Sample Compressed SVM

(or A sample compressed PAC-Bayes approach to kernel methods)

Pascal Germain

Joint work with François Laviolette, Alexandre Lacasse, Alexandre Lacoste, Mario Marchand and Sara Shanian

GRAAL (Université Laval, Québec city)

February 18, 2010

In this lecture, we will :

- Review quickly the Sample-Compress theory
- See how we can describe a SVM as a Majority Vote of Sample-Compressed classifiers (the Sc-SVM)
- Use the PAC-Bayes theory to upper-bound the risk of our Sc-SVM
- Design a learning algorithm to minimise this PAC-Bayes bound
- Present some experimental results

• and Conclude...

The Classification problem

We consider a training set S of m examples

$$S \stackrel{\mathrm{def}}{=} (\mathsf{z}_1, \mathsf{z}_2, \dots, \mathsf{z}_m)$$

where each z_i is a input-output pair:

Each example \mathbf{z}_i is drawn *IID* according to an unknown probability distribution D on $\mathcal{X} \times \mathcal{Y}$. Hence :

$$S \sim D^m$$

.

Elements of the Sample Compression theory

A sc-classifier h_i^{μ} is a data-dependent classifier described by two variables:

- A compression-set S_i containing a subset of the training sequence S describing the classifier
 - i $\stackrel{\text{def}}{=} \langle i_1, i_2, \dots, i_m \rangle$ with $1 \leq i_1 < i_2 < \dots < i_{|\mathbf{i}|} \leq m$
- A message string μ containing the additional information needed to construct the classifier.
 - μ is choosen among \mathcal{M}_{i} , a predefined set of all messages that can be supplied with S_{i} .

Given S_i and μ , a reconstruction function \mathcal{R} outputs a classifier :

$$h_{\mathbf{i}}^{\mu} \stackrel{\mathrm{def}}{=} \mathcal{R}(S_{\mathbf{i}},\mu).$$

Risk of a sc-classifier

The **risk** (or generalization error) of a classifier h is defined as

$$R_D(h) \stackrel{\text{def}}{=} \underbrace{\mathbf{E}}_{(\mathbf{x}, y) \sim D} I(h(\mathbf{x}) \neq y) = \Pr_{(\mathbf{x}, y) \sim D} (h(\mathbf{x}) \neq y)$$

where I(a) = 1 if predicate a is true and 0 otherwise.

The empirical risk of a sc-classifier h_i^{μ} on the training set S is defined by

$$R_{\mathcal{S}}(h_{\mathbf{i}}^{\mu}) \stackrel{\mathrm{def}}{=} \frac{1}{m} \sum_{j=1}^{m} R_{\langle (\mathbf{x}_{j}, y_{j}) \rangle}(h_{\mathbf{i}}^{\mu}),$$

where

$$\mathsf{R}_{\langle (\mathsf{x}_{j}, y_{j}) \rangle}(h_{\mathbf{i}}^{\mu}) \stackrel{\text{def}}{=} \left\{ \begin{array}{cc} \mathit{I}(h_{\mathbf{i}}^{\mu}(\mathsf{x}_{j}) \neq y_{j}) & \text{if } j \notin \mathbf{i} \\ 0 & \text{otherwise.} \end{array} \right.$$

Thus, $mR_s(h_i^\mu) \sim \operatorname{Bin}\left(m - \|\mathbf{i}\|, R_D(h_i^\mu)\right)$.

Examples of compression sets and reconstruction functions

Support Vector Machine

We can reconstruct a SVM by using the **support-vectors** as the compression-set.

In this example :

- Training set size: |S| = 16
- Compression-set size: $|\mathbf{i}| = 3$
- Message string: $\mu = \emptyset$

Image: Wikipedia

Perceptron

Once a perceptron is trained (until convergence) on S, we only need the $|\mathbf{i}|$ examples implied in an update to reconstruct the classifier.

• Again,
$$\mu = \emptyset$$
.

Pascal Germain (GRAAL, Université Laval)

In this lecture, we will :

- Review quickly the Sample-Compress theory
- See how we can describe a SVM as a **Majority Vote of Sample-Compressed classifiers** (the Sc-SVM)
- Use the PAC-Bayes theory to upper-bound the risk of our Sc-SVM
- Design a learning algorithm to minimise this PAC-Bayes bound
- Present some experimental results

• and Conclude...

- In an attempt to upper-bound the risk R_D(h), usual sample-compression bounds degrade with the size of the compression-set S_i (as we expect).
- This gives a **bad interpretation of the generalization error** of the SVM, which can have a low risk even if there is a large number of support vectors.
- To overcome this issue, let's define the SVM as a **majority vote of sc-classifiers** of unitary compression-size.

