dt
)
= ∞, because λe was assumed positive.

If p+e := P(T e
+ < ∞) < 1, we apply the same identity, to obtain that
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∫ +∞

0
pe,e(t)dt =

1
λe
+ p+e

∫ +∞

0
pe,e(t)dt,

which yields ∫ +∞

0
pe,e(t)dt =

1
λe(1 − p+e )

.

□

REMARK: the last identity is natural, since we want to compute the average time
spent at site e starting from e. The process performs a number of excursions away
from e, until the last excursion, during which e is never visited again. By Markov
property, the excursions are independently and identically distributed, so that the
number of excursion is distributed according to a geometric distribution with pa‑
rameter 1 − p+e , whose average is 1/(1 − p+e ). Furthermore, during each excursion,
the time spent in state e is the corresponding holding time, whose average is 1/λe.
Hence the result.∣∣∣∣De inition 4.16: Recurrent positive state ⋆

A recurrent state e is called recurrent positive iff

Ee(T e
+) < +∞.

This is a class property : if e is recurrent positive, then any state e′ which
communicates with e is also recurrent positive.

4.6.3 Invariant measures∣∣∣∣De inition 4.17: Invariant measures ⋆

A measure µ on E is invariant if µL = 0, in other words, if for any function
F on E,

Eµ(L F) = 0.

REMARK: The notion of invariant measure is justi ied by Theorem 4.19, since if X is
a MP(µ, L), its semi‑group Pt satis ies P′t = LPt, so that

d
dt
Pµ(Xt = e) = µLPt1e = 0,

where Pµ is the distribution of the process started from µ, so that in particular,
Pµ(Xt = e) is constant and equal to µ(e).
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∣∣∣∣Proposition 4.28: Invariant measure and skeleton

A measure µ is invariant iff ν(e) = λeµ(e) is invariant for the skeleton, in other
words

µL = 0 ⇔ νΠ = ν,

where Π was de ined by (4.4).

PROOF: Immédiat. □∣∣∣∣Theorem 4.29: Existence of invariant measures ⋆

Let L be an irreducible intensity matrix, and assume that it is non explosive.
Then, it admits a unique invariant probability measure µ if and only if it is
recurrent positive (in the sense that one/all of its state is/are, cf. De inition
4.16). In this case, we have

Ee(T e
+) =

1
µ(e)λe

PROOF: We prove the two implications. Assume that µ is an invariant probability
measure, we irst prove that the chain must be recurrent. Then, if X = MP(µ, L),
its distribution at all times is given by µ, so that in particular for any t > 0

Eµ

(
1
t

∫ t

0
1{Xs=e}ds

)
=

1
t

∫ t

0
Pµ(Xt = e) = µ(e).

If the the process is not recurrent, all states are transient, therefore according to
Proposition 4.27, we must have for any state e

Eµ

(∫ t

0
1{Xs=e}ds

)
≤

∫ +∞

0
pe,e(t)dt < +∞.

Dividing the latter by t, and letting t go to in inity in both equations, we obtain that
µ(e) = 0 for any e ∈ E, which contradicts our assumption. The process is therefore
recurrent.

Now assume that there is no recurrent positive state. De ine T e := T {e} the irst
time e is hit, as t → ∞, by dominated convergence theorem

lim
t→∞
Eµ

(
1
t

∫ t

0
1{Xs=e}ds

)
= Eµ

(
lim
t→∞

1
t

∫ t

0
1{Xs=e}ds

)
= Eµ

(
1{T e<∞} lim

t→∞

1
t

∫ t+T e

T e
1{Xs=e}ds

)
= Ee

(
lim
t→∞

1
t

∫ t

0
1{Xs=e}ds

)
Pµ(T e < ∞)

= Ee

(
lim
t→∞

1
t

∫ t

0
1{Xs=e}ds

)
,
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because the process is recurrent. To establish the identities above, we used the
strong Markov property at time T e, and that for any ixed T , and any bounded
function f vanishing on [0,T ], limt→∞ t−1

∫ t

0
f (s)ds = limt→∞ t−1

∫ t+T

T
f (s)ds.

Recall that under Pe, we have Te < ∞ a.s. because all states are recurrent. We
de ine T n

e the successive times the chain comes back to e, and τn
e the sucessive

holding times at e, namely T e
1 = T e

+,

τe
n = inf{s > 0, Xs+T e

n , e} and T e
n+1 = {inf{s > T e

n + τ
e
n, Xs = e},

which are all inite a.s. by strong Markov property. Note that the τe
n are i.i.d. with

distribution Exp(λe), and the excursion times δe
n := T e

n+1 − T e
n − τe

n, are also i.i.d. and
independent from the τe

n’s. The excursion times represent the time spent away
from e after each visit.

Then,

Ee

(
lim
t→∞

1
t

∫ t

0
1{Xs=e}ds

)
= Ee

(
lim
n→∞

∑n
k=1 τ

e
k

T e
n

)
= Ee

 lim
n→∞

1
n

∑n
k=1 τ

e
k

1
n

∑n
k=1 δ

e
k + τ

e
k

 = 1
λeEe(T e

+)
,

by the strong law of large numbers. Note that since the T e
+ are non negative,

the law of large number holds regardless of whether Ee(T e
+) is inite or not by

monotonous convergence theorem, by applying it to (δe
k + τ

e
k)∧M, and letting M to

∞. All the above proves that

µ(e) =
1

λeEe(T e
+)
∀e ∈ E,

therefore if µ is an invariant probability measure the process is recurrent positive,
otherwise . □∣∣∣∣Theorem 4.30: Long‑time behavior

Let ν be a probability distribution on E, let L be an irreducible intensity
matrix, and X a MP(ν, L). Then,

∃ lim
t→∞
P(Xt = e) =

1
λeEe (T e

+)
.

In particular, if L is recurrent positive,

lim
t→∞
P(Xt = e) = µ(e) > 0,

where µ is its unique invariant distribution, and otherwise

lim
t→∞
P(Xt = e) = 0.

PROOF: admitted. □
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∣∣∣∣De inition 4.18: Reversible measure ⋆

A measure µ is called reversible w.r.t. an intensity matrix L if for any e, e′ ∈ E,

µ(e)ℓe,e′ = µ(e′)ℓe′,e.

∣∣∣∣Proposition 4.31: Invariant measures and semi‑group

Any reversible measure w.r.t. L is invariant.

