TD1 - Markov jump processes*

Exercise 1: Explosion of birth processes

Fix a sequence of non-negative rates $\left(\lambda_{j}\right)_{j \in \mathbb{N}}$. A birth process is a Markov jump process on \mathbb{N} with rates

$$
\ell_{j, j+1}=\lambda_{j} \quad \text { and } \quad \ell_{j, j}=-\lambda_{j},
$$

started from $X_{0}=1$.

1) For $k \geq 1$, we denote by S_{k} the time of the process' $k-1$-th jump,
$S_{k}=\inf \left\{t, X_{t}=k\right\}$, with $S_{1}:=0$, and we denote by $S_{\infty}=\sup _{k} S_{k}=\lim _{k \rightarrow \infty} S_{k}$ its explosion time. Compute $\mathbb{E}\left(S_{\infty}\right)$, and deduce a criterion for non-explosion in finite time for the markov chain.
2) We now want to prove that if $\sum \frac{1}{\lambda_{j}}=\infty$, the chain a.s. does not explode in finite time, $\mathbb{P}\left(S_{\infty}<\infty\right)=0$.
(i) Fix a non-negative sequence $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$, after proving that $\forall x>-1$,

$$
\frac{x}{1+x} \leq \log (1+x) \leq x
$$

show that

$$
\prod_{k=1}^{\infty} \frac{1}{1+\alpha_{k}}=0 \quad \Leftrightarrow \quad \sum_{k=1}^{\infty} \alpha_{k}=\infty .
$$

(ii) Compute for $k \geq 2$

$$
\mathbb{E}\left(\exp \left(-\left(S_{k}-S_{k-1}\right)\right)\right)
$$

(iii) Deduce from it $\mathbb{E}\left(\exp \left(-S_{\infty}\right)\right)$, and conclude.

ANSWER :

1) We wite $S_{\infty}=\sum_{k} S_{k+1}-S_{k}$, whose expectation is therefore $\sum_{k} \lambda_{k}^{-1}$. If the sum is finite, then $S_{\infty}<\infty$ with probability 1, and therefore the chain is explosive. To be non-explosive, we must have $\sum_{k} \lambda_{k}^{-1}=\infty$.
2) We now assume that the sum is finite, and prove that a.s. the birth process does not explode in finite time. For x positive,

$$
\frac{1}{(1+x)^{2}} \leq \frac{1}{1+x} \leq 1
$$

[^0]and for x negative the inequalities are in the other direction. It is then sufficient to integrate between 0 and x to obtain the wanted bound.

Now, write

$$
\exp \left(-\sum_{k=1}^{\infty} \alpha_{k}\right) \leq \prod_{k=1}^{\infty} \frac{1}{1+\alpha_{k}}=\exp \left(-\sum_{k=1}^{\infty} \log \left(1+\alpha_{k}\right)\right) \leq \exp \left(-\sum_{k=1}^{\infty} \frac{\alpha_{k}}{1+\alpha_{k}}\right) .
$$

The left-hand side proves one implication. For the other, write

$$
\sum_{k=1}^{\infty} \frac{\alpha_{k}}{1+\alpha_{k}}=\sum_{k=1}^{\infty} \frac{\alpha_{k}}{1+\alpha_{k}} \mathbf{1}_{\left\{\alpha_{k}>1\right\}}+\sum_{k=1}^{\infty} \frac{\alpha_{k}}{1+\alpha_{k}} \mathbf{1}_{\left\{\alpha_{k} \leq 1\right\}} \geq \frac{1}{2} \sum_{k=1}^{\infty} \mathbf{1}_{\left\{\alpha_{k}>1\right\}}+\frac{1}{2} \sum_{k=1}^{\infty} \alpha_{k} \mathbf{1}_{\left\{\alpha_{k} \leq 1\right\}} .
$$

