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COMPLEX PHYSICAL SYSTEMS

. Many complex systems are composed of a large number of
microscopic or mesoscopic components



LINKING DESCRIPTION LEVELS

PROBLEM : These microscopic components and their evolution is
typically not visible nor tractable at our scale, but the macroscopic
evolution of the system stems from its microscopic evolution.

. Microscopic level : e.g. particules suffer elastic collisions
Problem : too many (∼ 1023) degrees of freedom

. Macroscopic level : diffusion (heat equation).

OBJECTIVE : Model such complex systems to give a mathematical
justification to their macroscopic behavior.



LATTICE GASES

QUESTION : how can one link microscopic and macroscopic scales ?

Need to model and simplify the physical system :

. Space and time discretisation. Example : exclusion processes,
where each site of the lattice is either occupied by a particle, or
empty.

. Deterministic dynamics modeled by stochastic dynamics:
particles jump at random times in random directions.

This type of models is called stochastic lattice gases



SYMMETRIC SIMPLE EXCLUSION PROCESS (SSEP)

CONFIGURATION: each site x of the lattice {1, . . . ,N} is either
empty (ηx = 0) or occupied (ηx = 1).

b b b

1 Nx

DYNAMICS: each particle jumps at random times, either to the left or
to the right w.p. 1/2.

. If the target site is already occupied, the jump is cancelled
(exclusion rule).



HYDRODYNAMIC LIMIT

We see the lattice as a discretization of the segment [0, 1], and define,
for u = x/N ∈ [0, 1], the scaling limit ρ(t, u) of ηx(t),

ρ(t, u) = lim
N→∞

1
2
√

N

∑
|y−x|≤

√
N

ηy(t).

The hydrodynamic limit for the SSEP is given by the heat equation

∂tρ = ∂2
uρ

with initial condition
ρ(0, ·) = ρ0

set by the initial microscopic configuration η(0).
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SOME COMMENTS

. The terminology hydrodynamic limit stands for this procedure,
of associating a microscopic dynamics with a PDE describing its
macroscopic behavior.

. Hydrodynamic limits are the rough equivalent, for particle
systems, of the law of large numbers, since it states that

ρ(t, u)︸ ︷︷ ︸
deterministic mean

= lim
N→∞

1
2
√

N

∑
|y−x|≤

√
N

ηy(t)

︸ ︷︷ ︸
average of random quantities

.

. It can give access to physical phenomena such as phase
transitions and phase diagrams, starting from a microscopic
dynamics.



EXAMPLES OF APPLICATION

Exclusion processes like the SSEP can serve as toy models for
various physical phenomena, e.g.:

. Heat transfer in
non-equilibrium systems
with boundary interactions.

. Liquid-solid phase transition
with Kinetically constrained
models.



NON-EQUILIBRIUM MODELS

To maintain a system out of equilibrium, we put it in contact
thermostats/particle reservoirs. They are modeled for the SSEP by
creation annihilation dynamics at the boundaries.

βα
1 N

. At random time, site x = 1 is replaced by a Bernoulli(α), and
site x = N by Bernoulli(β).

. The hydrodynamic behavior in the bulk u ∈ (0, 1) is still given
by the heat equation ∂tρ = ∂2

uρ.

. The effect of the boundary dynamics on the hydrodynamic
limit depends on the mean frequency of the boundary updates.
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SUBCRITICAL PHASE

Simulation by Hugo Dorfsman

. "Subcritical" frequency: Neumann boundary conditions

∂uρ(t, 0) = ∂uρ(t, 1) = 0.




CRITICAL PHASE

Simulation by Hugo Dorfsman

. "Critical" frequency: Robin boundary conditions

∂uρ(t, 0) = ρ(t, 0)− α, ∂uρ(t, 1) = β − ρ(t, 1).




SUPERCRITICAL PHASE

Simulation by Hugo Dorfsman

. "Supercritical" frequency: Dirichlet boundary conditions

ρ(t, 0) = α, ρ(t, 1) = β.
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KINETICALLY CONSTRAINED LATTICE GASES

QUESTION: what happens when a kinetic constraint is added to the
system ? example : facilitated exclusion process (FEP):

. A particle cannot jump to an occupied site (exclusion rule)

. A particle cannot jump without occupied neighbor (kinetic
constraint)

Because of the kinetic constraint, two typical particle behavior:

. At low density , they quickly freezes

. At high density (ρ > 1/2), they roughly behave like in the SSEP

. The critical density is when every other site is occupied, i.e. 1/2
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HYDRODYNAMIC LIMIT FOR THE FEP

The two microscopic phases translate as macroscopic phases at the
hydrodynamic limit:

. in the subcritical phase (ρ < 1/2), the system is frozen

. in the supercritical phase (ρ < 1/2), the system is diffusive

The hydrodynamic limit is a Stefan problem, where the diffusive
phase invades the frozen phase through critical interfaces:

∂tρ = ∂2
u

{
2ρ− 1
ρ

1{ρ≥1/2}

}
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TAKE-AWAY MESSAGE

. Stochastic lattice gases provide useful mathematically
tractable models for a wide variety of physical behavior.

. Scaling limits, and hydrodynamic limits in particular, can be
used to understand the macroscopic behavior of lattice gases.

. In some cases, this allows to get access, from the microscopic
dynamics, to phase diagrams and other physically relevant
information.


