Master 2 Mathématiques Parcours recherche

TD2 – Large deviations and concentration inequalities*

Exercise 1 : Exponential variables

We consider an i.i.d. sequence $(X_k)_{k \in \mathbb{N}}$ of exponential variables with parameter λ .

1) Justify that the X_k 's have finite log-MGF on $(-\infty, \lambda)$, and compute their log-MGF $\Lambda(t)$.

2) Compute its Legendre transform $\Lambda^*(x)$.

3) Justify that the distribution of $S_n := \frac{1}{n} \sum_{k=1}^n X_k$ satisfies a LDP and give its rate function and speed.

ANSWER :

1) The log-MGF for $Exp(\lambda)$ variables can be computed and is equal to

$$\Lambda_{Z_1}(t) = \begin{cases} \log\left(\frac{\lambda}{\lambda - t}\right) & \text{if } t < \lambda \\ +\infty & \text{otherwise} \end{cases}$$

2) Its legendre transform is given by

$$\Lambda_{Z_1}^{\star}(x) = \lambda x - 1 - \log \lambda x.$$

3) This is a consequence Cramér's Theorem. The speed is *n* and the good rate function $\Lambda_{Z_1}^{\star}$.

Exercise 2 : Cramér's theorem and Poisson tail

We want to prove that the tail of the Poisson distribution decays faster than exponentially. Show that given $X \sim Poi(t)$, we have for any C > 0

$$\limsup_{k\to\infty} \mathbb{P}(X>k)e^{Ck} = 0.$$

^{*}For any typo/question, please contact me at *clement.erignoux@inria.fr*. The exercise sheets will be put on the webpage, http://chercheurs.lille.inria.fr/cerignou/homepage.html in the "teaching" section.

ANSWER : We write that $\mathbb{P}(X > k) = \mathbb{P}(Z_1 + \cdots + Z_k < 1)$, where $Z_i \sim Exp(\lambda)$ are independent exponential variables. We want an upper bound on the probability that those are small, so that we cannot use chernoff, and need to resort to a large deviations estimate. The large deviations functional for exponential variables with parameters λ (see previous exercise) is given by

$$\Lambda_{Z_1}^{\star}(x) = \lambda x - 1 - \log \lambda x,$$

which diverges as $x \to 0$. Choose k_0 large enough so that $\Lambda_{Z_1}^{\star}(1/k_0) > 2C$, and write

$$\mathbb{P}(X > k) \le \mathbb{P}\left(\frac{Z_1 + \dots + Z_k}{k} < 1/k\right) \le \mathbb{P}\left(\frac{Z_1 + \dots + Z_k}{k} < 1/k_0\right).$$

In particular,

$$\limsup \frac{1}{k} \log \mathbb{P}(X > k) \le -\Lambda_{Z_1}^{\star}(1/k_0) < -2C,$$

which proves the result, since then

$$\limsup \frac{1}{k} \log \left(\mathbb{P}(X > k) e^{Ck} \right) = C + \limsup \frac{1}{k} \log \mathbb{P}(X > k) \le -C.$$

Exercise 3 : Random walks

1) We consider a symmetric *discrete time* random walk (S_k) . Prove that for any $n \in \mathbb{N}$, and any vanishing sequence $\varepsilon_k \to 0$,

$$\mathbb{P}\left(S_{nk^2} \geq k/\varepsilon_k\right) \xrightarrow[k \to \infty]{} 0.$$

2) (i) We now consider a symmetric *continuous time* rate 1 random walk $(X_t)_{t\geq 0}$. Prove that for any t > 0, and any vanishing sequence $\varepsilon_k \to 0$,

$$\mathbb{P}\left(X_{tk^2} \ge k/\varepsilon_k\right) \xrightarrow[k \to \infty]{} 0.$$

(ii) We want a stronger estimate. Prove that for any t > 0, and any n > 0,

$$k^n \mathbb{P}\left(X_{tk^2} \ge k \log(k)^2\right) \xrightarrow[k \to \infty]{} 0.$$

hint : consider the variables $Y_q = min(A_k, X_{t(q+1)} - X_{tq})$, and show using the previous exercise

$$\mathbb{P}\left(X_{tk^2} \neq \sum_{q=0}^{k^2-1} Y_q\right) \to 0.$$

Answer :