If $\sum_{k=1}^{\infty} \alpha_{k}=\infty$, one of those two sums is infinite, which proves the converse implication.
(i) The expectation is equal to

$$
\lambda_{k} \int_{0}^{+\infty} e^{-s} e^{-\lambda_{k} s} d s=\frac{\lambda_{k}}{1+\lambda_{k}}=\frac{1}{1+\alpha_{k}},
$$

with $\alpha_{k}=1 / \lambda_{k}$.
(ii) Since the successive holding times are independant, we have

$$
\mathbb{E}\left(\exp \left(-S_{\infty}\right)\right)=\prod_{k} \mathbb{E}\left(\exp \left(-\left(S_{k}-S_{k-1}\right)\right)\right)=\prod_{k} \lambda_{k} \int_{0}^{+\infty} e^{-s} e^{-\lambda_{k} s} d s=\prod_{k} \frac{1}{1+\alpha_{k}}
$$

In particular, according to the previous questions,
$S_{\infty}=\infty$ a.s. $\Leftrightarrow \exp \left(-S_{\infty}\right)=0$ a.s. $\Leftrightarrow \mathbb{E}\left(\exp \left(-S_{\infty}\right)\right)=0 \quad \Leftrightarrow \quad \sum_{k=1}^{\infty} \alpha_{k}=\infty$

Exercise 2 : A simple birth process

Fix $\lambda>0$, we consider a birth process (see previous exercise) with rate $\lambda_{j}=\lambda j$, started from $X_{0}=1$. Define $p_{j}(t)=\mathbb{P}\left(X_{t}=j\right)$.

1) Write down Kolmogorov forward equations for $p_{1}(t)$ and $p_{j}(t), j \geq 2$.
2) Show that X_{t} follows a geometric distribution with parameter $e^{-\lambda t}$. Does the process explode in finite time ?
3) Compute the expected population size at time t.

ANSWER :

1) $p_{1}^{\prime}(t)=-\lambda p_{1}(t)$, and

$$
p_{j}^{\prime}(t)=\lambda(j-1) p_{j-1}(t)-\lambda j p_{j}(t) .
$$

2) It is straightforward to show that $p_{1}(t)=e^{-\lambda t}$. Assume that for any $k \leq j-1$, and any $t p_{k}(t)=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{k-1}$. By Markov property, for $j \neq 1$, since the evolution of a birth process started from two can be split into two independant birth processes,

$$
\begin{aligned}
p_{j}(t) & =\int_{0}^{t} \lambda e^{-\lambda s} \sum_{k=1}^{j-1} p_{k}(t-s) p_{j-k}(t-s) d s \\
& =(j-1) \lambda e^{-\lambda t} \int_{0}^{t} e^{-\lambda(t-s)}\left(1-e^{-\lambda(t-s)}\right)^{j-2} d s \\
& =(j-1) e^{-\lambda t} \int_{e^{-\lambda t}}^{1}(1-u)^{j-2} d u \\
& =(j-1) e^{-\lambda t} \int_{0}^{1-e^{-\lambda t}} u^{j-2} d u \\
& =e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{j-1}
\end{aligned}
$$

The probability that the process explodes in finite time is

$$
\mathbb{P}\left(\exists t<\infty, X_{t}=\infty\right) \leq \sum_{k=0}^{+\infty} \mathbb{P}\left(X_{k}=\infty\right)=0
$$

3) It is the expectation of a geometric variable with parameter $e^{-\lambda t}$, therefore $\mathbb{E}\left(X_{t}\right)=e^{\lambda t}$.

Exercise 3: A simple Markov process

Fix $\alpha, \beta>0$, and consider a Markov process on $E=\{1,2\}$, with generator matrix

$$
L=\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

1) (i) Give a graphic representation of the Markov process.
(ii) Write down the Kolmogorov equation for $P_{t}[1,1]$.
(iii) Prove the identity

$$
P_{t}^{\prime}[1,1]+(\alpha+\beta) P_{t}[1,1]=\beta
$$

(iv) Solve this equation to determine $P_{t}[1,1]$.
2) (i) Compute L^{2} as a function of L.
(ii) Deduce a simple formula for L^{n}.
(iii) Deduce from the previous questions that

$$
P_{t}=I_{2}+\frac{L}{\alpha+\beta}\left(1-e^{-(\alpha+\beta) t}\right) .
$$

(iv) Check the result obtained at the previous question.
3) Does this chain have an invariant measure ?