Redefining the SVM

We denote \mathcal{H}^{S} the set of all sc-classifiers. Each $h_{i}^{\mu} \in \mathcal{H}^{S}$ is such as : • The **compression-set** contains only zero or one training example :

$$S_{\mathbf{i}} \in \{S_{\langle \rangle}, S_{\langle 1 \rangle}, S_{\langle 2 \rangle}, \dots, S_{\langle m \rangle}\}$$

• The message string is formed by a real number and a sign :

$$\mu \in \mathcal{M}_{\mathbf{i}} = [-1,1]^{|\mathbf{i}|} \times \{+,-\}$$

We have
$$\mathcal{M}_{\langle i \rangle} = [-1,1] \times \{+,-\}$$
 and $\mathcal{M}_{\langle \rangle} = \{\epsilon\} \times \{+,-\}$.

We consider pairs of boolean complement classifiers such as :

$$h_{\mathbf{i}}^{(\sigma,-)}(\mathbf{x}) = -h_{\mathbf{i}}^{(\sigma,+)}(\mathbf{x}) \quad orall \, \mathbf{x} \in \mathcal{X}, \, \sigma \in [-1,1] \, .$$

We also have:

$$h^{(\epsilon,+)}_{\langle
angle}({f x})=+1 \;\; {
m and}\;\; h^{(\epsilon,-)}_{\langle
angle}({f x})=-1 \;\;\; orall \, {f x}\in {\cal X}$$
 .

sc-classifier
$$h_i^{x} \in \mathcal{H}^{S}$$

Comp-set: $S_i \in \{S_{\langle \rangle}, S_{\langle 1 \rangle}, \dots, S_{\langle m \rangle}\}$
Message: $\mu \in \mathcal{M}_i = [-1, 1]^{|i|} \times \{+, -\}$

Distribution Q

$$\begin{aligned} & Q(h_i^{\mu}) = Q_{\mathcal{I}}(\mathbf{i})Q_{S_i}(\mu) \\ & Q(h_i^{(\sigma,+)}) - Q(h_i^{(\sigma,-)}) = w_i \end{aligned}$$

Let Q be a **probability distribution** over \mathcal{H}^S . We denote

• $Q_{\mathcal{I}}$, the probability that a compression-set S_i is chosen by Q:

$$Q_{\mathcal{I}}(\mathbf{i}) \stackrel{\mathrm{def}}{=} \int_{\mu \in \mathcal{M}_{\mathbf{i}}} Q(h_{\mathbf{i}}^{\mu}) d\mu$$

• Q_{S_i} , the probability of choosing message μ given S_i :

$$Q_{S_{\mathbf{i}}}(\mu) \stackrel{\mathrm{def}}{=} Q(h_{\mathbf{i}}^{\mu}|S_{\mathbf{i}})$$

• Therefore, $Q(h^{\mu}_{\mathbf{i}}) = Q_{\mathcal{I}}(\mathbf{i})Q_{S_{\mathbf{i}}}(\mu)$.

The **output** of the majority vote classifier (bayes classifier) is given by :

$$B_Q(\mathbf{x}) \stackrel{\text{def}}{=} \operatorname{sgn} \left[\begin{array}{c} \mathbf{E} \\ h \sim Q \end{array} h(\mathbf{x}) \right]$$

Pascal Germain (GRAAL, Université Laval)

sc-classifier $h_{\mathbf{i}}^{\mu} \in \mathcal{H}^{S}$ Comp-set: $S_{\mathbf{i}} \in \{S_{\langle \rangle}, S_{\langle 1 \rangle}, \dots, S_{\langle m \rangle}\}$ Message: $\mu \in \mathcal{M}_{\mathbf{i}} = [-1, 1]^{|\mathbf{i}|} \times \{+, -\}$

Distribution Q

$$Q(h_{i}^{\mu}) = Q_{\mathcal{I}}(\mathbf{i})Q_{S_{i}}(\mu)$$
$$Q(h_{i}^{(\sigma,+)}) - Q(h_{i}^{(\sigma,-)}) = w_{i}$$

Before seing the data, we define a **prior distribution** over the compression-sets and the message strings. This gives us indirectly a prior P over \mathcal{H}^S such as :

- $P_{\mathcal{I}}$ is an uniform distribution over all possible compression-sets ;
- For each compression-set S_i , P_{S_i} is uniform over all messages.

sc-classifier
$$h_{\mathbf{i}}^{\mu} \in \mathcal{H}^{S}$$

Comp-set:
$$S_i \in \{S_{\langle \rangle}, S_{\langle 1 \rangle}, \dots, S_{\langle m \rangle}\}$$

Message: $\mu \in \mathcal{M}_i = [-1, 1]^{|i|} \times \{+, -\}$

Distribution Q

$$\begin{aligned} &Q(h_{\mathbf{i}}^{\mu}) = Q_{\mathcal{I}}(\mathbf{i})Q_{\mathcal{S}_{\mathbf{i}}}(\mu) \\ &Q(h_{\mathbf{i}}^{(\sigma,+)}) - Q(h_{\mathbf{i}}^{(\sigma,-)}) = w_{\mathbf{i}} \end{aligned}$$

We say that a posterior Q is **aligned on** a prior P when for all **i** and σ :

$$Q(h_{i}^{(\sigma,+)}) + Q(h_{i}^{(\sigma,-)}) = P(h_{i}^{(\sigma,+)}) + P(h_{i}^{(\sigma,-)})$$