1) This is a direct consequence of the CLT: for any *n*, any $\varepsilon > 0$, and any *k* large enough such that $\varepsilon_k < \varepsilon$

$$\mathbb{P}\left(S_{nk^{2}} \geq k/\varepsilon_{k}\right) \leq \mathbb{P}\left(S_{nk^{2}} \geq k/\varepsilon\right),$$

which converges as $k \to \infty$ to $\mathbb{P}(\mathcal{N}(0, \sigma_n^2) > 1/\varepsilon)$, where $\sigma_n^2 = n$ is the variance of S_n . This is true for any ε , we have the result by letting $\varepsilon \to 0$.

2) (i) The same estimate is true, with σ_n^2 replaced by σ_t^2 the variance of S_t .

(ii) By Markov property, X_{tk^2} is the sum of k^2 i.i.d. variables distributed as X_t . We want to apply Hoeffding's inequality, but in continuous time, X_t is not bounded. However, Assume that X_t was bounded by some constant A_k , we would have by Hoeffding's inequality

$$\mathbb{P}\left(X_{tk^2} \ge k \log(k)^2\right) \le \exp\left(\frac{-2k^2 \log(k)^4}{k^2 A_k^2}\right)$$

We then define Y_q as proposed, and apply Hoeffding'inequality to the Y_q 's, so that

$$\mathbb{P}\left(X_{tk^{2}} \ge k \log(k)^{2}\right) \le \mathbb{P}(\exists q \le k^{2} - 1, Y_{q} \ne X_{t(q+1)} - X_{tq}) + \exp\left(\frac{-2\log(k)^{4}}{A_{k}^{2}}\right).$$

By union bound, the first term is less than $k^2 \mathbb{P}(Poi(t) > A_k) \ll k^2 e^{-CA_k}$ for any positive constant *C*. In particular, for any *C*,

$$\mathbb{P}\left(X_{tk^{2}} \ge k \log(k)^{2}\right) = o\left(k^{2} e^{-CA_{k}} + e^{-2\log(k^{4})/A_{k}^{2}}\right)$$

Multiplying by k^n , one can choose $A_k = \log k$ and *C* large enough for both terms to vanish, which proves the result.

Exercise 4

Fix $p \in (0, 1)$, and consider an i.i.d. sequence $(X_k)_{k \in \mathbb{N}}$ of *Bernoulli*(p) variables. Using Hoeffding's inequality, build for any $\alpha \in (0, 1)$ give an α -confidence interval, i.e. an interval $C_{p,n,\alpha}$ such that

$$\mathbb{P}\left(\frac{1}{n}\sum_{k=1}^{n}X_{k}\in C_{p,n,\alpha}\right)\geq 1-\alpha.$$

What does the interval become using the first Bernstein inequality ?

ANSWER : We write

$$\mathbb{P}\left(-\varepsilon \leq \sum_{k=1}^{n} X_k - np \leq \varepsilon\right) = 1 - \mathbb{P}\left(\sum_{k=1}^{n} [X_k - p] \geq \varepsilon\right) - \mathbb{P}\left(\sum_{k=1}^{n} [p - X_k] \geq \varepsilon\right).$$

By Hoeffding's inequality,

$$\mathbb{P}\left(\sum_{k=1}^{n} [X_k - p] \ge n\varepsilon\right) \le \exp\left(-\frac{2n^2\varepsilon^2}{n}\right) = e^{-2n\varepsilon^2},$$

and the same is true for the second bound, so that if $e^{-2n\epsilon^2} = \alpha/2$, we must have

$$\varepsilon = \sqrt{-\frac{\log(\alpha/2)}{2n}},$$

which does not depend on *p*.