PROOF: It is enough to write µL(e′) =
∑

e∈E µ(e)ℓe,e′ =
∑

e∈E µ(e′)ℓe′,e = 0. □

REMARK: Reversibility, as its name suggests, has to do with a process’s time reversal.
One can show in particular that given a Markov process (Xt) started from its invariant
measure µ, for any T > 0, the process Yt de ined as the right‑continuous version of
(XT−t)t≤T is also a Markov process, with invariant measure µ as well, and with jump
rates

ℓ′e,e′ =
µ(e′)ℓe′,e
µ(e)

.

In particular, if the measure µ is reversible, the time‑reversed process started from
its reversible state has the same jump rates as the original process, which means
that the Markov process “looks” the same backward and forward in time.

4.6.4 Bonus: general Markov processes

When the state space is not countable, our construction of Markov processes is
no longer valid, as Markov processes on continuous space are not necessarily jump
processes. An important example is the Brownian motion, which has the de ining
property of Markov processes, namely the Markov property. We give here, the
formal de inition of general Markov processes.∣∣∣∣De inition 4.19: Markov process

We say that (Xt)t≥0 is a Markov process if it is càdlàg, and for any s > t, and
any bounded function f : E → R,

E( f (Xt) | Xs) = E( f (Xt) | F X
s ).

In other words, Xt depends on the past before time t, (Xt′)t′≤s only through
Xs itself.
A Markov process is called homogeneous if the conditional distribution of Xt

knowing F X
t only dedends on t − s.

As is the case in coutable state spaces, general Markov processes can be char‑
acterized by their initial distribution µ and their in initesimal generator L . Then,
one can de ine the semi‑group Pt = etL as the unique solution to the kolmogorov
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equation. Conversely, given the semi‑group Pt of the Markov process, acting on
bounded functions f as

Pt f (x) = E( f (Xt) | X0 = x),

the Markov in initesimal generator can be de ined as the operator

L f (x) = lim
t→0

Pt f (x) − f (x)
t

.

One can check that when the state space is countable, this de inition is coherent
with our construction of Markov processes. General construction of Markov pro‑
cesses, however, go beyond the scops of our course, so that we will not give more
details on the subject.
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5 Probabilistic concentration inequalities
Reading material: Concentration inequalities – a nonasymptotic theory of independence,
by Stéphane Boucheron, Gábor Lugosi and Pascal Massart.

This section contains a selection of classical inequalities, mostly revolving
around the law of large numbers. We start by recalling two elementary bounds,
namely Markov’s and Bienaymé‑Chebychev’s.

5.1 Reminder : classical inequalities
5.1.1 Markov’s inequality

Markov’s inequality allows one to estimate the probability that a non‑negative
random variable is large thanks to its expectation.∣∣∣∣Proposition 5.1: Markov’s inequality ⋆

Let X be a non‑negative random variable, then for any a > 0,

P(X ≥ a) ≤ E(X)
a
.

REMARK: As a consequence, for any increasing non‑negative function Φ,

P(X ≥ a) ≤ E(Φ(X))
Φ(a)

.

PROOF: The proof is emmediate given the monotonicity of the expectation and the
bound

a1{X≥a} ≤ X.

□

5.1.2 Chebychev’s inequality

We now turn to (Bienaymé‑)Chebychev’s inequality , that gives one control on
the distance of a random variable to its mean thanks to its variance.∣∣∣∣Proposition 5.2: Chebychev’s inequality

Let X be a square‑integrable random variable, then for any a > 0,

P(|X − E(X)| ≥ a) ≤ V(X)
a2 .
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As a result, for any integer k,

P(|X − E(X)| ≥ kσ(X)) ≤ 1
k2 ,

where σ(X) =
√

V(X) is the standard deviation of X.

PROOF: Chebychev’s inequality is a direct consequence of Markov’s, applied to the
non‑negative variable (X − E(X))2. □

5.1.3 Jensen’s inequality

Jensen’s inequality gives a very useful bound on E(φ(X)) when φ is a convex
function.∣∣∣∣Proposition 5.3: Jensen’s inequality ⋆

Let X be a random variable, φ a convex function, then

φ(E(X)) ≤ E(φ(X)).

REMARK: To remember the direction of the inequality, consider the case of φ(x) = x2,
with a centered variable, E(X) = 0. In this case, Jensen’s inequality just states
E(X2) ≥ 0, which is trivially true.

PROOF: admitted. □

5.2 Concentration inequalities: the Gaussian case
By the law of large numbers, we have for an i.i.d. (Xk)k∈N∑n

k=1 Xk

n
a.s.−→

n→∞
E(X1).

One want to characterize this convergence, by inding an explicit function f such
that

P


∣∣∣∣∣∣∣

n∑
k=1

[Xk − E(Xk)]

∣∣∣∣∣∣∣ > x

 ≤ fn(x).

The CLT gives an asymptotic answer to this question, by choosing fn(x) = f (x/
√

n),
where f is the Gaussian error function, in which case the bound above is an
equality in the limit n→ ∞.

In many cases, an asymptotic result is not enough, so that we want a bound
for n ixed, called a concentration inequality. Such bounds are very useful to tackle
a wide range of problems. We start by considering the case of i.i.d. Gaussian
variables, in which case the empirical mean is also normally distributed and sharp
explicit bounds can be obtained.
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We now assume that Xk ∼ N(0, 1), in which case S n :=
∑n

k=1 Xk ∼ N(0, n). De ine

pn(x) := P(S n ≥ x) =
∫ +∞

x

1
√

2πn
exp

(
− t2

2n

)
dt =

1
√

2π

∫ +∞

x/
√

n
exp

(
− t2

2

)
dt.

The right‑hand side is equal to 1
2erfc(x/

√
2n), where erfc is called the com‑

plementary error function. A classical estimate on the error function yields the
following sharp estimate.∣∣∣∣Proposition 5.4

For any n ≥ 1 and x ≥ 0

max

0, exp
(
− x2

2n

)  √n
x
−
√

n3

x3

 ≤ pn(x) ≤ exp
(
− x2

2n

) √
n

x

Both the left‑hand side and right‑hand side are of the same order, therefore
this bound is extremely sharp. In general, however, we do not have access to the
exact distribution of S n, so that in order to estimate the probability that S n is far
from its mean, we need to ind other tools.

