Model description

Hydrodynamic limit 0000000 00000 0000

Continuous angles dynamic

Active matter and hydrodynamic limit for a collective dynamics model

Clément Erignoux

CMAP, École Polytechnique

CAKE seminar, Cambridge May 25th 2016

Model description

Hydrodynamic limit

Continuous angles dynamic

Plan of the talk

Collective motion & Active matter

Collective dynamics Alignment phase transition MIPS

Model description

Initial setup Description of the dynamics

Hydrodynamic limit

Heuristic formulation of the macroscopic limit Non-gradient hydrodynamics Irreducibility

Continuous angles dynamic

Active exclusion process Conclusion

Model description

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Plan of the talk

Collective motion & Active matter

Collective dynamics Alignment phase transition MIPS

Model description

Initial setup Description of the dynamics

Hydrodynamic limit

Heuristic formulation of the macroscopic limit Non-gradient hydrodynamics Irreducibility

Continuous angles dynamic

Active exclusion process Conclusion

Hydrodynamic limit

Continuous angles dynamic

Collective motion & Active matter

Collective behavior can be observed among numerous animal species

Collective motion	& Active matter
000	
000	
00	

Hydrodynamic limit

Continuous angles dynamic

\rightarrow Classical representation : Individual Based Models (IBM) built around active matter.

Active Matter

System composed of many individuals, maintained out of equilibrium by an *energy influx at the individual level*.

Collective	motion	&	Active matter
000			
000			
00			

Hydrodynamic limit

Continuous angles dynamic

Two types of phenomena can arise in active matter models :

- \rightarrow Alignment phase transition
- \rightarrow Motility Induced Phase Separation (MIPS).

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Alignment phase transition

Alignment

Alignment dynamics will create groups of particles moving together and adapting their speed

Original model by Vicsek&al. (1995, *Novel type of phase transition in a system of self driven particles*)

 $\mapsto N = \rho L^2 \text{ particles move in the periodic domain } [0, L]^2, \text{ with speed } v_i(t) = v \overrightarrow{e}_{\theta_i(t)}$

$$\begin{cases} x_i(t+1) = x_i(t) + v_i(t) \Delta t \\ \theta_i(t+1) = \langle \theta(t) \rangle_r + \xi_\eta \end{cases}$$

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Alignment phase transition

Alignment

Alignment dynamics will create groups of particles moving together and adapting their speed

Original model by Vicsek&al. (1995, *Novel type of phase transition in a system of self driven particles*)

 $\mapsto N = \rho L^2$ particles move in the periodic domain $[0, L]^2$, with speed $v_i(t) = v \stackrel{\rightarrow}{e}_{\theta_i(t)}$

$$\begin{cases} x_i(t+1) = x_i(t) + v_i(t)\Delta t \\ \theta_i(t+1) = \langle \theta(t) \rangle_r + \xi_\eta \end{cases}$$

Hydrodynamic limit

Continuous angles dynamic

Numerous results and related models

- *Revisiting the flocking transition using active spins*, Solon & Tailleur, 2013
- Pattern formation in flocking models: A hydrodynamic description, Solon & al., 2015

Figure: Emergence of global order for an alignment dynamics. From *Flocking with discrete symmetry, the 2d active Ising model*, Solon & Tailleur 2015.

Model description

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Exact works

Several analysis and PDE based papers, based on *mean-field interactions* :

 \mapsto Each particle interacts with a large number of neighbors

- Continuum limit of self-driven particles with orientation interaction, Degond, Motsch, 2007.
- *Mean field limit for the stochastic Vicsek's model*, Bolley, Carrillo, Canizo, 2011.
- Review on collective motion : *Macroscopic models of collective motion and self organization, review,* Degond & al., 2012

Model description

Hydrodynamic limit

Continuous angles dynamic

Motility induced phase separation

MIPS

Particles will tend to accumulate where they move more slowly

- MIPS can occur when the particle's velocity depends on the local density
- MIPS usually does not occur in models with alignment : dense clusters tend to quickly align and spread out

000 0 000000 000	Collective motion & Active matter	Model description	Hydrodynamic limit	Continuous
	000	0	0000000	000
000 00000 00000 00	000	00000	00000	00
○● 0000	0.		0000	

- When are active Brownian particles and run-and-tumble particles equivalent ? consequence for MIPS, Cates & Tailleur 2012
- Motility-induced phase separation, Cates & Tailleur 2014

Figure: Coarsening effect in active matter. From Cates & Tailleur 2012.

