Fiche résumée du cours d'algèbre 1

1 Groupes

1.1 Généralités/Rappels

1.1.1 Définition (Groupe)

Un groupe est un magma associatif unifère, dont tous les élements sont inversibles.

1.1.2 Proposition

Soit (G,.) un groupe, et soit un sous-ensemble de G. Il existe un plus petit sous groupe H de G contenant E, on dit que H est le sous groupe engendré par E, noté < E >.

1.1.3 Définition (Morphisme de groupe)

Un morphisme de groupe est une application qui respecte la structure de groupe. (En particulier, l'image de 1_G est $1_{G'}$

1.1.4 Proposition

Soit $f: G \to G'$ morphisme de groupe. Soit H un sous groupe de G, alors f(H) est un sous groupe de G', et, si H' est un sous groupe de G', $f^{-1}(H')$ est un sous groupe de G. En particuler, Im(f) et Ker(f) sont des sous groupes de G' et G respectivement.

1.2 Sous groupes distingués et sous groupes quotients

1.2.1 Proposition

Soit G un groupe et H un sous groupe de G. Les relations $x \sim y \Leftrightarrow x^{-1}.y \in H$ et $x \sim_g y \Leftrightarrow x.y^{-1} \in H$ sont des relations d'équivalence. 'Reflexives, symétriques, et transitives).On note G/H et $H\backslash G$ les ensembles quotients formés par les classes d'équivalence. Leurs éléments sont respectivement les a.H et $H.a, a \in G$.

1.2.2 Corollaire (Théorème de Lagrange)

Soit G un groupe fini, H un sous groupe, alors, on a |H| qui divise |G|. On a en fait $|G| = |H| \cdot |G/H|$

Lemme : Soit G un groupe, E un ensemble et $\Pi: G \to E$ application surjective. Il existe au plus une loi de groupe sur E telle que Π soit un morphisme de groupe.

1.2.3 Théorème (sous groupe distingué)

Les propositions suivantes sont équivalentes :

- i) Il existe une (unique) structure de groupe "naturel" sur G/H telle que Π soit un morphisme de groupe.
- ii) $\forall g \in G$, on a $g.H.g^{-1} = H$
- iii) $\forall g \in G$, on a g.H. = H.g, de sorte que $G/H = H \setminus G$
- iv) Il existe un morphisme de groupe $\varphi:G\in G'$, où G' est un groupe quelconque, tel que $H=Ker(\varphi)$

On dit alors que H est **distingué** (ou normal, ou invariant) dans G, et que G/H est le groupe quotient du groupe H. Un groupe G est dit simple si ses seuls sous groupes distingués sont $\{1\}$ et G

1.2.4 Théorème (de factorisation)

Soit $f:G\to G'$ un morphisme de groupes. Il existe un unique morphisme de groupe $\widetilde{f}:G/Ker(f)\to G'$, tel que $f=\widetilde{f}\circ\Pi$, où $\Pi:G\to G/Ker(f)$ est la surjection canonique. De plus, on a un isomorphisme de groupe induit par $\widetilde{f}:G/Ker(f)\to Im(f)$

1.2.5 Définition (Groupe caractéristique, groupe dérivé)

Si H est stable par tout automorphisme de G, on dit que H est caractéristique. (En particulier, caractéristique \Rightarrow Stable par tout automorphisme intérieur \Leftrightarrow distingué)

Soit G un groupe et $(x,y) \in G^2$. On appelle commutateur de x et y l'élement $[x;y] = xyx^{-1}y^{-1}$. ($[x;y] = 1 \Leftrightarrow x$ et y commutent). le sous groupe de G engendré par les commutateurs est apellé sous groupe dérivé, noté D(G).

1.2.6 Proposition

Le sous groupe D(G) est caractéristique, donc distingué. Le groupe quotient G/D(G) est abélien. De plus, pour tout sous groupe H distingué dans G $(H \triangleleft G)$, tel que G/H est abélien, on $aD(G) \subset H$ On dit que $G^{ab} = G/D(G)$ est l'abélianisé de G (ou le plus grand quotient abélien de G)

1.2.7 Définition (Chaine exacte, courte)

Une suite $G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} G_3... \rightarrow G_n \xrightarrow{f_n} G_{n+1}$ de morphismes de groupe est dite exacte si $\forall i \in \{1..n\}, Im(f_i) = Ker(f_{i+1})$

Une suite exacte est dite courte si elle est de la forme

$$1 \to H \stackrel{i}{\to} G \stackrel{\Pi}{\to} N \to 1$$

Dans cette situation, H est isomorphe à $i(H) \triangleleft G$, et N est isomorphe à G/H. On dit alors que G est une extension de N par H.

1.3 Groupes opérant sur un ensemble

1.3.1 Définition (Groupe opérant sur un ensemble)

Soit G un groupe, et X un ensemble. On dit que G opère ou agit sur X si on a une application $G \times X \to X \atop (q,x) \mapsto q.x \text{ telle que :}$

- i) $\forall x \in X, 1_G.x = x$
- ii) $\forall g, g' \in G, \forall x \in X, (g.g').x = g.(g'.x)$

De manière équivalente, une action $G \to X$ est la donnée d'un morphisme de groupe $\varphi: G \to (S(X), \circ)$, où S(x) est le groupe des bijections $X \to X$, avec $\varphi(g): x \mapsto g.x$.

1.3.2 Définition (Orbite, stabilisateur)

Soit G un groupe opérant sur un ensemble X, soit $x \in X$, on définit l'orbite de x par $O(x) = \{g.x, g \in G\}$. Les orbites forment une partition de X. Lorsqu'il n'y en a qu'une seule, on dit que G agit **transitivement** sur X. Soit Ω l'ensemble des orbites de G dans X. Un système de représentants des orbites est la donnée, pour tout $\omega \in \Omega$ d'un élément de ω , $x_{\omega} \in \omega$.

On définit le stabilisateur de x (sous l'action de G) par :

$$stab_G(x) = \{ g \in G \mid g.x = x \}$$

On remarque que $stab_G(x)$ est un sous groupe de G.

1.3.3 Proposition

Soit G un groupe qui agit sur $X, x \in X$. L'application $\Pi: G/stab_G(x) \to O(x)$ est bien définie et est une bijection. En particulier, si G est fini, $|O(x)| = |G/stab_G(x)|$ divise |G|

1.3.4 Définition (Action fidèle, action libre)

On dit que l'action de G est fidèle si le seul élément qui stabilise tous les x de X est 1_G , ie $\bigcap_{x\in X} stab_G(x)=\{1_G\}$, ou encore $G\to S(X)$ injective. On dit que l'action de G est libre si $\forall x\in X,\, stab_G(x)=\{1_G\}$.

1.3.5 Proposition

L'opération $G \to G$ par translation à gauche est libre. Si G est un groupe fini de cardinal n, on obtient un morphisme injectif $G \to S_n$. Donc, tout groupe fini d'ordre n est un sous groupe de S_n .

1.3.6 Corollaire (Equation aux classes)

Soit G un groupe opérant sur un ensemble X. Si $R = \{x_{\omega}, \omega \in \Omega\}$ est un système de representants des orbites, et si X est de cardinal fini, alors :

$$|X| = \sum_{x \in R} |G/stab_G(x)|$$

1.4 Théorèmes de Sylow, p-groupes

1.4.1 Définition (p-groupes, p-Sylow)

Soit p un nombre premier, on appelle p-groupe un groupe fini de cardinal $p^k, k \in \mathbb{N}$

Soit G un groupe fini de cardinal $|G|=p^{\alpha}.r$, avec p premier et $p \wedge r=1$. Un p sous groupe de Sylow est un sous groupe de G d'ordre p^{α} .

1.4.2 Proposition

Soit G un p-groupe, de cardinal p^n , $n \ge 1$

- i) le centre Z de G est non trivial
- ii) Si G est de cardinal p ou p^2 , alors G est abélien.

1.4.3 Théorème (1er théorème de Sylow)

 $\forall p$ premier divisant $|G|,\;\exists$ un p-sous groupe de G de Sylow dans G

1.4.4 Lemme 1

Soit G un groupe d'ordre n, alors G est isomorphe à un sous groupe de $GL_n(\frac{\mathbb{Z}}{n\mathbb{Z}})$

1.4.5 Lemme 2

Soit H un sous-groupe de G et S un p-Sylow de G. Il existe $a\in G$ tel que $a.S.a^{-1}\cap H$ est un p-Sylow de H. Le théorème 1 en est une conséquence.

1.4.6 Théorème (2nd théorème de Sylow)

Soit G un groupe fini de cardinal $|G| = p^{\alpha}.m$, avec $m \wedge p = 1$.

- i) Si $H\subset G$ est un p-sous groupe, il existe un p-Sylow de G qui contient H
- ii) Les p-sylow de G sont conjugués.
- iii) Soit k le nombre de p-Sylow, alors $k \mid m$ et $k \equiv 1 [p]$

1.5 Produit semi-direct de groupes

1.5.1 Proposition/Def (Produit semi direct de groupes)

Soient H et N deux groupes tels que N agit dans H. On a donc un morphisme de groupes $\varphi: N \to Aut(H)$, où $n.h = \varphi(n)(h)$. On peut définir dans cette situation une loi de groupe sur le produit $H \times N$ par

$$(h, n) \times (h', n') = (h(n.h'), nn') = (h\varphi(n)(h'), nn')$$

Ce groupe est le **produit semi direct** de H par N relativement à φ . On le note $H \rtimes_{\varphi} N$, ou $H \rtimes N$.

