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Collective motion & Active matter

Collective behavior can be observed among numerous animal
species
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— Classical representation : Individual Based Models (1BM) built
around active matter.

Active Matter

System composed of many individuals, maintained out of
equilibrium by an energy influx at the individual level.

/Tumur
Tumble

/* e

i\ﬂun

() No attractant present: Random movement (b) Attractant present: Directed movement
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Two types of phenomena can arise in active matter models :
— Alignment phase transition

— Motility Induced Phase Separation (MIPS).
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Alignment phase transition

Alignment

Alignment dynamics will create groups of particles moving together
and adapting their speed
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Alignment phase transition

Alignment

Alignment dynamics will create groups of particles moving together
and adapting their speed

Original model by Vicsek&al. (1995, Novel type of phase transition
in a system of self driven particles)

— N = pL2 particles move in the periodic domain [0, L]?, with
speed v;(t) = V_égl.(t)

{x,-(t+ 1) = xi(t) + vi(H) At
0i(t+1) = (O(1)r + &,
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Numerous results and related models
¢ Reuvisiting the flocking transition using active spins, Solon &
Tailleur, 2013

o Pattern formation in flocking models: A hydrodynamic
description, Solon & al., 2015

£=265000 t=365000
400 m 400

m 400 m 400

5

o 200

0 200 400

Figure: Emergence of global order for an alignment dynamics. From
Flocking with discrete symmetry, the 2d active Ising model, Solon &
Tailleur 2015.
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Exact works

Several analysis and PDE based papers, based on mean-field
interactions :

— Each particle interacts with a large number of neighbors

e Continuum limit of self-driven particles with orientation
interaction, Degond, Motsch, 2007.

e Mean field limit for the stochastic Vicsek’s model, Bolley,
Carrillo, Canizo, 2011.

e Review on collective motion : Macroscopic models of collective
motion and self organization, review, Degond & al., 2012
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Motility induced phase separation

MIPS

Particles will tend to accumulate where they move more slowly

e MIPS can occur when the particle’s velocity depends on the
local density

e MIPS usually does not occur in models with alignment : dense
clusters tend to quickly align and spread out
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o When are active Brownian particles and run-and-tumble
particles equivalent ? consequence for MIPS, Cates & Tailleur

2012
o Motility-induced phase separation, Cates & Tailleur 2014

Figure: Coarsening effect in active matter. From Cates & Tailleur 2012.
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Model description

Description of the particle system

— very close to the Active Ising Model (Solon & Tailleur 2015), with
at most one particle per site and weak asymmetry.

Two types of particles (+ and —) evolve on the periodic square
lattice T2, = {0, 1, ..., %}2

o For each site x € T2, we define ny € {—1,0,1}.
— nx = 0 for an empty site
— nx = +1 for a site occupied by a particle +

e We let n, = 0y — 1y, where nif = 1 iff x is occupied by a +
particle.
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System configuration
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Initial configuration

¢ Initial setup : smooth macroscopic profiles po+ and p; ,
[0,1]% — [0, 1].

o po = pg + py is the initial particle density

14
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Initial configuration

e Initial setup : smooth macroscopic profiles po+ and p; ,
[0,1]% — [0, 1].
* po = pg + py is the initial particle density

14

po(x) = i (X) + 5 (%)

« Initial local equilibrium : independently for any x € T2,

1w p5(x)
o= {o wp. 1 - 03 (00~ 5 (1)
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Weakly asymmetric exclusion

o Exclusion rule : if the target site is occupied, the motion is
canceled

e Ay = A/Nis the strength of the weak asymmetry
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Glauber dynamics

— Ising type alignment dynamics with inverse temperature g
e 3 =0, no alignment

e 3 — oo, strong alignment
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Generator of the dynamic

The Markov generator of the process is given by

Ly = N°LS+ANLA + 26,

e LS : “generator” of the Symmetric Simple Exclusion Process
(SSEP)

Esf (n) Z Z mx|(1 — ’77X+z|)( (%) — f(n))-

X€Ty |z|=1 Exclusmn Rule

« Diffusive scaling : x N2.
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Generator of the dynamic

Ly = N?L5ANLA+LC,

e LA : generator of the Asymmetric Simple Exclusion Process
(WASEP)

LA1n) = 3037 e = s ) (FO*408) = 1(n))

X€Ty 6==1

Exclusion Rule

o Ballistic scaling : xN.
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Generator of the dynamic
Ly = N2LS4ANLASLEC,

e 5 : generator of the Glauber alignment dynamics
L9 (n) =" ca(X.n)lnxl (F(7¥) — £(n)).-
xeTn

¢ One can choose for example

N )

y~x

¢ No need for rescaling.



