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Self-consistent Vlasov-Fokker-Planck

Consider a system of particles R? x RY, described at time t > 0 by its
phase-space distribution function F(t, x, v), satisfying

O:F +v-ViF —Vy (Vg + V) -V,F=V,  (VF + V,F)

> Particles are moving in space

» Random fluctuations and damping of the velocity (Fokker-Planck)
> Particles localized in a region of space by an outside force V, V
» Particle at y affects particle at x with a force V,k(x — y)

VeG) = [ kx— ey, pe() = [ Flxodv.
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Why this equation is interesting/hard at first glance:
» Degeneracy: diffusion in v only and vanishes for F = p(t,x)e""‘z/2

» Non-linearity is non-local
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phase-space distribution function F(t, x, v), satisfying

OF +v -V F = Vi (Vr+ V)-V,F =V, (VF +V,F)

> Particles are moving in space

» Random fluctuations and damping of the velocity (Fokker-Planck)
> Particles localized in a region of space by an outside force V, V
» Particle at y affects particle at x with a force V,k(x — y)

VeG) = [ kx— ey, pe() = [ Flxodv.

Why this equation is interesting/hard at first glance:
» Degeneracy: diffusion in v only and vanishes for F = p(t,x)e""‘z/2
» Non-linearity is non-local

A less obvious reason:

» Phase transition in the strongly non-linear (large mass) regime
hG+v- VG-V, (MVs+V)-V,G=V,(vG+V,G)
where M = [i,, F(t)dxdv is the (conserved) mass and G = F/M
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Interaction potential

Even and odd parts of the interaction kernel:

ke(x):W’ kO(X):M, k=k®+ k°.

2/12



Interaction potential

Even and odd parts of the interaction kernel:

ke(x):W’ kO(X):M, k=k®+ k°.

“Ideal” example we have in mind

» In 3D plasma physics: k is symmetric with positive Fourier modes

/ o~
k(X):m, I>07 k(f)“”frz

2/12



Interaction potential

Even and odd parts of the interaction kernel:

ke(x):W’ kO(X):M, k=k®+ k°.

“Ideal” example we have in mind

» In 3D plasma physics: k is symmetric with positive Fourier modes

/ ~
k(X):m, I>07 k(f)“”frz

“Bad" examples we have in mind

» In particle accelerator physics: k is non-symmetric and k € W1°:

> Kuramoto k = — cos(wx): k is symmetric but k is negative
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Positive symmetric potentials: example of a plasma

3D Vlasov-Poisson-Fokker-Planck (Coulomb potential k(x) oc A=2|x|~1)

OeF +v-ViF — Vi (Wr+ V) -V, F =V, (VF + V,F),
—/\2A\UF(1’,X) = PF,
F|t:0 = Fin'

Theorem (Bouchut, Dolbeault '95 : unconditional cvg)

Assume that F;, satisfies physical bounds (mass, entropy, total energy)
and VVg € LY, L3°, then

F(t) =2 F, in YRS xR3),
where F, is the unique steady state.

Quantitative exponential convergence rate:
» [Hérau, Thomann '16] (weakly nonlinear A > 1)
» [Toshpulatov, 23], [Gervais, Herda, '24] (strongly nonlinear A < 1)
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Asymmetric potentials: example of a particle accelerator

High currents (large mass) = cyclical /instable behavior (microbunching)
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Assumptions on the confining potential

Assumption on the confinement: (eg. V(x) ~ |x|* with a > 1)
We make the following regularity assumption for any € € (0,1):
(1+|VVP) e Vel'nL>®, |[V2V()| <eVV()+C,

and assume the measure dyu = e~V dx admits a Poincaré inequality:

2
/ lul?dp — (/ ud,u> 5/ |V,u)?dp.
RY RY RY
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Assumption on the interactions:
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Quantitative local asymptotic stability

Theorem (G, Herda. '24)

Existence and uniqueness: The equation has at least one equilibrium,
which is unique if the interactions are almost positive (k° < 1).
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Quantitative local asymptotic stability

Theorem (G, Herda. '24)

Existence and uniqueness: The equation has at least one equilibrium,
which is unique if the interactions are almost positive (k¢ < 1).

Stability: If furthermore the interactions are almost symmetric (F° < 1),
it is stable: for any s € [0,1] and intial datum such that

3/d 1
$> 5. = > (5 — §> , | Fin — F*||H:L§(F*_1) < 1,

VFP has a unique solution F € C(R™; HiL2 (F 1)), and

IF(t) = Full gz ey S 11Fin — F*”HfL%(FIl)e_/\t’
and is instantly H* in space:

IF(t) = Fllmizery S I1Fin — F*||H;L3(F;1)f%(lfs)e*“.

Every constant is constructive and symmetric part can be large (R° > 1).
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Corollary: Vlasov-Poisson-FP k * (-) = (—=A\2A)7!