1.5.2 Proposition

On suppose que N agit dans H par automorphisme, et on pose $G = H \rtimes N$.

i) On a une suite exacte courte de la forme : $% \left\{ 1,2,...$

$$(*): 1 \to H \stackrel{i}{\to} G \stackrel{\Pi}{\to} N \to 1$$

avec i(h)=(1,h) et $\Pi(h,n)=n$. i est un isomorphisme de H vers le sous groupe distingué $\underline{H}=i(H)$

- ii) La suite exacte (*) est **scindée** : il existe un morphisme de groupes S : $N \to G$ tel que $\Pi \circ S = Id_N$. On dit que S est une section de Π . Le morphisme S est injectif et définit un isomorphisme de S vers le sous groupe S = S (S) de S.
- iii) On a : $\underline{H} \triangleleft G$, $\underline{H} \cap N = \{1_G\} = \{(1,1)\}$, $\underline{H} \cdot \underline{N} = \{\underline{h} \cdot \underline{n} \mid \underline{h} \in \underline{H} \text{ et } \underline{n} \in \underline{N}\} = G$. On a de plus $N \triangleleft G$

Si on identifie H à \underline{H} , et N à \underline{N} , l'opération $\underline{N} \to \underline{H}$ est donnée par

$$\underline{n}.\underline{h} = \underline{n}.\underline{h}.\underline{n}^{-1}$$

1.5.3 Proposition

- i) Caractérisation interne : Soit G un groupe contenant deux sous groupes H,N, avec $H \triangleleft G$, $H \cap N = \{1\}$, et H.N = G. Alors, g est un produit semi direct de ces deux sous groupes. $G = H \rtimes N$, où l'opération de N dans H est $n.h = nhn^{-1}$. de plus, si $N \rtimes G$, le produit est direct.
- ii) Caractérisation externe : Soit $1 \to H \xrightarrow{i} G \xrightarrow{\Pi} N \to 1$ une suite exacte scindée admettant une section $S: N \to G, \Pi \circ S = Id_N.$ Alors N est isomorphe au sous groupe S(N) de G et $G = i(H) \rtimes S(N) \simeq H \rtimes N$ pour l'opération

"
$$n.h = nhn^{-1}$$
" $\Leftrightarrow S(n).i(H) = S(n).i(h).S(n)^{-1}$

1.6 Structure de groupe de $(\frac{\mathbb{Z}}{n\mathbb{Z}})^*$

Lemme :Soit $n \in \mathbb{N}$ et $s \in \mathbb{Z}$, les propriétés suivantes sont équivalentes :

- i) $s \wedge n = 1$
- ii) \bar{s} engendre $(\frac{\mathbb{Z}}{n\mathbb{Z}},+)$
- iii) $\overline{s} \in (\frac{\mathbb{Z}}{n\mathbb{Z}})^*$

1.6.1 Définition (Fonction caractéristique d'Euler)

La fonction caractéristique d'Euler est définie par :

$$\varphi(n) = card((\frac{\mathbb{Z}}{n\mathbb{Z}})^*) = card\{s \in \{1..n\} \mid s \land n = 1\}$$

1.6.2 Proposition

- i) Pour p premier et $n \in \mathbb{N}^*$, $\varphi(p^n) = p^{n-1}(p-1)$
- ii) $Aut(\frac{\mathbb{Z}}{n\mathbb{Z}},+)\simeq(\frac{\mathbb{Z}}{n\mathbb{Z}})^*$
- iii) On a un isomorphisme de groupes $\frac{\mathbb{Z}}{n\mathbb{Z}} \to \prod \frac{\mathbb{Z}}{p_i^{\alpha_i}\mathbb{Z}}$, où $n = \prod_{i=1}^r p_i^{\alpha_i}$ est la décomposition de n en facteurs premiers. On en déduit un isomorphisme de groupes (pour la multiplication)

$$(\frac{\mathbb{Z}}{n\mathbb{Z}})^* \simeq \prod (\frac{\mathbb{Z}}{p_i^{\alpha_i}\mathbb{Z}})^*$$

Finalement,

$$\varphi(n) = \prod_{i=1}^{r} p_i^{\alpha_i - 1} (p_i - 1) = n \prod_{i=1}^{r} (1 - \frac{1}{p_i})$$

Si $n \wedge m = 1$, alors $\varphi(nm) = \varphi(n).\varphi(m)$

1.6.3 Théorème

Soit p un nombre premier. Alors, le groupe $(\frac{\mathbb{Z}}{p\mathbb{Z}})^*$ est cyclique, donc isomorphe à $\frac{\mathbb{Z}}{p-1\mathbb{Z}}$, ie $\exists a \in (\frac{\mathbb{Z}}{n\mathbb{Z}})^*$ tel que $(\frac{\mathbb{Z}}{n\mathbb{Z}})^* = \{1, a, a^2...a^{p-1}\}$

1.6.4 Théorème (bis)

Soit $\mathbb K$ un corps commutatif, soit $g\subset \mathbb K$ un sous groupe fini sur $\mathbb K^*,$ alors G est cyclique.

1.6.5 Lemme 1

Un polynôme P(X) à coefficients dans un corps commutatif $\mathbb K$ de degré d a au plus d racines dans $\mathbb K$

1.6.6 Lemme 2

$$\forall n \in \mathbb{N}$$
, on a $n = \sum_{d|n} \varphi(d)$

1.6.7 Généralisation

- i) Soit p>2 un nombre premier et $\alpha\in\mathbb{N}^*$. Alors, $\frac{\mathbb{Z}}{p^{\alpha}\mathbb{Z}}$ est cyclique d'ordre $p^{\alpha-1}(p-1)$
- ii) $(\frac{\mathbb{Z}}{4\mathbb{Z}})^* \simeq \frac{\mathbb{Z}}{2\mathbb{Z}}$ et, pour $\alpha \geq 3$, $(\frac{\mathbb{Z}}{2^{\alpha}\mathbb{Z}})^* \simeq \frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2^{\alpha-2}\mathbb{Z}}$ n'est pas cyclique. Lemme:
- i) $\overline{1} + \overline{p}$ est d'ordre $p^{\alpha-1}$ dans $(\frac{\mathbb{Z}}{p^{\alpha}\mathbb{Z}})^*$
- ii) $\forall k \in \mathbb{N}^*, (1+p)^{p^k} = 1 + \lambda_k \cdot p^{k+1}, \text{ avec } \lambda_k \wedge p = 1$

1.7 Les groupes S_n et A_n

1.7.1 Proposition (rappels)

- i) Deux cycles à support disjoints commutent
- ii) toute permutation σ de S_n a une écriture unique (à l'ordre près) comme produit de cycles à supports disjoints. Cette décomposition correspond aux orbites de l'action de $\sigma > \text{sur } \{1..n\}$
- iii) On définit le support d'une permutation σ par $supp(\sigma)=\{a\in\{1..n\}\mid \sigma(a)\neq a\}$
- iv) Soit $(a_1..a_k)$ un cycle, il est décomposable en produit de transposition (non unique). En particulier, $(a_1..a_k) = (a_1a_2)(a_2a_3)..(a_{k-1}a_k)$. On en déduit notamment que S_n est généré par les transpositons.
- v) Soit $\sigma \in S_n$, avec $\sigma = \tau_1..\tau_r = \tau_1'..\tau_s'$, où les τ_i et les τ_i' sont des transpositions. Alors $s \equiv r[2]$

vi) L'application

$$\varepsilon : S_n \to \{-1,1\} \simeq \frac{\mathbb{Z}}{2\mathbb{Z}}$$
 $\sigma \mapsto (-1)^r$

est bien définie et est un morphisme de groupe.

1.7.2 Définition (Groupe alterné)

On note $A_n = Ker(\varepsilon)$ le groupe alterné, ou groupe des permutations paires.

1.7.3 Remarques importantes

 S_n agit sur S_n par conjuguaison : soit $(a_1..a_k)$ un k cycle, $\sigma \in S_n$, on a $\sigma(a_1..a_k)\sigma^{-1} = (\sigma(a_1), \sigma(a_2)..\sigma(a_k))$. Cette opération est transitive, et pour tout k-cycle $(b_1..b_k)$, il existe un autre k-cycle $(a_1..a_k)$ et une permutation σ tels que $\sigma.(a_1..a_k) = \sigma(a_1..a_k)\sigma^{-1} = (b_1..b_k)$

1.7.4 Définition (Type d'une permutation)

On définit le type de $\sigma \in S_n$ par $type(\sigma) = (e_n(\sigma), ...e_2(\sigma))$, où $e_i(\sigma)$ est le nombre de i-cycles apparaissant dans la décomposition de σ . Alors, σ opère transitivement sur l'ensemble des permutations d'un type donné.

1.7.5 Théorème

 $\forall n \in \mathbb{N}, n \neq 4$, le groupe A_n est simple. Pour n=4, le sous groupe engendré par les doubles transpositions, V_4 , est d'ordre 4 et est distingué dans A_4 , de même que dans $S_4.V_4$ est une union de classes de conjuguaison sous S_4 .

1.7.6 Corollaire 1

Soit $n \geq 5$. et H un sous groupe distingué de S_n . Alors, $H = \{1\}$, ou $H = A_n$, ou $H = S_n$.

1.7.7 Corollaire 2

Soit $n \geq 5$, $D(S_n) = A_n$, et $D(A_n) = A_n$.

1.7.8 Lemme 1

Pour $n \geq 3$, les 3-cycles engendrent A_n .

