In a nutshell

We present combinatorial spectral clustering (CSC), a simple spectral algorithm designed to identify overlapping communities, motivated by a random graph model called stochastic blockmodel with overlap (SBMO).

A random graph model : the SBMO

A network with n nodes is drawn from the SBMO if its observed adjacency matrix A satisfies E[A] = A, with

\[A = \frac{\alpha}{n} ZBZ^T, \]

where

- \(K \) is the number of communities
- \(B \in \mathbb{R}^{K \times K} \) is the community connectivity matrix, independent of n
- \(Z \in \{0,1\}^{n \times K} \) is the community membership matrix, satisfying
 \[\forall z \in S, \frac{|\{i : Z_i = z\}|}{n} \to \beta_z. \]
- \(\alpha_n \) is a degree parameter

Goal: Propose a good estimate \(\hat{Z} \) of Z, up to a permutation of the rows

\[\text{Err}(\hat{Z}, Z) = \frac{1}{nk} \inf_{\hat{Z}P_z} |\hat{Z}P_z - Z||_F. \]

Identification: (needed to perform estimation) If B, B' are invertible and Z, Z' have at least one pure node degree, i.e. belong to \(Z = \{Z \in \{0,1\}^{n \times K} \mid \forall k \in \{1,\ldots,K\}, \exists i \in \{1,\ldots,n\}, Z_{i,k} = \sum_{\ell} Z_{i,\ell} = 1\}, \)

then

\[\alpha_n ZBZ^T = \alpha_n Z'B'(Z')^T \Rightarrow \text{Err}(\hat{Z}, Z) = 0. \]

Motivation: spectral analysis

- Spectral analysis of the expected adjacency matrix

Let U = [u_1 | ... | u_n] be a matrix whose columns are \(K \) normalized eigenvectors associated to the \(K \) non-zero eigenvalues of A.

Proposition 1

1. There exists \(X \in \mathbb{R}^{K \times K} \) such that \(U = ZX. \)

2. If \(U = ZX', \) then \(\exists \in \mathbb{R}_{\geq 0} \) such that \(Z = ZX'P_z. \)

Spectral analysis of the observed adjacency matrix

Let \(\hat{U} \) be at matrix whose columns are \(K \) normalized eigenvectors associated to the \(K \) largest eigenvalues of \(\hat{A}. \)

U is close to \(\hat{U} \) if the degrees in the graph are large enough, which motivates

\[\min_{Z} (\tilde{Z}, \tilde{X}) = \arg \min_{Z \in \{0,1\}^{n \times K}, X \in \mathbb{R}^{K \times K}} ||ZX' - \hat{U}||_F. \]

The CSC algorithm

Combinatorial Spectral Clustering (CSC) proceeds as follows:

1. Spectral embedding: compute the matrix \(\hat{U} \) of \(K \) eigenvectors of \(\hat{A} \) associated to the largest eigenvalues (in absolute value).

2. Community reconstruction: compute an approximation of \(Z \)

\[(\tilde{Z}, \tilde{X}) = \arg \min_{Z \in \{0,1\}^{n \times K}, X \in \mathbb{R}^{K \times K}} ||ZX' - \hat{U}||_F \]

using alternate minimization and a suitable initialization.

An adaptive version: If \(K \) is unknown, we let \(K \) be the number of eigenvalues (with multiplicity) satisfying

\[|\l| > \sqrt{2(1 + n)\delta_{max}(n) \log(4n^{1+r})}, \]

for some constants \(r \) and \(\eta. \]

Consistency properties

Let \(Z \) be the set of membership matrices for which the proportion of pure nodes in each community is larger than

\[Z = \left\{ Z \in \{0,1\}^{n \times K}, \forall k \in \{1,\ldots,K\}, \frac{|\{i : Z_i = 1(k)\}|}{n} > \right\}. \]

Theorem 2

Let \(\eta \in (0,1/2] \) and \(r > 0. \) Let \(\hat{U} \) be a matrix whose columns are orthogonal eigenvectors of \(\hat{A} \) associated to an eigenvalue \(\hat{\lambda} \) satisfying

\[|\hat{\lambda}| \geq \sqrt{2(1 + n)\delta_{max}(n) \log(4n^{1+r})}. \]

Let \(\hat{K} \) be the number of such eigenvectors. Let

\[(\hat{P}, \hat{Z}) = \arg \min_{Z \in \{0,1\}^{n \times K}} ||ZX' - \hat{U}||_F. \]

Assume that \(\frac{\alpha_n}{\delta_{max}(n)} \to \infty \) and \(\min \beta_z > 0. \) There exists a positive constant \(C_1 \) such that, for \(n \) large enough, with probability larger than \(1 - n^{-r}, \)

\[\hat{K} = K \imply \text{Err}(\hat{Z}, Z) \leq \frac{2C_1 \log(n^{1+r})}{\delta_{max}(n)} \cdot \frac{\max_{\beta_z}}{\alpha_n}. \]

Practical implementation

Initialization: K-means++ procedure with first centroid chosen at random among nodes whose degree is smaller than the median degree

A iterate among nodes whose degree is larger than the median degree

We compare empirically the performance of three spectral algorithms: Spectral Clustering (SC), designed for non-overlapping communities, CSC and another spectral algorithm recently proposed by [2] and inspired by a random graph model called OCCAM.

Empirical performance

We compare empirically the performance of three spectral algorithms: Spectral Clustering (SC), designed for non-overlapping communities, CSC and another spectral algorithm recently proposed by [2] and inspired by a random graph model called OCCAM.

Simulated data

Comparison of the algorithms under instances of the SBMO (left) and the OCCAM (right).

\[n = 500, K = 5, \delta_{max} = 3, \text{ average over 100 networks } \]

Real-world networks

Performance of the three algorithms averaged over 6 Facebook ego-networks in terms of error and normalized variation of information.

References