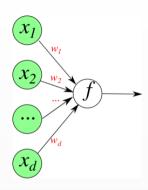
Prédicteurs linéaires

(avant les réseaux de neurones)

Pascal Germain

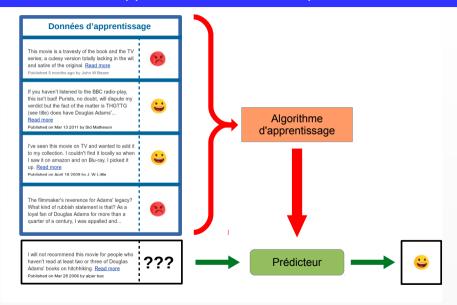
2019



- Le problème d'apprentissage
- 2 Support Vector Machines (SVM)
 - Classification binaire et marge du prédicteur
 - SVM à marge rigide (1992)
 - SVM à marge floue (1995)
- 3 Fonctions de pertes
 - Classification
 - Regression
- 4 Astuce du noyau

- Le problème d'apprentissage
- 2 Support Vector Machines (SVM)
 - Classification binaire et marge du prédicteur
 - SVM à marge rigide (1992)
 - SVM à marge floue (1995)
- 3 Fonctions de pertes
 - Classification
 - Regression
- 4 Astuce du noyau

Exemple : Déterminer l'appréciation d'un film à partir d'un commentaire



Représentation des données

Ensemble d'apprentissage :

$$S = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\},\$$

avec

Régression

$$\mathbf{x}_i \in \mathbb{R}^d$$
 et $y_i \in \mathbb{R}$.

Classification binaire

$$\mathbf{x}_i \in \mathbb{R}^d$$
 et $y_i \in \{-1, +1\}$ (ou $y_i \in \{0, 1\}$)

Prédicteur linéaire

Régression

$$f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} - b$$

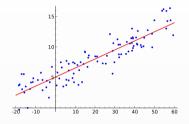
Classification binaire

$$f_{\mathbf{w},b}(\mathbf{x}) = \operatorname{sgn}[\mathbf{w} \cdot \mathbf{x} - b] = egin{cases} +1 & \operatorname{si} \ \mathbf{w} \cdot \mathbf{x} - b > 0 \\ -1 & \operatorname{sinon}. \end{cases}$$

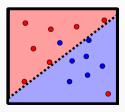
Note: $f_{\mathbf{w},b}(\mathbf{x}) = f_{\mathbf{w}',b'}(\mathbf{x})$ avec $\mathbf{w}' = c \mathbf{w}$ et b' = c b pour tout c > 0.

Interprétation des prédicteurs

Régression : Un prédicteur est une surface qui relie les exemples



Classification : Un prédicteur est une frontière de décision qui sépare les exemples



- Le problème d'apprentissage
- Support Vector Machines (SVM)
 - Classification binaire et marge du prédicteur
 - SVM à marge rigide (1992)
 - SVM à marge floue (1995)
- Fonctions de pertes
 - Classification
 - Regression
- 4 Astuce du noyau

- Le problème d'apprentissage
- Support Vector Machines (SVM)
 - Classification binaire et marge du prédicteur
 - SVM à marge rigide (1992)
 - SVM à marge floue (1995)
- 3 Fonctions de pertes
 - Classification
 - Regression
- 4 Astuce du noyau

Classification binaire

Ensemble d'apprentissage :

$$S = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\},\$$

avec $\mathbf{x}_i \in \mathbb{R}^d$ et $y_i \in \{-1, +1\}$.

Prédicteur linéaire :

$$f_{\mathbf{w},b}(\mathbf{x}) = \mathrm{sgn}ig[\mathbf{w}\cdot\mathbf{x}-big] = egin{cases} +1 & \mathrm{si}\;\mathbf{w}\cdot\mathbf{x}-b > 0 \ -1 & \mathrm{sinon}. \end{cases}$$

Note: $f_{\mathbf{w},b}(\mathbf{x}) = f_{\mathbf{w}',b'}(\mathbf{x})$ avec $\mathbf{w}' = c \mathbf{w}$ et b' = c b pour tout c > 0.