Moreover, we say that a posterior Q is **strongly aligned** when for all **i**, there is a w_i such that for all σ :

$$Q(h_{\mathbf{i}}^{(\sigma,+)}) - Q(h_{\mathbf{i}}^{(\sigma,-)}) = w_{\mathbf{i}}$$

By restricting ourself to strongly aligned posterior, we obtain a posterior distribution totally defined by the w_i 's :

$$Q(h_{i}^{(\sigma,+)}) = \frac{1}{2} \left(P(h_{i}^{(\sigma,+)}) + P(h_{i}^{(\sigma,-)}) + w_{i} \right)$$
$$Q(h_{i}^{(\sigma,-)}) = \frac{1}{2} \left(P(h_{i}^{(\sigma,+)}) + P(h_{i}^{(\sigma,-)}) - w_{i} \right)$$

sc-classifier $h_{\mathbf{i}}^{\mu} \in \mathcal{H}^{S}$

 $\begin{array}{l} \text{Comp-set:} \ S_{\mathbf{i}} \in \{S_{\langle \rangle}, S_{\langle 1 \rangle}, \dots, S_{\langle m \rangle}\} \\ \text{Message:} \ \mu \in \mathcal{M}_{\mathbf{i}} = \left[-1, 1\right]^{|\mathbf{i}|} \times \{+, -\} \end{array}$

Distribution Q

$$\begin{aligned} & Q(h_i^{\mu}) = Q_{\mathcal{I}}(\mathbf{i})Q_{S_i}(\mu) \\ & Q(h_i^{(\sigma,+)}) - Q(h_i^{(\sigma,-)}) = w_i \end{aligned}$$

$$Q(h_{i}^{(\sigma,+)}) = \frac{1}{2} \left(P(h_{i}^{(\sigma,+)}) + P(h_{i}^{(\sigma,-)}) + w_{i} \right)$$
$$Q(h_{i}^{(\sigma,-)}) = \frac{1}{2} \left(P(h_{i}^{(\sigma,+)}) + P(h_{i}^{(\sigma,-)}) - w_{i} \right)$$

sc-classifier $h_{\mathbf{i}}^{\mu} \in \mathcal{H}^{S}$

$$\begin{array}{ll} \text{Comp-set:} \ S_i \in \{S_{\langle \rangle}, S_{\langle 1 \rangle}, \dots, S_{\langle m \rangle}\}\\ \text{Message:} \ \mu \in \mathcal{M}_i = [-1, 1]^{|i|} \times \{+, -\} \end{array}$$

Distribution Q

$$\begin{split} & Q(h_{\mathbf{i}}^{\mu}) = Q_{\mathcal{I}}(\mathbf{i})Q_{\mathcal{S}_{\mathbf{i}}}(\mu) \\ & Q(h_{\mathbf{i}}^{(\sigma,+)}) - Q(h_{\mathbf{i}}^{(\sigma,-)}) = w_{\mathbf{i}} \end{split}$$

There's almost no loss of expressiveness if we consider aligned posterior:

Proposition

Let P be a prior, S a training sequence, and Q a distribution on \mathcal{H}^{S} for which there exists A > 0 such that for all $h_{\mathbf{i}}^{\mu}$: $Q(h_{\mathbf{i}}^{\mu}) + Q(-h_{\mathbf{i}}^{\mu}) \leq A(P(h_{\mathbf{i}}^{\mu}) + P(-h_{\mathbf{i}}^{\mu})).$

Then there exists a distribution Q' aligned on P and Bayes-equivalent to Qi.e., $B_{Q'}(\mathbf{x}) = B_Q(\mathbf{x}) \ \forall \mathbf{x} \in \mathcal{X}$.

Remember that $B_Q(\mathbf{x}) \stackrel{\text{def}}{=} \operatorname{sgn} \left[\underset{h \sim Q}{\mathsf{E}} h(\mathbf{x}) \right]$.

From Q to Q', the margins will vary, but the outcome of the majority vote will stay the same!

Pascal Germain (GRAAL, Université Laval)

$$\begin{array}{l} \text{sc-classifier } h_{\mathbf{i}}^{\mu} \in \mathcal{H}^{S} \\ \text{Comp-set: } S_{\mathbf{i}} \in \{S_{\langle \rangle}, S_{\langle 1 \rangle}, \dots, S_{\langle m \rangle}\} \\ \text{Message: } \mu \in \mathcal{M}_{\mathbf{i}} = [-1, 1]^{|\mathbf{i}|} \times \{+, -\} \end{array}$$

Distribution Q

$$Q(h_i^{\mu}) = Q_{\mathcal{I}}(\mathbf{i})Q_{S_i}(\mu)$$
$$Q(h_i^{(\sigma,+)}) - Q(h_i^{(\sigma,-)}) = w_i$$

