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Outline

In this lecture, we will :

Review quickly the Sample-Compress theory

See how we can describe a SVM as a Majority Vote of
Sample-Compressed classifiers (the Sc-SVM)

Use the PAC-Bayes theory to upper-bound the risk of our Sc-SVM

Design a learning algorithm to minimise this PAC-Bayes bound

Present some experimental results

and Conclude...
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The Classification problem

We consider a training set S of m examples

S
def
= (z1, z2, . . . , zm)

where each zi is a input-output pair:

zi
def
= (xi , yi )

xi ∈ X ⊆ R
n (Real atttibutes)

yi ∈ Y = {−1,+1} (Binary classif.)

Each example zi is drawn IID according to an unknown probability
distribution D on X × Y. Hence :

S ∼ Dm

.
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Elements of the Sample Compression theory

A sc-classifier hµi is a data-dependent classifier described by two variables:

A compression-set Si containing a subset of the training sequence S
describing the classifier

i
def
= 〈i1, i2, . . . , im〉 with 1 ≤ i1 < i2 < . . . < i|i| ≤ m

A message string µ containing the additional information needed to
construct the classifier.

µ is choosen amongMi, a predefined set of all messages that can be
supplied with Si.

Given Si and µ, a reconstruction function R outputs a classifier :

hµi
def
= R(Si, µ) .
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Risk of a sc-classifier

The risk (or generalization error) of a classifier h is defined as

RD(h)
def
= E

(x,y)∼D
I (h(x) 6= y) = Pr

(x,y)∼D
(h(x) 6= y)

where I (a) = 1 if predicate a is true and 0 otherwise.

The empirical risk of a sc-classifier hµi on the training set S is defined by

RS(h
µ
i )

def
=

1

m

m∑

j=1

R〈(xj ,yj )〉(h
µ
i ) ,

where

R〈(xj ,yj )〉(h
µ
i )

def
=

{
I (hµi (xj) 6= yj) if j 6∈ i

0 otherwise.

Thus, mRs(h
µ
i ) ∼ Bin

(
m−‖i‖,RD(h

µ
i )
)
.
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Examples of compression sets and reconstruction functions

Support Vector Machine

Image: Wikipedia

We can reconstruct a SVM by using the
support-vectors as the compression-set.

In this example :

Training set size: |S | = 16

Compression-set size: |i| = 3

Message string: µ = ∅

Perceptron

Once a perceptron is trained (until convergence) on S , we only need the
|i| examples implied in an update to reconstruct the classifier.

Again, µ = ∅.
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Redefining the SVM

In an attempt to upper-bound the risk RD(h), usual
sample-compression bounds degrade with the size of the
compression-set Si (as we expect).

This gives a bad interpretation of the generalization error of the
SVM, which can have a low risk even if there is a large number of
support vectors.

To overcome this issue, let’s define the SVM as a majority vote of
sc-classifiers of unitary compression-size.
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Redefining the SVM

We denote HS the set of all sc-classifiers. Each hµi ∈ H
S is such as :

The compression-set contains only zero or one training example :

Si ∈ {S〈〉, S〈1〉, S〈2〉, . . . , S〈m〉}

The message string is formed by a real number and a sign :

µ ∈Mi = [−1, 1]|i| × {+,−}

We haveM〈i〉 = [−1, 1]× {+,−} andM〈〉 = {ǫ} × {+,−}.

We consider pairs of boolean complement classifiers such as :

h
(σ,−)
i (x) = −h

(σ,+)
i (x) ∀ x ∈ X , σ ∈ [−1, 1] .

We also have:

h
(ǫ,+)
〈〉 (x) = +1 and h

(ǫ,−)
〈〉 (x) = −1 ∀ x ∈ X .
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sc-classifier h
µ
i ∈ H

S

Comp-set: Si ∈ {S〈〉, S〈1〉, . . . , S〈m〉}

Message: µ ∈ Mi = [−1, 1]|i| × {+,−}

Distribution Q

Q(hµ
i ) = QI(i)QSi(µ)

Q(h
(σ,+)
i )− Q(h

(σ,−)
i ) = wi

Let Q be a probability distribution over HS . We denote

QI , the probability that a compression-set Si is chosen by Q:

QI(i)
def
=

∫

µ∈Mi

Q(hµi )dµ

QSi , the probability of choosing message µ given Si:

QSi(µ)
def
= Q(hµi |Si)

Therefore, Q(hµi ) = QI(i)QSi(µ) .

