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TD2 – Large deviations and concentration
inequalities∗

Exercise 1 : Exponential variables

We consider an i.i.d. sequence (Xk)k∈N of exponential variables with
parameter λ.
1) Justify that the Xk’s have inite log‑MGF on (−∞, λ), and compute their
log‑MGF Λ(t).
2) Compute its Legendre transform Λ⋆(x).

3) Justify that the distribution of S n := 1
n

∑n
k=1 Xk satis ies a LDP and give

its rate function and speed.

ANSWER :
1) The log‑MGF for Exp(λ) variables can be computed and is equal to

ΛZ1(t) =

log
(
λ
λ−t

)
if t < λ

+∞ otherwise .

2) Its legendre transform is given by

Λ⋆Z1
(x) = λx − 1 − log λx.

3) This is a consequence Cramér’s Theorem. The speed is n and the good rate
function Λ⋆Z1

. □

Exercise 2 : Cramér’s theorem and Poisson tail

We want to prove that the tail of the Poisson distribution decays faster than
exponentially. Show that given X ∼ Poi(t), we have for any C > 0

lim sup
k→∞

P(X > k)eCk = 0.

∗For any typo/question, please contact me at clement.erignoux@inria.fr. The exercise sheets
will be put on the webpage, http://chercheurs.lille.inria.fr/cerignou/homepage.html in the ”teach‑
ing” section.
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ANSWER : We write that P(X > k) = P(Z1 + · · · + Zk < 1), where Zi ∼ Exp(λ) are
independant exponential variables. We want an upper bound on the probability
that those are small, so that we cannot use chernoff, and need to resort to a large
deviations estimate. The large deviations functional for exponential variables with
parameters λ (see previous exercise) is given by

Λ⋆Z1
(x) = λx − 1 − log λx,

which diverges as x→ 0. Choose k0 large enough so that Λ⋆Z1
(1/k0) > 2C, and write

P(X > k) ≤ P
(Z1 + · · · + Zk

k
< 1/k

)
≤ P

(Z1 + · · · + Zk

k
< 1/k0

)
.

In particular,
lim sup

1
k

logP(X > k) ≤ −Λ⋆Z1
(1/k0) < −2C,

which proves the result, since then

lim sup
1
k

log
(
P(X > k)eCk

)
= C + lim sup

1
k

logP(X > k) ≤ −C.

□

Exercise 3 : Random walks

1) We consider a symmetric discrete time random walk (S k). Prove that for
any n ∈ N, and any vanishing sequence εk → 0,

P (S nk2 ≥ k/εk) −→
k→∞

0.

2) (i) We now consider a symmetric continuous time rate 1 random walk
(Xt)t≥0. Prove that for any t > 0, and any vanishing sequence εk → 0,

P (Xtk2 ≥ k/εk) −→
k→∞

0.

(ii) We want a stronger estimate. Prove that for any t > 0, and any
n > 0,

knP
(
Xtk2 ≥ k log(k)2

)
−→
k→∞

0.

hint : consider the variables Yq = min(Ak, Xt(q+1) − Xtq), and show using the
previous exercise

P

Xtk2 ,
k2−1∑
q=0

Yq

→ 0.

ANSWER :
1) This is a direct consequence of the CLT: for any n, any ε > 0, and any k large
enough such that εk < ε

P (S nk2 ≥ k/εk) ≤ P (S nk2 ≥ k/ε) ,
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which converges as k → ∞ to P(N(0, σ2
n) > 1/ε), where σ2

n = n is the variance of
S n. This is true for any ε, we have the result by letting ε→ 0.
2) (i) The same estimate is true, with σ2

n replaced by σ2
t the variance of S t.

(ii) By Markov property, Xtk2 is the sum of k2 i.i.d. variables distributed
as Xt. We want to apply Hoeffding’s inequality, but in continuous time, Xt is not
bounded. However, Assume that Xt was bounded by some constant Ak, we would
have by Hoeffding’s inequality

P
(
Xtk2 ≥ k log(k)2

)
≤ exp

(
−2k2 log(k)4

k2A2
k

)
.

We then de ine Yq as proposed, and apply Hoeffding’inequality to the Yq’s, so that

P
(
Xtk2 ≥ k log(k)2

)
≤ P(∃q ≤ k2 − 1,Yq , Xt(q+1) − Xtq) + exp

(
−2 log(k)4

A2
k

)
.

By union bound, the irst term is less than k2P(Poi(t) > Ak) ≪ k2e−CAk for any
positive constant C. In particular, for any C,

P
(
Xtk2 ≥ k log(k)2

)
= o

(
k2e−CAk + e−2 log(k4)/A2

k

)
.

