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In a nutshell
What is the performance of Bayesian bandit algorithms from a
frequentist point of view? Not only does Bayes-UCB show striking
similarities with its frequentist counterparts, but it appears to outperform
them on their own ground, which is supported by an optimal regret bound
for the Bernoulli case.

Bayesian vs. Frequentist Model for MAB
K independent arms. Arm j depends on parameter θj and has expectation
µj ; optimal arm is j∗ = argmax µj and µ∗ = µj∗ is the highest expectation
of reward associated.

Two probabilistic modelings

Frequentist :

• θ1, . . . , θK unknown parameters

• (Yj,t)t is i.i.d. with distribution
νθj

Bayesian :

• θj
i.i.d.∼ πj

• (Yj,t)t is i.i.d. conditionally to
θj with distribution νθj

At time t+ 1, arm It is chosen and reward Xt+1 = YIt,t+1 is observed

Two measures of performance

• Minimize (classic) regret

Rn(θ) = Eθ

[
n∑
t=1

θ∗ − θIt−1

] • Minimize “bayesian“ regret

Rn =

∫
Rn(θ)dπ(θ)

Background

• Πt = (πt1, . . . , π
t
K) the current posterior over (θ1, ..., θK)

• Λt = (λt1, . . . , λ
t
K) the current posterior over the means (µ1, ..., µK)

A Bayesian algorithm uses Πt−1 to determine action It.

Our inspiration: frequentist index policies using:

• Upper Confidence Bound for the empirical mean... (UCB)

• ... built using KL-divergence (KL-UCB, frequentist optimal)

Some ideas to design Bayesian bandit algorithms:

• adapt the Bayesian exact solution from Gittins (Finite-Horizon Git-
tins algorithm, Bayesian optimal)

• sample from the posterior (Thompson Sampling: dates back to 1933,
recent upper bound on its frequentist regret by Agrawal and Goyal)

• use quantiles: fixed or adaptive (Bayes-UCB)

Case 1: Binary bandits

νθj is the Bernoulli distribution B(θj), π
0
j the (conjugate) prior Beta(1, 1)

• Theoretical guarantee: frequentist optimal

Theorem 1 Let ε > 0; for the Bayes-UCB algorithm with parameter c ≥
5, the number of draws of a sub-optimal arm j is such that :

Eθ[Nn(j)] ≤ 1 + ε

KL (B(θj),B(θ∗))
log(n) + oε,c (log(n))

This leads to an upper-bound for the regret matching the Lai&Robbins
lower bound on the number of draws of suboptimal arms.

• Link to a frequentist algorithm:

Bayes-UCB index appears to be very close to the recently-proposed KL-
UCB algorithm (Cappé, Garivier): ũj(t) ≤ qj(t) ≤ uj(t) with:

uj(t) = argmax
x>

St(j)
Nj(t)

{
d

(
St(j)

Nt(j)
, x

)
≤ log(t) + c log(log(n))

Nt(j)

}

ũj(t) = argmax
x>

St(j)
Nt(j)+1

d
(

St(j)

Nt(j) + 1
, x

)
≤

log
(

t
Nt(j)+2

)
+ c log(log(n))

(Nt(j) + 1)


where d(x, y) = KL (B(x),B(y)) = x log x

y + (1− x) log 1−x
1−y

Bayes-UCB appears to build automatically confidence intervals
based on Kullback-Leibler divergence, that are adapted to the
geometry of the problem in this specific case.

• Numerical experiments:
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θ1 = 0.45, θ2 = 0.55
Cumulated regret curves for several strategies (estimated with N = 5000

repetitions of the bandit game with horizon n = 500) in a low-reward (left) or

an average reward (right) problem

Our algorithm: Bayes-UCB
Bayes-UCB algorithm is the index policy associated to:

qj(t) = Q

(
1− 1

t(log t)c
, λt−1
j

)
This means at time t choose It = argmax

j=1...K
qj(t)

Parameters : c (in practice, take c = 0), initial prior Π0

Case 2: the exponential family
• Canonical exponential family: we observe empirically that the

link between the Bayes-UCB and the KL-UCB index generalizes, and
we obtain theoretical guarantees for Gaussian bandits νθ = N (θ, 1)

• A two-dimensional example: Gaussian distribution νθj =
N
(
µj , σ

2
j

)
, with both mean µj and variance σ2

j unknown

qj(t) =
Sj(t)

Nj(t)
+

√
S

(2)
t (j)

Nj(t)
Q

(
1− 1

t
, T (Nt(j)− 1)

)
with π0

j (µj , σj) =
1

σ2
j

→ empirically better than Auer UCB1-norm, very similar index

Case 3: linear bandit problem

• arms : fixed vectors U1, ..., UK ∈ Rd

• parameter of the model : θ ∈ Rd

• reward : yt = U ′Itθ + σεt with εt ∼ N (0, 1)

• goal : minimize regret Eθ
[∑n

t=1

(
max1≤j≤K(U ′jθ)− U ′Itθ

)]
With a Gaussian prior: θ ∼ N

(
0, κ2Id

)
The posterior is

θ|Xt, Yt ∼ N (X ′tXt + (σ/κ)2Id)
−1X ′tYt︸ ︷︷ ︸

θ̂t

, σ2(X ′tXt + (σ/κ)2Id)
−1︸ ︷︷ ︸

Σt

)

Therefore qj(t) = U ′j θ̂t + ||Uj ||ΣtQ

(
1− 1

t
,N (0, 1)

)
While a frequentist approach based on uncertainty ellipsoids leads to:

qj(t) = U ′j θ̂t + ||Uj ||Σt
βt(δ) with P

(
(θ − θ̂t)Σ−1

t (θ − θ̂t) ≤ βt(δ)
)
≥ 1− δ

With a sparsity-inducing prior: θj ∼ εδ0 + (1− ε)N (0, κ2)
In this case we can sample from the posterior using a Gibbs sam-
pler, and estimate the quantiles used in Bayes-UCB. Here is the
cumulated regret in a sparse problem with 20 arms and d =
10 for Bayes-UCB with different prior distributions. The oracle
uses a Gaussian prior on the known non-zero components of θ.
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