TD2 - Large deviations and concentration inequalities*

Exercise 1 : Exponential variables

We consider an i.i.d. sequence $\left(X_{k}\right)_{k \in \mathbb{N}}$ of exponential variables with parameter λ.

1) Justify that the X_{k} 's have finite log-MGF on $(-\infty, \lambda)$, and compute their $\log -\mathrm{MGF} \Lambda(t)$.
2) Compute its Legendre transform $\Lambda^{\star}(x)$.
3) Justify that the distribution of $S_{n}:=\frac{1}{n} \sum_{k=1}^{n} X_{k}$ satisfies a LDP and give its rate function and speed.

ANSWER :

1) The log-MGF for $\operatorname{Exp}(\lambda)$ variables can be computed and is equal to

$$
\Lambda_{Z_{1}}(t)=\left\{\begin{array}{ll}
\log \left(\frac{\lambda}{\lambda-t}\right) & \text { if } t<\lambda \\
+\infty & \text { otherwise }
\end{array} .\right.
$$

2) Its legendre transform is given by

$$
\Lambda_{Z_{1}}^{\star}(x)=\lambda x-1-\log \lambda x .
$$

3) This is a consequence Cramér's Theorem. The speed is n and the good rate function $\Lambda_{Z_{1}}^{\star}$.

Exercise 2: Cramér's theorem and Poisson tail

We want to prove that the tail of the Poisson distribution decays faster than exponentially. Show that given $X \sim \operatorname{Poi}(t)$, we have for any $C>0$

$$
\limsup _{k \rightarrow \infty} \mathbb{P}(X>k) e^{C k}=0
$$

[^0]ANSWER : We write that $\mathbb{P}(X>k)=\mathbb{P}\left(Z_{1}+\cdots+Z_{k}<1\right)$, where $Z_{i} \sim \operatorname{Exp}(\lambda)$ are independant exponential variables. We want an upper bound on the probability that those are small, so that we cannot use chernoff, and need to resort to a large deviations estimate. The large deviations functional for exponential variables with parameters λ (see previous exercise) is given by

$$
\Lambda_{Z_{1}}^{\star}(x)=\lambda x-1-\log \lambda x,
$$

which diverges as $x \rightarrow 0$. Choose k_{0} large enough so that $\Lambda_{Z_{1}}^{\star}\left(1 / k_{0}\right)>2 C$, and write

$$
\mathbb{P}(X>k) \leq \mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{k}}{k}<1 / k\right) \leq \mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{k}}{k}<1 / k_{0}\right) .
$$

In particular,

$$
\lim \sup \frac{1}{k} \log \mathbb{P}(X>k) \leq-\Lambda_{Z_{1}}^{\star}\left(1 / k_{0}\right)<-2 C
$$

which proves the result, since then

$$
\lim \sup \frac{1}{k} \log \left(\mathbb{P}(X>k) e^{C k}\right)=C+\lim \sup \frac{1}{k} \log \mathbb{P}(X>k) \leq-C
$$

Exercise 3 : Random walks

1) We consider a symmetric discrete time random walk $\left(S_{k}\right)$. Prove that for any $n \in \mathbb{N}$, and any vanishing sequence $\varepsilon_{k} \rightarrow 0$,

$$
\mathbb{P}\left(S_{n k^{2}} \geq k / \varepsilon_{k}\right) \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

2) (i) We now consider a symmetric continuous time rate 1 random walk $\left(X_{t}\right)_{t \geq 0}$. Prove that for any $t>0$, and any vanishing sequence $\varepsilon_{k} \rightarrow 0$,

$$
\mathbb{P}\left(X_{t k^{2}} \geq k / \varepsilon_{k}\right) \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

(ii) We want a stronger estimate. Prove that for any $t>0$, and any $n>0$,

$$
k^{n} \mathbb{P}\left(X_{t k^{2}} \geq k \log (k)^{2}\right) \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

hint : consider the variables $Y_{q}=\min \left(A_{k}, X_{t(q+1)}-X_{t q}\right)$, and show using the previous exercise

$$
\mathbb{P}\left(X_{t k^{2}} \neq \sum_{q=0}^{k^{2}-1} Y_{q}\right) \rightarrow 0
$$

AnSWER :