Model description

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Plan of the talk

Collective motion & Active matter

Collective dynamics Alignment phase transition MIPS

Model description Initial setup Description of the dynamics

Hydrodynamic limit

Heuristic formulation of the macroscopic limit Non-gradient hydrodynamics Irreducibility

Continuous angles dynamic

Active exclusion process Conclusion

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Description of the particle system

 \mapsto very close to the Active Ising Model (Solon & Tailleur 2015), with at most one particle per site and weak asymmetry.

Two types of particles (+ and –) evolve on the **periodic square** lattice $\mathbb{T}_N^2 = \left\{0, \frac{1}{N}, ..., \frac{N-1}{N}\right\}^2$

- For each site $x \in \mathbb{T}_N^2$, we define $\eta_x \in \{-1, 0, 1\}$. $\mapsto \eta_x = 0$ for an empty site $\mapsto \eta_x = \pm 1$ for a site occupied by a particle \pm
- We let $\eta_x = \eta_x^+ \eta_x^-$, where $\eta_x^\pm = 1$ iff x is occupied by a \pm particle.

Model description

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

System configuration

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Initial configuration

- Initial setup : smooth macroscopic profiles ρ_0^+ and ρ_0^- , $[0, 1]^2 \rightarrow [0, 1]$.
- $\rho_0 = \rho_0^+ + \rho_0^-$ is the initial particle density

• Initial *local equilibrium* : independently for any $x \in \mathbb{T}_N^2$

$$\eta_{X}(0) = \begin{cases} \pm 1 & \text{w.p. } \rho_{0}^{\pm}(x) \\ 0 & \text{w.p. } 1 - \rho_{0}^{+}(x) - \rho_{0}^{-}(x) \end{cases}$$

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Initial configuration

- Initial setup : smooth macroscopic profiles ρ_0^+ and ρ_0^- , $[0, 1]^2 \rightarrow [0, 1]$.
- $\rho_0 = \rho_0^+ + \rho_0^-$ is the initial particle density

• Initial *local equilibrium* : independently for any $x \in \mathbb{T}^2_N$

$$\eta_{x}(0) = \begin{cases} \pm 1 & \text{w.p. } \rho_{0}^{\pm}(x) \\ 0 & \text{w.p. } 1 - \rho_{0}^{+}(x) - \rho_{0}^{-}(x) \end{cases}$$

Model description

Hydrodynamic limit

Continuous angles dynamic

Weakly asymmetric exclusion

- Exclusion rule : if the target site is occupied, the motion is canceled
- $\lambda_N = \lambda/N$ is the strength of the *weak asymmetry*

Model description

Hydrodynamic limit

Continuous angles dynamic

Glauber dynamics

 \mapsto *Ising type* alignment dynamics with inverse temperature β

- $\beta = 0$, no alignment
- $\beta \to \infty$, strong alignment

Model description ○ ○ ● ○ ● Hydrodynamic limit 0000000 00000 0000

Continuous angles dynamic

Generator of the dynamic

The Markov generator of the process is given by

$$L_{N} = N^{2} \mathcal{L}^{S} + \lambda N \mathcal{L}^{A} + \mathcal{L}^{G},$$

L^S: "generator" of the Symmetric Simple Exclusion Process (SSEP)

$$\mathcal{L}^{\mathcal{S}}f(\eta) = \sum_{x \in \mathbb{T}_{N}} \sum_{|z|=1} |\eta_{x}| \underbrace{(1-|\eta_{x+z}|)}_{\text{Exclusion Rule}} \left(f(\eta^{x,x+z}) - f(\eta)\right).$$

• Diffusive scaling : $\times N^2$.

Model description

Hydrodynamic limit 0000000 00000 0000

Continuous angles dynamic

Generator of the dynamic

$$L_{N} = N^{2} \mathcal{L}^{S} + \lambda N \mathcal{L}^{A} + \mathcal{L}^{G},$$

L^A : generator of the Asymmetric Simple Exclusion Process (WASEP)

$$\mathcal{L}^{A}f(\eta) = \sum_{x \in \mathbb{T}_{N}} \sum_{\delta = \pm 1} \delta \eta_{x} \underbrace{(1 - |\eta_{x+\delta e_{1}}|)}_{\text{Exclusion Rule}} \left(f(\eta^{x,x+\delta e_{1}}) - f(\eta) \right),$$

• Ballistic scaling : ×N.