5.3 General case
5.3.1 Chernoff’s inequality

We now consider a sequence of (non‑necessarily identically distributed) inde‑
pendent variables (Xn)n∈N, we denote

S n =

n∑
k=1

Xk

its partial sum, and

En = E(S n) =
n∑

k=1

E(Xk) and Vn = E((S n − En)2) =
n∑

k=1

V(Xk)

its expectation and variance.
Chernoff’s inequality is a basic tool to exploit the Xk’s independence to obtain

a concentration bound.∣∣∣∣Proposition 5.5: Chernoff’s inequality

With the above notations,

P(S n ≥ t) ≤ inf
s≥0

e−st
n∏

k=1

E(esXk)

 .
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PROOF: Chernoff’s bound is a straightforward consequence of Markov’s inequality
applied to the non‑negative variables es

∑
Xk . Note that if E(exp(sXk) = ∞ for any s,

Chernoff’s bound is trivial, so that in order to obtain relevant bounds, one needs,
at least in some segment s ∈ [s0, s1], that sXk have inite exponential moments. □

In some cases, the moments generating function E(exp(sXk)) can be explicitly
computed, and therefore optimizing over s yields a sharp bound.

5.3.2 Hoeffding’s inequality

Hoeffding’s inequality estimates the probability that the empirical mean S n/n
is far from its mean En/n for random variables taking values in a bounded domain.∣∣∣∣Proposition 5.6: Hoeffding’s inequality ⋆

Assume that there exists a constant C > 0 such that each Xk’s state space has
width at most C, in the sense that there exists two sequences ak ≤ bk such
that

P(ak ≤ Xk ≤ bk ∀k ∈ N) = 1.

We denote ck = bk − ak ≤ C. Then, for any positive t,

P(S n − En ≥ t) ≤ exp
(
− 2t2∑n

i=1 c2
i

)
≤ exp

(
− 2t2

nC2

)
,

so that in particular

P(|S n − En| ≥ t) ≤ 2 exp
(
− 2t2

nC2

)
,

PROOF: The proof is a consequence of Hoeffding’s Lemma, that we will admit, that
states that for any mean‑0 variable X a.s. in [a, b],

E(eλX) ≤ eλ
2(b−a)2/8. (5.1)

We will admit this bound, it is a consequence of optimizing a Jensen bound on eλX .
We apply Hoeffding’s Lemma and Chernoff’s bound to X = Xk − E(Xk), to obtain

P(S n − En ≥ t) ≤ e−st
n∏

k=1

E(es[Xk−E(Xk)]) ≤ e−ste
∑n

k=1 s2(bk−ak)2/8.

We optimize by taking s = 4t/
[∑n

k=1(bk − ak)2
]
, which proves the bound.

The estimate on the absolute value of S n − En is obtained by union bound. □
REMARK: By choosing t = an, Hoeffding’s inequality gives a very strong convergence
bound on the law of large numbers in the case of an i.i.d. sequence with bounded
domain: letting m = E(S n)/n = E(X1), the strong law of large numbers states that

S n

n
a.s.−→

n→∞
m,

67



and Hoeffding yields that this convergence is exponentially fast

P
(∣∣∣∣∣S n

n
− m

∣∣∣∣∣ > a
)
≤ 2e−C′(a)n

for C′(a) = 2a2/C2 > 0.

Further note that by CLT, in the case of i.i.d. variables for example, luctuations
of S n − En around 0 are expected to be of the order

√
n, which is exactly the order

Hoeffding’s yields, since letting t �
√

n yields a vanishing probability.

REMARK: Hoeffding’s inequality is a special case of a more general bound, Azuma’s
inequality, that also applies to more general types of martingales with bounded
variations, sub‑martingales and super‑martingales for example.

REMARK: The boundedness assumption may seem like it is extremely limiting, since
most random variables one can think of are not bounded. This issue, however, can
be solved when each Xi’s distribution tail decays exponentially, which will typically
be the case since we want some large deviation type estimates (see last chapter).
In this case, P(|Xk| > M) = O(e−αk M), so that we can apply Hoeffding’s inequality to
XM

k := Xk ∧ M. By union bound, w.h.p 1 − nOM(exp (−mink αkM)), all Xk’s and XM
k ’s

are equal, so that Hoeffding’s bound yields

P(S n − En ≥ t) ≤ C1n exp
(
−min

k
αkM

)
+ exp

(
− t2

2nM2

)
where the irst term represents the probability that one of the XM

k is different from Xk,
and the second is Hoeffding’s bound on the XM

k ’s. Setting M = O(log n) is generally
suf icient to get rid of the irst term, and does not loose too much on the second
term. In the last chapter of this course, we will see some sharper bounds thanks to
the theory of large deviations and Cramér’s Theorem.

5.3.3 First Bernstein inequality

One drawback of the Hoeffding inequality is that it becomes bad very fast as
the support of the random variable increases, independently of the actual proba‑
bility that the random variables are large. This issue is lifted in parts by the irst
Bernstein inequality.∣∣∣∣Proposition 5.7: First Bernstein inequality

Under the same assumptions and hypothesis as in Hoeffding’s inequality, for
any positive t,

P(|S n − En| ≥ t) ≤ 2 exp
(
− 2t2

Vn +Ct/3

)
.

PROOF: admitted □

End of lecture 10
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6 Large deviations principles
Reading material: Large deviations techniques and applications, by Amir Dembo,
and Ofer Zeitouni.

6.1 Cramér’s theorem
Chernoff’s, Hoeffding’s, and Bernstein’s inequalities allow us to bound from

above the probability that an empirical average deviates from its theoretical mean.
In essence, these are large deviations bounds, which prove that an average devia‑
tion of S n − En of order ε occurs with a probability of order exp(−n f (ε)). However,
one can show, for random variables with sharply decaying tails, that the devia‑
tion probability is not only bounded from above, but also asymptotically equal to
exp(−n f (ε)). This is called a large deviations principle.

Although large deviations principles can be obtained for fairly general se‑
quences of distributions, we will focus irst on the distribution of a sequence
of i.i.d. variables, through Cramér’s theorem. We start by a key notion in the study
of large deviations, namely Legendre’s transform.

6.1.1 Legendre transform of convex functions∣∣∣∣De inition 6.1: Legendre transform ⋆

Given a convex real‑valued function Λ on R, we de ine its Legendre trans‑
form, also called Cramér’s transform in the context of large deviations, as the
function

Λ⋆(x) = sup
t∈R
{xt − Λ(t)} ∈ R ∪ {+∞}.

This function, and a variable tx at which the supremum is reached, is always
well‑de ined if Λ is convex and Λ⋆(x) < ∞.

