Master 2 Mathématiques Parcours recherche

TD1 – Markov jump processes*

Exercise 1 : Explosion of birth processes

Fix a sequence of non-negative rates $(\lambda_j)_{j \in \mathbb{N}}$. A birth process is a Markov jump process on \mathbb{N} with rates

$$\ell_{j,j+1} = \lambda_j$$
 and $\ell_{j,j} = -\lambda_j$,

started from $X_0 = 1$.

1) For $k \ge 1$, we denote by S_k the time of the process' k - 1-th jump, $S_k = \inf\{t, X_t = k\}$, with $S_1 := 0$, and we denote by $S_{\infty} = \sup_k S_k = \lim_{k \to \infty} S_k$ its explosion time. Compute $\mathbb{E}(S_{\infty})$, and deduce a criterion for non-explosion in finite time for the markov chain.

2) We now want to prove that if $\sum \frac{1}{\lambda_j} = \infty$, the chain a.s. does not explode in finite time, $\mathbb{P}(S_{\infty} < \infty) = 0$.

(i) Fix a non-negative sequence $(\alpha_k)_{k \in \mathbb{N}}$, after proving that $\forall x > -1$,

$$\frac{x}{1+x} \le \log(1+x) \le x$$

show that

$$\prod_{k=1}^{\infty} \frac{1}{1+\alpha_k} = 0 \quad \Leftrightarrow \quad \sum_{k=1}^{\infty} \alpha_k = \infty.$$

(ii) Compute for $k \ge 2$

$$\mathbb{E}\left(\exp(-(S_k - S_{k-1}))\right).$$

(iii) Deduce from it $\mathbb{E}(\exp(-S_{\infty}))$, and conclude.

Exercise 2 : A simple birth process

Fix $\lambda > 0$, we consider a birth process (see previous exercise) with rate $\lambda_i = \lambda j$, started from $X_0 = 1$. Define $p_i(t) = \mathbb{P}(X_t = j)$.

1) Write down Kolmogorov forward equations for $p_1(t)$ and $p_j(t)$, $j \ge 2$.

2) Show that X_t follows a geometric distribution with parameter $e^{-\lambda t}$. Does the process explode in finite time ?

^{*}For any typo/question, please contact me at *clement.erignoux@inria.fr*. The exercise sheets will be put on the webpage, http://chercheurs.lille.inria.fr/cerignou/homepage.html in the "teaching" section.

3) Compute the expected population size at time *t*.

Exercise 3 : A simple Markov process

Fix $\alpha, \beta > 0$, and consider a Markov process on $E = \{1, 2\}$, with generator matrix

$$L = \begin{pmatrix} -\alpha & \alpha \\ \beta & -\beta \end{pmatrix}$$

- 1) (i) Give a graphic representation of the Markov process.
 - (ii) Write down the Kolmogorov equation for $P_t[1, 1]$.
 - (iii) Prove the identity

$$P'_t[1,1] + (\alpha + \beta)P_t[1,1] = \beta.$$

- (iv) Solve this equation to determine $P_t[1, 1]$.
- 2) (i) Compute L^2 as a function of *L*.
 - (ii) Deduce a simple formula for L^n .
 - (iii) Deduce from the previous questions that

$$P_t = I_2 + \frac{L}{\alpha + \beta} (1 - e^{-(\alpha + \beta)t}).$$

- (iv) Check the result obtained at the previous question.
- 3) Does this chain have an invariant measure ?

We consider a Markov process X_t on a triangle, with vertices 1, 2, 3 going clockwise. In a small timestep dt, the process moves one step clockwise with probability $\alpha dt + O(dt^2)$, and counter clockwise with probability $\beta dt + O(dt^2)$, otherwise it stays put.

1) (i) Give the intensity matrix for this process, and give a graphic representation.

(ii) What is the probability starting from state 1, to hit state 2 before state 3 ?

(iii) We denote by T^3 the first time the process hits state 3. Compute $\mathbb{E}_1(T^3)$, which is the expectation starting from state 1 of the hitting time of state 3.

2) (i) What is the transition matrix of the skeleton (*Y_k*) of the process ?
(ii) What is the probability, for the skeleton, to hit state 2 before

state 3, starting from state 1?

(iii) What is the expected number of steps in the skeleton to hit state

3 starting from state 1?

Exercise 5 : A queue process

At the post office, clients arrive at a single counter and exit as they are taken care of. We assume that at a rate λ (i.e. at the ringing times of a rate λ Poisson clock), a random number of clients (independent from the poisson clock and from the other arrivals) arrives in the queue, according to a distribution $\mathbf{p} := (p_k)_{k \in \mathbb{N}}$ on \mathbb{N} . We assume that $p_0 = 0$. All clients are in a single line, and the first in the line is taken care of at a rate $\gamma > 0$.

1) Write down the intensity matrix for this process, and justify that the total number of clients N_t that have entered the post office before time t can be written

$$N_t = \sum_{k=1}^{Q_t} \xi_k,$$

where Q_t follows a Poisson distribution with a parameter that will be indicated, and the (ξ_k) 's are i.i.d. variables with distribution **p**.

2) (i) Justify that the number M_t of people in the post office is an irreducible Markov process, and its unique communicating class is \mathbb{N} .

(ii) Show that M_t does not explode in finite time.

3) Assume that μ is a stationary probability distribution for *M*. We define $g(s) = \sum_k p_k s^k$ (resp $\psi(s) = \sum_k \mu_k s^k$) the probability generating function of **p**. (resp. μ).

(i) Write down the equations satisfied by μ , and show that

$$\psi(s) = \frac{\gamma \mu_0 (1-s)}{s \lambda(g(s)-1) + \gamma(1-s)}$$

(ii) Let $m = \sum k p_k$ be the average of **p**. Show that if there exists an invariant probability measure, we must have $m < \infty$ and $m\lambda/\gamma < 1$

(iii) Show that if $m\lambda/\gamma < 1$ there exits a unique invariant probability measure μ .

(iv) Assume $m\lambda/\gamma < 1$, compute $\mathbb{E}_{\mu}(X_t)$.