The output of the majority vote classifier (bayes classifier) is given by :

BQ(x)
def
= sgn

[
E

h∼Q
h(x)

]
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sc-classifier h
µ
i ∈ H

S

Comp-set: Si ∈ {S〈〉, S〈1〉, . . . , S〈m〉}

Message: µ ∈ Mi = [−1, 1]|i| × {+,−}

Distribution Q

Q(hµ
i ) = QI(i)QSi(µ)

Q(h
(σ,+)
i )− Q(h

(σ,−)
i ) = wi

Before seing the data, we define a prior distribution over the
compression-sets and the message strings. This gives us indirectly a prior
P over HS such as :

PI is an uniform distribution over all possible compression-sets ;
For each compression-set Si, PSi is uniform over all messages.

PI





h〈1〉

...

h〈m〉

+
+
+
+
+

-

-
-

-
-

h(−1,−) . . . h(+1,−), h(−1,+) . . . h(+1,+)

︸ ︷︷ ︸
PMi
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sc-classifier h
µ
i ∈ H

S

Comp-set: Si ∈ {S〈〉, S〈1〉, . . . , S〈m〉}

Message: µ ∈ Mi = [−1, 1]|i| × {+,−}

Distribution Q

Q(hµ
i ) = QI(i)QSi(µ)

Q(h
(σ,+)
i )− Q(h

(σ,−)
i ) = wi

We say that a posterior Q is aligned on a prior P when for all i and σ:

Q(h
(σ,+)
i ) + Q(h

(σ,−)
i ) = P(h

(σ,+)
i ) + P(h

(σ,−)
i )

Moreover, we say that a posterior Q is strongly aligned when for all i,
there is a wi such that for all σ:

Q(h
(σ,+)
i )− Q(h

(σ,−)
i ) = wi

By restricting ourself to strongly aligned posterior, we obtain a posterior
distribution totally defined by the wi’s :

Q(h
(σ,+)
i ) =

1

2

(
P(h

(σ,+)
i ) + P(h

(σ,−)
i ) + wi

)

Q(h
(σ,−)
i ) =

1

2

(
P(h

(σ,+)
i ) + P(h

(σ,−)
i )− wi

)
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sc-classifier h
µ
i ∈ H

S

Comp-set: Si ∈ {S〈〉, S〈1〉, . . . , S〈m〉}

Message: µ ∈ Mi = [−1, 1]|i| × {+,−}

Distribution Q

Q(hµ
i ) = QI(i)QSi(µ)

Q(h
(σ,+)
i )− Q(h

(σ,−)
i ) = wi

Q(h
(σ,+)
i ) =

1

2

(
P(h

(σ,+)
i ) + P(h

(σ,−)
i )+wi

)

Q(h
(σ,−)
i ) =

1

2

(
P(h

(σ,+)
i ) + P(h

(σ,−)
i )−wi

)

QI





h〈1〉

...

h〈m〉

+
+
+
+
+

-

-
-

-
-

h(−1,−) . . . h(+1,−), h(−1,+) . . . h(+1,+)

︸ ︷︷ ︸
QMi
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sc-classifier h
µ
i ∈ H

S

Comp-set: Si ∈ {S〈〉, S〈1〉, . . . , S〈m〉}

Message: µ ∈ Mi = [−1, 1]|i| × {+,−}

Distribution Q

Q(hµ
i ) = QI(i)QSi(µ)

Q(h
(σ,+)
i )− Q(h

(σ,−)
i ) = wi

There’s almost no loss of expressiveness if we consider aligned posterior:

Proposition

Let P be a prior, S a training sequence, and Q a distribution on HS for
which there exists A > 0 such that for all hµi :

Q(hµi ) + Q(−hµi ) ≤ A (P(hµi ) + P(−hµi )) .