Consider any similarity function $k(\cdot, \cdot) : \mathcal{X} \times \mathcal{X} \to [-1, 1]$. We say that **reconstruction function** \mathcal{R} is associated to k when :

$$\begin{array}{ll} h_{\langle \rangle}^{(\epsilon,+)}(\mathbf{x}) & \stackrel{\mathrm{def}}{=} & +1 \\ h_{\langle i \rangle}^{(\sigma,+)}(\mathbf{x}) & \stackrel{\mathrm{def}}{=} & \left\{ \begin{array}{c} +1 & \mathrm{if} \ \sigma < k(\mathbf{x}_i,\mathbf{x}) \\ -1 & \mathrm{otherwise} \end{array} \right. \\ h_{\mathbf{i}}^{(\sigma,-)}(\mathbf{x}) & \stackrel{\mathrm{def}}{=} & -h_{\mathbf{i}}^{(\sigma,+)}(\mathbf{x}) \,. \end{array}$$

For an uniform prior, this definition allows us to **recover the value** of k:

$$\frac{1}{2} k(\mathbf{x}_i, \mathbf{x}) = \int_{\sigma \in \mathcal{M}^{1}(S_i)} h_{\mathbf{i}}^{(\sigma, +)}(\mathbf{x}) \cdot P_{S_i}(\sigma, +) d\mu,$$

as $\int_{-1}^{k(\mathbf{x}_i,\mathbf{x})} \frac{1/2}{(1-(-1))} d\mu - \int_{k(\mathbf{x}_i,\mathbf{x})}^{1} \frac{1/2}{(1-(-1))} d\mu = \frac{1}{2} k(\mathbf{x}_i,\mathbf{x}).$

sc-classifier $h_{\mathbf{i}}^{\mu} \in \mathcal{H}^{S}$

$$\begin{array}{ll} \text{Comp-set:} \ S_{i} \in \{S_{\langle \rangle}, S_{\langle 1 \rangle}, \ldots, S_{\langle m \rangle}\} \\ \text{Message:} \ \mu \in \mathcal{M}_{i} = [-1, 1]^{|i|} \times \{+, -\} \end{array}$$

Distribution Q

$$\begin{aligned} &Q(h_{i}^{\mu}) = Q_{\mathcal{I}}(\mathbf{i})Q_{S_{i}}(\mu) \\ &Q(h_{i}^{(\sigma,+)}) - Q(h_{i}^{(\sigma,-)}) = w_{i} \end{aligned}$$

We finally obtain that our strongly aligned posterior will be such that:

$$egin{aligned} \mathcal{Q}_{\mathcal{I}}(\langle
angle) &= \mathcal{Q}_{\mathcal{I}}(\langle i
angle) &= rac{1}{m+1}\,, \ &w_{\langle i
angle} \cdot k(\mathbf{x}_i, \mathbf{x}) &= \int_{\mu \in \mathcal{M}_{\langle i
angle}} h^{\mu}_{\langle i
angle}(\mathbf{x}) \cdot \mathcal{Q}_{\langle i
angle}(\mu) \,\, d\mu\,, \ & ext{ and } & w_{\langle
angle} \cdot 1 &= \int_{\mu \in \mathcal{M}_{\langle
angle}} h^{\mu}_{\langle
angle}(\mathbf{x}) \cdot \mathcal{Q}_{\langle
angle}(\mu) \,\, d\mu\,. \end{aligned}$$

Thus, the output of this majority vote $B_Q(\mathbf{x}) = \operatorname{sgn} \left[\mathbf{E}_{h \sim Q} h(\mathbf{x}) \right]$ will be the same as $f_{\text{SVM}}(\mathbf{x}) = \operatorname{sgn} \left(\sum_{i=1}^m y_i \alpha_i k(\mathbf{x}_i, \mathbf{x}) + \mathbf{b} \right)$ when

$$w_{\langle i \rangle} = \frac{y_i \alpha_i}{Z(m+1)}$$
 and $w_{\langle \rangle} = \frac{b}{Z(m+1)}$. $\left(Z \stackrel{\text{def}}{=} \sum_{i=1}^m \alpha_i + |b| \right)$

In this lecture, we will :

- Review quickly the Sample-Compress theory
- See how we can describe a SVM as a Majority Vote of Sample-Compressed classifiers (the Sc-SVM)
- Use the PAC-Bayes theory to upper-bound the risk of our Sc-SVM
- Design a learning algorithm to minimise this PAC-Bayes bound
- Present some experimental results

• and Conclude...

Usuals PAC-Bayes theorems allow us to bound the risk of a majority vote classifier using two key ingredients:

- The **Kullback-Leibler divergence** KL(Q||P) between prior distribution P and posterior distribution Q
- The empirical risk of the Gibbs classifier G_Q , related to the majority vote B_Q
 - Given any \mathbf{x} , G_Q draws h according to Q and classifies \mathbf{x} according to h.
 - It follows that $R_D(B_Q) \leq 2R_D(G_Q)$.

In our setting, the Gibbs risk $R_D(G_Q)$ will be likely near 1/2, even if the Bayes risk is close to 0.

• Each sc-classifier $h_{\mathbf{i}}^{\mu} \in \mathcal{H}^{S}$ might be really weak.

We want to bound a more relevant risk!

Inspired by [Germain et al. PAC-Bayes bounds for general loss functions (2006)].