Collective motion & Active matter Model description Hydrodynamic limit Continuous angles dynamic
000 o 0000000 000

000 00000 00000 oo

[e]e] 0000

Plan of the talk

Hydrodynamic limit
Heuristic formulation of the macroscopic limit
Non-gradient hydrodynamics
Irreducibility



Collective motion & Active matter Model description Hydrodynamic limit Continuous angles dynamic
000 o 0000000 000

000 00000 00000 oo

[e]e] 0000

Hydrodynamic Limit

Question : Evolution of the macroscopic densities
ptop” 1[0, T x [0,1]7 — [0,1] ?
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Hydrodynamic Limit

Question : Evolution of the macroscopic densities
ptop” 1[0, T x [0,1]7 — [0,1] ?

Weak formulation of the macroscopic evolution

For any smooth function H,

H(x)n; ( dxH(x)p™(t,x
- Z Ul B M R R

and i
N2 > H(x)n, (t dxH(x)p~ (t, ).

N—>oo 2
XETZ [07 1 ]
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Heuristic formulation of the macroscopic limit

Assumption : Vu € [0,1]2, po(u) = p§ (u) + py (u) < 1.
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Heuristic formulation of the macroscopic limit

Theorem
Assumption : Vu € [0,1]2, po(u) = p§ (u) + py (u) < 1.

The macroscopic density of particles +, denoted p " (t, u), is
solution in a weak sense of the cross reaction-diffusion system

{8#)* = V.[ds(p)VpT +0(p", p)Vp] +2X00x 5T (0T, p) + (™, p)
Op~ = V.[ds(p)VpT +0(p™, p)Vpl + 2005 (p~,p) = Ta(p*,p)’

with initial condition

(0™, p7)(0,%) = (pg, pg )(X) Vx.
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Heuristic formulation of the macroscopic limit

Theorem
Assumption : Vu € [0,1]2, po(u) = p§ (u) + py (u) < 1.

The macroscopic density of particles +, denoted p " (t, u), is
solution in a weak sense of the cross reaction-diffusion system

{8#)* = V.[ds(p)VpT +0(p", p)Vp] +2X00x 5T (0T, p) + (™, p)
Op~ = V.[ds(p)VpT +0(p™, p)Vpl + 2005 (p~,p) = Ta(p*,p)’

with initial condition
(r"p7)(0,%) = (pg, P )(X) VX

The quantity p = p* + p~ is the total particle density.
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[§ J. Quastel.
Diffusion of colour in the simple exclusion process.
COMM. PURE APPL. MATH, 1992.

[§ S.R.S Varadhan.
Non-linear diffusion limit for a system with nearest neighbor
interactions II.
Asymptotic problems in probability theory : Stochastic models
and diffusion on fractals, 1994.

¥ C. Kipnis and C. Landim.
Scaling limits of interacting particle systems.
Fundamental Principles of Mathematical Sciences, 1999.
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Dynamical interpretation

Fop) +Ts(p™, p).

ds is the self-diffusion coefficient of a tracer particle in an

homogeneous environment.
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Self-diffusion coefficient

Setup :
o infinite SSEP on Z2 at equilibrium with density p €]0, 1].
o At the origin, we place a tagged particle.

e (Xi(t), X2(t)) denotes the position at time t of the tagged
particle.
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Self-diffusion coefficient

Setup :
« infinite SSEP on Z2 at equilibrium with density p €]0, 1][.
o At the origin, we place a tagged particle.

e (Xi(t), X2(t)) denotes the position at time t of the tagged
particle.

The self-diffusion coefficient is defined by

o EOG(H?)