A graphical representation of the Legendre transform of a convex function Λ
is represented in Figure 1. When the function Λ is not convex, this notion can be
de ined as well, and is then called convex conjuguate. In the context of this course,
however, we will focus on the case where Λ is indeed convex.∣∣∣∣Proposition 6.1: Properties of the Legendre transform ⋆

The legendre transform of a real‑valued function is convex and lower semi‑
continuous, i.e. its level sets {Λ ≤ α} are closed for any α.

PROOF: Both properties are quite elementary for real‑valued functions. Fix α > 0,
and a sequence (xn)n∈N and assume that limn→∞ xn = x such that Λ⋆(xn) ≤ α ∀n ∈ N,
we will show that Λ⋆(x) ≤ α. By the de inition of the legendre transform, and our
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Λ⋆(x)

y = tx

t

y

tx

y = Λ(t)
+∞

Figure 1: Representation of the convex tranform of Λ. One can see that d
dtΛ(tx) = x,

and conversely d
dxΛ

⋆(x) = tx.

assumption on the xn’s,
sup
t∈R
n∈N

{xnt − Λ(t)} ≤ α.

But for any ixed t, tx − Λ(t) ≤ supn xnt − Λ(t), so that taking the supremum over t
proves Λ⋆(x) ≤ α, so that Λ⋆ is lower semi‑continuous.

We now prove the convexity, assuming that Λ is convex. Fix θ ∈ [0, 1], x1, x2 ∈ R.

Λ⋆(θx1 + (1 − θ)x2) = sup
t∈R
{θx1t + (1 − θ)x2t − θΛ(t) − (1 − θ)Λ(t)}

≤ sup
t1, t2∈R

{θx1t1 + (1 − θ)x2t2 − θΛ(t1) − (1 − θ)Λ(t2)}

=θΛ⋆(x1) + (1 − θ)Λ⋆(x2).

□

REMARK: One can show that if Λ is convex and inite everywhere, then its Legendre
transform Λ⋆ is C∞ and strictly convex on the domain (Λ⋆)−1(R) where it is inite.

REMARK: In general, for any convex function λ, for any x and t

Λ(t) + Λ⋆(x) ≥ tx, (6.1)

with equality iff t and x are conjuguate of eachother.

We have the following result.
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t = tx t

x = xt

x

x = d
dtΛ(t)

t = d
dxΛ

⋆(x)

x0

Figure 2: Representation of the convex conjugation. Up to a constant, Λ(t) is given
by the red area, whereas Λ⋆(x) is given by the blue area. In particular, up to
constants, their sum adds up to tx.

∣∣∣∣Proposition 6.2: Convex conjugates ⋆

The Legendre transform is an involution on the set of convex functions, i.e.
(Λ⋆)⋆ = Λ for any convex function Λ. Furthermore, if Λ is differentiable and
strictly convex on R, the derivatives of Λ and Λ⋆ are inverse of each other,
i.e. ∀t ∈ R

d
dx
Λ⋆

(
d
dt
Λ(t)

)
= t.

Furthermore, for any strictly convex function Λ, the variables satisfying the
supremum are conjugate, in the sense that if

Λ⋆(x) = xtx − Λ(tx) and Λ(t) = txt − Λ⋆(xt),

then xtx = x and
xt =

d
dt
Λ(t), and tx =

d
dx
Λ⋆(x).

PROOF: The last statement is proved in Figure 1. To prove that the variables (t, x)
and the functions Λ, Λ⋆ are conjugate, we write as represented in Figure 2, that

tx =
∫ t

0
xsds +

∫ x

x0

tx′dx′.

The irst term in the right‑hand side is Λ(t) − Λ(0), so that the equality case in
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(6.1) identi ies
∫ x

x0
tx′dx′ as Λ⋆(x) − Λ(0), so that in particular

d
dx
Λ⋆(x) = tx =

(
d
dt
Λ

)−1

(x).

□

6.1.2 Cramér’s transform

Consider a sequence (Xk)k∈N of i.i.d. random variables.∣∣∣∣De inition 6.2: logarithmic moments generating function (log‑MGF) ⋆

We de ine the logarithmic moment generating function (log‑MGF) ΛX of a
random variable X as the function

ΛX(t) := logE(exp(tX)) ∈ R ∪ {+∞}.

It is also called the cumulant generating function.

One easily checks that

ΛX(0) = 0,
d
dt
ΛX(0) = E(X).

∣∣∣∣Proposition 6.3: Convexity of the log‑MGF

For any real‑valued random variable X, its logarithmic moments generating
function is convex, i.e. for any t1, t2, and θ ∈ [0, 1],

ΛX(θt1 + (1 − θ)t2) ≤ θΛX(t1) + (1 − θ)ΛX(t2).

PROOF: Recall that Holder’s inequality yields, for 1/p + 1/q = 1 , that

E(YZ) ≤ E(Y p)
1
pE(Zq)

1
q .

We apply it to Y = eθt1X , Z = e(1−θ)t2X , p = θ−1, q = (1 − θ)−1, to obtain that

E(exp (θt1X + (1 − θ)t2X)) ≤ E(exp (t1X))θE(exp (t2X))1−θ,

taking the log on both sides proves the convexity of ΛX . □∣∣∣∣Proposition 6.4: Legendre transform of the log‑MGF

Fix a real‑valued random variable X, denote by ΛX its log‑MGF. Assume that
ΛX is inite on an open set ] − ε, ε[ containing the origin.
Then, the function Λ⋆X is convex and non‑negative, reaches its minimum
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Λ⋆X(x0) = 0 at x0 = E(X), and is non‑increasing on (−∞,E(X)], and non‑
decreasing on [E(X),+∞).

PROOF: The convexity of Λ⋆X is a direct consequence of Propositions 6.1 and 6.3. It
is non negative because xt − ΛX(t) vanishes at t = 0.

We now write that Λ⋆X(E(X)) = supt{tE(X) − log(E(etX))}. By Jensen’s inequal‑
ity, the second term log(E(etX)) is larger than tE(X) for any t ∈ R, therefore
Λ⋆X(E(X)) = 0. Since Λ⋆ is non‑negative, E(X) realizes its minimum. Regarding
the monotonicity, we write by convexity that for any x > 0, any θ ∈ [0, 1]

Λ⋆X(θE(X) + (1 − θ)x) ≤ (1 − θ)Λ⋆X(x) ≤ Λ⋆X(x),

which proves that Λ⋆X is non‑decreasing on [E(X),+∞). The rest of the statement
is proved analogously. □

6.1.3 Cramér’s theorem

We now have all the tools needed to state Cramér’ theorem, which explicitly
identi ies a large deviation principle for i.i.d. variables with inite log‑MGF.∣∣∣∣Theorem 6.5: Cramér’s theorem ⋆

Consider an i.i.d. sequence (Xk)k∈N of real‑valued random variables, and as‑
sume that it has inite log‑MGF on an open set containing 0, i.e.

