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STATISTICAL PHYSICS AND HYDRODYNAMIC LIMITS

Linking micro/macro levels of description for a variety of physical systems to
prove phase transition phenomena for out of equilibrium systems. Some
examples :

▷ Active mattermodels : spontaneous
condensation (MIPS) and onset of
collective motion (travelling waves).

▷ Non-equilibriummodels, e.g.
boundary-driven systems.

▷ Kinetically constrained lattice gases
to model the liquid-solid phase transition.



AN ELEMENTARY EXAMPLE : SYMMETRIC SIMPLE
EXCLUSION PROCESS (SSEP)

Bulk ΛN = {0, . . . , N − 1} with periodic boundary conditions.
Configuration η ∈ ΩN := {0, 1}ΛN , with ηx = 1 for an occupied site,
ηx = 0 for an empty site.
Stirring dynamics: two neighboring sites are exchanged at rate 1.

0 N − 1 0

Assuming that the initial configuration η(0) is “close” to a macroscopic profile
ρ0 : [0, 1) → [0, 1], the macroscopic evolution of the system is ruled by the heat
equation {

∂tρ = ∂uuρ

ρ(0, ·) = ρ0
,

where ρ is the density field, ”ρ(t, u) = E(ηuN (tN2))”.



KINETICALLY CONSTRAINED LATTICE GASES

Question: What happens if a kinetic constraint is added to the dynamics ?
Example: [Gonçalves, Landim, Toninelli ‘08]:

With the right jump rates, the hydrodynamic behavior for this macroscopic
system is ruled by the porous medium equation{

∂tρ = ∂uu ρ
2

ρ(0, ·) = ρ0
.

▷ Bernoulli product measures are reversible for this process.
▷ Mobile cluster: two consecutive particles can move around the system
and locally mix the system. 7→ local ergodicity.



FACILITATED EXCLUSION PROCESS (FEP)

Stronger kinetic constraint than in [Gonçalves, Landim, Toninelli ‘08]: A
particle can jump to a neighbor site iff its other neighbor is occupied.

Markov generator:

LNf(η) =
∑

x∈ΛN

cx,x+1(η){f(ηx,x+1)− f(η)},

with
cx,x+1(η) = ηx−1ηx(1− ηx+1) + ηx+2ηx+1(1− ηx),

and ηx,x+1 is the configuration where sites x and x+ 1 have been exchanged.

▷ Bernoulli product measures are not stationary.
▷ No longer amobile cluster to mix the configuration.



HYDRODYNAMIC LIMIT FOR THE FEP

We start the process from a product measure µN “fitting” a macroscopic
profile ρ0 : [0, 1] → [0, 1], i.e. µN (ηx = 1) = ρ0(x/N).

Theorem (Blondel, E’, Simon, Sasada 2018 & BES 2021)
Consider the process η(t) started from the measure µN , and driven byN2LN .
Given an initial profile ρ0, we have for any test functionH

1

N

∑
x∈ΛN

H(x/N)ηx(t)
P−→

N→∞

∫
[0,1]

H(u)ρ(t, u)du

where ρ is solution to the Stefan problem ρ(0, u) = ρ0(u) and

ρ0 > 1/2 ρ0 ∈ [0, 1]

∂tρ = ∂uu

{
2ρ− 1

ρ

}
∂tρ = ∂uu

{
2ρ− 1

ρ
1{ρ≥1/2}

}
.



TYPES OF CONFIGURATIONS

Define Ωk
N = {η ∈ ΩN ,

∑
ηx = k}, there are four types of configurations:

If k ≤ N/2, Ωk
N = F k

N ∪ TBk
N :

Frozen configurations Transient Bad configurations

F k
N = {η ∈ Ωk

N | ηxηx+1 ≡ 0} TBk
N = {η ∈ Ωk

N | ηxηx+1 6≡ 0}.