—00 t

ds(p) = ;
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Self-diffusion coefficient

Setup :
o infinite SSEP on Z2 at equilibrium with density p €]0, 1].
o At the origin, we place a tagged particle.
e (Xi(t), Xo(t)) denotes the position at time t of the tagged

particle.
Definition
The self-diffusion coefficient is defined by

—00 t

ds(p) = ;

— ds(p) can be defined by a variational formula (Spohn, 1990).
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Dynamical interpretation

Opt = V.|ds(p)VpT +0(p, p)Vpi +2X0x, 51 (o1, p) + Ta(p™, p).
i 1+ p1(X) i
= f
L x L x

The coefficient o quantifies the diffusion due to heterogeneities of
the total particle density

pT,p) = p;(1 —ds(p)) (Quastel, 1992).
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Dynamical interpretation

dpt = V. [ds(p)Vp" +0(p", p)Vp|+2X0xsT (pF, p)+T5(p ", p).
— The drift terms s™ and s~ can be expressed as

S0 = pdlp) + 1= p— )" — )

f@imz—f%@%%iﬁ—p—%wmﬁ—f%

and are linked to 0 and ds by a matrix Stokes-Einstein relation.
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Dynamical interpretation

opt = V. [ds(p)VpT +0(p", p)Vp| +2X0xsT (0, p)+T (0T, p).

e [ ; is the creation rate of "+ particles.

e |t depends on the alignment jump rates cg
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Hydrodynamic limit

1 _ 1 _
mN =1 Ym0, and wN =15 S (1o,

2
X€T?, x€Ty
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Hydrodynamic limit

Empirical measures

1 _ 1 _
7T?_’N = N2 Z ny (t)0x, and m N = N2 Z Ny (1)dx.

2
XT3, xeTy

We want to prove 7; o

H,

—m = p*(t,x)dx, i.e. that for any smooth

<N H>- pt(t, x)H(x)dx
[0,112
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Hydrodynamic limit

Empirical measures

1 _ 1 _
7Tt+’N = N2 Z ny (t)0x, and m N — N2 Z Ny (£)0x.

2
XETE, x€Tn

We want to prove 7; o

H,

—m = p*(t,x)dx, i.e. that for any smooth

<N H>- pt(t, x)H(x)dx
[0,112

Core principle :
on(1)

N N T N ‘N
<7TJT~ JH>=<my ,H>+/ Ly < w7 H > dt + My
0
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Hydrodynamic limit

Assume we are in one dimension :

Ly <N H> = U5 HOO L

XeTn
1
=N Z H(x) (Wx_‘ﬁ,x - Wx,x—i-lN +75’X>
XeTn
1 1
=5 [ HO) = H(x+ 5 ) | Worsr + H(X)mx]
XeTn

and the instantaneous particle current can be written

N2 S A
WX7X+1N =N Wx,x+1ﬁ + AN Wx,x+1N
——

symmetric current antisymmetric current
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Hydrodynamic limit

Assume we are in one dimension :

1
Ly <m; N H>= N Z H(x)Lnmy

xeTy

1
=N Z H(x) (Wx—lg{ - Wx,x—i-lN +’Yﬂ,x>

N
xeTy

- 1N 3 [ (H(x) —H <x + L)) Wit + H(X)w,x}

xeTn

:lN(‘)X,. H(x)
and the instantaneous particle current can be written

_ N2 S A
WX7X+1N =N WX,X+1N + AN Wx,x+1ﬁ
~—— SN——

symmetric current antisymmetric current
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Non-gradient hydrodynamics

e The partial derivative on H balances out a factor N in the
current.

e In non-gradient systems, the symmetric current WXSX , is

N
not a discrete gradient.
— the second integration by parts is not immediate

e One must prove

NwS, o= N (a5 = 1) + 01l = i) + £51]

XX+
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Key steps in the hydrodynamic limit

Additionally to the justification of this replacement, some key points
are needed :

¢ Prove that the measure of the process is "close” to a product
measure : conservation of local equilibrium
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Key steps in the hydrodynamic limit

Additionally to the justification of this replacement, some key points
are needed :

¢ Prove that the measure of the process is "close” to a product
measure : conservation of local equilibrium

e Introduce spatial averages
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Key steps in the hydrodynamic limit

Additionally to the justification of this replacement, some key points
are needed :

¢ Prove that the measure of the process is "close” to a product
measure : conservation of local equilibrium

e Introduce spatial averages

e Prove a law of large number for the process, and replace, for
example, the spatial average of n; (1) by the density p*(t, x)
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Out of equilibrium dynamics

Comparison with a product measure on the discrete lattice :