1) This is a direct consequence of the CLT: for any n, any $\varepsilon>0$, and any k large enough such that $\varepsilon_{k}<\varepsilon$

$$
\mathbb{P}\left(S_{n k^{2}} \geq k / \varepsilon_{k}\right) \leq \mathbb{P}\left(S_{n k^{2}} \geq k / \varepsilon\right),
$$

which converges as $k \rightarrow \infty$ to $\mathbb{P}\left(\mathcal{N}\left(0, \sigma_{n}^{2}\right)>1 / \varepsilon\right)$, where $\sigma_{n}^{2}=n$ is the variance of S_{n}. This is true for any ε, we have the result by letting $\varepsilon \rightarrow 0$.
2) (i) The same estimate is true, with σ_{n}^{2} replaced by σ_{t}^{2} the variance of S_{t}.
(ii) By Markov property, $X_{t k^{2}}$ is the sum of k^{2} i.i.d. variables distributed as X_{t}. We want to apply Hoeffding's inequality, but in continuous time, X_{t} is not bounded. However, Assume that X_{t} was bounded by some constant A_{k}, we would have by Hoeffding's inequality

$$
\mathbb{P}\left(X_{t k^{2}} \geq k \log (k)^{2}\right) \leq \exp \left(\frac{-2 k^{2} \log (k)^{4}}{k^{2} A_{k}^{2}}\right)
$$

We then define Y_{q} as proposed, and apply Hoeffding'inequality to the Y_{q} 's, so that

$$
\mathbb{P}\left(X_{t k^{2}} \geq k \log (k)^{2}\right) \leq \mathbb{P}\left(\exists q \leq k^{2}-1, Y_{q} \neq X_{t(q+1)}-X_{t q}\right)+\exp \left(\frac{-2 \log (k)^{4}}{A_{k}^{2}}\right) .
$$

By union bound, the first term is less than $k^{2} \mathbb{P}\left(\operatorname{Poi}(t)>A_{k}\right) \ll k^{2} e^{-C A_{k}}$ for any positive constant C. In particular, for any C,

$$
\mathbb{P}\left(X_{t k^{2}} \geq k \log (k)^{2}\right)=o\left(k^{2} e^{-C A_{k}}+e^{\left.-2 \log \left(k^{4}\right) / A_{k}^{2}\right)}\right) .
$$

Multiplying by k^{n}, one can choose $A_{k}=\log k$ and C large enough for both terms to vanish, which proves the result.

Exercise 4

Fix $p \in(0,1)$, and consider an i.i.d. sequence $\left(X_{k}\right)_{k \in \mathbb{N}}$ of $\operatorname{Bernoulli}(p)$ variables. Using Hoeffding's inequality, build for any $\alpha \in(0,1)$ give an α-confidence interval, i.e. an interval $C_{p, n, \alpha}$ such that

$$
\mathbb{P}\left(\frac{1}{n} \sum_{k=1}^{n} X_{k} \in C_{p, n, \alpha}\right) \geq 1-\alpha .
$$

What does the interval become using the first Bernstein inequality?

Answer : We write

$$
\mathbb{P}\left(-\varepsilon \leq \sum_{k=1}^{n} X_{k}-n p \leq \varepsilon\right)=1-\mathbb{P}\left(\sum_{k=1}^{n}\left[X_{k}-p\right] \geq \varepsilon\right)-\mathbb{P}\left(\sum_{k=1}^{n}\left[p-X_{k}\right] \geq \varepsilon\right) .
$$

By Hoeffding's inequality,

$$
\mathbb{P}\left(\sum_{k=1}^{n}\left[X_{k}-p\right] \geq n \varepsilon\right) \leq \exp \left(-\frac{2 n^{2} \varepsilon^{2}}{n}\right)=e^{-2 n \varepsilon^{2}},
$$

and the same is true for the second bound, so that if $e^{-2 n \varepsilon^{2}}=\alpha / 2$, we must have

$$
\varepsilon=\sqrt{-\frac{\log (\alpha / 2)}{2 n}}
$$

which does not depend on p.
Using now the first Bernstein inequality, we obtain instead

$$
\mathbb{P}\left(\sum_{k=1}^{n}\left[X_{k}-p\right] \geq n \varepsilon^{\prime}\right) \leq \exp \left(-\frac{2 n^{2} \varepsilon^{\prime 2}}{n p(1-p)+n / 3}\right)=e^{-2 n \varepsilon^{\prime 2}}
$$

which is a little bit better, and yields

$$
\varepsilon^{\prime}=\sqrt{-\frac{\log (\alpha / 2)(p(1-p)+1 / 3)}{2 n}}<\varepsilon^{\prime}
$$

Exercise 5

Fix $p \in(0,1)$, and consider an i.i.d. sequence $\left(X_{k}\right)_{k \in \mathbb{N}}$ of $\operatorname{Geom}(p)$ variables. Define $Y_{n}=\sum_{k=1}^{n} k X_{k}$.

