FACULTÉ DES SCIENCES ET

TD2 - Large deviations and concentration inequalities*

Exercise 1 : Exponential variables

We consider an i.i.d. sequence $\left(X_{k}\right)_{k \in \mathbb{N}}$ of exponential variables with parameter λ.

1) Justify that the X_{k} 's have finite log-MGF on $(-\infty, \lambda)$, and compute their $\log -\mathrm{MGF} \Lambda(t)$.
2) Compute its Legendre transform $\Lambda^{\star}(x)$.
3) Justify that the distribution of $S_{n}:=\frac{1}{n} \sum_{k=1}^{n} X_{k}$ satisfies a LDP and give its rate function and speed.

Exercise 2: Cramér's theorem and Poisson tail

We want to prove that the tail of the Poisson distribution decays faster than exponentially. Show that given $X \sim \operatorname{Poi}(t)$, we have for any $C>0$

$$
\limsup _{k \rightarrow \infty} \mathbb{P}(X>k) e^{C k}=0 .
$$

Exercise 3 : Random walks

1) We consider a symmetric discrete time random walk $\left(S_{k}\right)$. Prove that for any $n \in \mathbb{N}$, and any vanishing sequence $\varepsilon_{k} \rightarrow 0$,

$$
\mathbb{P}\left(S_{n k^{2}} \geq k / \varepsilon_{k}\right) \underset{k \rightarrow \infty}{\longrightarrow} 0 .
$$

2) (i) We now consider a symmetric continuous time rate 1 random walk $\left(X_{t}\right)_{t \geq 0}$. Prove that for any $t>0$, and any vanishing sequence $\varepsilon_{k} \rightarrow 0$,

$$
\mathbb{P}\left(X_{t k^{2}} \geq k / \varepsilon_{k}\right) \underset{k \rightarrow \infty}{\longrightarrow} 0 .
$$

(ii) We want a stronger estimate. Prove that for any $t>0$, and any $n>0$,

$$
k^{n} \mathbb{P}\left(X_{t k^{2}} \geq k \log (k)^{2}\right) \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

[^0]hint : consider the variables $Y_{q}=\min \left(A_{k}, X_{t(q+1)}-X_{t q}\right)$, and show using the previous exercise
$$
\mathbb{P}\left(X_{t k^{2}} \neq \sum_{q=0}^{k^{2}-1} Y_{q}\right) \rightarrow 0
$$

Exercise 4

Fix $p \in(0,1)$, and consider an i.i.d. sequence $\left(X_{k}\right)_{k \in \mathbb{N}}$ of $\operatorname{Bernoulli}(p)$ variables. Using Hoeffding's inequality, build for any $\alpha \in(0,1)$ give an α-confidence interval, i.e. an interval $C_{p, n, \alpha}$ such that

$$
\mathbb{P}\left(\frac{1}{n} \sum_{k=1}^{n} X_{k} \in C_{p, n, \alpha}\right) \geq 1-\alpha .
$$

What does the interval become using the first Bernstein inequality ?

Exercise 5

Fix $p \in(0,1)$, and consider an i.i.d. sequence $\left(X_{k}\right)_{k \in \mathbb{N}}$ of $\operatorname{Geom}(p)$ variables. Define $Y_{n}=\sum_{k=1}^{n} k X_{k}$.

1) What is $\mathbb{E}\left(Y_{n}\right)$?
2) Show that for any $m>3 / 2$,

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(Y_{n} \geq \frac{n(n+1)}{2 p}+n^{m}\right)=0 .
$$

Hint: as in the last question of Ex. 3, crop the X_{k} 's and estimate the probability that cropping made a difference in the sum.

Exercise 6

Let μ be a distribution with support contained in $[a, b]$.

1) Justify that for an i.i.d. sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ distributed as μ, its empirical average $S_{n}=n^{-1} \sum_{k=1}^{n} X_{k}$ satisfies a large deviations principle.
2) Show that its rate function I satisfies $I=+\infty$ outside of $[a, b]$.
3) Show that if $\forall \varepsilon>0$

$$
\mu([a, a+\varepsilon))>0 \quad \text { and } \quad \mu((b-\varepsilon, b])>0,
$$

then $I<+\infty$ on (a, b).
4) Show that $I(a)<+\infty \Leftrightarrow \mu(\{a\})>0$, and similarly with b.

[^0]: *For any typo/question, please contact me at clement.erignoux@inria.fr. The exercise sheets will be put on the webpage, http://chercheurs.lille.inria.fr/cerignou/homepage.html in the "teaching" section.