Then there exists a distribution Q ′ aligned on P and Bayes-equivalent toQ

i.e., BQ′(x)=BQ(x) ∀x∈X .

Remember that BQ(x)
def
= sgn

[
E

h∼Q
h(x)

]
.

From Q to Q ′, the margins will vary, but the outcome of the majority vote
will stay the same!

Pascal Germain (GRAAL, Université Laval) Sample Compressed SVM February 18, 2010 14 / 39



sc-classifier h
µ
i ∈ H

S

Comp-set: Si ∈ {S〈〉, S〈1〉, . . . , S〈m〉}

Message: µ ∈ Mi = [−1, 1]|i| × {+,−}

Distribution Q

Q(hµ
i ) = QI(i)QSi(µ)

Q(h
(σ,+)
i )− Q(h

(σ,−)
i ) = wi

Consider any similarity function k(·, ·) : X × X → [−1, 1].
We say that reconstruction function R is associated to k when :

h
(ǫ,+)
〈〉 (x)

def
= +1

h
(σ,+)
〈i〉 (x)

def
=

{
+1 if σ < k(xi , x)
−1 otherwise

h
(σ,−)
i (x)

def
= −h

(σ,+)
i (x) .

For an uniform prior, this definition allows us to recover the value of k :

1

2
k(xi , x) =

∫

σ∈M1(Si)

h
(σ,+)
i (x) · P

Si
(σ, +) dµ ,

as
∫ k(xi ,x)
−1

1/2
(1− (−1))dµ−

∫ 1
k(xi ,x)

1/2
(1− (−1))dµ = 1

2k(xi , x) .
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sc-classifier h
µ
i ∈ H

S

Comp-set: Si ∈ {S〈〉, S〈1〉, . . . , S〈m〉}

Message: µ ∈ Mi = [−1, 1]|i| × {+,−}

Distribution Q

Q(hµ
i ) = QI(i)QSi(µ)

Q(h
(σ,+)
i )− Q(h

(σ,−)
i ) = wi

We finally obtain that our strongly aligned posterior will be such that:

QI(〈〉) = QI(〈i〉) =
1

m + 1
,

w〈i〉 · k(xi , x) =

∫

µ∈M〈i〉

hµ〈i〉(x) · Q〈i〉(µ) dµ ,

and w〈〉 · 1 =

∫

µ∈M〈〉

hµ〈〉(x) · Q〈〉(µ) dµ .

Thus, the output of this majority vote BQ(x) = sgn
[
E h∼Qh(x)

]
will be the

same as fSVM(x) = sgn
(∑m

i=1 yiαik(xi , x) + b
)
when

w〈i〉 =
yiαi

Z (m + 1)
and w〈〉 =

b

Z (m + 1)
.

(
Z

def
=

∑m
i=1 αi + |b|

)
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PAC-Bayes bounds for Sc-SVM

Usuals PAC-Bayes theorems allow us to bound the risk of a majority vote
classifier using two key ingredients:

The Kullback-Leibler divergence KL(Q‖P) between prior
distribution P and posterior distribution Q

The empirical risk of the Gibbs classifier GQ , related to the
majority vote BQ

Given any x, GQ draws h according to Q and classifies x according to h.
It follows that RD(BQ) ≤ 2RD(GQ) .

In our setting, the Gibbs risk RD(GQ) will be likely near 1/2, even if the
Bayes risk is close to 0.

Each sc-classifier hµi ∈ H
S might be really weak.

We want to bound a more relevant risk!

Inspired by [Germain et al. PAC-Bayes bounds for general loss functions (2006)].
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Margin of the majority vote classifier

MQ(x, y)
def
= Eh

µ
i ∼Q yhµi (x)

The margin is closely related to the Gibbs risk :

RD(GQ) =
1
2−

1
2 E(x,y)∼DMQ(x, y) .

For sc-classifiers, we define the empirical margin as:

M̂Q(xj , yj)
def
= Eh

µ
i ∼Q

[
yjh

µ
i (xj) · I (j 6∈ i) + 1 · I (j ∈ i)

]
.