ANSWER :

1) (i) Easy !
(ii) $P_{t}^{\prime}=L P_{t}$, so that $P_{t}[1,1]^{\prime}=-\alpha P_{t}[1,1]+\beta P_{t}[1,2]$
(iii) Write $P_{t}[1,1]=1-P_{t}[1,2]$ to prove the identity.
(iv)

$$
P_{t}[1,1]=\frac{\beta}{\alpha+\beta}+A e^{-(\alpha+\beta) t},
$$

and the initial condition yields $A=\alpha /(\alpha+\beta)$.
2) (i)

$$
L^{2}=-(\alpha+\beta) L
$$

(ii)

$$
L^{n}=(-\alpha-\beta)^{n-1} L
$$

(iii)

$$
P_{t}=e^{t L}=I_{2}+t \sum_{n=0}^{+\infty} \frac{(-t)^{n-1}(\alpha+\beta)^{n-1}}{n!} L=I_{2}+\frac{1}{\alpha+\beta}\left(1-e^{-t(\alpha+\beta)}\right) L,
$$

on retrouve bien

$$
P_{t}[1,1]=\frac{\beta}{\alpha+\beta}+\frac{\alpha}{\alpha+\beta} e^{-(\alpha+\beta) t},
$$

3) We check if the chain has a reversible measure,

$$
\mu(1) L[1,2]=\mu(2) L[2,1],
$$

we find

$$
\mu(1)=\frac{\beta}{\alpha+\beta} \quad \text { and } \quad \mu(2)=\frac{\alpha}{\alpha+\beta} .
$$

Exercise 4 : A Markov triangle

We consider a Markov process X_{t} on a triangle, with vertices 1, 2, 3 going clockwise. In a small timestep $d t$, the process moves one step clockwise with probability $\alpha d t+O\left(d t^{2}\right)$, and counter clockwise with probability $\beta d t+O\left(d t^{2}\right)$, otherwise it stays put.

1) (i) Give the intensity matrix for this process, and give a graphic representation.
(ii) What is the probability starting from state 1, to hit state 2 before state 3 ?
(iii) We denote by T^{3} the first time the process hits state 3 . Compute $\mathbb{E}_{1}\left(T^{3}\right)$, which is the expectation starting from state 1 of the hitting time of state 3.
2) (i) What is the transition matrix of the skeleton $\left(Y_{k}\right)$ of the process?
(ii) What is the probability, for the skeleton, to hit state 2 before state 3 , starting from state 1 ?
(iii) What is the expected number of steps in the skeleton to hit state 3 starting from state 1 ?

ANSWER:

1) (i)

$$
\left(\begin{array}{ccc}
-\alpha-\beta & \alpha & \beta \\
\beta & -\alpha-\beta & \alpha \\
\alpha & \beta & -\alpha-\beta
\end{array}\right)
$$

(ii) The probability is $\alpha /(\alpha+\beta)$.
(iii) Either use the result from the lecture notes, or use the Markov property at the time of the first jump, to show that

$$
\mathbb{E}_{1}\left(T^{3}\right)=\mathbb{E}_{1}\left(\tau_{0}\right)+\mathbb{P}_{1}\left(Y_{1}=2\right) \mathbb{E}_{2}\left(T^{3}\right)+\mathbb{P}_{1}\left(Y_{1}=3\right) \mathbb{E}_{3}\left(T^{3}\right)=\frac{1}{\alpha+\beta}+\frac{\alpha}{\alpha+\beta} \mathbb{E}_{2}\left(T^{3}\right)
$$

We apply once again the Markov property to the second term, to yield

$$
\mathbb{E}_{1}\left(T^{3}\right)=\frac{1}{\alpha+\beta}+\frac{\alpha}{\alpha+\beta}\left[\frac{1}{\alpha+\beta}+\frac{\beta}{\alpha+\beta} \mathbb{E}_{1}\left(T^{3}\right)\right]
$$

so that

$$
\mathbb{E}_{1}\left(T^{3}\right)=\frac{2 \alpha+\beta}{\alpha^{2}+\beta^{2}+\alpha \beta} .
$$

