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Collective motion & Active matter

Collective behavior can be observed among numerous animal
species
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→ Classical representation : Individual Based Models (IBM) built
around active matter.

Active Matter
System composed of many individuals, maintained out of
equilibrium by an energy influx at the individual level.
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Two types of phenomena can arise in active matter models :

→ Alignment phase transition

→ Motility Induced Phase Separation (MIPS).
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Alignment phase transition

Alignment

Alignment dynamics will create groups of particles moving together
and adapting their speed

Original model by Vicsek&al. (1995, Novel type of phase transition
in a system of self driven particles)

7→ N = ρL2 particles move in the periodic domain [0,L]2, with
speed vi(t) = v

→
e θi (t){

xi(t + 1) = xi(t) + vi(t)∆t
θi(t + 1) = 〈θ(t)〉r + ξη
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Numerous results and related models

• Revisiting the flocking transition using active spins, Solon &
Tailleur, 2013

• Pattern formation in flocking models: A hydrodynamic
description, Solon & al., 2015

Figure: Emergence of global order for an alignment dynamics. From
Flocking with discrete symmetry, the 2d active Ising model, Solon &
Tailleur 2015.
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Exact works

Several analysis and PDE based papers, based on mean-field
interactions :

7→ Each particle interacts with a large number of neighbors

• Continuum limit of self-driven particles with orientation
interaction, Degond, Motsch, 2007.

• Mean field limit for the stochastic Vicsek’s model, Bolley,
Carrillo, Canizo, 2011.

• Review on collective motion : Macroscopic models of collective
motion and self organization, review, Degond & al., 2012
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Motility induced phase separation

MIPS
Particles will tend to accumulate where they move more slowly

• MIPS can occur when the particle’s velocity depends on the
local density

• MIPS usually does not occur in models with alignment : dense
clusters tend to quickly align and spread out
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• When are active Brownian particles and run-and-tumble
particles equivalent ? consequence for MIPS, Cates & Tailleur
2012

• Motility-induced phase separation, Cates & Tailleur 2014

Figure: Coarsening effect in active matter. From Cates & Tailleur 2012.
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Description of the particle system

7→ very close to the Active Ising Model (Solon & Tailleur 2015), with
at most one particle per site and weak asymmetry.

Two types of particles (+ and −) evolve on the periodic square
lattice T2

N =
{

0, 1
N , ...,

N−1
N

}2

• For each site x ∈ T2
N , we define ηx ∈ {−1,0,1}.

7→ ηx = 0 for an empty site
7→ ηx = ±1 for a site occupied by a particle ±

• We let ηx = η+x − η−x , where η±x = 1 iff x is occupied by a ±
particle.
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System configuration

: η+x = η−x = 0

: η−x = 1

1

1

0
1
N

: η+x = 1
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Initial configuration
• Initial setup : smooth macroscopic profiles ρ+0 and ρ−0 ,

[0,1]2 → [0,1].
• ρ0 = ρ+0 + ρ−0 is the initial particle density

1
ρ0(x) = ρ+0 (x) + ρ−0 (x)

x
ρ−0

ρ+0

• Initial local equilibrium : independently for any x ∈ T2
N

ηx (0) =

{
±1 w.p. ρ±0 (x)

0 w.p. 1− ρ+0 (x)− ρ−0 (x)
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Weakly asymmetric exclusion

1

1

1

1

1− λN1 + λN 1 + λN
1− λN

• Exclusion rule : if the target site is occupied, the motion is
canceled

• λN = λ/N is the strength of the weak asymmetry
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Glauber dynamics

7→ Ising type alignment dynamics with inverse temperature β

• β = 0, no alignment

• β →∞, strong alignment
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Generator of the dynamic

The Markov generator of the process is given by

LN = N2LS+λNLA + LG,

• LS : “generator” of the Symmetric Simple Exclusion Process
(SSEP)

LSf (η) =
∑

x∈TN

∑
|z|=1

|ηx |(1− |ηx+z |)︸ ︷︷ ︸
Exclusion Rule

(
f (ηx ,x+z)− f (η)

)
.

• Diffusive scaling : ×N2.
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Generator of the dynamic

LN = N2LS+λNLA+LG,

• LA : generator of the Asymmetric Simple Exclusion Process
(WASEP)

LAf (η) =
∑

x∈TN

∑
δ=±1

δηx (1− |ηx+δe1 |)︸ ︷︷ ︸
Exclusion Rule

(
f (ηx ,x+δe1)− f (η)

)
,

• Ballistic scaling : ×N.
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Generator of the dynamic

LN = N2LS+λNLA+LG,

• LG : generator of the Glauber alignment dynamics

LGf (η) =
∑

x∈TN

cβ(x , η)|ηx | (f (ηx )− f (η)) .

• One can choose for example

cβ(x , η) =
1

Zβ
exp

(
−β
∑
y∼x

ηxηy

)
.

• No need for rescaling.
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Hydrodynamic Limit

Question : Evolution of the macroscopic densities
ρ+, ρ− : [0,T ]× [0,1]2 → [0,1] ?