2

-1 0 1

0-1 loss (Bayes)

Linear loss (Gibbs×2)
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Margin of the majority vote classifier

MQ(x, y)
def
= Eh

µ
i ∼Q yhµi (x)

We consider any non-negative loss ζ that can be expended by a Taylor
series around MQ(x, y) = 0 and upper-bound the zero-one loss:

ζ(α) =

deg ζ∑

k=0

ak α
k with ak ≥ 0

ζ(α) ≥ I (α ≤ 0) ∀α∈ [−1, 1] .

We obtain a risk value

ζQD
def
= E

(x,y)∼D

deg ζ∑

k=0

ak (−MQ(x, y))
k

We express ζQD as the risk of a Gibbs classifier described by a transformed

posterior Q on a augmented set of classiers HS :

ζQD = ζ(1) · E
(x,y)∼D

[
1
2 −

1
2MQ(x, y)

]

Pascal Germain (GRAAL, Université Laval) Sample Compressed SVM February 18, 2010 20 / 39



Margin of the majority vote classifier

MQ(x, y)
def
= Eh

µ
i ∼Q yhµi (x)

We choose to use the quadratic loss function ζγ(α) =
(
1− 1

γα
)2

.

2

-1 0 γ 1

0-1 loss (Bayes)
Linear loss (Gibbs×2)
Quadratic loss
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First PAC-Bayes theorem

The following PAC-Bayes theorem (next slide) is an adapted version of a
Catoni’s theorem where the influence of the empirical risk (vs KL(Q‖P))
is determined by an hyperparameter C .

Generally less tight than the classic kl bound

But useful to design a bound-minimization algorithm

In this adapted version, we consider:

A general loss function ζ

A set of (data-dependent) sc-classifiers of size ≤ l
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Theorem

For any D, any family (HS)S∈Dm of sets of sc-classifiers of size at most l ,
any prior P any δ ∈ (0, 1], any positive real number C1 and any margin
loss function ζ of degree < m/l , we have

Pr
S∼Dm



∀Q on HS:

ζQD ≤ C ′ ·

(
ζQS +

ζ′(1)·KL(Q‖P)+ln 1
δ

ζ(1) ·C1 ·m

)

≥1−δ ,

where KL(·‖·) is the Kullback-Leibler divergence, and

C ′ =
C1 ·

m
m−l ·deg ζ

1− e−C1·
m−l·deg ζ

m

.

Finding Q that minimizes this bound is equivalent to finding Q that
minimizes :

f (Q)
def
= C · ζQS + KL(Q‖P)
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Second PAC-Bayes theorem

The next theorem is an adapted version of the Langford and Seeger’s
theorem where the influence of the empirical risk (vs KL(Q‖P)) is given
via the Kullback-Leibler divergence between two Bernoulli distributions of
probability of success p and q :

kl(q‖p)
def
= q ln

q

p
+ (1− q) ln

1− q

1− p

= kl(1− q‖1− p)

We specialize the theorem for the case of aligned posterior:

Q(h) + Q(−h) = P(h) + P(−h) ∀h ∈ H

...And the term KL(Q‖P) disapears from the theorem!
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Theorem

For any D, any family (HS)S∈Dm of sets of sc-classifiers of size at most l,
any prior P, any δ ∈ (0, 1], any margin loss function ζ of degree < m/l ,
we have

Pr
S∼Dm





∀Q∈HS aligned on P:

kl
(

1
ζ(1) ·ζ

Q
S ‖

1
ζ(1) ·ζ

Q
D

)
≤

ln m+1
δ

m−l ·deg ζ



≥1−δ

where kl(q‖p) is the KL-divergence between two Bernoulli distributions of
respective succes probabilities q and p.

Finding Q that minimizes this bound is equivalent to finding Q that
minimizes :

f (Q)
def
= ζQS
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We want to bound random variable E
h∼P

em·kl(RS (h)‖R(h)) in term of R(GQ).