One can check that this coherent with the cases where $\alpha=0\left(T^{3} \sim \operatorname{Exp}(\beta)\right)$ and $\beta=0\left(T^{3}\right.$ is the sum of two independant $\operatorname{Exp}(\alpha)$ variables).
2) (i)

$$
\frac{1}{\alpha+\beta}\left(\begin{array}{ccc}
0 & \alpha & \beta \\
\beta & 0 & \alpha \\
\alpha & \beta & 0
\end{array}\right)
$$

(ii) It is $\alpha /(\alpha+\beta)$.
(iii) Each step in the continuous process takes an $\operatorname{Exp}(\alpha+\beta)$ time, so that the number of steps needed in the ekeleton is $(\alpha+\beta) \mathbb{E}_{1}\left(T^{3}\right)$.

Exercise 5: A queue process

At the post office, clients arrive at a single counter and exit as they are taken care of. We assume that at a rate λ (i.e. at the ringing times of a rate λ Poisson clock), a random number of clients (independant from the poisson clock and from the other arrivals) arrives in the queue, according to a distribution $\mathbf{p}:=\left(p_{k}\right)_{k \in \mathbb{N}}$ on \mathbb{N}. We assume that $p_{0}=0$. All clients are in a single line, and the first in the line is taken care of at a rate $\gamma>0$.

1) Write down the intensity matrix for this process, and justify that the total number of clients N_{t} that have entered the post office before time t can be written

$$
N_{t}=\sum_{k=1}^{Q_{t}} \xi_{k},
$$

where Q_{t} follows a Poisson distribution with a parameter that will be indicated, and the $\left(\xi_{k}\right)$'s are i.i.d. variables with distribution \mathbf{p}.
2) (i) Justify that the number M_{t} of people in the post office is an irreducible Markov process, and its unique communicating class is \mathbb{N}.
(ii) Show that M_{t} does not explode in finite time.
3) Assume that μ is a stationary probability distribution for M. We define $g(s)=\sum_{k} p_{k} s^{k}\left(\operatorname{resp} \psi(s)=\sum_{k} \mu_{k} s^{k}\right)$ the probabillity generating function of p. (resp. μ).
(i) Write down the equations satisfied by μ, and show that

$$
\psi(s)=\frac{\gamma \mu_{0}(1-s)}{s \lambda(g(s)-1)+\gamma(1-s)} .
$$

(ii) Let $m=\sum k p_{k}$ be the average of \mathbf{p}. Show that if there exists an invariant probability measure, we must have $m<\infty$ and $m \lambda / \gamma<1$
(iii) Show that if $m \lambda / \gamma<1$ there exits a unique invariant probability measure μ.
(iv) Assume $m \lambda / \gamma<1$, compute $\mathbb{E}_{\mu}\left(X_{t}\right)$.

ANSWER: The intensity matrix is given by the transition rates

$$
\ell_{k, k+\ell}= \begin{cases}\lambda p_{\ell} & \text { for } \ell \geq 1 \\ \gamma & \text { for } \ell=-1 \\ -\lambda-\gamma & \text { for } \ell=0 \\ 0 & \text { otherwise }\end{cases}
$$

The number of occurences at which clients arrived follows a Poisson point process with rate λ, and at each occurence, an independent number of clients distributed as \mathbf{p} arrives. Hence, choosing $Q_{t} \sim \operatorname{Poi}(\lambda t)$, and ξ_{k} 's distributed as i.i.d. p, we obtain the formula.

1) (i) Choose an arbitrary k_{0} such that $p_{k_{0}}>0$. Since any positive integer ℓ
can be written

$$
\ell=a_{\ell} k_{0}-b_{\ell}
$$

for two positive integers a_{ℓ}, b_{ℓ}. Then, we have the path from any n to $n+\ell$ defined by the arrival of k_{0} clients a_{ℓ} times, then the exit of b_{ℓ} successive clients. This path links n to $n+\ell$, and occurs at positive rate $\left(\lambda p_{k_{0}}\right)^{a_{l}} \gamma^{b_{k_{0}}}>0$. To go from $n+\ell$ to n we juste have to make ℓ clients leave, which occurs with rate $\gamma^{\ell}>0$.
(ii) The process jumps at a total rate at most $\gamma+\lambda$ (except when there are no clients, where it jumps at rate λ), which is constant and therefore bounded, thus it does not explode.
2) (i) We apply the definition of a stationary distribution, we must have $\mathbb{E}_{\mu}\left(\mathscr{L} \mathbf{1}_{\{e\}}\right)=0$ for any $k \in \mathbb{N}$. In particular,