Hypotheses on the potential
> Regularity on k, Vk: Hardy-Littlewood-Sobolev or elliptic regularity.
> Valid for A <1 and A > 1:

k()= kex ()= (-NA)"'>0 = R =k"=0
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Corollary: Vlasov-Poisson-FP k * (-) = (—=A\2A)7!

Hypotheses on the potential

> Regularity on k, Vk: Hardy-Littlewood-Sobolev or elliptic regularity.

» Valid for A <1 and A > 1:
ke ()=kex ()= (-X2A) 20 = R =r"=0

Consequences of our result
» Constructive estimates but constants degenerate as A — 0
1
» Regularity on initial data H)?:f [Hérau, Thomann '16], [Toshpulatov

1
23] lowered to Hi L2 (in particular, no regularity in v)
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Stability analysis: A natural Hilbert norm

The free energy functional

FIF] :/F(x, v)< % + K(/)g + We(x) +log F(x, v)) dxdv
~~ v "

L confinement
kinetic

interaction
ener
energy 8y

entropy
energy

is a Lyapunov functional for symmetric interactions (<°

= 0)
—=0
7_7:[/:] + 'D[F] =0 (h ) s

DI[F] > 0.
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is a Lyapunov functional for symmetric interactions (<°

= 0)
—=0
7_7:[/:] + 'D[F] =0 (h ) s

D[F] > 0.
Functional framework for stability: fluctuation f and Hilbert norm

F=F(1+f), FIF] = P F[F.).(F.f, Fof) = || f]

= (/ Pl v dxdv / k€ x pe(x)pr(x) dx) :

where ||-||| is well defined because k° is almost positive (k® < 1).

Idea to use |||-||| originally from [Addala, Dolbeault, Li, Tayeb, '19].
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Stability analysis: hypocoercivity
The fluctuation f satisfies
Oif + Tf = LfF + O(R°), where L<0, T*=-T

> Problem: ker(L) # 0 = incomplete energy estimate
» Solution: hypocoercivity
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Stability analysis: hypocoercivity
The fluctuation f satisfies
Oif + Tf = LfF + O(R°), where L<0, T*=-T

» Problem: ker(L) # 0 = incomplete energy estimate
» Solution: hypocoercivity

2D toy-model for hypocoercivity

dy (0 1
ar  \-1 —1)Y
V3

Ei lues = —— + i —
igenvalues 5 i3

» Incomplete energy estimate %|y(t)|2 = —2y3(t) # decay O (e_t/2)
> Introduce the equivalent (squared) norm (|n| < 1)

d
H(y) =yi + 3 + 2ny1ye = T H(8) + Hiy(t) <0.
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Stability analysis: linear study
Exponential decay: DMS strategy [Dolbeault Mouhot, Schmeiser, "15]:
A= AT M), E(F) = IFII° +0 ((AF, ) = IIFI1F: (.
We recover exponential decay for 7° < 1:
CE)+AE(F) SFE) = 1Az S € Ml e

Similar for £(V,f) = exponential decay in HL2(F,) also
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Stability analysis: source term and nonlinear estimates

VFP with a source: 0yf + Tf = Lf + O(R°) — (V, — v)¢ measured by

el = [ e (P MplBpgey + ) e

where ¢ = fV,1)¢ in the original perturbation equation.

Proposition

For any given s € [0,1] there holds
1fllas < finllerz(ryy + lleols-
If additionally s > s. := % (i — —) then

q

1FVtbgllis S 1F 1l llgll s -
Taking ¢ = fV, ¢ and £, small = 3! solution f € X*° by fixed point.
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Perspectives

> Phase transition in the strongly non-linear regime

Example: Kuramoto k(x) = —kx° cos(wx) = negative modes at +w

T T T

ol " | h Three steady states for kK > 1

" f“ Q1: Stability/instability ?

1l i ‘vl ! | Q2: Infinite modes ?
/Qﬁf\‘\ Q3: Non-symmetric k ?

ol : ics ?

’5> 1 o0 1 2 Q4: Numerics 7

> Diffusive approximation: long-time and strong randomness/damping

» Numerical schemes for McKean-Vlasov
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Perspectives

> Phase transition in the strongly non-linear regime

> Diffusive approximation: long-time and strong randomness/damping

1
cOFE 4 vV F* =V (Ve + V) -V, F = -V, - (vF° + V,F°)

Then F(t,x,v) <=2 p(t, x)e~1"*/2 where
0ep— Vi (Vap+pV(p,+ V)) =0  (McKean-Vlasov)

NB: Same steady state equation for MV and VFP
» Numerical schemes for McKean-Vlasov
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Thank you for your attention!

[G, Herda., Well-posedness and long-time behavior for self-consistent
Vlasov-Fokker-Planck equations with general potentials.
arXiv:2408.16468|