Using now the first Bernstein inequality, we obtain instead

$$\mathbb{P}\left(\sum_{k=1}^{n} [X_k - p] \ge n\varepsilon'\right) \le \exp\left(-\frac{2n^2\varepsilon'^2}{np(1-p) + n/3}\right) = e^{-2n\varepsilon'^2},$$

which is a little bit better, and yields

$$\varepsilon' = \sqrt{-\frac{\log(\alpha/2)(p(1-p)+1/3)}{2n}} < \varepsilon',$$

Exercise 5

Fix $p \in (0, 1)$, and consider an i.i.d. sequence $(X_k)_{k \in \mathbb{N}}$ of Geom(p) variables. Define $Y_n = \sum_{k=1}^n k X_k$.

- 1) What is $\mathbb{E}(Y_n)$?
- 2) Show that for any m > 3/2,

$$\limsup_{n\to\infty} \mathbb{P}\left(Y_n \ge \frac{n(n+1)}{2p} + n^m\right) = 0.$$

Hint: as in the last question of Ex. 3, crop the X_k 's and estimate the probability that cropping made a difference in the sum.

Exercise 6

Let μ be a distribution with support contained in [a, b].

1) Justify that for an i.i.d. sequence $(X_n)_{n \in \mathbb{N}}$ distributed as μ , its empirical average $S_n = n^{-1} \sum_{k=1}^n X_k$ satisfies a large deviations principle.

- 2) Show that its rate function *I* satisfies $I = +\infty$ outside of [a, b].
- 3) Show that if $\forall \varepsilon > 0$

 $\mu([a, a + \varepsilon)) > 0$ and $\mu((b - \varepsilon, b]) > 0$,

then $I < +\infty$ on (a, b).

4) Show that $I(a) < +\infty \Leftrightarrow \mu(\{a\}) > 0$, and similarly with *b*.

ANSWER :

1) Since μ has bounded support, in particular $0 \le e^{tX} \le e^{t \max(a,b)}$ so that e^{tX} is integrable for any $t \in \mathbb{R}$ and its log-MGF is finite everywhere. By Cramér's theorem, the law of S_n/n satisfies a $LDP(n, \Lambda^*)$ where Λ^* is the Legendre transform of the log-MGF of μ .

2) Fix x outside of [a, b], x > b for example, so that in particular $x > \mathbb{E}(X)$. By Cramér's theorem, we must have

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(S_n/n\geq x)=-\Lambda^*(x).$$

But since *x* is outside the support of μ , $\mathbb{P}(S_n/n \ge x) = 0$, so that we must have $\Lambda^*(x) = +\infty$. A similar arguments holds for x < a.

3) Assume that for any $\varepsilon > 0$, we have $\mu([a, a + \varepsilon)) > 0$. Fix $\varepsilon > 0$, we will show $\Lambda^*(a + \varepsilon) < \infty$. Assume first that $\mathbb{E}(X) = a$, then X = a a.s. because this is the only way for $\mathbb{E}(X)$ to be equal to a. In this case, $\Lambda^*(a) = 0$, and in particular either b = a or the condition is not satisfied. If b = a, the statement is trivial, so that we can now assume $\mathbb{E}(X) > a$. We then choose $\varepsilon < \mathbb{E}(X) - a$, by assumption

$$\mu([a, a + \varepsilon]) \ge \mu([a, a + \varepsilon)) \ge \delta > 0.$$

Note that $\mathbb{P}(S_n/n < a + \varepsilon) \ge \mathbb{P}(X_k \le a + \varepsilon \ \forall k \le n) = \delta^n$, therefore by Cramér's Theorem

$$\log \delta \geq \lim_{n \to \infty} \frac{1}{n} \mathbb{P}(S_n / n \leq a + \varepsilon) = -\Lambda^*(a + \varepsilon),$$

thus $\Lambda^{\star}(a + \varepsilon) < \infty$ for any small ε .

4) Once again, this follows from Cramér's Theorem : Since $\mathbb{P}(S_n/n = a) = \mu(\{a\})^n$, we obtain by Cramér's Theorem

$$\Lambda^{\star}(a) = -\log(\mu(\{a\})),$$

which proves the equivalence.