¢ Distortion of the measure by the Glauber part and the initial
configuration are easily controlled

¢ Distortion by the weak drift, harder to control
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Out of equilibrium dynamics

Key issue

Comparison with a product measure on the discrete lattice :

¢ Distortion of the measure by the Glauber part and the initial
configuration are easily controlled

¢ Distortion by the weak drift, harder to control

— Challenge : prove that the exponential estimates needed in the
non-gradient method still hold.
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Irreducibility

Exclusion rule : the process is not always irreducible on canonical
ensembles with fixed number and types of particles.
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Irreducibility

e One must prove that the dynamics preserves sufficient empty
sites spread in the configuration to ensure mixing.
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Irreducibility

e One must prove that the dynamics preserves sufficient empty
sites spread in the configuration to ensure mixing.

e This was a major issue with the model, which was not present
in Quastel’s symmetric case.
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Irreducibility

e One must prove that the dynamics preserves sufficient empty
sites spread in the configuration to ensure mixing.

e This was a major issue with the model, which was not present
in Quastel’s symmetric case.

o Let
Fo(x) = {There is no empty site in By(x)},

one must in particular prove that

1 i |Bp
E E 1 ~ Pl 0. 1
(N2 F”(X)) N—o0 ./[o,qz dxpx p—o0 0 )

xeTn



Hydrodynamic limit

[eJe] le]

Elements on the proof of (1)

The total density p = p™ + p~ is expected to satisfy
Op = Dp + Ay, (M(1 — p)), (2)

where m = (p* — p~) denotes the local "magnetization" of the
system.

e Analysis-based proof with microscopic methods, using (2)

e The proof relies on the a-priori control of the density and
Gronwall's Lemma
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Elements on the proof of (1)
Let ¢(p) = 1/(1 — p), one can prove, assuming (2), that

Ot/ (b([)t)dX < 2)\2/ O([)t)dX
T

T

— By Gronwall’s Lemma, at any time t,

[ st < 6 [ slooyax.
T T

< 00 by assumption

The right-hand side remains finite, therefore the total density
cannot reach 1.
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Elements on the proof of (1)
Let ¢(p) = 1/(1 — p), one can prove, assuming (2), that

Ot/ qb([)t)dX < 2)\2/ O([)t)dX
T

T
— By Gronwall’s Lemma, at any time t,

[ otood < ¥ [ o).

T

< 00 by assumption

The right-hand side remains finite, therefore the total density
cannot reach 1.

— The challenge is to carry out this proof in a microscopic setup,
without proving an hydrodynamic limit.
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Continuous angles dynamic

e The two particle types + and — can be interpreted as angles 0
and r for the drift.

e We now want to extend the proof of the hydrodynamic limit to
an angle continuum 6 € [0, 2.

14+ Ay sin(0)

| 1+ Ancos(d)
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Main result

The macroscopic density p? of particles with angle 6, can be
“défined” as

N2 D HX, 0 )n(t) —

X€ET?,

dx/ doH(x,0)p°(t, x)
12  Jocp2x

N—o0
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Main result

The macroscopic density p? of particles with angle 6, can be
“défined” as

N2 D HX, 0 )n(t) —

X€ET?,

dx/ doH(x,0)p°(t, x)
12  Jocp2x

N—o0

Theorem (Continuous angles)

Assumption : Vx € [0,1]2, po(x) < 1.
The “function” (t, x, 0) ~ p°(t, x) is solution in a weak sense of
o = . [as(p)V " + (", p)Vp| + AV (o, T, p) + T,

where p = [, p?d# is the total particle density.
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Proof in the continuous case

e Local equilibrium is no longer characterized by a finite number
of parameters (e.g. p™ and p™)

e Instead, local equilibrium is characterized by an angle
measure on [0, 27 : if, locally, one observes 1/3 of empty
sites, 1/3 of particles with angle 0 and 1/3 with angle r, the
corresponding measure is

1 1
a=-0g+ =0
*=3%"3

e This creates several technical difficulties, but the principle of

the proof still holds.
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Research perspectives

e Replacing metric interactions by topological interactions,
typically with the k-nearest neighbors : this should be possible
with similar density control tools.

e Large deviations for the system (Macroscopic fluctuations
theory)

e Dynamical phase transition (Much harder)
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