Margin of the majority vote classifier

$$M_Q(\mathbf{x}, y) \stackrel{\mathrm{def}}{=} \mathsf{E}_{h^{\mu}_{\mathbf{i}} \sim Q} \ y h^{\mu}_{\mathbf{i}}(\mathbf{x})$$

The margin is closely related to the Gibbs risk :

$$R_D(G_Q) = \frac{1}{2} - \frac{1}{2} \operatorname{\mathsf{E}}_{(\mathbf{x}, y) \sim D} M_Q(\mathbf{x}, y).$$

For sc-classifiers, we define the empirical margin as:

Margin of the majority vote classifier

$$M_Q(\mathbf{x}, y) \stackrel{\mathrm{def}}{=} \mathbf{E}_{h^{\mu}_{\mathbf{i}} \sim Q} y h^{\mu}_{\mathbf{i}}(\mathbf{x})$$

We consider any non-negative loss ζ that can be expended by a Taylor series around $M_Q(\mathbf{x}, y) = 0$ and upper-bound the zero-one loss:

$$\begin{split} \zeta(\alpha) &= \sum_{k=0}^{\deg \zeta} a_k \, \alpha^k \quad \text{with} \ a_k \geq 0\\ \zeta(\alpha) &\geq I(\alpha \leq 0) \quad \forall \alpha \! \in \! [-1,1] \, . \end{split}$$

We obtain a risk value

$$\zeta_D^Q \stackrel{\text{def}}{=} \mathop{\mathbf{E}}_{(\mathbf{x},y)\sim D} \sum_{k=0}^{\deg \zeta} a_k \ (-M_Q(\mathbf{x},y))^k$$

We express ζ_D^Q as the risk of a Gibbs classifier described by a transformed posterior \overline{Q} on a augmented set of classiers $\overline{\mathcal{H}^S}$:

$$\zeta_D^Q = \zeta(1) \cdot \mathop{\mathbf{E}}_{(\mathbf{x},y)\sim D} \left[\frac{1}{2} - \frac{1}{2} M_{\overline{Q}}(\mathbf{x},y) \right]$$

Margin of the majority vote classifier

$$M_Q(\mathbf{x},y) \stackrel{\mathrm{def}}{=} \mathbf{E}_{h^\mu_\mathbf{i} \sim Q} \ y h^\mu_\mathbf{i}(\mathbf{x})$$

We choose to use the **quadratic loss** function $\zeta_{\gamma}(\alpha) = \left(1 - \frac{1}{\gamma}\alpha\right)^2$.

21 / 39

The following PAC-Bayes theorem (next slide) is an adapted version of a **Catoni's theorem** where the influence of the empirical risk (vs KL(Q||P)) is determined by an hyperparameter *C*.

- Generally less tight than the classic kl bound
- But useful to design a bound-minimization algorithm

In this adapted version, we consider:

- A general loss function ζ
- A set of (data-dependent) sc-classifiers of size $\leq I$

Theorem

For any D, any family $(\mathcal{H}^S)_{S \in \mathcal{D}^m}$ of sets of sc-classifiers of size at most I, any prior P any $\delta \in (0, 1]$, any positive real number C_1 and any margin loss function ζ of degree < m/I, we have

$$s_{\sim D^{m}}^{\Pr} \begin{pmatrix} \forall Q \text{ on } \mathcal{H}^{S}:\\ \boldsymbol{\zeta}_{D}^{Q} \leq C' \cdot \left(\boldsymbol{\zeta}_{S}^{Q} + \frac{\zeta'(1) \cdot \mathrm{KL}(Q \| P) + \ln \frac{1}{\delta}}{\zeta(1) \cdot C_{1} \cdot m} \right) \geq 1 - \delta,$$

where $\mathrm{KL}(\cdot \| \cdot)$ is the Kullback-Leibler divergence, and

$$C' = \frac{C_1 \cdot \frac{m}{m - l \cdot \deg \zeta}}{1 - e^{-C_1 \cdot \frac{m - l \cdot \deg \zeta}{m}}}.$$

Finding Q that minimizes this bound is equivalent to finding Q that minimizes :

$$f(Q) \stackrel{\text{def}}{=} C \cdot \zeta_S^Q + KL(Q \| P)$$

The next theorem is an adapted version of the **Langford and Seeger's theorem** where the influence of the empirical risk (vs KL(Q||P)) is given via the Kullback-Leibler divergence between two Bernoulli distributions of probability of success p and q:

$$egin{aligned} & \mathrm{kl}(q\|p) & \stackrel{\mathrm{def}}{=} & q\lnrac{q}{p}+(1-q)\lnrac{1-q}{1-p} \ & = & \mathrm{kl}(1-q\|1-p) \end{aligned}$$

We specialize the theorem for the case of aligned posterior:

$$Q(h) + Q(-h) = P(h) + P(-h) \quad \forall h \in \mathcal{H}$$

...And the term KL(Q||P) disapears from the theorem!