E(etX1) < ∞ ∀t ∈ (−ε, ε).

Then, for any x > E(X1),

lim
n→∞

1
n

logP(S n ≥ nx) = −Λ⋆X1
(x). (6.2)

More generally, for any for any a < b ∈ R,

lim
n→∞

1
n

logP(S n/n ∈ [a, b]) = − inf
x∈[a,b]

Λ⋆X1
(x).

REMARK: In a completely symmetric way, Cramér’s theorem also states that for any
x < E(X1),

lim
n→∞

1
n

logP(S n ≤ nx) = −Λ⋆X1
(x).

Informally, Cramer’s large deviation principle can be written

P(S n/n ' x) ∼ exp(−nΛ⋆X1
(x)). (6.3)

Note that when x = E(X1), Cramér’s theorem does not give any information, since
the Probability that S n/n is close to x is close to 1 and does not decay exponentially.
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REMARK 1: Cramér’s Theorem states, informally, that the way to create an unlikely
large deviation is by creating the most likely among the possible unlikely deviations.
More precisely, write informally that

P(S n/n ∈ [a, b]) =
∫ b

a
P(S n/n ∈ [x, x + dx]).

However, for x, x′ such that Λ⋆X1
(x) < Λ⋆X1

(x′)

P(S n/n ∈ [x, x + dx]) ' e−nΛ⋆X1
(x) � e−nΛ⋆X1

(x′) ' P(S n/n ∈ [x′, x′ + dx]),

so that the sum of these two probabilities is asymptotically equal to the larger of the
two. Generalizing to all points x ∈ [a, b], the remaining contribution is the largest,
namely

exp
(
−n inf

x∈[a,b]
Λ⋆X1

(x)
)
.

In particular, to create a deviation of at least ε from the mean E(X), the most likely
way is to create a deviation of exactly ε, so that

P(S n/n ≥ E(X) + ε) ' P(S n/n ' E(X) + ε) ' exp
(
−nΛ⋆X1

(E(X) + ε)
)
. (6.4)

PROOF: We give the proof in the case where X1 has inite log‑MGF everywhere, in
order not to burden with technical details. We therefore assume that

E(etX1) < ∞ ∀t ∈ R. (6.5)

All large deviations principles are typically composed of a lower bound and an
upper bound, which are proven separately.

We irst give the upper bound, which is a straightforward consequence of Cher‑
noff’s inequality. The latter yields

P(S n ≥ nx) ≤ inf
s≥0

e−snx
n∏

k=1

E(esXk)

 = inf
s≥0
E(esX1)ne−snx

= inf
s≥0

exp
(−n[sx − ΛX1(s)]

) ≤ exp
(
−nΛ⋆X1

(x)
)
,

which proves the upper bound. Note that the upper bound holds for any ixed n,
not only in the limit n→ ∞.

Proving the lower bound always revolves around the same scheme : to estimate
the probability of deviating to the value x, we irst tilt the distribution of the Xi’s
to make this deviation typical, and then estimate the cost of doing so. First, we
claim that to prove the lower bound, it is enough to show that for any x ∈ R, any
δ > 0

lim inf
n→∞

1
n

logP(nx ≤ S n ≤ n(x + δ)) ≥ −Λ⋆X1
(x). (6.6)
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Indeed, assume that the bound above holds for any x, δ. Then,

lim inf
n→∞

1
n

logP(S n ≥ nx) ≥ lim inf
n→∞

1
n

logP(nx ≤ S n ≤ n(x + δ)) ≥ −Λ⋆X1
(x),

which proves the lower bound we wanted.
REMARK: At a irst glance, it may look like we are loosing much when writing the
bound above, since we estimated P(S n ≥ nx) by P(nx ≤ S n ≤ n(x + δ)), so that we
have no hope of ultimately obtaining a sharp bound. This is not the case, however,
thanks to (6.4), since to create a deviation mean deviation above x, the most likely
way is to create a deviation exactly at x (See Remark 1 above).

We now ix once and for all x⋆ > E(X), and prove (6.6) for x = x⋆. Fix δ > 0,
and let t⋆ ∈ R such that

Λ⋆X1
(x⋆) = t⋆x⋆ − ΛX1(t

⋆).

In other words, t⋆ solves the supremum in the de inition of Λ⋆X1
(x⋆), and one can

check (see Figure 1 and Proposition 6.2) that it is characterized by t⋆ = d
dxΛ

⋆
X1

(x⋆),
and conversely

x⋆ =
d
dt
ΛX1(t

⋆) =
E(X1et⋆X1)
E(et⋆X1)

.

Given the distribution ν of X1, we de ine νx⋆ as the tilted distribution

νx⋆(dx) := exp
(
t⋆x − ΛX1(t

⋆)
)
ν(dx) =

et⋆x

Eν(et⋆x)
ν(dx). (6.7)

We represent in Figures 3 and 3 the tilted log‑MGF Λx⋆ , its derivative, and its
legendre transform.

Note in particular that∫
xνx⋆(dx) =

∫
x exp

(
t⋆x − ΛX1(t

⋆)
)
ν(dx) = x⋆,

so that x⋆ is the average value of the tilted distribution νx⋆ . We can now write for
any 0 < ε < δ

P(nx⋆ ≤ S n ≤ n(x⋆ + δ)) ≥P(nx⋆ ≤ S n ≤ n(x⋆ + ε))

=

∫
nx⋆≤∑ xk≤n(x⋆+ε)

ν(dx1) . . . ν(dxn)

≥
∫

nx⋆≤∑ xk≤n(x⋆+ε)
exp

nΛX1(t
⋆) − t⋆

n∑
k=1

xk

 νx⋆(dx1) . . . νx⋆(dxn)

≥ exp
{
nΛX1(t

⋆) − nt⋆(x⋆ + ε)
}
P(0 ≤ S ⋆n − nx⋆ ≤ nε)

= exp
{
−nΛ⋆X1

(x⋆) − nt⋆ε
}
P

(
0 ≤ S ⋆n − nx⋆

√
n

≤
√

nε
)
,

where S ⋆n is a sum of n independent random variables with distribution νx⋆ . By the
CLT, the probability on the right‑hand side converges as n→ ∞ to 1/2, therefore

lim
n→∞

1
n

logP(|S n − nx⋆| ≤ nδ) ≥ −Λ⋆X1
(x⋆) − t⋆ε.