Marge d'un prédicteur linéaire sur un exemple

Marge fonctionnelle du prédicteur $f_{\mathbf{w},b}$ sur l'exemple (\mathbf{x},y) :

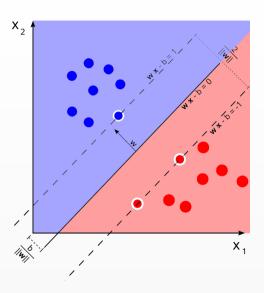
$$y\left(\mathbf{w}\cdot\mathbf{x}-b\right)$$

Marge géométrique du prédicteur $f_{\mathbf{w},b}$ sur l'exemple (\mathbf{x},y) :

$$\frac{y\left(\mathbf{w}\cdot\mathbf{x}-b\right)}{\|\mathbf{w}\|}$$

Note 1 : Un exemple bien classifié $(f_{\mathbf{w},b}(\mathbf{x}) = y)$ ssi sa marge est positive.

Note 2 : Avec c > 0, $\mathbf{w}' = c \mathbf{w}$ et b' = c b les prédicteurs $f_{\mathbf{w},b}$ et $f_{\mathbf{w}',b'}$ possèdent la même marge géométrique.



Marge d'un prédicteur linéaire sur un ensemble d'apprentissage

Marge fonctionnelle du prédicteur $f_{\mathbf{w},b}$ sur l'ensemble S:

$$\min_{(\mathbf{x}_i, y_i) \in S} \left[y_i \left(\mathbf{w} \cdot \mathbf{x}_i - b \right) \right]$$

Marge géométrique du prédicteur $f_{\mathbf{w},b}$ sur l'ensemble S:

$$\min_{(\mathbf{x}_i, y_i) \in S} \left[\frac{y_i (\mathbf{w} \cdot \mathbf{x}_i - b)}{\|\mathbf{w}\|} \right]$$

Note : On dit qu'un ensemble S est linéairement séparable lorsqu'il existe un couple $(\mathbf{w},b)\in\mathbb{R}^d\times\mathbb{R}$ tel que la marge sur l'ensemble S est positive.

- Le problème d'apprentissage
- 2 Support Vector Machines (SVM)
 - Classification binaire et marge du prédicteur
 - SVM à marge rigide (1992)
 - SVM à marge floue (1995)
- Fonctions de pertes
 - Classification
 - Regression
- 4 Astuce du noyau

SVM à marge rigide

Supposons que l'ensemble d'apprentissage S soit linéairement séparable.

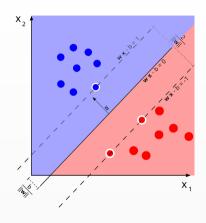
Le SVM à marge rigide trouve un prédicteur $f_{\mathbf{w},b}$ de marge géométrique maximale :

$$\max_{(\mathbf{w},b)\in\mathbb{R}^{d}\times\mathbb{R}}\left(\min_{(\mathbf{x}_{i},y_{i})\in\mathcal{S}}\left[\frac{y_{i}\left(\mathbf{w}\cdot\mathbf{x}_{i}-b\right)}{\|\mathbf{w}\|}\right]\right)$$

Il existe une multitude de solutions (\mathbf{w}, b) à ce problème... Prenons la solution telle que la marge fonctionnelle sur l'ensemble S vaut 1, c'est-à-dire :

$$\min_{(\mathbf{x}_i, y_i) \in S} \left[\frac{y_i (\mathbf{w} \cdot \mathbf{x}_i - b)}{\|\mathbf{w}\|} \right] = \frac{1}{\|\mathbf{w}\|}$$

SVM à marge rigide



Étant donné :

$$S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}.$$

Minimiser : $\frac{1}{2} \|\mathbf{w}\|^2$

sous contraintes : $y_i (\mathbf{w} \cdot \mathbf{x}_i - b) \ge 1$

pour $i = 1, \ldots, n$.