Hydrodynamic limit

Continuous angles dynamic

Generator of the dynamic

$$L_{N} = N^{2} \mathcal{L}^{S} + \lambda N \mathcal{L}^{A} + \mathcal{L}^{G},$$

• \mathcal{L}^{G} : generator of the Glauber alignment dynamics

$$\mathcal{L}^{G}f(\eta) = \sum_{\mathbf{x}\in\mathbb{T}_{N}} c_{\beta}(\mathbf{x},\eta) |\eta_{\mathbf{x}}| \left(f(\eta^{\mathbf{x}}) - f(\eta)\right).$$

• One can choose for example

$$c_{eta}(x,\eta) = rac{1}{Z_{eta}} \exp\left(-eta \sum_{y \sim x} \eta_x \eta_y
ight).$$

• No need for rescaling.

Model description

Hydrodynamic limit

Continuous angles dynamic

Plan of the talk

Collective motion & Active matter

Collective dynamics Alignment phase transition MIPS

Model description

Initial setup Description of the dynamics

Hydrodynamic limit

Heuristic formulation of the macroscopic limit Non-gradient hydrodynamics Irreducibility

Continuous angles dynamic

Active exclusion process Conclusion

Model description

Hydrodynamic limit

Continuous angles dynamic

Hydrodynamic Limit

Question : Evolution of the macroscopic densities $\rho^+, \rho^-: [0, T] \times [0, 1]^2 \rightarrow [0, 1]$?

Weak formulation of the macroscopic evolution

For any smooth function H,

$$\frac{1}{N^2} \sum_{x \in \mathbb{T}_N^2} H(x) \eta_x^+(t) \xrightarrow[N \to \infty]{} \int_{[0,1]^2} dx H(x) \rho^+(t,x)$$

and

$$\frac{1}{N^2} \sum_{x \in \mathbb{T}^2_N} H(x) \eta_x^-(t) \xrightarrow[N \to \infty]{} \int_{[0,1]^2} dx H(x) \rho^-(t,x).$$

Hydrodynamic limit

Continuous angles dynamic

Hydrodynamic Limit

Question : Evolution of the macroscopic densities $\rho^+, \rho^-: [0, T] \times [0, 1]^2 \rightarrow [0, 1]$?

Weak formulation of the macroscopic evolution

For any smooth function *H*,

$$\frac{1}{N^2} \sum_{x \in \mathbb{T}_N^2} H(x) \eta_x^+(t) \xrightarrow[N \to \infty]{} \int_{[0,1]^2} dx H(x) \rho^+(t,x)$$

and

$$\frac{1}{N^2} \sum_{x \in \mathbb{T}^2_N} H(x) \eta_x^-(t) \xrightarrow[N \to \infty]{} \int_{[0,1]^2} dx H(x) \rho^-(t,x) dx = 0$$

Continuous angles dynamic

Heuristic formulation of the macroscopic limit

Theorem

Assumption : $\forall u \in [0, 1]^2$, $\rho_0(u) = \rho_0^+(u) + \rho_0^-(u) < 1$.

The **macroscopic density** of particles +, denoted $\rho^+(t, u)$, is solution **in a weak sense** of the cross reaction-diffusion system

 $\begin{cases} \partial_t \rho^+ = \nabla \cdot \left[d_{\mathcal{S}}(\rho) \nabla \rho^+ + \mathfrak{d}(\rho^+, \rho) \nabla \rho \right] + 2\lambda \partial_{x_1} \mathfrak{s}^+(\rho^+, \rho) + \Gamma_{\beta}(\rho^+, \rho) \\ \partial_t \rho^- = \nabla \cdot \left[d_{\mathcal{S}}(\rho) \nabla \rho^+ + \mathfrak{d}(\rho^-, \rho) \nabla \rho \right] + 2\lambda \partial_{x_1} \mathfrak{s}^-(\rho^-, \rho) - \Gamma_{\beta}(\rho^+, \rho) \,, \end{cases}$

with initial condition

$$(\rho^+, \rho^-)(0, x) = (\rho_0^+, \rho_0^-)(x) \quad \forall x.$$

The quantity $\rho = \rho^+ + \rho^-$ is the total particle density.

Continuous angles dynamic

Heuristic formulation of the macroscopic limit

Theorem

Assumption :
$$\forall u \in [0, 1]^2$$
, $\rho_0(u) = \rho_0^+(u) + \rho_0^-(u) < 1$.