If k ≥ N/2, Ωk
N = Ek

N ∪ TGk
N :

Ergodic configurations Transient Good configurations

Ek
N = {η ∈ Ωk

N | (1−ηx)(1−ηx+1) ≡ 0} TGk
N = {η ∈ Ωk

N | (1−ηx)(1−ηx+1) 6≡ 0}



EQUILIBRIUM DISTRIBUTIONS

For k ≥ N/2, the uniform distribution πk
N on Ek

N satisfies detailed balance,
and is therefore a reversible measure for the process on Ek

N , so that one only
needs to compute |Ek

N |.

To do so, two possibilities for the first site of the configuration:
If occupied, we have N − k empty sites, to be placed in k interstices
between particles.
If empty, it is surrounded by particles, and we haveN − k− 1 empty sites,
to be placed in k − 1 interstices between particles.

|Ek
N | =

(
k

N − k

)
+

(
k − 1

N − k − 1

)



GRAND CANONICAL MEASURES

With similar combinatorial arguments, given a configuration σ on a box
{1, . . . , ℓ}, one can compute

πk
N (η|{1,...,ℓ} = σ) =

∣∣{η ∈ Ek
N , η|{1,...,ℓ} = σ

}∣∣
|Ek

N |
.

As N → ∞ and k/N → ρ > 1/2,

πk
N (η|{1,...,ℓ} = σ) −→

N→∞
πρ(η|{1,...,ℓ} = σ)

defines the grand canonical measure πρ on the set of infinite ergodic
configurations.
▷ πρ is supported on the infinite ergodic component.
▷ πρ is a Bernoulli product measure conditioned to having isolated empty
sites (ergodic component)

▷ πρ exhibits long-range correlations as ρ ↘ 1/2.



ENTROPY TOOLS AND EQUILIBRIUM DISTRIBUTIONS

The most classical techniques for hydrodynamic limits are based on entropy
bounds between the measure µN

t of the process at time t and its reference
measures πα, namely
▷ Guo, Papanicolaou and Varadhan’s entropy method,

H(µN
t | πα) ≤ CN,

▷ Yau’s relative entropy method

H(µN
t | πρt

) = o(N).

Supercritical case, in the transient regime, µN
t is not supported on ergodic

configurations, whereas the grand canonical measures πρ are⇒ entropy
estimate fails. In particular, we need to prove that the ergodic component is
reached quicker than the diffusive timescale τ = O(N2).

General case, no hope of using the entropy method : no reference measures
because the two phase’s stationary states have disjoint supports.



ESTIMATION OF THE TRANSIENCE TIME

Theorem (Thermalization of the supercritical phase, BESS18)

Assume that ρ0 > 1/2. There exists α such that, letting tN = (logN)α/N2 and
k0 the initial number of particles in the configuration,

lim
N→∞

P(η(tN ) 6∈ Ek0

N ) = 0.

Theorem (Thermalization in a general case, BES21)

▷ The ergodic and frozen phases thermalize w.h.p in a time of order
tN = (logN)α/N2.

▷ A critical interface a, assuming ∂uρ0(a) 6= 0 thermalizes w.h.p in a time
of order tN = N−ε.

▷ Otherwise, (i.e. if ∂uρ0(a) = 0), the “thermalization time” tN is O(1).



TRANSIENCE TIME : MAPPING WITH A ZR PROCESS

Exclusion
ρc = 1/2

Zero-range
αc = 1

▷ This zero-range process is attractive.
▷ To understand the supercritical transience time, one need to estimate
the time the zero-range takes to fill all empty sites in the supercritical
region.

▷ To understand the subcritical transience time, one needs to estimate
the time the zero-range takes for all particles to fall in an empty site.



TRANSIENCE TIME : MAPPING WITH A ZR PROCESS

Exclusion
ρc = 1/2

Zero-range
αc = 1

▷ This zero-range process is attractive.
▷ To understand the supercritical transience time, one need to estimate
the time the zero-range takes to fill all empty sites in the supercritical
region.

▷ To understand the subcritical transience time, one needs to estimate
the time the zero-range takes for all particles to fall in an empty site.



