TD1 - Markov jump processes*

Exercise 1: Explosion of birth processes

Fix a sequence of non-negative rates $\left(\lambda_{j}\right)_{j \in \mathbb{N}}$. A birth process is a Markov jump process on \mathbb{N} with rates

$$
\ell_{j, j+1}=\lambda_{j} \quad \text { and } \quad \ell_{j, j}=-\lambda_{j},
$$

started from $X_{0}=1$.

1) For $k \geq 1$, we denote by S_{k} the time of the process' $k-1$-th jump, $S_{k}=\inf \left\{t, X_{t}=k\right\}$, with $S_{1}:=0$, and we denote by $S_{\infty}=\sup _{k} S_{k}=\lim _{k \rightarrow \infty} S_{k}$ its explosion time. Compute $\mathbb{E}\left(S_{\infty}\right)$, and deduce a criterion for non-explosion in finite time for the markov chain.
2) We now want to prove that if $\sum \frac{1}{\lambda_{j}}=\infty$, the chain a.s. does not explode in finite time, $\mathbb{P}\left(S_{\infty}<\infty\right)=0$.
(i) Fix a non-negative sequence $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$, after proving that $\forall x>-1$,

$$
\frac{x}{1+x} \leq \log (1+x) \leq x
$$

show that

$$
\prod_{k=1}^{\infty} \frac{1}{1+\alpha_{k}}=0 \quad \Leftrightarrow \quad \sum_{k=1}^{\infty} \alpha_{k}=\infty .
$$

(ii) Compute for $k \geq 2$

$$
\mathbb{E}\left(\exp \left(-\left(S_{k}-S_{k-1}\right)\right)\right)
$$

(iii) Deduce from it $\mathbb{E}\left(\exp \left(-S_{\infty}\right)\right)$, and conclude.

Exercise 2: A simple birth process

Fix $\lambda>0$, we consider a birth process (see previous exercise) with rate $\lambda_{j}=\lambda j$, started from $X_{0}=1$. Define $p_{j}(t)=\mathbb{P}\left(X_{t}=j\right)$.

1) Write down Kolmogorov forward equations for $p_{1}(t)$ and $p_{j}(t), j \geq 2$.
2) Show that X_{t} follows a geometric distribution with parameter $e^{-\lambda t}$.

Does the process explode in finite time ?

[^0]3) Compute the expected population size at time t.

Exercise 3 : A simple Markov process

Fix $\alpha, \beta>0$, and consider a Markov process on $E=\{1,2\}$, with generator matrix

$$
L=\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

1) (i) Give a graphic representation of the Markov process.
(ii) Write down the Kolmogorov equation for $P_{t}[1,1]$.
(iii) Prove the identity

$$
P_{t}^{\prime}[1,1]+(\alpha+\beta) P_{t}[1,1]=\beta
$$

(iv) Solve this equation to determine $P_{t}[1,1]$.
2) (i) Compute L^{2} as a function of L.
(ii) Deduce a simple formula for L^{n}.
(iii) Deduce from the previous questions that

$$
P_{t}=I_{2}+\frac{L}{\alpha+\beta}\left(1-e^{-(\alpha+\beta) t}\right) .
$$

(iv) Check the result obtained at the previous question.
3) Does this chain have an invariant measure ?

Exercise 4: A Markov triangle

We consider a Markov process X_{t} on a triangle, with vertices 1, 2, 3 going clockwise. In a small timestep $d t$, the process moves one step clockwise with probability $\alpha d t+O\left(d t^{2}\right)$, and counter clockwise with probability $\beta d t+O\left(d t^{2}\right)$, otherwise it stays put.

1) (i) Give the intensity matrix for this process, and give a graphic representation.
(ii) What is the probability starting from state 1 , to hit state 2 before state 3 ?
(iii) We denote by T^{3} the first time the process hits state 3. Compute $\mathbb{E}_{1}\left(T^{3}\right)$, which is the expectation starting from state 1 of the hitting time of state 3.
2) (i) What is the transition matrix of the skeleton $\left(Y_{k}\right)$ of the process ?
(ii) What is the probability, for the skeleton, to hit state 2 before state 3 , starting from state 1 ?
(iii) What is the expected number of steps in the skeleton to hit state

3 starting from state 1 ?

Exercise 5: A queue process

At the post office, clients arrive at a single counter and exit as they are taken care of. We assume that at a rate λ (i.e. at the ringing times of a rate λ Poisson clock), a random number of clients (independant from the poisson clock and from the other arrivals) arrives in the queue, according to a distribution $\mathbf{p}:=\left(p_{k}\right)_{k \in \mathbb{N}}$ on \mathbb{N}. We assume that $p_{0}=0$. All clients are in a single line, and the first in the line is taken care of at a rate $\gamma>0$.

1) Write down the intensity matrix for this process, and justify that the total number of clients N_{t} that have entered the post office before time t can be written

$$
N_{t}=\sum_{k=1}^{Q_{t}} \xi_{k},
$$

where Q_{t} follows a Poisson distribution with a parameter that will be indicated, and the $\left(\xi_{k}\right)$'s are i.i.d. variables with distribution \mathbf{p}.
2) (i) Justify that the number M_{t} of people in the post office is an irreducible Markov process, and its unique communicating class is \mathbb{N}.
(ii) Show that M_{t} does not explode in finite time.
3) Assume that μ is a stationary probability distribution for M. We define $g(s)=\sum_{k} p_{k} s^{k}\left(\operatorname{resp} \psi(s)=\sum_{k} \mu_{k} s^{k}\right)$ the probabillity generating function of p. (resp. μ).
(i) Write down the equations satisfied by μ, and show that

$$
\psi(s)=\frac{\gamma \mu_{0}(1-s)}{s \lambda(g(s)-1)+\gamma(1-s)} .
$$

(ii) Let $m=\sum k p_{k}$ be the average of \mathbf{p}. Show that if there exists an invariant probability measure, we must have $m<\infty$ and $m \lambda / \gamma<1$
(iii) Show that if $m \lambda / \gamma<1$ there exits a unique invariant probability measure μ.
(iv) Assume $m \lambda / \gamma<1$, compute $\mathbb{E}_{\mu}\left(X_{t}\right)$.

[^0]: *For any typo/question, please contact me at clement.erignoux@inria.fr. The exercise sheets will be put on the webpage, http://chercheurs.lille.inria.fr/cerignou/homepage.html in the "teaching" section.