The **macroscopic density** of particles +, denoted $\rho^+(t, u)$, is solution **in a weak sense** of the cross reaction-diffusion system

$$\begin{cases} \partial_t \rho^+ = \nabla \left[d_{\mathfrak{s}}(\rho) \nabla \rho^+ + \mathfrak{d}(\rho^+, \rho) \nabla \rho \right] + 2\lambda \partial_{x_1} \mathfrak{s}^+(\rho^+, \rho) + \Gamma_{\beta}(\rho^+, \rho) \\ \partial_t \rho^- = \nabla \left[d_{\mathfrak{s}}(\rho) \nabla \rho^+ + \mathfrak{d}(\rho^-, \rho) \nabla \rho \right] + 2\lambda \partial_{x_1} \mathfrak{s}^-(\rho^-, \rho) - \Gamma_{\beta}(\rho^+, \rho) \,, \end{cases}$$

with initial condition

$$(\rho^+, \rho^-)(0, x) = (\rho_0^+, \rho_0^-)(x) \quad \forall x.$$

The quantity $ho =
ho^+ +
ho^-$ is the total particle density.

Continuous angles dynamic

Heuristic formulation of the macroscopic limit

Theorem

Assumption :
$$\forall u \in [0, 1]^2$$
, $\rho_0(u) = \rho_0^+(u) + \rho_0^-(u) < 1$.

The **macroscopic density** of particles +, denoted $\rho^+(t, u)$, is solution **in a weak sense** of the cross reaction-diffusion system

$$\begin{cases} \partial_t \rho^+ = \nabla \left[d_{\mathfrak{s}}(\rho) \nabla \rho^+ + \mathfrak{d}(\rho^+, \rho) \nabla \rho \right] + 2\lambda \partial_{x_1} \mathfrak{s}^+(\rho^+, \rho) + \Gamma_{\beta}(\rho^+, \rho) \\ \partial_t \rho^- = \nabla \left[d_{\mathfrak{s}}(\rho) \nabla \rho^+ + \mathfrak{d}(\rho^-, \rho) \nabla \rho \right] + 2\lambda \partial_{x_1} \mathfrak{s}^-(\rho^-, \rho) - \Gamma_{\beta}(\rho^+, \rho) \,, \end{cases}$$

with initial condition

$$(\rho^+, \rho^-)(0, x) = (\rho_0^+, \rho_0^-)(x) \quad \forall x.$$

The quantity $\rho = \rho^+ + \rho^-$ is the total particle density.

Model description

Hydrodynamic limit

Continuous angles dynamic

J. Quastel.

Diffusion of colour in the simple exclusion process. COMM. PURE APPL. MATH, 1992.

S.R.S Varadhan.

Non-linear diffusion limit for a system with nearest neighbor interactions II.

Asymptotic problems in probability theory : Stochastic models and diffusion on fractals, 1994.

🌭 C. Kipnis and C. Landim.

Scaling limits of interacting particle systems. Fundamental Principles of Mathematical Sciences, 1999.

Model description

Hydrodynamic limit

Continuous angles dynamic

Dynamical interpretation

 d_s is the *self-diffusion coefficient* of a tracer particle in an homogeneous environment.

Hydrodynamic limit

Continuous angles dynamic

Self-diffusion coefficient

Setup :

- infinite SSEP on \mathbb{Z}^2 at equilibrium with density $\rho \in]0, 1[$.
- At the origin, we place a *tagged particle*.
- (*X*₁(*t*), *X*₂(*t*)) denotes the position at time *t* of the tagged particle.

Definition

The self-diffusion coefficient is defined by

$$d_s(
ho) = \lim_{t \to \infty} \frac{\mathbb{E}(X_1(t)^2)}{t}$$

 \mapsto $d_s(\rho)$ can be defined by a variational formula (Spohn, 1990).

Hydrodynamic limit

Continuous angles dynamic

Self-diffusion coefficient

Setup :

- infinite SSEP on \mathbb{Z}^2 at equilibrium with density $\rho \in]0, 1[$.
- At the origin, we place a *tagged particle*.
- (*X*₁(*t*), *X*₂(*t*)) denotes the position at time *t* of the tagged particle.

Definition

The self-diffusion coefficient is defined by

$$d_s(\rho) = \lim_{t \to \infty} \frac{\mathbb{E}(X_1(t)^2)}{t}$$

 \mapsto $d_s(\rho)$ can be defined by a variational formula (Spohn, 1990).

Hydrodynamic limit

Continuous angles dynamic

Self-diffusion coefficient

Setup :

- infinite SSEP on \mathbb{Z}^2 at equilibrium with density $\rho \in]0, 1[$.
- At the origin, we place a *tagged particle*.
- (*X*₁(*t*), *X*₂(*t*)) denotes the position at time *t* of the tagged particle.

Definition

The self-diffusion coefficient is defined by

$$d_{s}(\rho) = \lim_{t \to \infty} \frac{\mathbb{E}(X_{1}(t)^{2})}{t}$$

 \mapsto $d_s(\rho)$ can be defined by a variational formula (Spohn, 1990).