1.7.9 Lemme 2

Pour $n \geq 5$, les 3-cycles sont conjugués dans A_n .

1.7.10 Corollaire 3

Pour $n \geq 5$, un sous groupe $H \triangleleft A_n$ qui contient un trois cycle est égal à A_n .

Lemme :On suppose $n \geq 5$ et $H \triangleleft A_n$, $H \neq \{1\}$. il existe alors un élément ρ dans H, $\rho \neq 1$, tel que $|supp(p)| \leq 5$.

1.8 Groupes résolubles, groupes nilpotents

1.8.1 Définition (Groupe résoluble)

Soit g
 un groupe. On dit que G est **résoluble** s'il existe une suite finie de sous groupes de G

$$\{1\} = G_0 \subsetneq G_1 \dots \subsetneq G_n = G$$

tels que, $\forall i \in \{1..n-1\}$, $G_i \triangleleft G_{i+1}$, et G_{i+1}/G_i est abélien.

1.8.2 Proposition

Soit g un groupe, on pose $D^0(G)=G$, et $\forall n\in\mathbb{N}, D^{n+1}(G)=D(D^n(G))$. Alors

$$G$$
 résoluble $\Leftrightarrow \exists n \in \mathbb{N}^*, D^n(G) = \{1\}$

1.8.3 Corollaire

Un sous groupe et un quotient d'un groupe résoluble sont résolubles. Une extension d'un groupe résoluble par un groupe résoluble est résoluble. Pour (1,H,G,N,1) une suite exacte courte, G est résoluble si H et N le sont.

1.8.4 Définition (Groupe nilpotent)

Un groupe G est nilpotent s'il existe une suite finie de sous groupes de G

$$\{1\} = G_0 \subsetneq G_1 \dots \subsetneq G_n = G$$

tels que, $\forall i \in \{1..n-1\}$, $G_i \triangleleft G$, et G_i/G_{i-1} contenu dans le centre de G/G_{i-1} .

2 Représentation linéaire des groupes finis

2.1 Représentation linéaire, définition et premières propriétés

2.1.1 Définition (représentation inéaire)

Soit g un groupe fini. une **repésentation linéaire** de G dans un \mathbb{C} evddf V est un morphisme de groupe $G \stackrel{\rho}{\to} \mathcal{GL}(V)$. On note (V, ρ) , ou V si ρ est clair, une telle représentation.

On suppose que G agit sur un en ensemble fini Y. soit un \mathbb{C} -evddf V, de base $(e_x)_{x\in X}$ indexée par X. Pour tout $g\in G$, on définit $\rho(g)$ par $\rho(g).e_x=e_{g.x}$. Alors, (V,ρ) est une rep. linéaire de G, appellée représentation linéaire de permutation associée à l'action de G sur X. Lorsque X=G, elle est dite régulière, et ρ est notée ρ^{reg} .

2.1.2 Définition (Morphisme de représentation)

Soient (V_1, ρ_1) , et (V_2, ρ_2) deux représentations linéaires de G. Un morphisme de représentations est une application linéaire $\varphi: V_1 \to V_2$ telle

que $\forall g \in G$, le diagramme suivant commute :

$$\begin{array}{cccc} V_1 & \stackrel{\varphi}{\rightarrow} & V_2 \\ \rho_1(g) & \downarrow & & \downarrow & \rho_2(g) \\ V_1 & \stackrel{\varphi}{\rightarrow} & V_2 \end{array}$$

ie $\varphi \circ \rho_1(g) = \rho_2(g) \circ \varphi$.

2.1.3 Définition (Sous représentation)

Soit (V, ρ) une représentation. Une sous représentation de G est un ssev W de V qui est stable par $\rho(g)$, et ce $\forall g \in G$. Alors, $(W, \rho'g \mapsto \rho(g)_{/W})$ est une représentation de G.

Lemme :Soit $W \subset V$ une sous representation de G, il existe une sous representation W' de (V, ρ) telle que

$$V = W \oplus W'$$

Remarque : Soit (V, ρ) une representation de G, il existe un produit scalaire hermitien que V qui est G invariant, ie

$$(x \mid y) = (\rho(g)(x) \mid \rho(g)(y)) \quad \forall x, y \in V$$

2.1.4 Définition (Représentation irréductible)

Soit $\rho: G \to GL(V)$ une représentation linéaire de G. On dit que ρ est **irréductible (ou simple)** si les seules sous représentations de G sont $\{0\}$ et V.

2.1.5 Proposition

Toute représentation linéaire de G est somme directe de représentations irréductibles.

2.1.6 Lemme (de Schur)

Soit $\varphi:(V,\rho_1)\to (W,\rho_2)$ un morphisme de représentations. On suppose V et W irréductibles.

- i) Soit φ est un isomorphisme, soit $\varphi = 0$
- ii) Si V = W et $\rho_1 = \rho_2$, alors $\varphi = \lambda Id$ avec $\lambda \in \mathbb{C}$

2.1.7 Proposition

Pour toute représentation (V, ρ) de G, il existe une unique décomposition (à l'ordre des facteurs près)

$$V = V_1^{\oplus a_1} \oplus V_2^{\oplus a_2} \dots \oplus V_k^{\oplus a_k}$$

où les V_i sont des sous représentations irréductibles, deux à deux non isomorphes. La notation $W^{\oplus a}$ désigne un espace vectoriel somme directe de a espaces vectoriels isomorphes à W. Si W est muni de $\rho: G \to GL(V)$, alors $W^{\oplus a}$ est muni de la représentation $\rho^{\oplus a}$ définie par $\rho^{\oplus a}(g)(e_1 + \ldots + e_a) = \rho(g)(e_1) + \ldots \rho(g)(e_a)$ Les composantes $V_k^{\oplus a_k}$ sont appellées **composantes isotypiques** de (V, ρ) . On dit qu'une représentation est **isotypique** si elle ne comprend qu'une seule composante isotypique.

2.2 La théorie des caractères

2.2.1 Définition (Fonction centrale, caractère)

Une fonction $f:G\to\mathbb{C}$ est dite **centrale** (ou fonction de classe) si elle vérifie :

$$\forall h, g \in G, \quad f(ghg^{-1}) = f(h) \Leftrightarrow \forall h, g \in G, \quad f(gh) = f(hg)$$

On note $\mathscr{C}(G)$ l'espace des fonctions centrales sur G. C'est un \mathbb{C} -espace vectorielde dimension h, où h est le nombre de classes de conjuguaison de G (i.e. le nombre d'orbites de G agissant dans G par conjuguaison).

Le caractère de (V, ρ) est la fonction centrale $\chi_{\rho}G \to \mathbb{R}$ définie par $\chi_{\rho}(g) = Tr(\rho(g))$

2.2.2 Théorème

Soient (V, ρ) et (V', ρ') deux représentations irréductibles de G. Alors, $(\chi_{\rho} \mid \chi_{\rho'}) = \begin{cases} 1 & \text{si } V \simeq V' \\ 0 & \text{si } V \ncong V' \end{cases}$

2.2.3 lemme

On note $\varphi = \frac{1}{|G|} \sum_{g \in G} \rho(g) \in End(V)$, et $V^G = \{v \in V, f(g).v = v, \forall g \in G\}$. On a alors φ qui est un projecteur de V sur V^G

2.2.4 Définition ($\tilde{\rho}$, représentation duale)

Soient (V_1, ρ_1) et (V_2, ρ_2) deux représentations de G. On définit la représentation $\widetilde{\rho}$ sur $Hom(V_1, V_2)$, ensemble des morphisues de V_1 dans V_2 , par

$$\widetilde{\rho}(\varphi)(v) = \rho_2(g)(\varphi(\rho_1(g)^{-1}(v)))$$

La représentation duale (ou contragédiente) est $\rho^* = Hom(V_1, \mathbf{1}_G)$. Par conséquent, on a :

$$\rho^*(\varphi)(v) = \varphi(\rho(g)^{-1}(v)) \quad \forall \varphi \in Hom(V, \mathbb{C}) = V^{\times}$$

Lemme : Soient (V_1, ρ_1) et (V_2, ρ_2) deux représentations de G.Le caractère χ de la représentation $Hom(V_1, \mathbf{1}_G)$ est $\overline{\chi}_{\rho_1}.\chi_{\rho_2}$. En particulier, le caractère χ_{ρ^*} de la représentation (V^*, ρ^*) contragédiente de (V, ρ) est $\chi_{\rho^*} = \overline{\chi}_{\rho}$ On note $Hom_G(V_1, V_2)$ l'ensemble des morphismes de représentation de (V_1, ρ_1) dans (V_2, ρ_2)

2.2.5 Corollaire 1

Les caractères des représentations irréductibles de G forment un système orthonormal dans l'espace des fonctions centrales sur G. En particulier, le nombre de représentations irréductibles à isomorphisme près est fini est inférieur à $dim(\mathscr{C}(G))$ =nombre de classes de conjuguaison de G

2.2.6 Corollaire 2

Une représentation de G est déterminée par son caractère (Le caractère χ_{ρ} de ρ caractérise ρ)

2.2.7 Proposition

Soit R la représentation régulière de G. $(V_R = \bigoplus_{g \in G} \mathbb{C} e_g)$, et $\rho(g)(e'_g) = e_{gg'}$. On a

$$\begin{cases} \chi_R(g) = 0 \text{ si } g \neq 1_G \\ \chi_R(g) = |G| \text{ si } g = 1_G \end{cases}$$

De plus, toute représentation irréductible V_i de G intervient dans la représentation régulière avec la multiplicité $a_i = dim(V_i)$. On a donc

$$V_R = V = V_1^{\oplus dim(V_1)} \oplus V_2^{\oplus dim(V_2)} \dots \oplus V_k^{\oplus dim(V_k)}$$

2.2.8 Corollaire

$$|G| = Dim(V_R) = \sum_{i=1}^{k} (Dim(V_i)^2)$$

2.2.9 Théorème 2

Le nombre de représentations irréductibles de G est égal au nombre de classes de conjuguaison de G. Les caractères des représentations irréductibles forment une base orthonormale de $\mathscr{C}(G)$.