Multiplying by kn, one can choose Ak = log k and C large enough for both terms to
vanish, which proves the result. □

Exercise 4

Fix p ∈ (0, 1), and consider an i.i.d. sequence (Xk)k∈N of Bernoulli(p) variables.
Using Hoeffding’s inequality, build for any α ∈ (0, 1) give an α‑con idence
interval, i.e. an interval Cp,n,α such that

P

1
n

n∑
k=1

Xk ∈ Cp,n,α

 ≥ 1 − α.

What does the interval become using the irst Bernstein inequality ?

ANSWER : We write

P

−ε ≤ n∑
k=1

Xk − np ≤ ε
 = 1 − P

 n∑
k=1

[Xk − p] ≥ ε
 − P  n∑

k=1

[p − Xk] ≥ ε
 .

By Hoeffding’s inequality,

P

 n∑
k=1

[Xk − p] ≥ nε

 ≤ exp
(
−2n2ε2

n

)
= e−2nε2 ,

and the same is true for the second bound, so that if e−2nε2 = α/2, we must have

ε =

√
− log(α/2)

2n
,
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which does not depend on p.
Using now the irst Bernstein inequality, we obtain instead

P

 n∑
k=1

[Xk − p] ≥ nε′
 ≤ exp

(
− 2n2ε′2

np(1 − p) + n/3

)
= e−2nε′2 ,

which is a little bit better, and yields

ε′ =

√
− log(α/2)(p(1 − p) + 1/3)

2n
< ε′,

□

Exercise 5

Fix p ∈ (0, 1), and consider an i.i.d. sequence (Xk)k∈N of Geom(p) variables.
De ine Yn =

∑n
k=1 kXk.

1) What is E(Yn) ?
2) Show that for any m > 3/2,

lim sup
n→∞

P

(
Yn ≥

n(n + 1)
2p

+ nm

)
= 0.

Hint: as in the last question of Ex. 3, crop the Xk’s and estimate the probability
that cropping made a difference in the sum.

Exercise 6

Let µ be a distribution with support contained in [a, b].
1) Justify that for an i.i.d. sequence (Xn)n∈N distributed as µ, its empirical
average S n = n−1 ∑n

k=1 Xk satis ies a large deviations principle.
2) Show that its rate function I satis ies I = +∞ outside of [a, b].
3) Show that if ∀ε > 0

µ([a, a + ε)) > 0 and µ((b − ε, b]) > 0,

then I < +∞ on (a, b).
4) Show that I(a) < +∞ ⇔ µ({a}) > 0, and similarly with b.

ANSWER :
1) Since µ has bounded support, in particular 0 ≤ etX ≤ et max(a,b) so that etX is
integrable for any t ∈ R and its log‑MGF is inite everywhere. By Cramér’s
theorem, the law of S n/n satis ies a LDP(n,Λ⋆) where Λ⋆ is the Legendre
transform of the log‑MGF of µ.
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2) Fix x outside of [a, b], x > b for example, so that in particular x > E(X). By
Cramér’s theorem, we must have

lim
n→∞

1
n

logP(S n/n ≥ x) = −Λ⋆(x).

But since x is outside the support of µ, P(S n/n ≥ x) = 0, so that we must have
Λ⋆(x) = +∞. A similar arguments holds for x < a.
3) Assume that for any ε > 0, we have µ([a, a + ε)) > 0. Fix ε > 0, we will show
Λ⋆(a + ε) < ∞. Assume irst that E(X) = a, then X = a a.s. because this is the only
way for E(X) to be equal to a. In this case, Λ⋆(a) = 0, and in particular either b = a
or the condition is not satis ied. If b = a, the statement is trivial, so that we can
now assume E(X) > a. We then choose ε < E(X) − a, by assumption

µ([a, a + ε]) ≥ µ([a, a + ε)) ≥ δ > 0.

Note that P(S n/n < a + ε) ≥ P(Xk ≤ a + ε ∀k ≤ n) = δn, therefore by Cramér’s
Theorem

log δ ≥ lim
n→∞

1
n
P(S n/n ≤ a + ε) = −Λ⋆(a + ε),

thus Λ⋆(a + ε) < ∞ for any small ε.
4) Once again, this follows from Cramér’s Theorem : Since P(S n/n = a) = µ({a})n,
we obtain by Cramér’s Theorem

Λ⋆(a) = − log(µ({a})),

which proves the equivalence.
□
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