Weak formulation of the macroscopic evolution

For any smooth function H,

1
N2

∑
x∈T2

N

H(x)η+x (t) −→
N→∞

∫
[0,1]2

dxH(x)ρ+(t , x)

and
1

N2

∑
x∈T2

N

H(x)η−x (t) −→
N→∞

∫
[0,1]2

dxH(x)ρ−(t , x).



Collective motion & Active matter Model description Hydrodynamic limit Continuous angles dynamic

Hydrodynamic Limit

Question : Evolution of the macroscopic densities
ρ+, ρ− : [0,T ]× [0,1]2 → [0,1] ?

Weak formulation of the macroscopic evolution

For any smooth function H,

1
N2

∑
x∈T2

N

H(x)η+x (t) −→
N→∞

∫
[0,1]2

dxH(x)ρ+(t , x)

and
1

N2

∑
x∈T2

N

H(x)η−x (t) −→
N→∞

∫
[0,1]2

dxH(x)ρ−(t , x).



Collective motion & Active matter Model description Hydrodynamic limit Continuous angles dynamic

Heuristic formulation of the macroscopic limit

Theorem
Assumption : ∀u ∈ [0,1]2, ρ0(u) = ρ+0 (u) + ρ−0 (u) < 1.

The macroscopic density of particles +, denoted ρ+(t ,u), is
solution in a weak sense of the cross reaction-diffusion system{
∂tρ

+ = ∇. [ds(ρ)∇ρ+ + d(ρ+, ρ)∇ρ] + 2λ∂x1s
+(ρ+, ρ) + Γβ(ρ+, ρ)

∂tρ
− = ∇. [ds(ρ)∇ρ+ + d(ρ−, ρ)∇ρ] + 2λ∂x1s

−(ρ−, ρ)− Γβ(ρ+, ρ)
,

with initial condition

(ρ+, ρ−)(0, x) = (ρ+0 , ρ
−
0 )(x) ∀x .

The quantity ρ = ρ+ + ρ− is the total particle density.
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Dynamical interpretation

∂tρ
+ = ∇.

[
ds(ρ)∇ρ+ + d(ρ+, ρ)∇ρ

]
+2λ∂x1s

+(ρ+, ρ) + Γβ(ρ+, ρ).

ρ0(x)1 1
ρT (x)

x x

ρ+
Tρ+

0

ρ−
T

ρ−
0

ds is the self-diffusion coefficient of a tracer particle in an
homogeneous environment.
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Self-diffusion coefficient

Setup :
• infinite SSEP on Z2 at equilibrium with density ρ ∈]0,1[.
• At the origin, we place a tagged particle.
• (X1(t),X2(t)) denotes the position at time t of the tagged

particle.

Definition
The self-diffusion coefficient is defined by

ds(ρ) = lim
t→∞

E(X1(t)2)

t

7→ ds(ρ) can be defined by a variational formula (Spohn, 1990).
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Dynamical interpretation

∂tρ
+ = ∇.

[
ds(ρ)∇ρ+ + d(ρ+, ρ)∇ρ

]
+2λ∂x1s

+(ρ+, ρ) + Γβ(ρ+, ρ).

x

11

x

ρ0(x) ρT (x)

The coefficient d quantifies the diffusion due to heterogeneities of
the total particle density

d(ρ+, ρ) =
ρ+

ρ
(1− ds(ρ)) (Quastel, 1992).
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Dynamical interpretation

∂tρ
+ = ∇.

[
ds(ρ)∇ρ+ + d(ρ+, ρ)∇ρ

]
+2λ∂x1s

+(ρ+, ρ)+Γβ(ρ+, ρ).

7→ The drift terms s+ and s− can be expressed as

s+(ρ+, ρ) = ρ+ds(ρ) +
ρ+

ρ
(1− ρ− ds(ρ))(ρ+ − ρ−),

s−(ρ−, ρ) = −ρ−ds(ρ) +
ρ−

ρ
(1− ρ− ds(ρ))(ρ+ − ρ−),

and are linked to d and ds by a matrix Stokes-Einstein relation.
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Dynamical interpretation

∂tρ
+ = ∇.

[
ds(ρ)∇ρ+ + d(ρ+, ρ)∇ρ

]
+ 2λ∂x1s

+(ρ+, ρ)+Γβ(ρ+, ρ).

• Γβ is the creation rate of ′′+′′ particles.

• It depends on the alignment jump rates cβ
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Hydrodynamic limit
Empirical measures

π+,Nt =
1

N2

∑
x∈T2

N

η+x (t)δx , and π−,Nt =
1

N2

∑
x∈TN

η−x (t)δx .