Lemme: Soit (V, ρ) une représentation de G. Soit $\alpha: G \to \mathbb{C}$ une fonction sur G. On pose $\varphi_{\alpha/v} = \sum_{g \in G} \alpha(g) \varphi(g) \in End(V)$. Si α est une fonction centrale, on a alors $\varphi_{\alpha/v}$ qui est un morphisme de représentations.

2.2.10 Proposition

les propriétés suivantes sont équivalentes :

- i) G est abélien
- ii) Toutes les représentations irréductibles de G sont de dimension 1

2.2.11 Définition (\widehat{G})

On définit G dual, $\widehat{G}=\mathrm{Hom}(G,\mathbb{C}^*)$, ensemble des caractères/représentations irréductibles, de $G\to\mathbb{C}^*$. On a un isomorphisme

canonique

2.2.12 Proposition

Soit G un groupe, D(G) son groupe dérivé, et $\Pi: G \to G^{ab}$. Pour χ un caractère de G^{ab} , on obtient un caractère $\chi \circ \Pi$ de G.Par ailleurs, on obtient ainsi toutes les représentations de G.

2.2.13 Définition (représentation standard)

Pour $n \in \mathbb{N}$, la représentation de permutation de S_n correspond à l'action de S_n sur $\{1,...,n\}$, l'espace V_n de cette représentation est $V_n = \bigoplus_{i=1}^n \mathbb{C} e_i$, avec $\forall \sigma \in S_n$, $\rho_n(\sigma)(e_i) = e_{\sigma(i)}$. L'espace $\mathbb{C}(e_1 + ... + e_n)$ est isomorphe à la représentation triviale. Soit H l'hyperplan d'équation $\sum_{i=1}^n x_i = 0$. Alors H est stable par $\rho(g), \forall g \in G$. On dit que $(H, \rho_{n/H})$, est la représentation standard de S_n , notée ρ^{stand} , de caractère $\chi_{stand} = \chi_{\rho_n} - 1$.

2.2.14 Proposition (Orthogonalité des colonnes)

Soit $s \in G$, et c(s) le cardinal de la classe de conjuguaison de s. Soient $\chi_1..\chi_r$ les caractères des représentation irréductibles de G.

a)
$$\sum_{i=1}^{h} \chi_i(s) \overline{\chi_i(s)} = \frac{|G|}{c(s)}$$

b) Si
$$t \in G$$
 n'est pas conjugué à s, on a $\sum_{i=1}^h \chi_i(s) \overline{\chi_i(t)} = 0$

3 Produit tensoriel d'espaces vectoriels et de représentations

Définition (Produit tensoriel)

Soient V_1 et V_2 deux \mathbb{C} -espace vectoriel de dimension finie. On appelle produit tensoriel de V_1 et V_2 un \mathbb{C} -espace vectorielW, muni d'une application bininéaire $b: V_1 \times V_2 \to W$, telle que, si $(e_1..e_n)$ est une base de V_1 , $(f_1..f_n)$ est une base de V_2 , alors les $(b(e_i,f_j))_{i,j}$ sont une base de W. En particulier, $dim(W) = dim(V_1)dim(V_2)$

Proposition

Un tel espace existe et est unique dans le sens suivant : soient $(W_1,b_1(.,.))$, $(W_2,b_2(.,.))$ deux produits tensoriels de V_1 et V_2 , alors il existe un unique isomorphisme linéaire $U:W_1\to W_2$ tel que $b_2(x,y)=U\circ b_1(x,y)$. On note $W=V_1\otimes V_2$ et $b:V_1\times V_2\to W$ l'application bilinéaire $b(x,y)=x\otimes y$

On a la propriété universelle suivante : soit E un espace vectoriel, et $b_E: V_1 \times V_2 \to E$ une application bilinéaire, alors, il existe un unique morphisme (linéaire) $U: V_1 \otimes V_2 \to E$ tel que $b_E(x,y) = U(x \otimes y)$

Lemmme

Soient $u_1 \in \operatorname{End}(V_1)$, et $u_2 \in \operatorname{End}(V_2)$. il existe un unique endomorphisme $u \in \operatorname{End}(V_1 \otimes V_2)$ tel que $\forall (x_1, x_2) \in V_1 \times V_2$, $u(x_1 \otimes x_2) = u_1(x_1) \otimes u_2(x_2)$. On note alors $u = u_1 \otimes u_2$.

Définition (Produit tensoriel de représentations)

Soient (V_1, ρ_1) , (V_2, ρ_2) , deux représentations de G. On définit une représentation $\rho = \rho_1 \otimes \rho_2$ sur $V_1 \otimes V_2$ par $\rho(g) = \rho_1(g) \otimes \rho_2(g)$. Cette représentation n'est pas nécessairement irréductible, même si V_1 et V_2 le sont. Enfin, on a la formule $\chi_{\rho_1 \otimes \rho_2} = \chi_{\rho_1} \chi_{\rho_2}$

Lemme

Soient V_1 et V_2 deux espace vectorielsur \mathbb{C} , $V_1^* = \operatorname{Hom}(V, \mathbb{C})$ le dual. Il existe un isomorphisme canonique :

$$\psi : V_1^* \otimes V_2 \to \operatorname{Hom}(V_1, V_2)$$

$$e^* \otimes f \mapsto \psi(e^* \otimes f) = \varphi_{e^*, f} : V_1 \to V_2$$

$$x \mapsto \varphi_{e^*, f}(x) = e^*(x)f$$

Proposition

Soient (V_1, ρ_1) , (V_2, ρ_2) deux représentations de G. Soit (V_1^*, ρ_1^*) la représentation contragédiente de (V_1, ρ_1) . Alors, $\psi: V_1^* \otimes V_2 \to \operatorname{Hom}(V_1, V_2)$ est un isomorphisme de représentations.

Proposition (Produit tensoriel externe)

Soient G_1 , G_2 deux groupes et soient (V_1, ρ_1) , (V_2, ρ_2) deux représentations de G_1 et G_2 . On définit le produit tensoriel externe $(V_1 \boxtimes V_2, \rho)$, comme la représentation de $G_1 \times G_2$ sur $V_1 \otimes V_2$ telle que :

$$\rho(g_1, g_2)(v_1 \otimes v_2) = \rho_1(g_1)(v_1) \otimes \rho_2(g_2)(v_2)$$

De plus, si V_1 , V_2 sont irréductibles, alors $V_1 \otimes V_2$ est une représentation irréductible de $G_1 \times G_2$. par ailleurs, on obtient ainsi toutes les représentations irréductibles de $G_1 \times G_2$.

3.0.15 Définition (Produits symétriques et alternés)

Soit V un \mathbb{C} -espace vectoriel, posons $W=V\otimes V$. on dispose d'un automorphisme $\begin{array}{ccc} \theta & : & W & \to & W \\ & x\otimes y & \mapsto & y\otimes x \end{array}$ On a alors $\theta^2=1$, et une décomposition $V\otimes V\simeq \operatorname{Sym}^2(V)\oplus\operatorname{Alt}^2(V)$, encore notée $V\otimes V\simeq \operatorname{S}^2(V)\oplus\Lambda^2(V)$, où l'on a défini

$$\operatorname{Sym}^{2}(V) = \{ z \in V \otimes V, \theta(z) = z \}, \text{ et } \operatorname{Alt}^{2}(V) = \{ z \in V \otimes V, \theta(z) = -z \}$$

3.0.16 Proposition

On note $\chi_{Sym^2}(V)$, ou $\chi_{Sym^2}(\rho)$ le caractère de $(Sym^2(V), Sym^2(\rho))$, alors

$$\chi_{Sym^2}(V)(g) = \frac{\chi_{\rho}(g)^2 + \chi_{\rho}(g^2)}{2}, \text{ et } \chi_{Alt^2}(V)(g) = \frac{\chi_{\rho}(g)^2 - \chi_{\rho}(g^2)}{2}$$

3.0.17 lemme

Soient E_1 , E_2 , E_3 trois \mathbb{C} -espace vectoriel de dimension finie, il existe un unique isomorphisme $\begin{array}{ccc} E_1 \otimes (E_2 \otimes E_3) & \to & (E_1 \otimes E_2) \otimes E_3 \\ x \otimes (y \otimes z) & \mapsto & (x \otimes y) \otimes z \end{array}$

3.0.18 Proposition (Traduction de la propriété universelle pour un r-produit tensoriel:)

Pour toute application r-linéaire $\psi: E^r \to F$, il existe une unique application $U: \underset{i=1}{\overset{r}{\otimes}} E = T^r(E) \to F$ tel que $\psi(x_1..x_r) = U(x_1 \otimes ... \otimes x_r)$

3.0.19 Définition (Application symétrique, alternée)

On dit qu'une application r-linéaire ψ est **symétrique** (resp. **alternée**) si $\forall \sigma \in S_n, \forall (x_1..x_r) \in E^r$

$$\psi(x_{\sigma(1)}..x_{\sigma(r)}) = \psi(x_1..x_r)$$
(resp. $\psi(x_{\sigma(1)}..x_{\sigma(r)}) = \varepsilon(\sigma)\psi(x_1..x_r)$)