General theorem

Term KL(Q‖P) arises when transforming
expectation over P into expectation over Q:

ln

[
E

h∼P
em·kl(RS (h)‖R(h))

]

= ln

[
E

h∼Q

P(h)

Q(h)
em·kl(RS (h),R(h))

]

≥ E
h∼Q

ln

[
P(h)

Q(h)
em·kl(RS (h),R(h))

]

= m E
h∼Q

kl(RS(h),R(h))−KL(Q‖P)

≥ m · kl( E
h∼Q

RS(h), E
h∼Q

R(h))−KL(Q‖P)

= m · kl(RS(GQ),R(GQ))−KL(Q‖P) .

Aligned posterior theorem

Here, we do the same operation for
“free” (proof on next slide):

ln

[
E

h∼P
em·kl(RS (h)‖R(h))

]

= ln

[
E

h∼Q
em·kl(RS (h)‖R(h))

]

≥ E
h∼Q

ln
[
em·kl(RS (h),R(h))

]

= m E
h∼Q

kl(RS(h),R(h))

≥ m · kl( E
h∼Q

RS(h), E
h∼Q

R(h))

= m · kl(RS(GQ),R(GQ)) .

The two “≥” come from Jensen’s inequality: E f (X ) ≥ f (EX ) for convex f .
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First, note that as we have h ∈ HS ⇒ −h ∈ HS :

E
h∼P

em·kl(RS (h)‖R(h)) =

∫

h∈H

P(h)em·kl(RS (h)‖R(h)) =

∫

h∈H

P(−h)em·kl(RS (−h)‖R(−h)) .

Then,

2 E
h∼P

em·kl(RS (h)‖R(h))

=

∫

h∈H

P(h)em·kl(RS (h)‖R(h)) +

∫

h∈H

P(−h)em·kl(RS (−h)‖R(−h))

=

∫

h∈H

P(h)em·kl(RS (h)‖R(h)) +

∫

h∈H

P(−h)em·kl(1−RS (h)‖1−R(h))

=

∫

h∈H

(P(h) + P(−h)) em·kl(RS (h)‖R(h))

=

∫

h∈H

(Q(h) + Q(−h)) em·kl(RS (h)‖R(h))

=

∫

h∈H

Q(h)em·kl(RS (h)‖R(h)) +

∫

h∈H

Q(−h)em·kl(RS (−h)‖R(−h))

= 2 E
h∼Q

em·kl(RS (h)‖R(h)) .
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Let’s design two learning algorithms

The task of the algorithms is to find a vector w = (w0,w1, . . . ,wm),

w0
def
= w〈〉 = Q(h

(σ,+)
〈〉 )− Q(h

(σ,−)
〈〉 )

wi
def
= w〈i〉 = Q(h

(σ,+)
〈i〉 )− Q(h

(σ,−)
〈i〉 )

|wj | ≤
1

m + 1
∀j ∈ {0, . . . ,m}

The empirical margin M̂Q will now be defined by

M̂Q(xj , yj) =

m∑

k=0

yj wk Ĝ (xk , xj) = yj w Ĝ(xj)

where

Ĝ (xj , xl)
def
=





k(xj , xl) ∀ j ∈{1, ..,m} and j 6= l
1 ∀ j ∈{1, ..,m} and j = l
1 for j = 0

Ĝ(xl)
def
= (Ĝ (x0, xl), . . . , Ĝ (xm, xl)) .
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Remember that we minimize the quadratic loss ζγ(α) =
(
1− 1

γα
)2

,

where α is the margin and γ is the minimum of the parabola.

2

-1 0 γ 1

0-1 loss (Bayes)
Linear loss (Gibbs×2)
Quadratic loss
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The KL between an uniform prior and the posterior associated to w is

REGKL(w) =
1

2

m∑

j=0

[
(c+wi ) ln(c+wi )+(c−wi ) ln(c−wi )

]
− ln c with c = 1

m+1

1
m+1

− 1
m+1 0 + 1

m+1

REGKL(w) (Sc-SVM)
REGℓ2(w) = ‖w‖2 (SVM)
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Algorithm with KL

Find w that minimizes f (w)
def
= C ·

m∑

j=0

ζγ

(
yj w Ĝ(xj)

)
+ REGKL(w)

Parameters to tune :

C , the trade-off between the two terms to minimize

γ, the minimum of the quadratic risk

Kernel parameter(s), if any

Algorithm without KL

Find w that minimizes f (w)
def
=

m∑

j=0

ζγ

(
yj w Ĝ(xj)