We want to prove π+,Nt →π+t = ρ+(t , x)dx , i.e. that for any smooth
H,

< π+,Nt ,H >→
∫
[0,1]2

ρ+(t , x)H(x)dx

Core principle :

< π+,NT ,H >=< π+,N0 ,H > +

∫ T

0
LN < π+,Nt ,H > dt +

oN(1)︷︸︸︷
MN

T
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Hydrodynamic limit
Assume we are in one dimension :

LN < π+,Nt ,H > =
1
N

∑
x∈TN

H(x)LNη
+
x

=
1
N

∑
x∈TN

H(x)
(

Wx− 1
N ,x
−Wx ,x+ 1

N
+ γβ,x

)
=

1
N

∑
x∈TN

[(
H(x)− H

(
x +

1
N

))
Wx ,x+ 1

N
+ H(x)γβ,x

]
and the instantaneous particle current can be written

Wx ,x+ 1
N

= N2 wS
x ,x+ 1

N︸ ︷︷ ︸
symmetric current

+ λN wA
x ,x+ 1

N︸ ︷︷ ︸
antisymmetric current

.
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' 1
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Non-gradient hydrodynamics

• The partial derivative on H balances out a factor N in the
current.

• In non-gradient systems, the symmetric current wS
x ,x+ 1

N
is

not a discrete gradient.
7→ the second integration by parts is not immediate

• One must prove

N.wS
x ,x+ 1

N
' N

[
ds(η+x − η+x+1) + d(|ηx | − |ηx+1|) + LSf

]
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Key steps in the hydrodynamic limit

Additionally to the justification of this replacement, some key points
are needed :

• Prove that the measure of the process is ”close” to a product
measure : conservation of local equilibrium

• Introduce spatial averages

• Prove a law of large number for the process, and replace, for
example, the spatial average of η+x (t) by the density ρ+(t , x)
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Out of equilibrium dynamics

Key issue

Comparison with a product measure on the discrete lattice :

• Distortion of the measure by the Glauber part and the initial
configuration are easily controlled

• Distortion by the weak drift, harder to control

7→ Challenge : prove that the exponential estimates needed in the
non-gradient method still hold.
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Irreducibility

Exclusion rule : the process is not always irreducible on canonical
ensembles with fixed number and types of particles.
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Irreducibility

• One must prove that the dynamics preserves sufficient empty
sites spread in the configuration to ensure mixing.

• This was a major issue with the model, which was not present
in Quastel’s symmetric case.

• Let
Fp(x) = {There is no empty site in Bp(x)},

one must in particular prove that

E

 1
N2

∑
x∈TN

1Fp(x)

 '
N→∞

∫
[0,1]2

dxρ|Bp|
x −→

p→∞
0. (1)
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Elements on the proof of (1)

The total density ρ = ρ+ + ρ− is expected to satisfy

∂tρ = ∆ρ+ λ∂x1(m(1− ρ)), (2)

where m = (ρ+ − ρ−) denotes the local "magnetization" of the
system.

• Analysis-based proof with microscopic methods, using (2)

• The proof relies on the a-priori control of the density and
Gronwall’s Lemma
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Elements on the proof of (1)
Let φ(ρ) = 1/(1− ρ), one can prove, assuming (2), that

∂t

∫
T
φ(ρt )dx ≤ 2λ2

∫
T
φ(ρt )dx

7→ By Gronwall’s Lemma, at any time t ,∫
T
φ(ρt )dx ≤ eCt

∫
T
φ(ρ0)dx︸ ︷︷ ︸

<∞ by assumption

.

The right-hand side remains finite, therefore the total density
cannot reach 1.

7→ The challenge is to carry out this proof in a microscopic setup,
without proving an hydrodynamic limit.
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Continuous angles dynamic
• The two particle types + and − can be interpreted as angles 0

and π for the drift.
• We now want to extend the proof of the hydrodynamic limit to

an angle continuum θ ∈ [0,2π[.

1− λN sin(θ)

1 + λN sin(θ)

1− λN cos(θ) 1 + λN cos(θ)
θ

θ
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Main result
The macroscopic density ρθ of particles with angle θ, can be
“défined” as

1
N2

∑
x∈T2

N

H(x , θx )ηx (t) −→
N→∞

∫
[0,1]2

dx
∫
θ∈[0,2π[

dθH(x , θ)ρθ(t , x)

Theorem (Continuous angles)

Assumption : ∀x ∈ [0,1]2, ρ0(x) < 1.

The “function” (t , x , θ) 7→ ρθ(t , x) is solution in a weak sense of

∂tρ
θ = ∇.

[
ds(ρ)∇ρθ + d(ρθ, ρ)∇ρ

]
+ λ∇.−→s (ρθ,

−→m , ρ) + Γθβ,

where ρ =
∫
θ ρ

θdθ is the total particle density.
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Proof in the continuous case

• Local equilibrium is no longer characterized by a finite number
of parameters (e.g. ρ+ and ρ−)

• Instead, local equilibrium is characterized by an angle
measure on [0,2π[ : if, locally, one observes 1/3 of empty
sites, 1/3 of particles with angle 0 and 1/3 with angle π, the
corresponding measure is

α̂ =
1
3
δ0 +

1
3
δπ

• This creates several technical difficulties, but the principle of
the proof still holds.
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Research perspectives

• Replacing metric interactions by topological interactions,
typically with the k -nearest neighbors : this should be possible
with similar density control tools.

• Large deviations for the system (Macroscopic fluctuations
theory)

• Dynamical phase transition (Much harder)
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Thanks for your attention !
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