On définit également

$$W_r = \langle (x_{\sigma(1)} \otimes ... \otimes x_{\sigma(r)}) - (x_1 \otimes ... \otimes x_r) \rangle_{\sigma \in S_r, x_1..x_r \in E}$$

3.0.20 Proposition

On a la propriété universelle suivante : Soit $\psi: E^r \to F$ une application r-linéaire symétrique, alors, il existe une unique application linéaire

 $\overline{U}: S^r(E) \to F$ (ou $S^r(E) = T^r(E)/W_r(E)$) telle que l'on aie une factorisation :

$$\begin{array}{cccc} E^r & \xrightarrow{\psi} & F \\ & \searrow & \uparrow U & \nwarrow \overline{U} \\ & & T^r(E) & \to & S^r(E) \end{array}$$

3.0.21 Proposition

Si E est un \mathbb{C} -espace vectoriel normé de dimension finien de base $(e_1..e_n)$, alors $\Lambda^r(E) = 0$ si r > n, et, pour $r \leq n$, $\Lambda^r(E)$ a pour base les $e_{i_1} \wedge e_{i_2} ... \wedge e_{i_r}$, avec $i_1 < i_2 < ... < i_r$. En particulier, $\Lambda^n(E) = \mathbb{C}(e_1 \wedge ... \wedge e_n)$, et $dim(\Lambda^r(E)) = \binom{n}{k}$

4 Anneaux, Modèles

On considère ici des anneaux unitaires commutatifs.

4.1 Definitions, premières propriétés

4.1.1 Définition (Idéal)

Soit A un anneau. Une partie I de A est un **idéal** si :

- i) (I, +) est un sous groupe de A
- ii) Si $x \in I$, $a \in A$, alors $a.x \in I$

4.1.2 Proposition

Soit A un anneau , I un idéal de A. Alors, le quotient (A/I,+) muni de la multiplication $\overline{a}\overline{b}=\overline{a}\overline{b}$ est un anneau, appellé **quotient de A par** I dont l'élément unité est $1+I=\overline{1},$ et $\begin{array}{ccc} \Pi & : & A & \to & A/I \\ & a & \mapsto & \overline{a=a+I} \end{array}$ est un morphisme d'anneaux

4.1.3 Théorème (De factorisation)

Soit $f:A\to B$ un morphisme d'anneaux, il existe un unique morphisme d'anneaux $\widetilde{f}:A/Ker(f)\to B$ tel que $f=\widetilde{f}\circ\Pi$. De plus, \widetilde{f} est injective, et induit un isomorphisme d'anneaux de A/Ker(f) dans Im(f)

4.1.4 Définition (Anneau intègre)

Un anneau A est dit intègre si $A \neq \{0\}$, et si $\forall a,b \in A,\,ab=0 \Rightarrow a=0$ ou b=0.

4.1.5 Théorème (Corps des fractions d'un anneau intègre)

Soit A un anneau intègre, il existe un corps \mathbb{K} et un homéomorphisme injectif $i: A \to \mathbb{K}$ universel tel que, $\forall \mathbb{K}', \forall j: A \to \mathbb{K}'$ morphisme injectif, il existe un unique morphisme de corps $f: \mathbb{K} \to \mathbb{K}'$ tel que $j = f \circ i$. Le couple (\mathbb{K}, i) est unique à isomorphisme unique près. On dit que \mathbb{K} est le **corps des fractions** de A, noté Frac(A)

4.1.6 Définition (Idéal premier)

Un idéal I de A est dit **premier** si le quotient A/I est intègre, c'est à dire si il est différent de A, et si

$$\forall a, b \in A \quad ab \in I \Rightarrow a \in I \text{ ou } b \in I$$

4.1.7 Définition (Idéal maximal)

Un idéal I de A est dit maximal s'il est différent de A, et si le seul idéal qui le contient strictement est A lui même.

4.1.8 Proposition

I est maximal dans A \Leftrightarrow A/I est un corps. En particulier, tout idéal maximal est premier.

4.1.9 Définition (Topologie de Zariski)

Soit A un anneau, on pose $\operatorname{spec}(A)$ l'ensemble des idéaux premiers de A. On définit une topologie $\operatorname{sur}\operatorname{spec}(A)$ définie par ses fermés : ce sont les

$$V_I = \{ P \in spec(A), I \subset P \}$$

Les ouverts sont donc les

$$D_I = \{ P \in spec(A), I \nsubseteq P \}$$

4.1.10 Proposition

Les D(aA), $a \in A$ forment une base d'ouverts de spec(A)

4.1.11 Proposition

 $\operatorname{spec}(A)$, muni de la topologie de Zariski, est quasicompact (ie. non séparé)

4.1.12 Définition (Radical)

On appelle radical de A l'idéal premier $R(A) = \bigcap_{P \in spec(A)} P$. Dans un anneau intègre, $R(A) = \{0\}$.

4.2 Divisibilité dans les anneaux intègres

4.2.1 Définition (Divisibilité)

Soient $a, b \in A$, on dit que a divise b s'il existe $c \in A$ tel que b = ac. Une définition équivalente est que $(b) \subset (a)$. En particulier, si $u \in A^*$, on a (u) = A, car $u \mid a \quad \forall a \in A$

4.2.2 Proposition

Soient $a, b \in A$

- i) $a \mid b \text{ et } b \mid a$
- ii) (a) = (b)
- iii) $\exists u \in A^* \quad a = ub$

On dit alos que a et b sont associés.

4.2.3 Définition (Element irréductible)

Un élément $p \in A$ est dit **irréductible** s'il n'est pas dans A^* , et si ses seuls diviseurs lui sont associés.

4.2.4 Définition (Anneau principal, idéal principal)

Un idéal de A est dit **principal** s'il est de la forme aA = (a) $a \in A$. Un anneau est dit principal s'il est intègre et si tous ses idéaux sont principaux.

4.2.5 Définition (Eléments premiers entre eux)

On dit que a et b sont premiers entre eux si leurs seuls diviseurs communs sont les éléments de A^*

4.2.6 Théorème (Bézout)

Soit A un anneau principal, deux éléments a et b de A sont premiers entre eux si et seulement si il existe $u,v\in A$ tels que au+bv=1, ie si aA+bA=(a,b)=A

4.2.7 Définition (Anneau factoriel)

Un anneau est dit **factoriel** s'il vérifie les trois propriétés suivantes :

- i) A est intègre
- ii) Tout élément non nul $a \in A$ s'écrit sous la forme $a = up_i..p_r, u \in A^*, r \in \mathbb{N}$ et les p_i irreductibles.
- iii) Point clé : Unicité si $a=up_1..p_r=vq_1..q_s$, alors r=s, et il existe $\sigma\in S_n$, telle que $\forall ip_i$ et $q_{\sigma(i)}$ soient associés.

Lemme :Soit A un anneau factoriel, $a = u_a \Pi p^{v_p(a)}$, et $b = u_b \Pi p^{v_p(b)}$. Alors,

$$a \mid b \Leftrightarrow \forall p \in \mathcal{P}, v_p(a) \le v_p(b)$$

4.2.8 Proposition

Soit A un anneau intègre, tel que tout élément non nul soit produit d'irréductibles. Alors, les propriétés suivantes sont équivalentes : :

- i) A est factoriel
- ii) $\forall p \in A$, p irréductible, l'idéal (p) = pA est premier
- iii) (Lemme de Gauss pour les anneaux factoriels) Si $a\mid bc$ avec $a\wedge b=1,$ alors $a\mid c$

4.2.9 Définition (PGCD, PPCM)

Soit A un anneau factoriel, $a=u_a\Pi p^{u_p(a)},\ b=u_b\Pi p^{u_p(b)}$. On peut alors définir :

$$PGCD(a,b) = \underset{p \in \mathcal{P}}{\prod} p^{\min(v_p(a),v_p(b))} \text{ et } PPCM(a,b) = \underset{p \in \mathcal{P}}{\prod} p^{\min(v_p(a),v_p(b))}$$

4.3 Anneaux noetheriens

4.3.1 Proposition

Soit A un anneau intègre, les propriétés suivantes sont équivalentes : :

- i) Tout idéal de A est engendré par un nombre fini d'éléments
- ii) Tout suite croissante d'idéaux de A est stationnaire
- iii) Toute famille non vide d'idéaux de A a un élément maximal (pour l'inclusion)

Si ces conditions sont vérifiées, on dit que A est noetherien

 ${\bf Remarque}$: Les idéaux de A/I sont les J/I, avec J idéal de A et $I\subset I$

4.3.2 Proposition

Soit A un anneau intègre noetherien. Alors, tout élément non nul $x \in A - \{0\}$ s'écrit sous la forme $x = u.p_1...p_n$, avec $u \in A^*$, et les p_i irréductibles dans A, n un entier.

4.3.3 Corollaire

A principal \Rightarrow A factoriel

4.3.4 Corollaire

Soit \mathbb{K} un corps, soit $P(X) \in \mathbb{K}[X]$ irréductible, alors $L := \frac{\mathbb{K}[X]}{P(X)\mathbb{K}[X]}$ est un corps.

4.3.5 Théorème

Soit A un anneau noetherien, alors A[X] est noetherien

4.3.6 Corollaire

Si A est noetherien, alors $\forall n \in \mathbb{N}, A[X_1, X_2...X_n]$ est noetherien.