Letting ε→ 0 proves (6.6). □
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y

y = tE(X)

y = tx⋆

y = Λν(t)

y = Λx⋆(t)

y

E(X)

x⋆

t⋆

t⋆

y = d
dtΛx⋆(t) y = d

dtΛν(t)

Figure 3: Representation of the log‑MGF Λν (orange) and the tilted log‑MGF Λx⋆(t)
(blue) and their derivatives.

y

xx⋆E(X)

y = t⋆(x − x⋆)
y = Λ⋆ν (x)

Λ⋆x⋆(x)

Figure 4: Representation of the Legendre transform Λ⋆(x) (orange) and the tilted
legendre transform Λ⋆x⋆ (blue).
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Exercise 24 : Bernoulli random variables

Fix p ∈ (0, 1), and (Xk) an i.i.d. Ber(p) variables. Recall that S n =
∑n

k=1 Xk.
1) Compute the log‑MGF of X1.
2) Show that its Legendre transform is given by

Λ⋆X1
(x) =

x log
(

x
p

)
+ (1 − x) log

(
1−x
1−p

)
for x ∈ [0, 1]

+∞ for x < [0, 1]
.

3) Compute P(S n/n ≥ 1), and show directly that

lim
n→∞

1
n

logP(S n ≥ n)

exist.

ANSWER :
1) we straightforwardly write

E(etX1) = pet + 1 − p,

so that
ΛX1 = log(pet + 1 − p).

2) One needs to ind a solution to
d
dt

{
xt − log

(
pet + 1 − p

)}
= 0 ⇒ tx := log

(1 − p)x
(1 − x)p

for x ∈ [0, 1].

One easily checks that for x < [0, 1], no solution exist. Since Λ is convex, so is
xt − Λ(t), therefore its minimum is given by the identity above. Computing
xtx − Λ(tx) yeilds the formula.
3) P(S n/n ≥ 1) = P(S n = n) = pn. The limit exist, and is equal to log p. □

WARNING : The identity (6.2) does not hold at the points of discontinuity
of Λ⋆X1

if the inequality becomes strict. For example, as we have just seen
for Bernoulli variables, Λ⋆X1

(1) = log p, but P(S n > n) = 0, so that

lim
n→∞

1
n

logP(S n > n) = −∞ , Λ⋆X1
(1).

The reason for this discrepancy at the boundary will be made clear in
the next section.

End of lecture 11

6.2 Large deviations principles
Cramér’s theorem is a particular case of a more general notion called Large

deviation principles. Cramér’s theorem, more precisely, gives information on the
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distribution µn of the empirical average S n of i.i.d. random variables with inite
exponential moments. Large deviations principles are actually possible for general
sequences of distributions. To introduce a little bit more generality, we will intro‑
duce our results for distributions on Rd, but large deviations principles are actually
available for very general topological spaces. For now, we consider E = Rd.∣∣∣∣De inition 6.3: (Good) rate function ⋆

A function I : E → [0,+∞] is called a rate function if it is not identically equal
to +∞ and is lower semi‑continuous, i.e. for any a ∈ R, its lower level sets

Da := {x ∈ E, I(x) ≤ a}

are closed sets.
If instead they are compact, I is called a good rate function.

∣∣∣∣Proposition 6.6: in imum of a rate function

Let I be a good rate function, for any closed set F ⊂ E, there exists x ∈ F

I(x) = inf
y∈F

I(y).

NOTATION: in what follows, for any good rate function I, and any set A ⊂ E, we
shorten

I(A) := inf
y∈A

I(y).

∣∣∣∣De inition 6.4: Large deviations principle ⋆

A sequence (Pn)n∈N of probability distributions on E is said to satisfy a large
deviations principle with speed n and good rate function I, noted LDP(n, I) if
i) I is a good rate function,
ii) for any closed set F ⊂ E,

lim sup
n→∞

1
n

logPn(F) ≤ −I(F),

iii) for any open set O ⊂ E,

lim inf
n→∞

1
n

logPn(O) ≥ −I(O).

For any set A ⊂ E, we denote by Å its interior, and Ā its closure. If (Pn)
satis ies a LDP(n, I), then for any A such that I(Å) = I(Ā),

∃ lim
n→∞

1
n

logPn(A) = −I(A). (6.8)

78



REMARK: as we have seen for the Cramér’s theorem, proving a large deviations prin‑
ciples typically involves proving separately the lower and upper bound. Reformulated
with the language of the previous de inition, Cramér’s theorem implies that given a
sequence of i.i.d. random variables with inite exponential moments in a non‑empty
segment, the sequence (Pn)n∈N of distributions of the random variables S n/n satis ies
a large deviation principle with speed n, and whose rate function is given by the
Legendre transform Λ⋆X1

of the Xi’s log‑MGF.
Cramér’s theorem, however, yields a stronger result than a standard large devi‑

ations principle, since it yields that for any closed set F,

lim
n→∞

1
n

logPn(F) = −I(F).

WARNING : a large deviations principles only yields upper and lower
bounds, and the limit in the left hand side (6.8) can actually ex‑
ist even when I(Å) , I(Ā). For example, consider the case of i.i.d.
Bernoulli variables, and A = [1,+∞). Then as seen in Exercise 24,
I(Å) = I((1,+∞)) = +∞, and the large deviations lower bound becomes
meaningless, although limn→∞

1
n logPn(A) = Λ⋆X1

(1) = log p.

REMARK: Property iii) in the large deviations principle is equivalent to the following
local property

“for any x ∈ E, r > 0, lim inf
n→∞

1
n

logPn(Br(x)) ≥ −I(x)”,

where Br(x) is the Euclidean ball with radius r centered in x.∣∣∣∣Proposition 6.7

If a sequence Pn satis ies a large deviation principle, the rate function is
unique.