Model description

Hydrodynamic limit

Continuous angles dynamic

Dynamical interpretation

The coefficient **a** quantifies the **diffusion** due to heterogeneities of the **total particle density**

$$\mathfrak{d}(\rho^+, \rho) = \frac{\rho^+}{\rho} (1 - d_s(\rho))$$
 (Quastel, 1992).

Model description

Hydrodynamic limit

Continuous angles dynamic

Dynamical interpretation

$$\partial_t \rho^+ = \nabla \cdot \left[\mathsf{d}_{\mathsf{s}}(\rho) \nabla \rho^+ + \mathfrak{d}(\rho^+, \rho) \nabla \rho \right] + 2\lambda \partial_{\mathsf{x}_1} \mathfrak{s}^+(\rho^+, \rho) + \Gamma_\beta(\rho^+, \rho).$$

 \mapsto The drift terms \mathfrak{s}^+ and \mathfrak{s}^- can be expressed as

$$\mathfrak{s}^+(\rho^+,\rho)=
ho^+d_{\mathfrak{s}}(\rho)+rac{
ho^+}{
ho}(1-
ho-d_{\mathfrak{s}}(
ho))(
ho^+-
ho^-),$$

$$\mathfrak{s}^{-}(\rho^{-},\rho) = -\rho^{-}d_{s}(\rho) + \frac{\rho^{-}}{\rho}(1-\rho-d_{s}(\rho))(\rho^{+}-\rho^{-}),$$

and are linked to ∂ and d_s by a matrix Stokes-Einstein relation.

Model description 0 00000 Hydrodynamic limit

Continuous angles dynamic

Dynamical interpretation

 $\partial_t \rho^+ = \nabla \cdot \left[\mathsf{d}_{\mathsf{s}}(\rho) \nabla \rho^+ + \mathfrak{d}(\rho^+, \rho) \nabla \rho \right] + 2\lambda \partial_{\mathsf{x}_1} \mathfrak{s}^+(\rho^+, \rho) + \mathsf{\Gamma}_{\beta}(\rho^+, \rho).$

- Γ_{β} is the creation rate of "+" particles.
- It depends on the alignment jump rates $c_{\!eta}$

Model description

Hydrodynamic limit

Continuous angles dynamic

Hydrodynamic limit

Empirical measures

$$\pi_t^{+,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N^2} \eta_x^+(t) \delta_x, \quad \text{ and } \quad \pi_t^{-,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N} \eta_x^-(t) \delta_x.$$

We want to prove $\pi_t^{+,N} \rightarrow \pi_t^+ = \rho^+(t,x) dx$, i.e. that for any smooth *H*,

$$<\pi_t^{+,N},H> \rightarrow \int_{[0,1]^2}
ho^+(t,x)H(x)dx$$

Core principle :

$$<\pi_{T}^{+,N},H>=<\pi_{0}^{+,N},H>+\int_{0}^{T}L_{N}<\pi_{t}^{+,N},H>dt+\overbrace{M_{T}^{N}}^{o_{N}(1)}$$

Model description

Hydrodynamic limit

Continuous angles dynamic

Hydrodynamic limit

Empirical measures

$$\pi_t^{+,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N^2} \eta_x^+(t) \delta_x, \quad \text{and} \quad \pi_t^{-,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N} \eta_x^-(t) \delta_x.$$

We want to prove $\pi_t^{+,N} \rightarrow \pi_t^+ = \rho^+(t,x) dx$, i.e. that for any smooth *H*,

$$<\pi_t^{+,N},H>\rightarrow\int_{[0,1]^2}
ho^+(t,x)H(x)dx$$

Core principle :

$$<\pi_{T}^{+,N},H>=<\pi_{0}^{+,N},H>+\int_{0}^{T}L_{N}<\pi_{t}^{+,N},H>dt+\overbrace{M_{T}^{N}}^{o_{N}(1)}$$

Model description

Hydrodynamic limit

Continuous angles dynamic

Hydrodynamic limit

Empirical measures

$$\pi_t^{+,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N^2} \eta_x^+(t) \delta_x, \quad \text{ and } \quad \pi_t^{-,N} = \frac{1}{N^2} \sum_{x \in \mathbb{T}_N} \eta_x^-(t) \delta_x.$$