4.3.7 Définition (Type fini)

Soit A un anneau, une **A algèbre de type fini** si on a un morphisme d'anneaux $f: A \to B$, et $x_1...x_n \in B$ tel que le morphisme

$$\widetilde{f}: A[X_1..X_n] \rightarrow B$$
 $\Sigma a_i X_i \mapsto \Sigma a_i x_i$

soit surjectif.

4.4 Anneaux euclidiens, factoriels, principaux.

4.4.1 Définition (Anneau euclidien)

Un anneau intègre A est dit **euclidien** si $\exists v : A - \{0\} \to \mathbb{N}$ tel que $\forall a, b \in A - \{0\}, \exists (q, r) \in A^2 \quad a = bq + r = 0 \quad v(r) < v(b)$

4.4.2 Corollaire

Soit A noetherien, tout anneau B qui est une A algèbre de type fini est noetherien

4.4.3 Théorème

A euclidien \Rightarrow A principal

4.4.4 Définition (Contenu d'un polynome)

Soit A un anneau factoriel. Le contenu c(P) d'un polynome $P \in A[X]$ est le PGCD des coefficients de P. On dit que P est primitif si $c(P) \in A^*$. On remarque que $\forall P \in A[X], P = c(P)Q$, avec Q primitif.

4.4.5 Proposition

$$\forall P, Q \in A[X], c(PQ) = c(P)c(Q)$$

4.4.6 Théorème

Soit A un anneau factoriel, de corps des fractions $\mathbb{K} = Frac(A)$. Les irréductibles de A[X] sont :

- i) Les polynomes P=p de degré 0, avec $p\in A,$ et p irréductibles dans A.
- ii) Les polynomes primitifs de A[X] de degré strictement positif, irréductibles dans $\mathbb{K}[X]$

4.4.7 Théorème

Si A est factoriel, alors A[X] est factoriel.

4.4.8 Théorème (Critère d'Eisenstein)

Soit A un anneau factoriel, $P(X) \in A[X]$ un polynome non constant de A[X]. Soit P un irréductible de A, $P(X) = \sum_{k=0}^{n} a_k X^k$. On suppose :

- i) p ne divise pas a_n
- ii) $p \mid a_k, \forall k \in \{0, ..., n-1\}$
- iii) $p^2 \nmid a_0$

Alors P(X) est irréductible dans $\mathbb{K}[X]$, $\mathbb{K} = Frac(A)$

4.4.9 Définition (Polynomes cyclotomiques)

Soit p un nombre premier, on définit le p-ième polynome cyclotomique $\varphi_p(X) = \frac{X^p-1}{X-1} = \prod_{k=1}^{p-1} (X - e^{\frac{2i\pi k}{p}})$

4.4.10 Proposition

 $\varphi_p(X)$ est irréductible pour tout p premier.

4.4.11 Proposition

Soit A un anneau factoriel, \mathbb{K} le corps des fractions de A. Soit $P(X) \in A[X]$ primitif, p un irréductible de A, et

$$\begin{array}{ccc} A[X] & \to & \frac{A}{(p)}[X] \\ Q & \mapsto & \overline{Q} \end{array}$$

On suppose que:

$$\left\{ \begin{array}{l} \deg P = \deg \overline{P} \\ \overline{P} \text{ irréductible dans } Frac(B)[X], B = \frac{A}{(p)} \end{array} \right.$$

Alors P est irréductible.

4.5 Modules sur les anneaux

4.5.1 Définition (A-module)

Soit A un anneau (commutatif non nul). Un **A-module** (M, +, .) est un ensemble M muni d'une loi interne +, et d'une loi externe

. :
$$A \to M \to M$$
 $(a,m) \mapsto a.m$ telle que, $\forall \alpha, \beta \in A^2 \ \forall \in m, m' \in M^2$:

- i) (M, +) est un groupe abélien
- ii) $\alpha(m+m') = \alpha m + \alpha m'$
- iii) $(\alpha + \beta)m = \alpha m + \beta m$
- iv) $(\alpha\beta)m = \alpha(\beta m)$
- v) 1.m = m

Si A est un corps, un A-module est juste un A-espace vectoriel. Un sous module $N\subset M$ est un sous groupe (N,+) de (M,+) stable par multiplication par les éléments $a\in A$

4.5.2 Définition (Module engendré)

Soit M un module de A, et S une partie de M. Soit $E = \{N \text{ sous module contenant } E\}$ On définit le sous module engendré par M, < S >, par :

$$\langle S \rangle = \bigcap_{N \in E} N = \{ \sum_{s \in S} \alpha_s.s, (\alpha_s)_{s \in S} \text{ une famille presque nulle d'éléments de S} \}$$

4.5.3 Définition (Morphisme de A-modules)

Un morphisme de A-modules est une application $f: M \to M'$ telle que :

- i) $\forall m_1, m_2 \in M, f(m_1 + m_2) = f(m_1) + f(m_2)$
- ii) $\forall a \in A, \forall m \in M, f(a.m) = a.f(m)$

Alors, $Ker(f) = f^{-1}(\{0\})$ et Im(f) = f(M) sont des sous modules de M et M' respectivement. On a également la notion d'isomorphisme entre A-modules.

4.5.4 Théorème/Definition (Passage au quotient)

Soit N un sous module d'un A-module M le groupe quotient $\frac{M}{N}$, muni de la loi externe $\alpha.\overline{m}=\overline{\alpha.m}$, est un module, appellé module quotient de M par N. Si $f:M\to M'$ est un morphisme de A modules, il existe un unique morphisme de A-modules $\widetilde{f}:\frac{M}{Ker\,f}\to M'$ tel que $f=\widetilde{f}\circ\Pi$, où Π est la surjection canonique, de plus, \widetilde{f} est injective, et on a un isomorphisme de A-modules $\widetilde{f}:\frac{M}{Ker\,f}\to Im(f)$

4.5.5 Définition (Sommes directes internes et externes)

Soit $(M_i)_{i \in I}$ une famille de A-modules.

- i) La somme directe externe $\underset{i \in I}{\oplus} M_i$ est le sous A-module de $\underset{i \in I}{\prod} M_i$ constitué des $(m_i)_{i \in I}$ presque nulles. Si I est fini, $\underset{i \in I}{\oplus} M_i = \underset{i \in I}{\prod} M_i$
- ii) Soit $(M_i)_{i\in I}$ une famille de sous modules d'un A-module M. La somme directe interne, notée $\sum_{i\in I} M_i$ est le sous module engendré par les M_i $\sum_{i\in I} M_i = \{\sum_{i\in I} m_i \, (m_i)_{i\in I} \text{ famille presque nulle } \}. \text{ Par ailleurs, si la condition } \sum_{i\in I} m_i = 0 \Leftrightarrow m_i = 0 \, \forall i\in I \text{ est vérifiée, on dit que la somme est directe. Dans ce cas, } \sum_{i\in I} M_i \simeq \bigoplus_{i\in I} M_i$

4.5.6 Définition (Module de type fini)

Un A-module M est dit de type fini si il existe une partie finie S de M qui engendre M. Si $S = \{s_1...s_r\} \subset M$, on a un morphisme surjectif de

A-modules
$$(a_1...a_r) \mapsto \sum_{i=1}^r a_i s_i$$

On dit que M est un A-module **libre** s'il admet une base $(x_i)_{i\in I}$, i.e si tout $x\in M$ s'écrit de manière unique $x=\sum\limits_{i\in I}a_ix_i$. Un A-module est sans torsion si il est "intègre"

Remarque: Un quotient de modules de type fini est de type fini.

4.5.7 Proposition

Un module libre M sur un anneau intègre A est sans torsion.

4.5.8 Théorème

Soit M un A module sur un anneau A. Si M est de type fini, et si M est libre, alors M admet une base finie $(m_1...m_r)$, ie $M = \bigoplus_{i=1}^r A.m_i$. De plus, toutes les bases de M sont de cardinal r.

4.5.9 Lemme

Soit A un anneau (non nul). On suppose qu'il existe une surjection de A modules $f: A^r \to A^s$, alors $r \ge s$

4.5.10 Théorème

Soit A un anneau noétherien, M un A-module de type fini. alors, tout sous module de M est de type fini.

Lemme: Soit $0 \to L_1 \to L \xrightarrow{\Pi} L_2 \to 0$ une suite exacte de A-modules. On suppose que L_1 et L_2 sont de type fini, alors L est de type fini.

4.6 Modules de type fini sur un anneau principal

4.6.1 Théorème

Soit A un anneau principal, alors tout sous module N de A^r est librede rang $m \leq n$

4.6.2 Théorème (Base adaptée)

Soit A un anneau principal, M un A-module de rang n. Soit $N \subset M$ un sous A-module. Alors, il existe $e_1...e_n \in M$, et $d_1...d_n \in A$, avec $m \leq n$, tels que $d_i \mid d_{i+1} \forall i \in \{1...m-1\}$, et $(d_1e_1,...,d_ne_n)$ soit une base de N.