1) What is $\mathbb{E}\left(Y_{n}\right)$?
2) Show that for any $m>3 / 2$,

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(Y_{n} \geq \frac{n(n+1)}{2 p}+n^{m}\right)=0 .
$$

Hint: as in the last question of Ex. 3, crop the X_{k} 's and estimate the probability that cropping made a difference in the sum.

Exercise 6

Let μ be a distribution with support contained in $[a, b]$.

1) Justify that for an i.i.d. sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ distributed as μ, its empirical average $S_{n}=n^{-1} \sum_{k=1}^{n} X_{k}$ satisfies a large deviations principle.
2) Show that its rate function I satisfies $I=+\infty$ outside of $[a, b]$.
3) Show that if $\forall \varepsilon>0$

$$
\mu([a, a+\varepsilon))>0 \quad \text { and } \quad \mu((b-\varepsilon, b])>0,
$$

then $I<+\infty$ on (a, b).
4) Show that $I(a)<+\infty \Leftrightarrow \mu(\{a\})>0$, and similarly with b.

AnsWER :

1) Since μ has bounded support, in particular $0 \leq e^{t X} \leq e^{t \max (a, b)}$ so that $e^{t X}$ is integrable for any $t \in \mathbb{R}$ and its log-MGF is finite everywhere. By Cramér's theorem, the law of S_{n} / n satisfies a $\operatorname{LDP}\left(n, \Lambda^{\star}\right)$ where Λ^{\star} is the Legendre transform of the log-MGF of μ.
2) Fix x outside of $[a, b], x>b$ for example, so that in particular $x>\mathbb{E}(X)$. By Cramér's theorem, we must have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} / n \geq x\right)=-\Lambda^{\star}(x)
$$

But since x is outside the support of $\mu, \mathbb{P}\left(S_{n} / n \geq x\right)=0$, so that we must have $\Lambda^{\star}(x)=+\infty$. A similar arguments holds for $x<a$.
3) Assume that for any $\varepsilon>0$, we have $\mu([a, a+\varepsilon))>0$. Fix $\varepsilon>0$, we will show $\Lambda^{\star}(a+\varepsilon)<\infty$. Assume first that $\mathbb{E}(X)=a$, then $X=a$ a.s. because this is the only way for $\mathbb{E}(X)$ to be equal to a. In this case, $\Lambda^{\star}(a)=0$, and in particular either $b=a$ or the condition is not satisfied. If $b=a$, the statement is trivial, so that we can now assume $\mathbb{E}(X)>a$. We then choose $\varepsilon<\mathbb{E}(X)-a$, by assumption

$$
\mu([a, a+\varepsilon]) \geq \mu([a, a+\varepsilon)) \geq \delta>0 .
$$

Note that $\mathbb{P}\left(S_{n} / n<a+\varepsilon\right) \geq \mathbb{P}\left(X_{k} \leq a+\varepsilon \forall k \leq n\right)=\delta^{n}$, therefore by Cramér's Theorem

$$
\log \delta \geq \lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{P}\left(S_{n} / n \leq a+\varepsilon\right)=-\Lambda^{\star}(a+\varepsilon),
$$

thus $\Lambda^{\star}(a+\varepsilon)<\infty$ for any small ε.
4) Once again, this follows from Cramér's Theorem : Since $\mathbb{P}\left(S_{n} / n=a\right)=\mu(\{a\})^{n}$, we obtain by Cramér's Theorem

$$
\Lambda^{\star}(a)=-\log (\mu(\{a\})),
$$

which proves the equivalence.

[^0]: *For any typo/question, please contact me at clement.erignoux@inria.fr. The exercise sheets will be put on the webpage, http://chercheurs.lille.inria.fr/cerignou/homepage.html in the "teaching" section.