PROOF: Assume by contradiction that two rate functions I1 and I2 satisfy I1(x) >
I2(x). Since I1 is lower semi‑continuous I−1

1 ((I2(x),+∞)) is an open set, therefore
there exists a ball Bδ(x) such that I1(y) > I2(x) for any y ∈ B̄δ(x). Then, since we
have both large deviations principles, we have

lim sup
n→∞

1
n

logPn(Bδ(x)) ≤ −I1(B̄δ(x)) < −I2(x) = lim
ε→0
−I2(Bε(x))

≤ lim sup
ε→0

lim inf
n→∞

1
n

logPn(Bε(x)) ≤ lim sup
ε→0

lim sup
n→∞

1
n

logPn(Bδ(x)),

which proves the contradiction by choosing a sequence δn realizing the lim supε→0
above. □
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∣∣∣∣Proposition 6.8

If a sequence (Pn)n∈N satis ies a large deviation principle there exists x⋆ such
that I(x⋆) = 0, and if such a x⋆ is unique, then for any function bounded and
continuous function f , ∫

f (x)Pn(dx) →
n→∞

f (x⋆).

PROOF: admitted. □

6.3 Gärtner‐Ellis theorem
The Gärtner‑Ellis theorem is a general result to derive large deviations prin‑

ciples for general sequences of probability distributions. We consider random
vectors Zn taking value in E = Rd, and denote Pn = L (Zn) the distribution of Zn.
Note that we do not assume that the Zn take the form n−1 ∑n

k=1 Xk for an i.i.d.
sequence (Xk)k.

Given a vector t = (t1, . . . td), we de ine the cumulant generating function

Λn(t) = logE(e〈t,Zn〉),

where 〈·, ·〉 denotes the Euclidean inner product in Rd. We assume that there exists
a function Λ : E → R ∪ {+∞} such that

Λn(nt)
n

−→
n→∞
Λ(t) ∀t ∈ Rd. (⋆)

We de ine
D◦Λ := {t ∈ E, Λ(t) < +∞}

As in the one‑dimensional case, the function Λn is convex (same proof).∣∣∣∣De inition 6.5: Legendre transform and exposing hyperplanes

We de ine the Legendre transform of Λ as the function Λ⋆ on Rd

Λ⋆(x) = sup
t∈R
{〈x, t〉 − Λ(t)} ∈ [0,+∞].

This function is convex and lower semi‑continuous.
A point x⋆ ∈ Rd is an exposed point of Λ⋆ if there exists t ∈ Rd such that for
any x , x ∈ Rd

Λ⋆(x) − Λ⋆(x⋆) > 〈x − x⋆, t〉,
in which case t is called an exposing hyperplane for x⋆.
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REMARK: The exposed points of Λ⋆ are those where Λ⋆ is strictly convex, i.e. points
where it is strictly above one of its “tangents”. The problem is that Λ⋆ is not neces‑
sarily differentiable at its exposed points, so that the tangent is not necessarily well
de ined. This is the reason why we do not give it as a de inition.∣∣∣∣De inition 6.6: Essential smoothness

A convex function Λ : Rd → (−∞,+∞] is essentially smooth if

i) D◦
Λ
is non‑empty

ii) Λ is differentiable throughout D◦
Λ

iii) For any sequence tn converging to t in the boundary of D◦
Λ
, we have

∇Λ(tn)→ ∞.

We can now state the Gärtner‑Ellis theorem, which is the main result of this
section. It gives a fairly general tool to prove that a sequence of distributions
satis ies a large deviations principle, assuming that its sequence of log‑moments
generating function admits a well de ined scaling limit.∣∣∣∣Theorem 6.9: Gärtner‑Ellis theorem ⋆

Assume that (⋆) holds, then

1. for any closed set F ⊂ E,

lim sup
n→∞

1
n

logPn(F) ≤ −I(F),

2. for any open set O ⊂ E,

lim inf
n→∞

1
n

logPn(O) ≥ −I(O ∩ E ),

where E is the set of exposed points of Λ⋆ whose exposing hyperplane
t belongs to D◦

Λ
. Note that since I(O∩E ) is a priori different from I(O),

the lower bound above does not guarantee a LDP(n,Λ⋆).

3. If Λ is essentially smooth and lower‑semicontinuous, then (Pn) satis ies
a LDP(n,Λ⋆).

We will not prove this result, however the strategy of its proof relies on roughly
the same ingredients as Cramër’s, in particular, in the case where D◦

Λ
= Rd. The

upper bound relies on Chebychev’s inequality, whereas the lower bound is proved
using a change of reference measure to make to relevant unlikely event typical.

REMARK: It might seem unclear why the lower bound only holds for exposed hy‑
perplanes. The reason for it is that once the tilting has been operated to derive

81



the lower bound (see the proof of Cramér’s Theorem 6.5, if it has been done at an
exposed hyperplane at x⋆ (see Fig. 4, the resulting tilted rate function reaches a
unique global minimum at x⋆, which yields that the second term in the lower bound
vanishes.

Exercise 25 : Exponential random variables

We want to show that in some cases, a LDP can be satis ied even when the
Gärtner‑Ellis theorem is not fully applicable. We consider Zn ∼ Exp(n), and
Pn their distribution.
1) (i) Compute the log‑MGF Λn of Zn.

(ii) Show that there exists a limiting function Λ satisfying (⋆).
(iii) What is the density of Zn ? Show, with direct computation, that

(Pn) has a large deviations principle with a speed and a good rate function
to be determined.
2) (i) Compute Λ⋆.

(ii) Show that E = {0}. What is the lower bound given by the
Gärtner‑Ellis theorem ?

(iii) Conclude.

ANSWER :
1) (i) We compute

Λn(t) = logE(etZn) = log
(
n
∫ +∞

0
etze−nzdz

)
=

+∞ if t ≥ n
log n

n−t if t < n

(ii) One can check that

Λ(t) =

+∞ if t ≥ 1
0 if t < 1

satis ies (⋆).
(iii) Direct computations yield that for any a < b,

P(Zn ∈ [a, b]) = P(Zn ∈ (a, b)) = e−na − e−nb,

so that Zn satis ies a LDP with good rate function

I(x) =

+∞ if t ≤ 0
x if t > 0.