$$
\begin{equation*}
\gamma \mu_{1}=\lambda \mu_{0}, \quad \text { and } \quad(\gamma+\lambda) \mu_{k}=\gamma \mu_{k+1}+\lambda \sum_{\ell=1}^{k} \mu_{k-\ell} p_{\ell} \quad \text { for } \quad k \geq 1 \tag{1}
\end{equation*}
$$

We now multiply this identity by s^{k} and sum over $k \geq 1$, to obtain that for any $s \neq 0$

$$
(\gamma+\lambda) \sum_{k \geq 1} s^{k} \mu_{k}=\frac{\gamma}{s} \sum_{k \geq 1} s^{k+1} \mu_{k+1}+\lambda \sum_{1 \leq \ell \leq k} s^{k} \mu_{k-\ell} p_{\ell},
$$

so that

$$
\begin{gathered}
(\gamma+\lambda)\left[\psi(s)-\mu_{0}\right]=\frac{\gamma}{s}\left[\psi(s)-\mu_{0}-s \mu_{1}\right]+\lambda g(s) \psi(s), \\
\left(\gamma+\lambda-\frac{\gamma}{s}-g(s)\right) \psi(s)=(\gamma+\lambda) \mu_{0}-\frac{\gamma}{s}\left(\mu_{0}+s \mu_{1}\right)=\gamma \mu_{0}(1-1 / s),
\end{gathered}
$$

which proves the identity.
(ii) If there exists an invariant measure, ψ must be continuous in $s=1$, and we must have $\psi(1)=\sum_{k} \mu_{k}=1$. We rewrite

$$
s(g(s)-1)=\sum_{k \geq 1}\left(s^{k+1}-s\right) p_{k}=-(1-s) \sum_{k \geq 1} \sum_{j=1}^{k} s^{j} p_{k},
$$

so that

$$
\psi(s)=\frac{\gamma \mu_{0}}{\gamma-\lambda \sum_{k \geq j \geq 1} s^{j} p_{k}} \longrightarrow \frac{\gamma \mu_{0}}{\gamma-\lambda m} .
$$

Since γ, λ and μ_{0} are non negative, in order to have $\psi(1)=1$, we must have $m<\infty$ (otherwise $\psi(s)=0 \neq 1$) and $\lambda m<\gamma$ (otherwise $\mu_{0}<0$).
(iii) If $\lambda m<\gamma$, we define $\mu_{0}=(\gamma-\lambda m) / \gamma \in[0,1]$. We then determine μ_{1} using the first identity in (1), and μ_{k} for $k \geq 2$ using the second part of (1). By construction, this yields an invariant measure, with total mass $1=\psi(1)$. It is not hard to check taht by construction, $\mu_{k}>0 \forall k$.
(iv) If $\lambda m<\gamma$, by stationarity

$$
\mathbb{E}_{\mu}\left(M_{t}\right)=\mathbb{E}_{\mu}\left(M_{0}\right)=\sum_{k \geq 1} k \mu_{k}=\psi^{\prime}(1),
$$

which can be computed with either one of the forumlae for $\psi(s)$, since $g^{\prime}(1)=m$, we obtain

$$
\mathbb{E}_{\mu}\left(M_{t}\right)=\psi^{\prime}(1)=\frac{\gamma \mu_{0} \lambda \sum_{k \geq j \geq 1} j p_{k}}{(\gamma-\lambda m)^{2}}=\frac{\lambda \sum_{k \geq 1}\left(k^{2}+k\right) p_{k}}{2(\gamma-\lambda m)}
$$

[^0]: *For any typo/question, please contact me at clement.erignoux@inria.fr. The exercise sheets will be put on the webpage, http://chercheurs.lille.inria.fr/cerignou/homepage.html in the "teaching" section.