We want to prove $\pi_t^{+,N} \rightarrow \pi_t^+ = \rho^+(t,x) dx$, i.e. that for any smooth *H*,

$$<\pi_t^{+,N},H>\rightarrow\int_{[0,1]^2}
ho^+(t,x)H(x)dx$$

Core principle :

$$<\pi_{T}^{+,N},H>=<\pi_{0}^{+,N},H>+\int_{0}^{T}L_{N}<\pi_{t}^{+,N},H>dt+\overbrace{M_{T}^{N}}^{o_{N}(1)}$$

Model description

Hydrodynamic limit

Continuous angles dynamic

Hydrodynamic limit

Assume we are in one dimension :

$$\begin{split} L_N &< \pi_t^{+,N}, H > = \frac{1}{N} \sum_{x \in \mathbb{T}_N} H(x) L_N \eta_x^+ \\ &= \frac{1}{N} \sum_{x \in \mathbb{T}_N} H(x) \left(W_{x - \frac{1}{N}, x} - W_{x, x + \frac{1}{N}} + \gamma_{\beta, x} \right) \\ &= \frac{1}{N} \sum_{x \in \mathbb{T}_N} \left[\left(H(x) - H\left(x + \frac{1}{N}\right) \right) W_{x, x + \frac{1}{N}} + H(x) \gamma_{\beta, x} \right] \end{split}$$

and the instantaneous particle current can be written

Model description

Hydrodynamic limit

Continuous angles dynamic

.

Hydrodynamic limit

Assume we are in one dimension :

$$L_{N} < \pi_{t}^{+,N}, H > = \frac{1}{N} \sum_{x \in \mathbb{T}_{N}} H(x) L_{N} \eta_{x}^{+}$$

$$= \frac{1}{N} \sum_{x \in \mathbb{T}_{N}} H(x) \left(W_{x-\frac{1}{N},x} - W_{x,x+\frac{1}{N}} + \gamma_{\beta,x} \right)$$

$$= \frac{1}{N} \sum_{x \in \mathbb{T}_{N}} \left[\underbrace{\left(H(x) - H\left(x + \frac{1}{N}\right) \right)}_{\simeq \frac{1}{N} \partial_{x_{i}} H(x)} W_{x,x+\frac{1}{N}} + H(x) \gamma_{\beta,x} \right]$$

and the instantaneous particle current can be written

$$W_{x,x+\frac{1}{N}} = N^{2} \underbrace{w_{x,x+\frac{1}{N}}^{S}}_{\text{symmetric current}} + \lambda N \underbrace{w_{x,x+\frac{1}{N}}^{A}}_{\text{antisymmetric current}}$$

Hydrodynamic limit

Continuous angles dynamic

Non-gradient hydrodynamics

- The partial derivative on *H* balances out a factor *N* in the current.
- In *non-gradient systems*, the symmetric current w^S_{x,x+¹/N} is not a discrete gradient.
 → the second integration by parts is not immediate
- One must prove

$$N.w_{x,x+\frac{1}{N}}^{S} \simeq N\left[d_{s}(\eta_{x}^{+}-\eta_{x+1}^{+})+\mathfrak{d}(|\eta_{x}|-|\eta_{x+1}|)+\mathcal{L}^{S}f\right]$$

Hydrodynamic limit

Continuous angles dynamic

Key steps in the hydrodynamic limit

Additionally to the justification of this replacement, some key points are needed :

- Prove that the measure of the process is "close" to a product measure : *conservation of local equilibrium*
- Introduce *spatial averages*
- Prove a *law of large number for the process*, and replace, for example, the spatial average of η⁺_x(t) by the density ρ⁺(t, x)

Hydrodynamic limit

Continuous angles dynamic

Key steps in the hydrodynamic limit

Additionally to the justification of this replacement, some key points are needed :

- Prove that the measure of the process is "close" to a product measure : *conservation of local equilibrium*
- Introduce *spatial averages*
- Prove a *law of large number for the process*, and replace, for example, the spatial average of η⁺_x(t) by the density ρ⁺(t, x)

Hydrodynamic limit

Continuous angles dynamic

Key steps in the hydrodynamic limit

Additionally to the justification of this replacement, some key points are needed :

- Prove that the measure of the process is "close" to a product measure : *conservation of local equilibrium*
- Introduce *spatial averages*
- Prove a *law of large number for the process*, and replace, for example, the spatial average of η⁺_x(t) by the density ρ⁺(t, x)

Model description 0 00000 Hydrodynamic limit

Continuous angles dynamic

Out of equilibrium dynamics

Key issue

Comparison with a product measure on the discrete lattice :

- Distortion of the measure by the Glauber part and the initial configuration are easily controlled
- Distortion by the weak drift, harder to control

 \mapsto Challenge : prove that the exponential estimates needed in the *non-gradient* method still hold.

