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What is the performance of Bayesian bandit algorithms from a o II; = (m},..., wt) the current posterior over (61, ...,0k)
frequentist point of view? Not only does Bayes-UCB show striking e Ay = (N, ..., \%) the current posterior over the means (u1, ..., fix )
similarities with its frequentist counterparts, but it appears to outpertform I
them on their own ground, which is supported by an optimal regret bound

A Bayesian algorithm uses II;_; to determine action I;.

for the Bernoulli case. Our inspiration: frequentist index policies using:

e Upper Confidence Bound for the empirical mean... (UCB)

e ... built using KL-divergence (KL-UCB, frequentist optimal)

K independent arms. Arm j depends on parameter 6; and has expectation

pj; optimal arm is 7* = argmax p; and pu* = pj« 1s the highest expectation | ' Some ideas to design Bayesian bandit algorithms:
of reward associated.

e adapt the Bayesian exact solution from Gittins (Finite-Horizon Git-

T babilisti del
wo probabilistic modelings tins algorithm, Bayesian optimal)

Frequentist : Bayesian : e sample from the posterior (Thompson Sampling: dates back to 1933,
ii.d.

e 01,...,0k unknown parameters e f; "~ T, recent upper bound on its frequentist regret by Agrawal and Goyal)

e use quantiles: fixed or adaptive (Bayes-UCB)

e (Yj¢); is i.i.d. with distribution e (Y;,); is i.i.d. conditionally to

=2 0; with distribution vy,
At time ¢t 4+ 1, arm I; is chosen and reward X;.; = Y7, ¢+41 is observed Bayes-UCB algorithm is the index policy associated to:
1
Two measures of performance ) = of1 AL
| t(logt)c’ 7 |

e L
e Minimize (classic) regret e Minimize “bayesian™ regret

This means at time ¢ choose I; = argmax q;(t)

Lt=1 -

Parameters : ¢ (in practice, take ¢ = 0), initial prior I

Vg, is the Bernoulli distribution B(6;), 7T§-) the (conjugate) prior Beta(1,1) e Canonical exponential family: we observe empirically that the
. | | link between the Bayes-UCB and the KL-UCB index generalizes, and
e Theoretical guarantee: frequentist optimal we obtain theoretical guarantees for Gaussian bandits vy = N (6, 1)
Theorem 1 Let € > 0; for the Bay.es- UCB alggm’thm with parameter ¢ > I e A two-dimensional example: Gaussian distribution vy, = |
5, the number of draws of a sully-aptzmal arm j 8 such that : N ( ;i 032,)7 with both mean p; and variance UjZ unknown
+ €
o[ Nn(7)] < log(n) + oc,c (log(n)) (2)(;
KL (B(6;),B(6%)) ’ 5; (1) S () 1 . 0 1
) (t) = | 1 ——,T(Ne(g) — 1 th m: (u;,0;) = —
QJ() N](t) N](t) Q ’ T( t(]) ) Wil 7T] (:uJ O]) 0_]2

This leads to an upper-bound for the regret matching the Lai&Robbins
lower bound on the number of draws of suboptimal arms.

— empirically better than Auer UCB1l-norm, very similar index

e Link to a frequentist algorithm:

. d
Bayes-UCB index appears to be very close to the recently-proposed KL- e arms : fixed vectors Uy, ..., Uk € R

UCB algorithm (Cappé, Garivier): u;(t) < ¢;(t) < u,(t) with: e parameter of the model : § € R
. | _— e reward : y; = U; 0 + o¢; with ¢, ~ N(0,1)
ui(t) = argmax<d ]\;((])),x> < og(t) +]\Cf E)g)( og(n)) > e goal : minimize regret Eq [>°; | (maxi<;<x(U/0) — U7 6)|
o> StlG) t\J t\J )
” N @) With a Gaussian prior: 0~ N (O, nzld) The posterior is
i S, () log (Nt(j-m) + clog(log(n)) 01X, Y, ~N(X,X;+ (6/6)1g) XY, 0%( X, Xy + (0/K)*1g) ")
u;(t) = argmax {d , x| < , —_—T
o> S Ni(j) +1 (Ne(7) +1) , 2
Theretore ¥ 1
(t) =U:0; + ||U; 1 - —,N(0,1
where d(z,y) = KL (B(z),B(y)) = zlog 3 (1—x)log%j—z (1) O 11U 1= Q ( t ( )>

Bayes-UCB appears to build automatically confidence intervals While a frequentist approach based on uncertainty ellipsoids leads to:

based on Kullback-LeibleF div.ergenc.e, that are adapted to the q;(t) = Ujl-ét +||Us |55, 8:(5) with P ((9 B ét)zt_l(é’ B ét) < 5?5(5)) >1-4
geometry of the problem in this specific case.
With a sparsity-inducing prior: 6, ~ e€dg + (1 — €)N (0, k?)
e Numerical experiments: In this case we can sample from the posterior using a Gibbs sam-
pler, and estimate the quantiles used in Bayes-UCB. Here is the
cumulated regret In a sparse problem with 20 arms and d =

10 10

sf|==UCB | et : op (=B e

o | — KI-UCRB o .. |— KL-UCB 10 for Bayes-UCB with different prior distributions. The oracle
't| = Bayes-UCB o |~ Bayes-UCB - uses a Gaussian prior on the known non-zero components of 0.
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Cumulated regret curves for several strategies (estimated with N = 5000 w0p
repetitions of the bandit game with horizon n = 500) in a low-reward (left) or o)

an average reward (right) problem
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