Lemme 1: $\exists f_1 \in Hom(M,A)$ morphisme de A-modules $M \to A$ tel que :

- i) $f_1(N)$ est maximal parmi les f(N), $f \in Hom(M, A)$
- ii) En particulier, on a $f_1(N)=d_1A,\ \exists e_1\in M$ tel que $f_1(e_1)=1$ et tel que $u_1=d_1e_1\in N$

Lemme 2 : Avec les notations précédentes :

- i) $M = Ae_1 \oplus Ker f_1$, et $N = Au_1 \oplus (Ker f_1 \cap N)$
- ii) $\forall f \in Hom(M, A), f(N) \subset d_1A$

4.6.3 Corollaire

Soit M un module de type fini sur A principal, Alors, il existe $d_1...d_s \in A$, avec $d_i \neq 0$, $d_i \notin A^*$, $d_1 \mid d_2... \mid d_s$ tel que

$$M = A^m \oplus (\bigoplus_{i=1}^s \frac{A}{d_i A})$$

avec $m \in \mathbb{N}$. Si s = 0, on convient que $M \simeq A^m$

4.6.4 Définition (module p-primaire)

Un A module est dit p-primaire s'il est de la forme $\bigoplus_{i=1}^s \frac{A}{p^{u_i}A}, u_1..u_s \in \mathbb{N}$

4.6.5 Théorème

Soit M un A-module de type fini sur A anneau principal. Si $M \simeq A^m \oplus \bigoplus_{i=1}^s \frac{A}{d_i A} \simeq A^{m'} \oplus \bigoplus_{j=1}^{s'} \frac{A}{d'_j A}$, avec $m, m', s, s' \in \mathbb{N}$, $d_1 \mid d_2 ... \mid d_s d'_1 \mid d'_2 ... \mid d'_{s'}$, avec $d_1, d' 1 \notin A^*$, alors m = m', s = s', et $\forall i \in \{1..s\}$, et d_1 et d'_1 sont associés.

Lemme:

i) Soit $d=\bigcup_{p\in P}p^{v_p(d)}$ la décomposition de $d\in A$ en facteurs irréductibles, alors :

$$\frac{A}{dA} = \bigoplus_{p \in P} \frac{A}{p^{v_p(d)}A}$$

ii) Soit M un A-module de torsion, alors $M=\bigoplus\limits_{p\in P}M_p$, avec M_p primaires. De plus, $\forall k$ assez grand, $M_p\simeq \frac{M}{p^kM}$

Lemme :Soit
$$\alpha \in \mathbb{N}$$
, et $M_{\alpha} = \frac{A}{p^{\alpha}A}$. Alors, si l'on pose $\mathbb{K} = \frac{A}{pA}$
$$p^{n} \frac{M_{\alpha}}{p^{n+1}M_{\alpha}} = \begin{cases} 0 \text{ si } n \geq \alpha \\ \mathbb{K} \text{ si } n < \alpha \end{cases}$$

4.6.6 Corollaire

$$dim_{\mathbb{K}}\left(\frac{p^{n}M_{p}}{p^{n+1}M_{p}}\right) = |\{i \in \{1...S_{p}\}, n < v_{p}(d_{i})\}|$$

4.7 Interprétation externe d'algèbre linéaire

4.7.1 Définition (Ensemble des matrices)

Soit A un anneau, $M_{p,q}(A)$ l'ensemble des matrices é p lignes et q colonnes é coefficients dans A.

4.7.2 Définition (Matrices équivalentes)

Deux matrices B et C dans $M_{p,q}(A)$ sont équivalentes si il existe $M \in GL_p(A)$ et $V \in GL_q(A)$ telles que $C = UBV \Leftrightarrow$ il existe une base B de A^p et une base B de A^q telles que $Mat_{B,B'}(u) = C$, oé u est le morphisme de A^p dans A^q de matrice B dans les bases canoniques de A^p et A^q respectivement.

4.7.3 Théorème

Soit A un anneau principal

i) Toute matrice $B \in M_{p,q}(A)$ est équivalente é une matrice de la forme $\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$, avec $D = diag(d_1...d_r)$, $d_1 \mid d_2... \mid d_r$

ii) Deux matrices de la forme $\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$ et $\begin{pmatrix} D' & 0 \\ 0 & 0 \end{pmatrix}$, avec $D = diag(d_1...d_r)$, $d_1 \mid d_2... \mid d_r$, et , avec $D' = diag(d'_1...d'_{r'})$, $d'_1 \mid d'_2... \mid d'_{r'}$ sont équivalentes si et seulement si r = r' et $d_i \sim d'_i$ (associés) $\forall i$

4.8 Théorie élémentaire des corps

4.8.1 Définition (Diverses définitions)

les corps $(\mathbb{K},+,.)$ ici considérés sont commutatifs et ont au moins deux éléments $\{0,1\}$, avec $0 \neq 1$. On appelle cartactéristique de \mathbb{K} , notée $car(\mathbb{K})$, le générateur positif du noyau du morphisme d'anneau $\varphi: \mathbb{Z} \to \mathbb{K}$

- $n \mapsto n-1$
- Soit $car(\mathbb{K}) = 0$, φ est injective, \mathbb{K} contient \mathbb{Z} , donc $\mathbb{Q} = Frac(\mathbb{Z})$, car \mathbb{K} est un corps.
- Sinon, $\varphi(\mathbb{Z})$ est un sous anneau de intègre de \mathbb{K} , donc $car(\mathbb{K}).\mathbb{Z}$ est un idéal premier, et est donc monogéne (cf sous anneaux de \mathbb{Z}) de la forme $p.\mathbb{Z}$, avec p premier, donc $car(\mathbb{K}) = p$ est premier, $Im(\varphi)$ est isomorphe é $\frac{\mathbb{Z}}{p\mathbb{Z}}$, donc \mathbb{K} contient le corps fini é p éléments.

4.8.2 Définition (Extension)

Soit \mathbb{K} un corps, une extension de \mathbb{K} est un corps \mathbb{L} contenant \mathbb{K} . Dans cette situation, \mathbb{L} est un \mathbb{K} espace vectoriel, via $\begin{array}{c} \mathbb{K} \times \mathbb{L} \to \mathbb{L} \\ (k,l) \mapsto k.l \end{array}$. Un corps de caractéristique 0 est un \mathbb{Q} espace vectoriel, et un corps de caractéristique p est un $\frac{\mathbb{Z}}{p\mathbb{Z}}$ espace vectoriel.

Remarque : Tout morphisme de corps est injectif; en effet, soit $\varphi : \mathbb{K} \to \mathbb{L}$ un morphisme de corps, $Ker(\varphi)$ est un idéal, donc $Ker(\varphi) = \{0\}$ ou \mathbb{K} . mais $\varphi(1_{\mathbb{K}}) = 1_{\mathbb{L}}$, donc $Ker(\varphi) = \{0\}$. On peut donc identifier \mathbb{K} é un sous corps de \mathbb{L} .

4.8.3 Définition (Extension finie)

Quand une extension $_{|\mathbb{K}}$ est de dimension finie comme \mathbb{K} -espace vectoriel, on dit que $_{|\mathbb{K}}$ est finie de degré d. On note $[\mathbb{L}:\mathbb{K}]=dim_{\mathbb{K}-ev}(\mathbb{L})$

4.8.4 Théorème (Base téléscopique)

Soit \mathbb{L} une extension de \mathbb{K} , et M une extension de \mathbb{L} . Si $\mathbb{L}|\mathbb{K}$, et si $M|\mathbb{L}$ est fini, alors $M|\mathbb{K}$ est fini, et $[M:\mathbb{K}]=[M:\mathbb{L}][\mathbb{L}:\mathbb{K}]$

4.8.5 Définition (Nombre transcendant)

4.8.6 Proposition

Soit $_{|\mathbb{K}}$ une extension de corps, et $\alpha \in \mathbb{L}$. les propriétés suivantes sont équivalentes :

- i) α est algébrique sur \mathbb{K}
- ii) $\mathbb{K}(\alpha) = \mathbb{K}[\alpha]$
- iii) $\mathbb{K}[\alpha]$ est un \mathbb{K} -espace vectoriel de dimension finie

Dans ce cas, $[\mathbb{K}[\alpha]:\mathbb{K}]=deg(\Pi_{\alpha}(X)),$ et on dit que α est de degré $[\mathbb{K}[\alpha]:\mathbb{K}]$ sur \mathbb{K}

4.8.7 Définition ()

Une extension de corps \mathbb{K} est algébrique si tout $\alpha \in \mathbb{L}$ est algébrique sur \mathbb{K} . On dit qu'un corps \mathbb{K} est algébriquement clos si toute extension algébrique de \mathbb{K} est égale à \mathbb{K} , ce qui équivaut à ce que tout polynôme de $\mathbb{K}[X]$ soit scindé, ou encore que les irréductibles de $\mathbb{K}[X]$ soie nt de degré 1.

4.8.8 Théorème

Soit $_{|\mathbb{K}}$ une extension de corps. Soit M l'ensemble des éléments de \mathbb{L} qui sont algébriques sur \mathbb{K}

- i) M est un sous corps de L
- ii) Tout élément de $\mathbb L$ algébrique sur $\mathbb M$ est algébrique sur $\mathbb K$

iii) Si L est algébriquement clos, M est algébriquement clos.

4.9 Corps de rupture, corps de décomposition

4.9.1 Définition (corps de rupture)

Soit \mathbb{K} un corps, $P(X) \in \mathbb{K}[X]$ un polynome irréductible. On dit qu'une extension \mathbb{L} de \mathbb{K} est un corps de rupture de P(X) si $\exists \alpha \in \mathbb{L}$ tel que $P(\alpha) = 0$ et $\mathbb{L} = \mathbb{K}[\alpha]$

4.9.2 Définition (K-isomorphisme)

Soient \mathbb{L}_1 , \mathbb{L}_2 deux extensions de \mathbb{K} , un \mathbb{K} -isomorphisme de \mathbb{L}_1 sur \mathbb{L}_2 est un isomorphisme de corps \mathbb{K} -linéaire

4.9.3 Théorème

Pour tout polynôme irréductible $P(X) \in \mathbb{K}[X]$ il existe un corps de rupture, unique à \mathbb{K} -isomorphisme près.