Model description o ooooo Hydrodynamic limit

Continuous angles dynamic

Out of equilibrium dynamics

Key issue

Comparison with a product measure on the discrete lattice :

- Distortion of the measure by the Glauber part and the initial configuration are easily controlled
- Distortion by the weak drift, harder to control

 \mapsto Challenge : prove that the exponential estimates needed in the *non-gradient* method still hold.

Model description

Hydrodynamic limit

Continuous angles dynamic

Irreducibility

Exclusion rule : the process is not always irreducible on canonical ensembles with fixed number and types of particles.

Model description

Hydrodynamic limit

Continuous angles dynamic

Irreducibility

- One must prove that the dynamics preserves sufficient empty sites spread in the configuration to ensure mixing.
- This was a major issue with the model, which was not present in Quastel's symmetric case.

Let

 $F_{\rho}(x) = \{$ There is no empty site in $B_{\rho}(x)\},$

one must in particular prove that

$$\mathbb{E}\left(\frac{1}{N^2}\sum_{x\in\mathbb{T}_N}\mathbb{1}_{F_p(x)}\right) \underset{N\to\infty}{\simeq} \int_{[0,1]^2} dx \rho_x^{|\mathcal{B}_p|} \underset{p\to\infty}{\longrightarrow} 0.$$
(1)

Model description

Hydrodynamic limit

Continuous angles dynamic

Irreducibility

- One must prove that the dynamics preserves sufficient empty sites spread in the configuration to ensure mixing.
- This was a major issue with the model, which was not present in Quastel's symmetric case.

Let

 $F_{\rho}(x) = \{$ There is no empty site in $B_{\rho}(x)\},$

one must in particular prove that

$$\mathbb{E}\left(\frac{1}{N^2}\sum_{x\in\mathbb{T}_N}\mathbb{1}_{F_p(x)}\right) \underset{N\to\infty}{\simeq} \int_{[0,1]^2} dx \rho_x^{|B_p|} \underset{p\to\infty}{\longrightarrow} 0.$$
(1)

Model description

Hydrodynamic limit

Continuous angles dynamic

Irreducibility

- One must prove that the dynamics preserves sufficient empty sites spread in the configuration to ensure mixing.
- This was a major issue with the model, which was not present in Quastel's symmetric case.

Let

$$F_{\rho}(x) = \{$$
There is no empty site in $B_{\rho}(x)\},$

one must in particular prove that

I

$$\mathbb{E}\left(\frac{1}{N^2}\sum_{x\in\mathbb{T}_N}\mathbb{1}_{F_p(x)}\right) \underset{N\to\infty}{\simeq} \int_{[0,1]^2} dx \rho_x^{|\mathcal{B}_p|} \underset{p\to\infty}{\longrightarrow} 0.$$
(1)

Model description

Hydrodynamic limit

Continuous angles dynamic

Elements on the proof of (1)

The total density $\rho = \rho^+ + \rho^-$ is expected to satisfy

$$\partial_t \rho = \Delta \rho + \lambda \partial_{x_1} (m(1-\rho)),$$
 (2)

where $m = (\rho^+ - \rho^-)$ denotes the local "magnetization" of the system.

- Analysis-based proof with microscopic methods, using (2)
- The proof relies on the a-priori control of the density and Gronwall's Lemma

Model description

Hydrodynamic limit

Continuous angles dynamic

Elements on the proof of (1)

Let $\phi(\rho) = 1/(1-\rho)$, one can prove, assuming (2), that

$$\partial_t \int_{\mathbb{T}} \phi(\rho_t) dx \leq 2\lambda^2 \int_{\mathbb{T}} \phi(\rho_t) dx$$

 \mapsto By Gronwall's Lemma, at any time *t*,

$$\int_{\mathbb{T}} \phi(
ho_t) dx \leq e^{Ct} \underbrace{\int_{\mathbb{T}} \phi(
ho_0) dx}_{<\infty ext{ by assumption}}.$$

The right-hand side remains finite, therefore the total density cannot reach 1.

 \mapsto The challenge is to carry out this proof in a **microscopic setup**, without proving an hydrodynamic limit.

Model description

Hydrodynamic limit

Continuous angles dynamic

Elements on the proof of (1)

Let $\phi(\rho) = 1/(1-\rho)$, one can prove, assuming (2), that

$$\partial_t \int_{\mathbb{T}} \phi(\rho_t) dx \leq 2\lambda^2 \int_{\mathbb{T}} \phi(\rho_t) dx$$

 \mapsto By Gronwall's Lemma, at any time *t*,

$$\int_{\mathbb{T}} \phi(\rho_t) dx \leq e^{Ct} \underbrace{\int_{\mathbb{T}} \phi(\rho_0) dx}_{<\infty \text{ by assumption}}.$$

The right-hand side remains finite, therefore the total density cannot reach 1.