Theorem

For any D, any family $(\mathcal{H}^S)_{S \in \mathcal{D}^m}$ of sets of sc-classifiers of size at most I, any prior P, any $\delta \in (0, 1]$, any margin loss function ζ of degree < m/I, we have

$$\sum_{\substack{S \sim D^m \\ S \sim D^m}} \left(\frac{\forall Q \in \mathcal{H}^S \text{ aligned on } P:}{\operatorname{kl}\left(\frac{1}{\zeta(1)} \cdot \frac{\zeta^Q}{S} \| \frac{1}{\zeta(1)} \cdot \frac{\zeta^Q}{D}\right)} \leq \frac{\ln \frac{m+1}{\delta}}{m - l \cdot \operatorname{deg} \zeta} \right)^{\geq 1 - \delta}$$

where kl(q||p) is the KL-divergence between two Bernoulli distributions of respective succes probabilities q and p.

Finding Q that minimizes this bound is equivalent to finding Q that minimizes :

$$f(Q) \stackrel{\mathrm{def}}{=} \zeta_S^Q$$

We want to bound random variable $\underset{h\sim P}{\mathbf{E}} e^{m \cdot \mathrm{kl}(R_S(h) || R(h))}$ in term of $R(G_Q)$.

General theorem

Term KL(Q||P) arises when transforming expectation over P into expectation over Q:

$$\ln \left[\sum_{h \sim P} e^{m \cdot k l(R_{S}(h) || R(h))} \right]$$

$$= \ln \left[\sum_{h \sim Q} \frac{P(h)}{Q(h)} e^{m \cdot k l(R_{S}(h), R(h))} \right]$$

$$\geq \sum_{h \sim Q} \ln \left[\frac{P(h)}{Q(h)} e^{m \cdot k l(R_{S}(h), R(h))} \right]$$

$$= m \sum_{h \sim Q} k l(R_{S}(h), R(h)) - KL(Q || P)$$

$$\geq m \cdot k l(\sum_{h \sim Q} R_{S}(h), \sum_{h \sim Q} R(h)) - KL(Q || P)$$

$$= m \cdot k l(R_{S}(G_{Q}), R(G_{Q})) - KL(Q || P) .$$

Aligned posterior theorem

Here, we do the same operation for "free" (proof on next slide):

$$\ln \left[\sum_{h \sim P} e^{m \cdot kl(R_{S}(h) || R(h))} \right]$$

=
$$\ln \left[\sum_{h \sim Q} e^{m \cdot kl(R_{S}(h) || R(h))} \right]$$

$$\geq \sum_{h \sim Q} \ln \left[e^{m \cdot kl(R_{S}(h), R(h))} \right]$$

=
$$m \sum_{h \sim Q} kl(R_{S}(h), R(h))$$

$$\geq m \cdot kl(\sum_{h \sim Q} R_{S}(h), \sum_{h \sim Q} R(h))$$

=
$$m \cdot kl(R_{S}(G_{Q}), R(G_{Q})) .$$

The two " \geq " come from Jensen's inequality: $\mathbf{E} f(X) \geq f(\mathbf{E} X)$ for convex f.

First, note that as we have $h \in \mathcal{H}^{\mathcal{S}} \Rightarrow -h \in \mathcal{H}^{\mathcal{S}}$:

$$\mathop{\mathsf{E}}_{h\sim P} e^{m\cdot\mathrm{kl}(R_{\mathcal{S}}(h)\|R(h))} = \int_{h\in\mathcal{H}} \frac{P(h)e^{m\cdot\mathrm{kl}(R_{\mathcal{S}}(h)\|R(h))}}{P(h)e^{m\cdot\mathrm{kl}(R_{\mathcal{S}}(h)\|R(h))}} = \int_{h\in\mathcal{H}} \frac{P(-h)e^{m\cdot\mathrm{kl}(R_{\mathcal{S}}(-h)\|R(-h))}}{P(h)e^{m\cdot\mathrm{kl}(R_{\mathcal{S}}(h)\|R(h))}} = \int_{h\in\mathcal{H}} \frac{P(h)e^{m\cdot\mathrm{kl}(R_{\mathcal{S}}(h)\|R(h))}}{P(h)e^{m\cdot\mathrm{kl}(R_{\mathcal{S}}(h)\|R(h))}} = \int_{h\in\mathcal{H}} \frac{P(h)e^{m\cdot\mathrm{kl}(R_{\mathcal{S}}(h)$$

Then,

$$2 \sum_{h \sim P} e^{m \cdot k l(R_{S}(h) || R(h))} = \int_{h \in \mathcal{H}} P(h) e^{m \cdot k l(R_{S}(h) || R(h))} + \int_{h \in \mathcal{H}} P(-h) e^{m \cdot k l(R_{S}(-h) || R(-h))} \\ = \int_{h \in \mathcal{H}} P(h) e^{m \cdot k l(R_{S}(h) || R(h))} + \int_{h \in \mathcal{H}} P(-h) e^{m \cdot k l(1 - R_{S}(h) || 1 - R(h))} \\ = \int_{h \in \mathcal{H}} (P(h) + P(-h)) e^{m \cdot k l(R_{S}(h) || R(h))} \\ = \int_{h \in \mathcal{H}} (Q(h) + Q(-h)) e^{m \cdot k l(R_{S}(h) || R(h))} \\ = \int_{h \in \mathcal{H}} Q(h) e^{m \cdot k l(R_{S}(h) || R(h))} + \int_{h \in \mathcal{H}} Q(-h) e^{m \cdot k l(R_{S}(-h) || R(-h))} \\ = 2 \sum_{h \sim Q} e^{m \cdot k l(R_{S}(h) || R(h))}.$$