4.9.4 Définition (Corps de décomposition)

Soit \mathbb{K} un corps et P(X) un polynome de $\mathbb{K}[X]$. Un corps de décomposition de P(X) est une extension de \mathbb{K} finie, \mathbb{L} telle que :

i) P est scindé sur
$$\mathbb{L}$$
: $P(X) = a \prod_{i=1}^{n} (X - \alpha_i)$, avec $a \in \mathbb{L}$, $\alpha_i \in \mathbb{N}$

ii)
$$\mathbb{L} = \mathbb{K}[\alpha_1...\alpha_n]$$

4.9.5 Théorème

 $\forall P \in \mathbb{K}[X]$, il existe un unique corps de décomposition à isomorphisme près.

4.10 Corps finis

Un corps \mathbb{K} de cardinal fini est appellé corps fini. Il est de caractéristique p > 0, donc \mathbb{K} est un espace vectoriel normé de dimension finiesur \mathbb{F}_p donc $|\mathbb{K}| = p^n$, où $n = dim_{|\mathbb{F}_p}(\mathbb{K})$

4.10.1 Théorème

Soit p un nombre premier, n un entier non nul. Il existe à \mathbb{F}_p isomorphisme près un unique corps de cardinal $p^n=q$. C'est le corps de décomposition de X^q-X sur \mathbb{F}_p .

Lemme :Un polynôme P(X) a toutes ses racines distinctes si et seulemetn si $P \wedge P' = 1$

4.10.2 Théorème (De l'élément primitif)

 $\exists \alpha \in \mathbb{F}_p^n \text{ tel que } \mathbb{F}_{p^n} = F_p[\alpha]$

4.10.3 Définition (Automorphisme de Frobenius)

 $q=p^n$ l'application $\frac{\varphi}{x}: \begin{picture}(20,0)\put(0,0){\line(1,0){15}}\put(0,0){\line($

4.10.4 Proposition

 $Aut_{\mathbb{F}_p}(\mathbb{F}_q)$ est cyclique d'ordre n généré par φ

4.10.5 Proposition

Il existe une bijection entre l'ensemble des sous corps de \mathbb{F}_q et l'ensemble des sous groupes de $Aut_{\mathbb{F}_p}(\mathbb{F}_q)$ donné par

$$\begin{array}{ccc} \{H \text{ ss gpe de } Aut(\mathbb{F}_q)\} & \to & \text{ss corps de } \mathbb{F}_q \\ H & \mapsto & \mathbb{F}_q^H = \{x \in \mathbb{F}_q, h.x = x \forall h \in H\} \end{array}$$

4.10.6 Proposition

Soit \mathbb{K} un corps fini de caractéristique p, $\mathbb{K} = \mathbb{F}_p^n$. Soit r un entier premier à p, et $l = r \wedge q - 1$. On note $\psi_r(x)$ le morphisme de groupe $\mathbb{K}^* \to \mathbb{K}^*$ tel que $\psi_r(x) = x^r$

i) Le noyau de ψ_r est l'unique sous groupe d'ordre d de \mathbb{K}^* , soit $\mathbb{K}^{*r} = Im_{\psi_r}$, alors \mathbb{K}^{*r} est l'unique sous groupe de \mathbb{K}^* d'ordre $\frac{q-1}{d}$.

$$x \in \mathbb{K}^{*r} \Leftrightarrow x^{\frac{q-1}{d}} = 1$$

ii) Si $p \neq 2$, \mathbb{K}^{*r} est d'indice 2 dans \mathbb{K}^*

$$x \in \mathbb{K}^{*r} \Leftrightarrow x^{\frac{q-1}{d}} = 1$$

 $(-1) \in \mathbb{K}^* \Leftrightarrow q \equiv 1[4]$

5 Groupes et géométrie

5.1 Générateurs et centre de GL(E), SL(E)

5.1.1 Proposition

Soit H un hyperplan de E, $u \neq Id$ tel que $u_{|H} = Id_H$. les propriétés suivantes sont équivalentes :

- i) $Det(u) = \lambda \neq 1$
- ii) u est diagonalisable et admet une valeur propre différente de 1
- iii) $Im(u-Id) \nsubseteq H$

iv) Il existe une base B de E telle que
$$Mat_B(u) = \begin{pmatrix} 1 & (0) & \\ & \dots & (0) \\ (0) & 1 & \\ & (0) & \lambda \end{pmatrix}$$

On dit que u est une **dilatation**, d'hyperplan H et de droite $D = Im(u - \lambda Id)$

5.1.2 Proposition

Soit H un hyperplan de E, $u \neq Id$ tel que $u_{|H} = Id_H$. les propriétés suivantes sont équivalentes :

- i) Det(u) = 1
- ii) u n'est pas diagonalisable
- iii) $\exists a \neq 0, a \in H, u(x) = x + f(x).a$
- iv) Il existe une base B de E telle que $Mat_B(u) = \begin{pmatrix} 1 & & (0) & \\ & ... & \\ (0) & & 1 & 1 \\ & & (0) & & 1 \end{pmatrix}$

On dit que u est une **transvection**, d'hyperplan H et de droite D = Im(u - Id)

Lemme: Soit $f \in E^*$ et $a \in Ker(f)$, $a \neq 0$. Posons $\tau(a, f) = x + f(x).a$. Alors, $\tau(a, f)^{-1} = \tau(-a, f)$, et $\forall u \in GL(E)$, on a $u\tau(a, f)u^{-1} = \tau(u(a), f \circ u^{-1})$.

5.1.3 Corollaire 1

Le centre de GL(E) est $Z = \{\lambda Id, \lambda \in \mathbb{K}^*\}$, et le centre de SL(E) est $Z \cap SL(E) = \{\lambda Id, \lambda \in \mathbb{K}^*, \lambda^n = 1\}$

5.1.4 Théorème

Les transvections engendrent SL(E) et les transvections et les dilatations engendrent GL(E)

Lemme : Soient x,y non colinéaires, alors il existe une transvection qui transforme x en y.

5.2 Conjuguaisons et commutateurs

5.2.1 Proposition

- i) Deux dilatations de GL(E) sont conjuguées dans GL(E) si et seulement si elles ont le même déterminant
- ii) Deux transvections de SL(E) sont conjuguées par un élément de GL(E). Si n > 3, alors elles sont conjuguées dans SL(E)

5.2.2 Théorème

i)
$$D(GL_n(\mathbb{K}) = SL_n(\mathbb{K})$$
, sauf si $n = 2$, $\mathbb{K} = F_2$

ii)
$$D(SL_n(\mathbb{K}) = SL_n(\mathbb{K}), \text{ sauf si } n = 2, \mathbb{K} = F_2 \text{ ou } \mathbb{K} = F_3$$

5.2.3 Théorème

 PSL_n est simple, saduf dans deux cas exceptionnels, $PSL_2(F_2) \simeq S_3$, et $PSL_2(F_3) \simeq A_4$

5.3 Cas n = 2

On pose
$$G = SL_2(F)$$
, on note $B = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}, a \in F^*, b \in F \}$

$$A = \{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, a \in F \}$$

$$C = \{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, b \in F \}$$

$$w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} U^- = \{ \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}, b \in F \}$$

5.3.1 Proposition

B=AU=UA, et $U\vartriangleleft B,$ et $G=B\sqcup BwB$ (décomposition de Bruhat)

5.3.2 Corollaire

B est un sous groupe maximal de $SL_2(F)$ Lemme : $SL_2(F)$ est engendré par U et U^-

5.3.3 Théorème

Si $|F| \ge 4$, alors $PSL_2(F)$ est simple. Lemme : Soit Z le centre de $SL_2(F)$, alors $Z = \bigcap_{g \in SL_2(F)} gBg^{-1}$

5.3.4 Proposition

Soit $H\subset SL_2(F)$ un sous groupe distingué. Alors, soit $H\subset Z$, soit $H=SL_2(F)$

Isomorphismes exceptionnels

On suppose que $\mathbb K$ est un corps quelconque de caractéristique p>0, donc $|\mathbb K|=q=p^k,$ où $k\in\mathbb N^*$

5.3.5 Proposition

i)
$$|GL_n(\mathbb{K})| = (q^n - 1)(q^n - q)...(q^n - q^{n-1})$$

ii)
$$|SL_n(\mathbb{K})| = |PGL_n(\mathbb{K})| = \frac{GL_n(\mathbb{K})}{|\mathbb{K}^*|} = (q^n - 1)(q^n - q)...(q^n - q^{n-2})q^{n-1}$$

iii)
$$|PSL_n(\mathbb{K})| = \frac{SL_n(\mathbb{K})}{d}$$
, où $d = n \wedge q - 1$

5.3.6 Proposition

Soit ${\cal F}_q$ le corps à q éléments, on a les isomorphismes dits exceptionnels suivants :

i)
$$GL_2(F_2) = SL_2(F_2) = PGL_2(F_2) = PSL_2(F_2) \simeq S_3$$

ii)
$$PGL_2(F_3) \simeq S_4$$
, $PSL_2(F_3) \simeq A_4$

iii)
$$PGL_2(F_4) = PSL_2(F_4) \simeq A_5$$

iv)
$$PGL_2(F_5) \simeq S_5$$
, $PSL_2(F_5) \simeq A_5$