 \mapsto The challenge is to carry out this proof in a **microscopic setup**, without proving an hydrodynamic limit.

Model description

Hydrodynamic limit

Continuous angles dynamic

Plan of the talk

Collective motion & Active matter

Collective dynamics Alignment phase transition MIPS

Model description

Initial setup Description of the dynamics

Hydrodynamic limit

Heuristic formulation of the macroscopic limit Non-gradient hydrodynamics Irreducibility

Continuous angles dynamic

Active exclusion process Conclusion

Hydrodynamic limit

Continuous angles dynamic

Continuous angles dynamic

- The two particle types + and can be interpreted as angles 0 and π for the drift.
- We now want to extend the proof of the hydrodynamic limit to an angle continuum θ ∈ [0, 2π[.

Model description

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Main result

The macroscopic density ρ^{θ} of particles with angle $\theta,$ can be "défined" as

$$\frac{1}{N^2}\sum_{x\in\mathbb{T}_N^2}H(x,\theta_x)\eta_x(t)\xrightarrow[N\to\infty]{}\int_{[0,1]^2}dx\int_{\theta\in[0,2\pi[}d\theta H(x,\theta)\rho^\theta(t,x)$$

Theorem (Continuous angles)

Assumption : $\forall x \in [0, 1]^2$, $\rho_0(x) < 1$.

The "function" $(t, x, \theta) \mapsto \rho^{\theta}(t, x)$ is solution **in a weak sense** of

$$\partial_t \rho^{\theta} = \nabla \cdot \left[\mathsf{d}_{\mathsf{s}}(\rho) \nabla \rho^{\theta} + \mathfrak{d}(\rho^{\theta}, \rho) \nabla \rho \right] + \lambda \nabla \cdot \overrightarrow{\mathfrak{s}}(\rho^{\theta}, \overrightarrow{m}, \rho) + \Gamma^{\theta}_{\beta},$$

where $\rho = \int_{\theta} \rho^{\theta} d\theta$ is the total particle density.

Model description

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Main result

The macroscopic density ρ^{θ} of particles with angle $\theta,$ can be "défined" as

$$\frac{1}{N^2}\sum_{x\in\mathbb{T}_N^2}H(x,\theta_x)\eta_x(t)\xrightarrow[N\to\infty]{}\int_{[0,1]^2}dx\int_{\theta\in[0,2\pi[}d\theta H(x,\theta)\rho^\theta(t,x)$$

Theorem (Continuous angles)

Assumption : $\forall x \in [0, 1]^2$, $\rho_0(x) < 1$.

The "function" $(t, x, \theta) \mapsto \rho^{\theta}(t, x)$ is solution **in a weak sense** of

$$\partial_t \rho^{\theta} = \nabla \cdot \left[\boldsymbol{d}_{\boldsymbol{s}}(\boldsymbol{\rho}) \nabla \rho^{\theta} + \mathfrak{d}(\rho^{\theta}, \boldsymbol{\rho}) \nabla \boldsymbol{\rho} \right] + \lambda \nabla \cdot \overrightarrow{\mathfrak{s}}(\rho^{\theta}, \overrightarrow{\boldsymbol{m}}, \boldsymbol{\rho}) + \Gamma^{\theta}_{\beta},$$

where $ho = \int_{ heta}
ho^{ heta} d heta$ is the total particle density.

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Proof in the continuous case

- Local equilibrium is no longer characterized by a finite number of parameters (e.g. ρ^+ and $\rho^-)$
- Instead, local equilibrium is characterized by an angle measure on [0, 2π[: if, locally, one observes 1/3 of empty sites, 1/3 of particles with angle 0 and 1/3 with angle π, the corresponding measure is

$$\widehat{\alpha} = \frac{1}{3}\delta_0 + \frac{1}{3}\delta_\pi$$

 This creates several technical difficulties, but the principle of the proof still holds.

Model description

Hydrodynamic limit 0000000 00000 0000 Continuous angles dynamic

Research perspectives

- Replacing metric interactions by topological interactions, typically with the *k*-nearest neighbors : this should be possible with similar density control tools.
- Large deviations for the system (Macroscopic fluctuations theory)
- Dynamical phase transition (Much harder)

Model description

Hydrodynamic limit

Continuous angles dynamic ○○ ○●

Thanks for your attention !