On nomme vecteurs de supports les exemples dont la marge fonctionnelle est 1.

- Le problème d'apprentissage
- Support Vector Machines (SVM)
 - Classification binaire et marge du prédicteur
 - SVM à marge rigide (1992)
 - SVM à marge floue (1995)
- 3 Fonctions de pertes
 - Classification
 - Regression
- 4 Astuce du noyau

SVM à marge floue

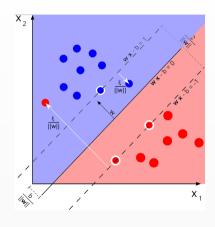
Pour d'adapter à la situation où S n'est pas linéairement séparable, on introduit des variables d'écarts.

$$\xi_i = \max\left\{0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i - b)\right\}$$

Minimiser:
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

sous contraintes: $y_i (\mathbf{w} \cdot \mathbf{x}_i - b) \ge 1 - \xi_i$ et $\xi_i \ge 0$
pour $i = 1, \dots, n$.

SVM à marge floue



La valeur de chaque ξ_i s'interprète ainsi :

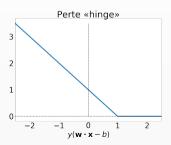
- $\xi_i > 1$: L'exemple est mal classifié.
- $0 < \xi_i < 1$: L'exemple est bien classifié, mais il est situé à l'intérieur de la marge du SVM.
- $\xi_i = 0$: L'exemple est bien classifié et il est situé à l'extérieur de la marge du SVM.

SVM à marge floue

Minimiser:
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \ell_{\text{hinge}}(f_{\mathbf{w},b}(\mathbf{x}_i), y_i)$$

avec

$$\ell_{\mathrm{hinge}}(\hat{y},y) = \mathsf{max}\left\{0,1-\hat{y} imes y
ight\}$$



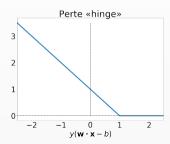
- Le problème d'apprentissage
- Support Vector Machines (SVM)
 - Classification binaire et marge du prédicteur
 - SVM à marge rigide (1992)
 - SVM à marge floue (1995)
- 3 Fonctions de pertes
 - Classification
 - Regression
- 4 Astuce du noyau

- Le problème d'apprentissage
- 2 Support Vector Machines (SVM)
 - Classification binaire et marge du prédicteur
 - SVM à marge rigide (1992)
 - SVM à marge floue (1995)
- 3 Fonctions de pertes
 - Classification
 - Regression
- 4 Astuce du noyau

SVM \Leftrightarrow Minimisation de la perte «hinge» régularisée

Minimiser:
$$F(\mathbf{w}) = C \underbrace{\sum_{i=1}^{n} \ell_{\text{hinge}}(f_{\mathbf{w},b}(\mathbf{x}_i), y_i)}_{\text{perte empirique}} + \underbrace{\frac{1}{2} \|\mathbf{w}\|^2}_{\text{régularisation}}$$

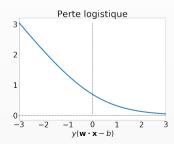
$$\ell_{\mathrm{hinge}}(\hat{y},y) = \max\left\{0,1-\hat{y} imes y
ight\}$$



Régression logistique \Leftrightarrow Minimisation de la perte logistique régularisée

Minimiser:
$$F(\mathbf{w}) = C \underbrace{\sum_{i=1}^{n} \ell_{\text{logist}}(f_{\mathbf{w},b}(\mathbf{x}_i), y_i)}_{\text{perte empirique}} + \underbrace{\frac{1}{2} \|\mathbf{w}\|^2}_{\text{régularisation}}$$

$$\ell_{\mathrm{hinge}}(\hat{y},y) = \ln(1+e^{-\hat{y} imes y})$$

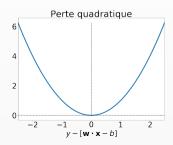


- Le problème d'apprentissage
- 2 Support Vector Machines (SVM)
 - Classification binaire et marge du prédicteur
 - SVM à marge rigide (1992)
 - SVM à marge floue (1995)
- Fonctions de pertes
 - Classification
 - Regression
- 4 Astuce du noyau