In this lecture, we will :

- Review quickly the Sample-Compress theory
- See how we can describe a SVM as a Majority Vote of Sample-Compressed classifiers (the Sc-SVM)
- Use the PAC-Bayes theory to upper-bound the risk of our Sc-SVM
- Design a learning algorithm to minimise this PAC-Bayes bound
- Present some experimental results

• and Conclude...

Let's design two learning algorithms

The task of the algorithms is to find a vector $\mathbf{w} = (w_0, w_1, \dots, w_m)$,

$$egin{array}{rcl} w_0 & \stackrel{ ext{def}}{=} & w_{\langle
angle} &= & Q(h^{(\sigma,+)}_{\langle
angle}) - Q(h^{(\sigma,-)}_{\langle
angle}) \ w_i & \stackrel{ ext{def}}{=} & w_{\langle i
angle} &= & Q(h^{(\sigma,+)}_{\langle i
angle}) - Q(h^{(\sigma,-)}_{\langle i
angle}) \ |w_j| &\leq & rac{1}{m+1} \quad orall j \in \{0,\ldots,m\} \end{array}$$

The empirical margin \widehat{M}_Q will now be defined by

$$\widehat{M}_Q(\mathbf{x}_j, y_j) = \sum_{k=0}^m y_j \, w_k \, \widehat{G}(\mathbf{x}_k, \mathbf{x}_j) = \, y_j \, \mathbf{w} \, \widehat{\mathbf{G}}(\mathbf{x}_j)$$

where

$$\widehat{G}(\mathbf{x}_j, \mathbf{x}_l) \stackrel{\text{def}}{=} \begin{cases} k(\mathbf{x}_j, \mathbf{x}_l) & \forall j \in \{1, ..., m\} \text{ and } j \neq l \\ 1 & \forall j \in \{1, ..., m\} \text{ and } j = l \\ 1 & \text{for } j = 0 \end{cases}$$
$$\widehat{\mathbf{G}}(\mathbf{x}_l) \stackrel{\text{def}}{=} (\widehat{G}(\mathbf{x}_0, \mathbf{x}_l), \dots, \widehat{G}(\mathbf{x}_m, \mathbf{x}_l)).$$

Pascal Germain (GRAAL, Université Laval)

Remember that we minimize the quadratic loss $\zeta_{\gamma}(\alpha) = \left(1 - \frac{1}{\gamma}\alpha\right)^2$, where α is the margin and γ is the minimum of the parabola.

The KL between an uniform prior and the posterior associated to w is

Algorithm with KL

Find **w** that minimizes
$$f(\mathbf{w}) \stackrel{\text{def}}{=} \mathbf{C} \cdot \sum_{j=0}^{m} \zeta_{\gamma} \left(y_j \, \mathbf{w} \, \widehat{\mathbf{G}}(\mathbf{x}_j) \right) + \text{REG}_{\text{KL}}(\mathbf{w})$$

Parameters to tune :

- C, the trade-off between the two terms to minimize
- γ , the minimum of the quadratic risk
- Kernel parameter(s), if any

Algorithm without KL

ind **w** that minimizes
$$f(\mathbf{w}) \stackrel{\text{def}}{=} \sum_{j=0}^m \zeta_{\boldsymbol{\gamma}} \left(y_j \, \mathbf{w} \, \widehat{\mathbf{G}}(\mathbf{x}_j) \right)$$

Parameters to tune :

F

- $\gamma,$ the minimum of the quadratic risk
- Kernel parameter(s), if any

Optimization procedure

Both objective functions are **convex**. Starting from $\mathbf{w} = \mathbf{0}$, we optimize $f(\mathbf{w})$ coordinate by coordinate:

- Choose at random $i \in \{0, \ldots, m\}$
- Update $w_i \leftarrow w_i + \delta$ in order to minimize $f(\mathbf{w})$
- If $w_i > rac{1}{m+1}$ then $w_i \leftarrow rac{1}{m+1}$
- If $w_i < \frac{-1}{m+1}$ then $w_i \leftarrow \frac{-1}{m+1}$
- Repeat until convergence

Let \mathbf{w}_{δ} be the weight vector obtained after an update $w_i \leftarrow w_i + \delta$.

