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General setting

- Consider ΛN = {1, . . . , N} and the set of configurations
ΩN = {0, 1}ΛN .

- For any configuration η, we define an infinitesimal generator L N
acting on functions of η.

- Assume that LN admits a unique stationary measure µN , i.e. such
that for any function f : ΩN → R,

EµN (LN f ) = 0.

- We denote by νN
α the product measure on ΩN with density α.
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Dirichlet form

Fix α ∈]0, 1[, we split
LN =L s

N +L
a
N ,

resp. the self adjoint and anti-self adjoint parts of the generator in
L2(νN

α ).
We can then define the Dirichlet form

DN ( f ) = Eα
�

f (−L s
N ) f

�

,

which is positive and convex.
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Entropy method

Consider a Markov process η(t), started from a measure µN
0 and driven

by LN . We denote µN
s the distribution of η(s) and f N

s = dµN
s /dν

N
α .

For the entropy
H( f ) = EνN

α
( f log f ) ,

we can usually write

H( f N
t ) +

∫ t

0

dsDN ( f
N

s )≤ CN ,

which is the basis for the entropy method.
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The dynamics

One-dimensional process with a three parts dynamics

- Bulk : each pair of sites k, k+ 1 is exchanged at rate 1.

- Right boundary : in contact with a reservoir at equilibrium, at
density β ∈ [0, 1]. The last site is filled at rate β and emptied at
rate 1− β .

- Left boundary : the two first sites are in contact with two
different reservoirs at different densities α1 and α2.
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Generator for the model

The generator is given by

LN =L l
N +L

b
N +L

r
N ,

where

L b
N f =

N−1
∑

k=1

�

f (ηx ,x+1)− f (η)
�

.

L b
N f = (β(1−ηN ) + (1− β)ηN )

�

f (ηN )− f (η)
�

.

L l
N f = (α1(1−η1) + (1−α1)η1)

�

f (η1)− f (η)
�

+ (α2(1−η2) + (1−α2)η2)
�

f (η2)− f (η)
�

.
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We denote µN the unique stationnary measure w.r.t. LN .

Hydrostatic limit

For any positive δ, and any smooth function H : [0, 1]→ R, we have

lim sup
N→∞

µN

 �

�

�

�

�

1
N

∑

k∈ΛN

H(k/N)ηk −
∫ 1

0

H(u)ρ(u)du

�

�

�

�

�

> δ

!

→ 0,

where ρ is the unique weak solution to










∆ρ = 0

ρ(0) = (α1 + 2α2)/3
ρ(1) = β

.
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Density and correlations
We estimate the left density and the correlations using a coupling with
random walks by the Feynman kac formula. We let

ρN (k) = EµN (ηk).

→ Since µN is a stationnary measure, for any function f of the
configuration,

EµN (LN f ) = 0.

This yields in particular


















(∆NρN )(k) := ρN (k+ 1) +ρN (k− 1)− 2ρN (k) = 0

ρN (2) +α1 − 2ρN (1) = 0

ρN (1) +ρN (3) +α2 − 3ρN (2) = 0

ρN (N − 1) + β − 2ρN (N) = 0

.
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Random walk and cemetery states

Define three cemetery states d1, d2 and dN , and let (X t) be a random
walk on ΛN ∪ {d1,d2,dN}, such that

• When X = k ∈ ΛN , X jumps to any neighbor at rate 1.

• When X = 1, (resp. k = 2), X also jumps at rate 1 to d1 (resp.
d2).

• When X = N , X also jumps at rate 1 to dN .
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Coupling

Let
ρN (d1) = α1, ρN (d2) = α2 and ρN (dN ) = β ,

Then, we can write with Feynman-Kac’s formula

ρN (k) = Ek(ρN (Xτ)) := E(ρN (Xτ) | X0 = k)

where
τ= inf{s ≥ 0, Xs ∈ {d1,d2,dN}}.
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Computing ρN

- Since (∆NρN )(k) = 0, ∀ 3≤ k ≤ N − 1, ρN is affine in
{3, . . . , N − 1}, and

ρN (k) =
N − k
N − 2

ρN (2) +
k− 2
N − 2

ρN (N).