Moindre carrés ⇔ Minimisation de la perte quadratique

Minimiser:
$$F(\mathbf{w}) = \underbrace{\sum_{i=1}^{n} \ell_{\text{quad}}(f_{\mathbf{w},b}(\mathbf{x}_i), y_i)}_{\text{perte empirique}}$$

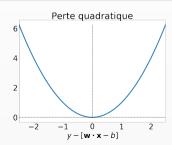
$$\ell_{\text{quad}}(\hat{y}, y) = (y - \hat{y})^2$$



Regression de ridge \Leftrightarrow Minimisation de la perte quadratique régularisée

Minimiser:
$$F(\mathbf{w}) = C \underbrace{\sum_{i=1}^{n} \ell_{\text{quad}}(f_{\mathbf{w},b}(\mathbf{x}_i), y_i)}_{\text{perte empirique}} + \underbrace{\frac{1}{2} \|\mathbf{w}\|^2}_{\text{régularisation}}$$

$$\ell_{\mathrm{quad}}(\hat{y}, y) = (y - \hat{y})^2$$



- Le problème d'apprentissage
- 2 Support Vector Machines (SVM)
 - Classification binaire et marge du prédicteur
 - SVM à marge rigide (1992)
 - SVM à marge floue (1995)
- 3 Fonctions de pertes
 - Classification
 - Regression
- 4 Astuce du noyau

Le noyau linéaire

Étant donné :

$$S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}.$$

Représentons le vecteur $\mathbf{w} \in \mathbb{R}^d$ par un vecteur de variables duales $\pmb{\alpha} \in \mathbb{R}^n$, tel que

$$\mathbf{w} = \sum_{i=1}^n \alpha_i \, \mathbf{x}_i \, .$$

Nous pouvons réécrire le prédicteur $f_{\mathbf{w},b}$:

$$f_{\mathbf{w},b}(\mathbf{x}) = \operatorname{sgn}\left[\mathbf{w} \cdot \mathbf{x} + b\right] = \operatorname{sgn}\left[\sum_{i=1}^{n} \alpha_{i} \, \mathbf{x}_{i} \cdot \mathbf{x} + b\right]$$
$$= \operatorname{sgn}\left[\sum_{i=1}^{n} \alpha_{i} \, k(\mathbf{x}_{i}, \mathbf{x}) + b\right],$$

où $k(\mathbf{x}_i, \mathbf{x}) = \mathbf{x}_i \cdot \mathbf{x}$ est la fonction de **noyau linéaire**.

Le noyau linéaire

$$\|\mathbf{w}\|^{2} = \mathbf{w} \cdot \mathbf{w} = \left(\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}\right) \cdot \left(\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}\right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j})$$

Astuce du noyau

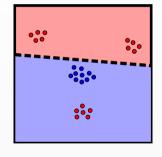
Une fonction $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ est un *noyau* ssi il existe une transformation $\phi : \mathbb{R}^d \to \mathbb{R}^D$ telle que

$$k(\mathbf{x}_i, \mathbf{x}) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x})$$

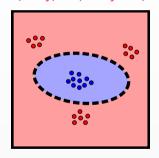
Autrement dit, un noyau calcule à un produit scalaire dans un espace augmenté.

Quelques exemples de noyaux

Noyau linéaire $k(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i \cdot \mathbf{x}_i$



Noyau polynomial $k(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i \cdot \mathbf{x}_i + 1)^2$



Noyau gaussien $k(\mathbf{x}_i, \mathbf{x}_i) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|}$