Then, the optimal δ is obtain when

$$rac{\partial f(\mathbf{w}_{\delta})}{\partial \delta} = 0$$

Algorithm with KL

Find **w** that minimizes
$$f(\mathbf{w}) \stackrel{\text{def}}{=} C \cdot \sum_{j=0}^{m} \zeta_{\gamma} \left(y_{j} \mathbf{w} \,\widehat{\mathbf{G}}(\mathbf{x}_{j}) \right) + \text{REG}_{\text{KL}}(\mathbf{w})$$

$$\frac{df(\mathbf{w}_{\delta})}{d\delta} = \frac{2C}{\gamma^{2}m} \left(\delta \sum_{j=1}^{m} \widehat{G}^{2}(\mathbf{x}_{i}, \mathbf{x}_{j}) + \sum_{j=1}^{m} \widehat{G}(\mathbf{x}_{i}, \mathbf{x}_{j}) D_{\mathbf{w}}(j) \right) + \frac{1}{2} \ln \left[\frac{1}{\frac{m+1}{m+1}} + \frac{w_{i}}{w_{i}} + \delta \right]$$
where $D_{\mathbf{w}}(j) \stackrel{\text{def}}{=} \mathbf{w} \cdot \widehat{\mathbf{G}}(\mathbf{x}_{j}) - \gamma y_{j}$.
We find δ^{*} such as $\frac{df(\mathbf{w}_{\delta^{*}})}{d\delta} = 0$ using an iterative **root-finding method**

Algorithm without KL

Find **w** that minimizes
$$f(\mathbf{w}) \stackrel{\text{def}}{=} \sum_{j=0}^{m} \zeta_{\gamma} \left(y_{j} \mathbf{w} \widehat{\mathbf{G}}(\mathbf{x}_{j}) \right)$$

$$\frac{df(\mathbf{w}_{\delta})}{d\delta} = \frac{2}{\gamma^{2}m} \left(\delta \sum_{j=1}^{m} \widehat{G}^{2}(\mathbf{x}_{i}, \mathbf{x}_{j}) + \sum_{j=1}^{m} \widehat{G}(\mathbf{x}_{i}, \mathbf{x}_{j}) D_{\mathbf{w}}(j) \right)$$
We find δ^{*} such as $\frac{df(\mathbf{w}_{\delta^{*}})}{d\delta} = 0$ computing **directly** $\delta^{*} = \frac{-\delta \sum_{j=1}^{m} \widehat{G}^{2}(\mathbf{x}_{i}, \mathbf{x}_{j})}{\sum_{j=1}^{m} \widehat{G}(\mathbf{x}_{i}, \mathbf{x}_{j}) D_{\mathbf{w}}(j)}$

In this lecture, we will :

- Review quickly the Sample-Compress theory
- See how we can describe a SVM as a Majority Vote of Sample-Compressed classifiers (the Sc-SVM)
- Use the PAC-Bayes theory to upper-bound the risk of our Sc-SVM
- Design a learning algorithm to minimise this PAC-Bayes bound
- Present some experimental results

• and Conclude...

Experimental results (RBF kernel, 10-folds CV)

Dataset	T	S	n	Classic SVM	SC-SVM (with KL)	SC-SVM (w/o KL)
Usvotes	200	235	16	0.065	0.060	0.060
Liver	175	170	6	0.303	0.371	0.303
Credit-A	300	353	15	0.187	0.170	0.150
Glass	107	107	9	0.159	0.131	0.178
Haberman	150	144	3	0.273	0.287	0.287
Heart	147	150	13	0.184	0.163	0.190
sonar	104	104	60	0.183	0.144	0.135
BreastCancer	340	343	9	0.038	0.035	0.035
Tic-tac-toe	479	479	9	0.023	0.015	0.015
lonosphere	175	176	34	0.051	0.029	0.029
Wdbc	284	285	30	0.070	0.092	0.067
MNIST:0vs8	1916	500	784	0.005	0.004	0.004
MNIST:1vs7	1922	500	784	0.012	0.008	0.010
MNIST:1vs8	1936	500	784	0.013	0.011	0.011
MNIST:2vs3	1905	500	784	0.023	0.016	0.018
Letter:AB	1055	500	16	0.001	0.001	0.001
Letter:DO	1058	500	16	0.013	0.009	0.009
Letter:OQ	1036	500	16	0.014	0.017	0.017
Adult	10000	1809	14	0.160	0.157	0.157
Mushroom	4062	4062	22	0.000	0.000	0.000
Waveform	4000	4000	21	0.068	0.069	0.068
Ringnorm	3700	3700	20	0.015	0.016	0.012

Pascal Germain (GRAAL, Université Laval)

Sample Compressed SVM

In this lecture, we will :

- Review quickly the Sample-Compress theory
- See how we can describe a SVM as a Majority Vote of Sample-Compressed classifiers (the Sc-SVM)
- Use the PAC-Bayes theory to upper-bound the risk of our Sc-SVM
- Design a learning algorithm to minimise this PAC-Bayes bound
- Present some experimental results

• and Conclude...

Future works

Two future research ideas (among others) :

- Experimentations with **undefined similiraty measures** (non-PSD kernels)
- Consider a majority vote of sc-classifiers of maximum size >1 \Rightarrow More general than the SVM

Image: http://www.mositronic.com/

Pascal Germain (GRAAL, Université Laval)

Sample Compressed SVM

Any Questions ?