- ρN (N) = EN (ρN (Xτ)) = β +O(1/N)

- ρN (2) = E2(ρN (Xτ)) =
1
3α1 +

2
3α2 +O(1/N)
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Correlations (2)

We do the same with the correlations

ϕN (k, l) = EµN (ηkηl)−ρN (k)ρN (l), 1≤ k < l ≤ N .

To compute ϕN (k, l), we now consider two random walks X 1 and X 2

on
Λ̄N = ΛN ∪ {d1,d2,dN}.

X = (X 1, X 2) is a random walk on
�

(x1, x2) ∈ Λ̄2
N , x1 6= x2

	

.
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Correlations (1)

We can write for the correlations

ϕN (k, l) = E(k,l)(ϕN (Xτ))

+Ek,l

�∫ τ

t=0

ds1|X 1
s −X 2

s |=1(ρN (X
2
s )−ρN (X

1
s ))

2

�

,

where
τ= inf{s ≥ 0, X 1

s or X 2
s ∈ {d1,d2,dN}}.

We obtain
ϕN (k, l) = 0+O(1/N).
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Proof of the hydrostatic limit

We estimate

EµN

 �

�

�

�

�

1
N

∑

k∈ΛN

H(k/N)ηk −
∫ 1

0

H(u)ρ(u)du

�

�

�

�

�

!

≤ EµN

 �

�

�

�

�

1
N

∑

k∈ΛN

H(k/N) (ηk −ρN (k))

�

�

�

�

�

!

+EµN

 �

�

�

�

�

1
N

∑

k∈ΛN

H(k/N)ρN (k)−
∫ 1

0

H(u)ρ(u)du

�

�

�

�

�

!

The second term is controlled by our estimation of the density, the first
one is controlled by the bound on the correlations.
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Hydrodynamic limit

Going from the hydrostatic limit to the hydrodynamic limit adds
technical difficulties.

• to estimate ρN (t, k) and ϕN (t, k, l), the random walks X and X
are launched at time 0, back in time.

• We can write in particular

ρN (t, k) = Ek(ρN (X t−τ∧t))

• For the correlations, the increment on the diagonal must be
carefully estimated.
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Left boundary condition : autonomous equation

This method can be generalized to a boundary of size p, as long as for
any 1≤ k ≤ p, we can write

LNηk = rk(αk −ηk) +
p
∑

l=1

qk,l(ηl −ηk).

This is, however, quite a restrictive condition : under this assumption,
the only elements allowed in te border dynamics are

- Reservoirs : Site k is updated at rate rk by a equilibrium reservoir
at density αk.

- Stirring : Sites k,l are exchanged at rate sk,l .

- Copy : Site k “copies” site l at rate ck,l .
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general rates for the left boundary

We now want to generalize the method above, and let

L l
N f = c(η1, . . . ,ηp)

�

f (η1)− f (η)
�

.

Let

A=min{c(0,η2, . . . ,ηp)} and B =min{c(1,η2, . . . ,ηp)},

we assume that

max{c(0,η2, . . . ,ηp)} − A≤
A+ B

(p− 1)2p−1

and
max{c(1,η2, . . . ,ηp)} − B ≤

A+ B
(p− 1)2p−1
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Then, the left generator can be rewritten

L l
N f =λ+(η1, . . . ,ηp)

�

f (C1η)− f (η)
�

+λ−(η1, . . . ,ηp)
�

f (A1η)− f (η)
�

+ A
�

f (C1η)− f (η)
�

+ B
�

f (A1η)− f (η)
�

,

where
λ+(η1, . . . ,ηp) = (1−η1)(c(0,η2, . . . ,ηp)− A)

and
λ−(η1, . . . ,ηp) = η1(c(1,η2, . . . ,ηp)− B)

We construct graphically the process η.
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Thanks for your attention !
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