2) (i) It is easily checked that Λ⋆(x) = I(x).
(ii) The only point where Λ⋆ is strictly convex is {0}.
(iii) For any set not containing the origin, the Gärtner‑Ellis lower bound is

trivial, despite Pn satisfying a LDP. □

End of lecture 12
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6.4 Bonus : Legendre transform and entropy
6.4.1 Relative entropy

The concept of large deviations is intimately linked to the notion of relative
entropy. As we did for large deviations, we will present the topic in the context of
real‑valued variables, but everything is valid in a fairly general setting.∣∣∣∣De inition 6.7: Relative entropy

Fix two measures µ and ν on R, and assume that µ is absolutely continuous
w.r.t. ν. We de ine the relative entropy of µ w.r.t. ν as

H(µ | ν) =
∫

dµ
dν

log
(
dµ
dν

)
dν =

∫
log

(
dµ
dν

)
dµ.

Relative entropy is a useful concept, because it links the expectation of a func‑
tion under µ to the one under ν, as guaranteed by the following proposition.∣∣∣∣Proposition 6.10: Entropy inequality

Fix two measures µ and ν on R, and assume that µ is absolutely continuous
w.r.t. ν. Given a measurable bounded function f , we have

Eµ( f ) ≤ H(µ | ν) + logEν(e f ).

Note that to estimate the expectation of f under µ, we loose something by
switching to the reference measure ν, since now what we need to estimate logE(e f ),
which is much larger. This proposition actually stems from a second de inition of
the relative entropy:∣∣∣∣De inition 6.8: Variational principle for the relative entropy

The relative entropy is also given by

H(µ | ν) = sup
f

{
Eµ( f ) − logEν(e f )

}
, (6.9)

where the supremum is taken over bounded functions f .

REMARK: This second de inition is much more general than the irst, and is actually
valid even if µ is not absolutely continuous w.r.t. ν, in which case the relative entropy
is equal to +∞.

To see why De inition 6.8 holds, we claim that we can de ine, for any vector
space E, and any function Λ : E → R, the Legendre transform Λ⋆ : E′ → R, where
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E′ denotes the dual space of E, as

Λ⋆(φ) = sup
e
{〈φ, e〉 − Λ(e)} ,

where φ is a linear form on E, and 〈φ, e〉 = φ(e) is the canonical pairing. Consider
the vector space E of bounded functions on R, its dual space E′ can be seen (see the
Riesz–Markov–Kakutani representation theorem) as the set D(R) of distributions
on R.

In particular, given a reference measure ν, Equation (6.9) identi ies H(µ | ν) =
Λ⋆(µ) as the Legendre transform of the functional Λ : E → R de ined as

Λ( f ) := logEν(e f ).

Admitting that this functional is strictly convex, as seen in Proposition 6.2, with
any bounded function f can be associated a unique conjugate measure µ. Let us
proceed by analogy between the two cases.

Λ : R→ R Λ : E → R

Variable t ∈ R f : R→ R bounded

Conjugate variable x ∈ R µ distribution

Inner product 〈x, t〉 = xt 〈µ, f 〉 :=
∫

f dµ

Legendre transform Λ⋆(x) Λ⋆(µ)

Conjugation relations d
dtΛ(t) = x δΛ

δ f [ f ; g] = 〈µ, g〉
d
dxΛ

⋆(x) = t δΛ⋆

δµ
[µ; π] = 〈π, f 〉

In the identities above, the functional derivative δΛ
δ f at f is de ined as

δΛ

δ f
[ f ; g] = lim

ε→0

Λ( f + εg) − Λ( f )
ε

.

In our case, according to (6.9), we are looking at the Legendre transform of the
functional Λ( f ) = logEν(e f ), whose functional derivative is given by

δΛ

δ f
[ f ; g] =

∫
ge f dν∫
e f dν

=

∫
gdµ,

according to the irst conjugation relation. This identity must be true for every
function g, we deduce that

e f =
dµ
dν

⇒ f = log
(
dµ
dν

)
, (6.10)
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where dµ/dν is the Radon derivative of µ w.r.t. ν. In particular,

H(µ | ν) := Λ⋆(µ) = 〈µ, log
(
dµ
dν

)
〉 − Λ

(
log

(
dµ
dν

))
=

∫
dµ
dν

log
(
dµ
dν

)
dν,

which proves that De initions 6.7 and 6.8 are equivalent. Unfortunately, the identity
above only holds if dµ/dν is bounded and bounded away from 0, otherwise the
function f obtained through (6.10) is no longer bounded. Still, given a distribution
µ, and f given by (6.10), we can de ine

fε = 1{ε≤ f≤ε−1} f ,

and prove both 6.7 and 6.8 by taking the limit ε→ 0, and replacing f by fε, which
is bounded.

6.4.2 Large deviations and relative entropy

We now take a look at the proof of Cramér’s theorem, in which for variables
X with distribution ν, we de ined in (6.7) the tilted measure

νx⋆(dx) := exp
(
t⋆x − ΛX1(t

⋆)
)
ν(dx) =

et⋆x

Eν(et⋆x)
ν(dx),

a straightforward computation yields

H(νx⋆ | ν) =
∫

et⋆x

Eν(et⋆x)
(t⋆x − ΛX1(t

⋆))dν(x) = t⋆x⋆ − ΛX1(t
⋆) = Λ⋆X1

(x⋆).

In other words, the large deviations functional, evaluated at x⋆ associated with an
i.i.d. sequence of random variables is the relative entropy between the x⋆‑tilted
measure νx⋆ and the initial measure ν.

Consider now to illustrate the case of i.i.d. Ber(p) variables (see Exercise 24),
so that ν(X1 = 1) = 1 − ν(X1 = 0) = p. In the case of a discrete variable (e.g. on N),
the relative entropy between two distributions pk and qk is given by

H(q | p) =
∑
k∈N

qk log
qk

pk
.

Here, ν({1}) = p1 = p, ν({0}) = p0 = 1 − p, and furthermore

νx⋆({1}) =
et⋆

pet⋆ + (1 − p)
= x⋆, νx⋆({0}) =

1 − p
pet⋆ + (1 − p)

= 1 − x⋆,

since (see Exercise 24, question 2)) t⋆ = log
(
(1 − p)x⋆/(1 − x⋆)p

). In other words,
unsurprisingly, the tilted measure (i.e. a Ber(p) ∼ νp tilted to have mean x⋆) is
simply νx⋆ . This is obvious for Bernoulli random variables, since the only random
variable absolutely continuous w.r.t. νp, with mean x is νx. The large deviations
functional is then immediately identi ied as

Λ⋆(x) = H(νx | νp) = x log
x
p
+ (1 − p) log

1 − x
1 − p

.

The big upside is that if one already knows what the tilted measure should look
like, the large deviations functional is then immediately given by De inition 6.7.
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