)

Parameters to tune :

γ, the minimum of the quadratic risk

Kernel parameter(s), if any
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Optimization procedure

Both objective functions are convex. Starting from w = 0, we optimize
f (w) coordinate by coordinate:

Choose at random i ∈ {0, . . . ,m}

Update wi ← wi + δ in order to minimize f (w)

If wi >
1

m+1 then wi ←
1

m+1

If wi <
−1
m+1 then wi ←

−1
m+1

Repeat until convergence

Let wδ be the weight vector obtained after an update wi ← wi + δ.

Then, the optimal δ is obtain when

∂f (wδ)

∂δ
= 0
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Algorithm with KL

Find w that minimizes f (w)
def
= C ·

m∑

j=0

ζγ

(
yj w Ĝ(xj)

)
+ REGKL(w)

df (wδ)

dδ
=

2C

γ2m

(

δ

m∑

j=1

Ĝ
2(xi , xj) +

m∑

j=1

Ĝ(xi , xj)Dw(j)

)

+
1

2
ln

[
1

m+1
+ wi + δ

1
m+1

− wi − δ

]

where Dw(j)
def
= w · Ĝ(xj)− γyj .

We find δ∗ such as df (wδ∗ )
dδ = 0 using an iterative root-finding method.

Algorithm without KL

Find w that minimizes f (w)
def
=

m∑

j=0

ζγ

(
yj w Ĝ(xj)

)

df (wδ)

dδ
=

2

γ2m

(

δ

m∑

j=1

Ĝ
2(xi , xj) +

m∑

j=1

Ĝ(xi , xj)Dw(j)

)

We find δ∗ such as df (wδ∗ )
dδ = 0 computing directly δ∗ =

−δ
∑m

j=1Ĝ
2(xi ,xj )

∑m
j=1 Ĝ(xi ,xj )Dw(j)
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Outline

In this lecture, we will :

Review quickly the Sample-Compress theory

See how we can describe a SVM as a Majority Vote of
Sample-Compressed classifiers (the Sc-SVM)

Use the PAC-Bayes theory to upper-bound the risk of our Sc-SVM

Design a learning algorithm to minimise this PAC-Bayes bound

Present some experimental results

and Conclude...
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Experimental results (RBF kernel, 10-folds CV)

Dataset |T | |S | n Classic SVM SC-SVM (with KL) SC-SVM (w/o KL)
Usvotes 200 235 16 0.065 0.060 0.060
Liver 175 170 6 0.303 0.371 0.303
Credit-A 300 353 15 0.187 0.170 0.150
Glass 107 107 9 0.159 0.131 0.178
Haberman 150 144 3 0.273 0.287 0.287
Heart 147 150 13 0.184 0.163 0.190
sonar 104 104 60 0.183 0.144 0.135
BreastCancer 340 343 9 0.038 0.035 0.035
Tic-tac-toe 479 479 9 0.023 0.015 0.015
Ionosphere 175 176 34 0.051 0.029 0.029
Wdbc 284 285 30 0.070 0.092 0.067
MNIST:0vs8 1916 500 784 0.005 0.004 0.004
MNIST:1vs7 1922 500 784 0.012 0.008 0.010
MNIST:1vs8 1936 500 784 0.013 0.011 0.011
MNIST:2vs3 1905 500 784 0.023 0.016 0.018
Letter:AB 1055 500 16 0.001 0.001 0.001
Letter:DO 1058 500 16 0.013 0.009 0.009
Letter:OQ 1036 500 16 0.014 0.017 0.017
Adult 10000 1809 14 0.160 0.157 0.157
Mushroom 4062 4062 22 0.000 0.000 0.000
Waveform 4000 4000 21 0.068 0.069 0.068
Ringnorm 3700 3700 20 0.015 0.016 0.012
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Future works

Two future research ideas (among others) :

Experimentations with undefined similiraty measures
(non-PSD kernels)

Consider a majority vote of sc-classifiers of maximum size > 1
⇒ More general than the SVM

Image: http://www.mositronic.com/
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The End!

Any Questions ?
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