Theorem (Blondel, E’, Simon, Sasada 2018 & BES 2021)
Given an initial profile ρ0, we have for any test functionH

1

N

∑
x∈ΛN

H(x/N)ηx(t)
P−→

N→∞

∫
[0,1]

H(u)ρ(t, u)du

where ρ is solution to the Stefan problem ρ(0, u) = ρ0(u) and

ρ0 > 1/2 ρ0 ∈ [0, 1]

∂tρ = ∂uu

{
2ρ− 1

ρ

}
∂tρ = ∂uu

{
2ρ− 1

ρ
1{ρ≥1/2}

}
.

▷ Supercritical case ρ0 > 1/2: thermalization+ properties (decorrelation,
equivalence of ensembles) of πρ, πk

N =⇒Hydrodynamic Limit (Entropy
Method, Guo, Papanicolaou, Varadhan, ‘88)

▷ General case ρ0 ∈ [0, 1]: proved adapting a result by Funaki ‘99. Requires
some De Finetti type result on the decomposition of translation invariant
stationary measures for the process.



ANALOGOUS MODELS IN DIMENSION D=2

CLG2 FEP2

▷ In two dimensions, several critical density threshold : threshold for
ergodicity, threshold for subdiffusive transience.

▷ All tools developed for dimension 1 fail, zero-range mapping no longer
available : hydrodynamic behavior out of reach.

▷ for FEP2, another critical density with onset of quasi-1-dimensional
behavior for ρ ≤ 1/4



CRITICAL DENSITIES FOR CLG2 AND FEP2

Ergodic component(s) ?tN = O(eαN ) ?tN = O(logα N)

CLG2

FEP2

ρ = 0

ρ = 0

ρ = 1

ρ = 1

ρ
(1)
c ρ
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ρ
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ρ
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DIFFUSION COEFFICIENT AND RESERVOIR INTERACTION

ρ ρ+ ε

N

CLG2

Jt

For the diffusion coefficientD(ρ) of the 2d system, with “hydrodynamics”

∂tρ = ∇ ·D(ρ)∇ρ,

the following gives a concrete computation scheme;
▷ System in contact with two reservoirs, left density ρ, right density ρ+ ε
▷ Stationary regime: left boundary total current Jt ' −NtD(ρ)∇0,1ρ.

=⇒ D(ρ) = − lim
t→∞

lim
ε→0

Jt
tε
.



RESERVOIR INTERACTION AND HYDRODYNAMICS

▷ When a particle system is affected by a non-conservative reservoir
dynamics with equilibrium density α, The hydrodynamic will typically
exhibitDirichlet boundary conditions with the same value α as the
reservoir.

▷ For exclusion dynamics, a typical reservoir dynamics consists in filling an
empty site at rate α and emptying an occupied site at rate 1− α.

▷ In the case of kinetically constrained models, the interplay between
boundary dynamics and bulk dynamics is less straightforward because of
the frozen phase.

▷ In the frozen phase, there is no diffusion until the system locally reaches
the critical density. In particular, a subcritical reservoir dynamics α < ρc
will, microscopically enforce a supercritical effective density
αeff > ρc.



DIFFUSION COEFFICIENT AND RESERVOIR INTERACTION

▷ It seems like the diffusion coefficient is
continuous on ρ ∈ [0, 1].

▷ The definition of the diffusion coefficient
itself is problematic, since there is no
diffusion under density ρc ' 1/3

▷ Even subcritical reservoirs enforce an
effective supercritical density, and
this density is larger than ρc

▷ Delicate interpretation of this quantity
in the subcritical regime.

Figure: Simulation by A. Roget



COMMENTS AND OPEN PROBLEMS

▷ Hydrodynamic limit result in one dimension with subcritical
reservoirs ?

▷ Starting from an empty configuration with subcritical reservoir, front
progression on a timescale t = O(N3) ?

▷ Explicit expression and characterization of critical densities 2
dimensions ? Can we uncover the structure of the ergodic
configurations ?

▷ Can we tackle other kinetic constraints, in dimension 1 ? Is there an
analogous separation in ergodic/frozen phases ?
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